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A B S T R A C T

We present STREAmS, an in-house high-fidelity solver for direct numerical simulations (DNS) of

canonical compressible wall-bounded flows, namely turbulent plane channel, zero-pressure gradient

turbulent boundary layer and supersonic oblique shock-wave/boundary layer interaction. The solver

incorporates state-of-the-art numerical algorithms, specifically designed to cope with the challenging

problems associated with the solution of high-speed turbulent flows and can be used across a wide

range of Mach numbers, extending from the low subsonic up to the hypersonic regime. From the com-

putational viewpoint, STREAmS is oriented to modern HPC platforms thanks to MPI parallelization

and the ability to run on multi-GPU architectures. This paper discusses the main implementation

strategies, with particular reference to the CUDA paradigm, the management of a single code for

traditional and multi-GPU architectures, and the optimization process to take advantage of the latest

generation of NVIDIA GPUs. Performance measurements show that single-GPU optimization more

than halves the computing time as compared to the baseline version. At the same time, the asyn-

chronous patterns implemented in STREAmS for MPI communications guarantee very good parallel

performance especially in the weak scaling spirit, with efficiency exceeding 97% on 1024 GPUs. For

overall evaluation of STREAmS with respect to other compressible solvers, comparison with a recent

GPU-enabled community solver is presented. It turns out that, although STREAmS is much more

limited in terms of flow configurations that can be addressed, the advantage in terms of accuracy,

computing time and memory occupation is substantial, which makes it an ideal candidate for large-

scale simulations of high-Reynolds number, compressible wall-bounded turbulent flows. The solver

is released open source under GPLv3 license.

Program summary

Program Title

STREAmS

Program Files doi

Private peer-review copy of Code Ocean capsule named

STREAmS made available to the editors by Code Ocean

support

Licensing provisions

GPLv3

Programming language

Fortran 90, CUDA Fortran, MPI

External routines

N/A

Nature of problem

Solving the three-dimensional compressible Navier-Stokes

equations for low and high Mach regimes in a Cartesian

domain configured for channel, boundary layer or shock-

boundary layer interaction flows.

Solution method

The convective terms are discretized using a hybrid

energy-conservative shock-capturing scheme in locally

conservative form. Shock-capturing capabilities rely on the

use of Lax-Friedrichs flux vector splitting and weighted

essentially non-oscillatory (WENO) reconstruction. The

system is advanced in time using a three-stage, third-order

RK scheme. Two-dimensional pencil distributed MPI

parallelization is implemented alongside different patterns

of GPU (CUDA Fortran) accelerated routines.

Additional comments including restrictions and unusual

features

The code is available and supported on https://github.com/

matteobernardini/STREAmS

1. Introduction

Compressible flows are ubiquitous in aerospace applica-

tions and in recent years there has been a renewed interest in

the field, owing to the rising investments in high-speed flight

and space exploration. These technological challenges call

attention to high-fidelity numerical methods for compress-

ible wall-bounded flows which have proved to be a valuable

tool to unveil the complexity of these flows.

The flow physics of compressible wall-bounded turbu-

lence is undoubtedly richer than in incompressible flows.

The hyperbolic nature of the equations allows for the pres-

ence of propagating disturbances and discontinuities such as

shock waves, which interact with the underlying turbulence,

leading to flow phenomena which are absent in the incom-

pressible case. This additional complexity has affected

and slowed down the development of numerical methods

for compressible flows, as compared to the incompressible

ones. Baseline numerical algorithms for direct numerical

simulation (DNS) of incompressible flows were mainly

developed between the sixties and the eighties (1,2,3,4), and
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basically settled since then. The reliability of these algo-

rithms and the advent of the open-source software promoted

the development of several incompressible open-source

solvers for fluid dynamics, both multi-purpose solvers as

OpenFOAM (5), Nek5000 (6) and Nektar++ (7) and academic

solvers as AFiD (8) and CaNS (9). These solvers are based

on central processing units (CPUs) and message passing

interface (MPI) parallelization, which has been the standard

approach in high-performance computing (HPC) in the

past twenty years. However, in the race towards exascale

computing, the HPC architectures are showing consistent

trend towards the use of graphical processing units (GPUs).

In the last decade, GPUs have become the favorite solution

to achieve accelerated cutting-edge performance with high

energy efficiency. In particular, in the second 2019 Top500

survey (10), which reports the ranking of the most powerful

500 machines worldwide, 136 machines are NVIDIA

GPU-Accelerated (11) for a total of about 40% of the total

power supplied. In addition, NVIDIA GPUs power 90% of

the top 30 supercomputers on the Green500 (12), a list of

HPC systems with high performance and improved energy

efficiency. The incompressible DNS community has already

benefited from improved computational performance of

GPUs, with two available in-house solvers AFiD-GPU (13)

and CaNS-GPU (14).

Numerical algorithms for DNS of compressible flows

are less standardized then the incompressible ones, as

several formulations of the underlying equations are

possible (15,16), each proving numerical advantages de-

pending on the flow physics involved. For this reason

fewer open-source compressible flow solvers are available,

compared to the incompressible case. Examples include

popular multi-purpose open-source packages (5,17,18,7) and

OpenSBLI (19), a Python framework for the automated

derivation of finite differences solvers both for CPUs and

GPUs architectures. Another option is the use of the

recent programming paradigm Legion (20) which allows

users to use the same solver on different HPC architectures

(including GPUs), without requiring extensive code re-

structuring. A recent example of compressible flow solver

using Legion is HTR (21), designed for hypersonic reacting

flows. Other examples of compressible open-source flow

solvers running on GPUs include PyFr (22) and ZEFR (23),

which are both general-purpose, unstructured flow solvers

based on high-order flux reconstruction. Those solvers were

designed to solve a range of governing systems on mixed

unstructured grids containing various element types, thus

providing the opportunity of simulating compressible flows

in complex geometries. The realization of codes capable

of adequately simulating compressible flows in complex

geometries represents a significant step forward, especially

from the point of view of real applications. However,

solvers such as STREAmS, focused on the simulation of

canonical flows for basic research on turbulence, can offer

considerable advantages over general-purpose solvers.

First, consolidated energy-preserving schemes as those

implemented in STREAmS, represent the state-of-the-art

solution for DNS/LES of shock-free turbulent flows, al-

lowing to accurately simulate the wide range of spatial

and temporal scales typical of turbulence without relying

on numerical (artificial) diffusivity. Those schemes can

be efficiently combined with modern shock-capturing

methods as weighted essentially non oscillatory (WENO)

reconstructions, yielding hybrid schemes that currently

represent an optimal strategy for the computation of shocked

flows (24). Moreover, STREAmS offers tailored boundary

conditions, such as digital filtering for turbulent inflow, and

shock injection for the simulation shock/boundary-layer

interactions. Finally, as will be extensively discussed in this

work, a Cartesian code such as STREAmS achieves very

high efficiency both in terms of memory consumption and

computater time, yielding remarkable speed-up with respect

to general-purpose solvers.

The STREAmS CPU solver stems from 20 years expe-

rience in our group on compressible wall-bounded flows,

and it was used to carry out several seminal DNS studies of

canonical flows including supersonic boundary layers (25,26),

shock/boundary layer interactions (SBLI) (27,28), supersonic

roughness-induced transition (29,30) and supersonic internal

flows (31,32). The first core of the code, without shock-

capturing functionality and limited to the use of a single

GPU, was successfully ported to previous generations of

NVIDIA GPUs, showing significant advantage of this type

of architecture (33).

In this work we present STREAmS (Supersonic TuR-

bulEnt Accelerated navier stokes Solver), a CUDA Fortran

version of the solver, developed and optimized for the latest

generation of GPU clusters. The solver is targeted to three

main canonical wall-bounded turbulent flows, namely the

supersonic plane channel, the zero-pressure-gradient bound-

ary layer developing over a flat plate and the oblique shock

wave/turbulent boundary layer interaction. In the following,

the key points of the implemented algorithms are described

and a brief validation of the analyzed flows is presented.

Then, CUDA implementation is discussed alongside with

the various stages of single-node optimization. Finally, the

scalability properties are presented and the computational

performance compared with both the CPU version of the

same solver, and with the GPU solver ZEFR (23).

2. Methodology

STREAmS solves the fully compressible Navier-Stokes

equations for a perfect heat-conducting gas

)�

)t
+

)�ui
)xi

= 0, (1a)

)�ui
)t

+
)�uiuj

)xj
= −

)p

)xi
+

)�ij

)xj
+ f�i1, (1b)

)�E

)t
+

)�ujH

)xj
= −

)qj

)xj
+

)�ijui

)xj
+ fu1, (1c)

where ui, i = 1, 2, 3, is the velocity component in the i-th

direction, � the density, p the pressure, E = cvT + uiui∕2
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Figure 1: Schematic of the computational stencil in one space
direction.

the total energy per unit mass, and H = E + p∕� is the total

enthalpy. The components of the heat flux vector qj and of

the viscous stress tensor �ij are

�ij = �

(
)ui
)xj

+
)uj

)xi
−

2

3

)uk
)xk

�ij

)
, (2)

qj = −k
)T

)xj
, (3)

where the dependence of the viscosity coefficient on tem-

perature is accounted for through Sutherland’s law and k =

cp�∕Pr is the thermal conductivity, with Pr = 0.72. The

forcing term f in equation (1b) is added in the plane channel

flow simulations and is evaluated at each time step in order

to discretely enforce constant mass-flow-rate in time. The

corresponding power spent is added to the right-hand-side

of the total energy equation.

2.1. Spatial discretization
The convective terms in the Navier–Stokes equations

are discretized using a hybrid energy-preserving/shock-

capturing scheme in locally conservative form (34). Let us

consider the convective flux in one space direction (say x)

fx = �u', (4)

where ' is the transported quantity, namely ' = 1 for the

mass equation, ' = uj for the momentum equation in the

j − tℎ direction and H for the total energy equation. The

numerical discretization of the streamwise derivative of the

flux fx on a uniform mesh with spacing Δx relies on the

identification of a numerical flux f̂x i+1∕2 defined at the in-

termediate nodes such that

)fx
)x

|||i =
1

Δx

(
f̂x, i+1∕2 − f̂x, i−1∕2

)
. (5)

An energy-preserving numerical flux at the interface i+
1∕2 (figure 1) can be obtained by defining the three-point

averaging operator (34)

(
F̃ , G, J

)
i,l

=
1

8

(
Fi + Fi+l

) (
Gi + Gi+l

) (
Ji + Ji+l

)
, (6)

and recasting in conservative form the split formulation of

the Eulerian fluxes (35)

f̂x, i+1∕2 = 2

L∑
l=1

al

l−1∑
m=0

(
�̃, u, '

)
i−m,l

, (7)

where the al are the standard coefficients for central finite-

difference approximations of the first derivative, yielding

order of accuracy 2L. In smooth (shock-free) regions of

the flow STREamS applies an energy-consistent flux (7),

which guarantees that the total kinetic energy is discretely

conserved in the limit case of inviscid incompressible

flow (27). The order of accuracy of the discretization can

be selected by the user and ranges from the second up

to the eighth order. The locally conservative formulation

allows straightforward hybridization of the central flux

with classical shock-capturing reconstructions. In our

case, shock-capturing capabilities rely on the use of the

Lax-Friedrichs flux vector splitting, whereby the compo-

nents of the positive and negative characteristic fluxes are

reconstructed at the interfaces using a weighted essentially

non-oscillatory (WENO) reconstruction (36). Similarly to

the central flux, the order of accuracy of the shock capturing

scheme can be changed from first to seventh order. To

judge on the local smoothness of the numerical solution

and switch between the energy preserving and the shock

capturing discretization, STREAmS relies on a modified

version of the Ducros shock sensor (37)

� = max

⎛⎜⎜⎜⎝
−∇ ⋅ u√

∇ ⋅ u2 + ∇ × u2 + u2
0
∕L0

, 0

⎞⎟⎟⎟⎠
∈ [0, 1], (8)

where u0 and L0 are suitable velocity and length scales (25),

which remain fixed during the simulation. The sensor is de-

signed to be � ≈ 0 in smooth flow regions and � ≈ 1 in

the presence of shock waves. For turbulent channel flow u0
and L0 are the bulk flow velocity and channel half width,

whereas for boundary layer they are the free-stream veloc-

ity and the inflow boundary layer thickness. The viscous

terms are expanded to Laplacian form to avoid odd-even de-

coupling phenomena, and approximated with central finite-

difference formulas (up to eighth order)

)

)x

(
�
)u

)x

||||i
) ||||i =

)�

)x

||||i
)u

)x

||||i + �
)2u

)x2

||||i =

1

Δx2

L∑
l=−L

a2
l
�i+lui+l + �i

1

Δx2

L∑
l=−L

blui+l,

(9)

where bl are the finite difference coefficients for the second

derivative of order 2L.

2.2. Time integration
A semi-discrete system of ordinary differential equations

stems from discretization of the spatial derivatives,

dw

dt
= R(w) (10)

where w = [�, �u, �v, �w, �E] is the vector of the conserva-

tive variables and R the vector of the residuals. The system

is advanced in time using a three-stage, third-order Runge-

Kutta scheme (38),

w
(l+1) = w

(l)+�lΔtR
(l−1)+�lΔtR

(l), l = 0, 1, 2, (11)
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Figure 2: Inviscid time step limitations for explicit time ad-
vancement of compressible wall bounded flows (12), for dif-
ferent coordinate direction, streamwise (solid), wall-normal
(dashed) and spanwise (dash-dotted). The limitations are nor-
malized with the skin-friction coefficient and reported as a
function of the reference Mach number M0 (bulk Mach number
for channel flow and free-stream Mach number for boundary
layer). Δt+

I
is the incompressible time step limitation in the

streamwise direction.

w
(0) = w

n, wn+1 = w
(3) and the integration coefficients are

�l = (0, 17∕60,−5∕12), �l = (8∕15, 5∕12, 3∕4).
As previously noted, the numerical solution of the

compressible Navier–Stokes equations is in general terms

more computationally demanding than the incompressible

version. This is certainly due to the presence of additional

terms and equations, but also to the acoustic time step limi-

tation which is absent in the incompressible case. The Euler

equations in characteristic form are a coupled system of

nonlinear advection equations, with the advection velocities

corresponding to the eigenvalues of the system. Hence, the

maximum eigenvalue in the i-th direction �imax = ui + c
(where c is the local speed of sound) embeds a convective

(ui) and an acoustic (c) contribution. With reference to the

flow cases of interest for STREAmS, namely wall-bounded

compressible turbulent flows, the inviscid time step limita-

tion in the coordinate directions (x,y,z) can be expressed as

Δt+x =
Δx+

max(u+
0
+c+

0
,c+w)

= Δx+M0

√
Cf

2
min

(
1,

√
Tw∕T0
1+M0

)
,

Δt+y =
Δy+

c+w
= Δy+M0

√
Cf

2

Δt+z =
Δz+

max(c+
0
,c+w)

= Δz+M0

√
Cf

2
min

(
1,
√
Tw∕T0

)
,

(12)

where unit CFL number is assumed, Δx and Δz are the uni-

form mesh spacings in the streamwise and spanwise direc-

tions, and Δy is the minimum mesh spacing in the wall-

normal direction. The plus superscript is used to denote

quantities made nondimensional with respect to local wall

units, namely the friction velocity u� = (�w∕�w)
1∕2, and

the viscous length scale �v = �w∕u� , where �w is the wall

shear stress. The subscript 0 denotes bulk flow properties

(for channels) or at the free-stream (for boundary layers), and

w indicates wall properties, with the skin friction coefficient

given by Cf = 2�w∕(�0u
2
0
).

The acoustic contribution is suppressed in the incom-

pressible Navier–Stokes equations, and the time step limi-

tation of wall-bounded flows is typically controlled by the

streamwise direction,

Δt+
I
= Δx+

√
Cf∕2. (13)

The viscous time step limitation in wall-bounded flows is

dictated by the wall-normal direction, and in wall units one

has

Δt+yv = Δy+
2
. (14)

Figure 2 shows the inviscid time step limitations (12) as a

function of the reference Mach number, compared to the in-

compressible time step limitation (13). The normalized vis-

cous time step limitation Δt+yv∕
√
Cf∕2, in turbulent flows is

much larger than the inviscid one, provided that Δy+ ≈ 1.

Figure 2 shows that the time step for explicit time advance-

ment of compressible flows is always more limiting as com-

pared to the incompressible case, and this is especially true

at low Mach number, with an overhead easily exceeding an

order of magnitude (39).

3. Validation

STREAmS has been tailored to carry out DNS of three

types of canonical compressible flow configurations, namely

supersonic plane channel flow, supersonic boundary layer

and shock wave/boundary layer interaction. In the follow-

ing we validate the solver for these three flows and compare

the results to experimental and numerical data available in

the literature. We use both Reynolds (� = �+�′) and Favre

(� = �̃+�′′, �̃ = ��∕�) decompositions, where the overline

symbol denotes averaging in the homogeneous space direc-

tions and in time.

3.1. Supersonic plane channel flow
We carry out DNS of plane supersonic channel

flow at bulk Mach number Mb = ub∕cw = 1.5 and

bulk Reynolds number Reb = 2�bubℎ∕�w = 15241,

where �b = 1∕V ∫
V �dV is the bulk density and

ub = 1∕(�bV ) ∫V �udV is the bulk velocity in the

channel (both exactly constant in time), and �w and cw
are the dynamic viscosity coefficient and the speed of

sound at the wall temperature, respectively. This con-

figuration corresponds to a friction Reynolds number

Re� = �wu�ℎ∕�w = 502. The computational domain is

a rectangular box with size 6�ℎ × 2ℎ × 2�ℎ in the x, y, z
coordinate directions, respectively and ℎ is the channel half-

height. The mesh spacing is constant in the wall-parallel

directions, and an error-function mapping is used to cluster

mesh points towards the walls. The number of mesh points

in the three directions is Nx = 1032, Ny = 256, Nz = 512,

corresponding to a mesh spacing in wall units Δx+ = 9.2,

: Preprint submitted to Elsevier Page 4 of 17
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Figure 3: Supersonic plane channel flow at Mb = 1.5 and
Re� = 490, Re� T = 325. (a) Mean streamwise velocity profile
and (b) Density scaled turbulent stresses �ij∕�w as a function of
y+. Present DNS data (black solid) are compared to reference
data (31) (red dashed with squares).

Δy+ = 0.8–5.8 and Δz+ = 6.2. Periodicity is enforced

in the homogeneous wall-parallel directions, and no-slip

isothermal conditions are imposed at the channel walls.

The mesh in the wall-normal direction is staggered such

that the wall coincides with an intermediate node, where

the convective fluxes are identically zero. This approach

guarantees correct telescoping of the numerical fluxes and

exact conservation of the total mass, with the further benefit

of doubling the maximum allowed time step (31). The

simulation is initiated with a parabolic streamwise velocity

profile with superposed random and large-scale sinusoidal

perturbations, corresponding to streamwise-aligned rollers.

We first compare the results of DNS carried out using

GPUs and the sixth-order energy conserving scheme with

previous DNS data for the same configuration (31) and find

excellent agreement for both the mean velocity u+ and

the Reynolds stresses �ij = �ũ′′
i
u′′
j

, as shown in figure 3.

Figure 4 shows the instantaneous streamwise velocity in

a cross-stream, a streamwise and a wall-parallel plane at

y+ = y∕�v = 15 for the sixth-order energy conserving

scheme. The instantaneous flow field exhibits a typical

pattern showing low- and high-speed momentum streaks in

wall-parallel planes, associated with sweeps and ejections,

better visible in the cross-stream plane. In the present flow

shock waves are absent, and shocklets are not expected,

hence the obvious choice would be to simply disable the

shock-capturing machinery. However, to highlight the

effect of the various discretization schemes on the mean

flow statistics, we have carried out additional simulations of

the same flow case using different computational set-ups,

namely a fourth-order energy preserving scheme, a hybrid

sixth-order energy preserving/fifth-order WENO scheme

with shock sensor threshold � = 0.05, and finally a third-

and fifth-order WENO scheme. Figure 5(a) shows the

resulting mean streamwise velocity profiles. The results of

fourth-order and sixth-order energy preserving simulations

are undistinguishable, and the hybrid scheme also yields

the same results, as the shock sensor is seldom activated.

On the other hand, the results obtained with the full WENO

schemes exhibit deviation from the reference data, owing to

built-in numerical dissipation. Differences between WENO

and fully energy conserving/hybrid approaches are also

clear in the distribution of the normal Reynolds stress tensor

components, shown in figures 5(b,c,d). The peak of �11 is

overestimated both by WENO schemes, whereas the peaks

of the other stress components are underestimated, which

is a clear symptom of excessive numerical dissipation.

The analysis confirms that direct numerical simulation of

turbulent flows require the use of low-dissipative schemes to

avoid artificial damping of physical turbulent fluctuations.

3.2. Turbulent boundary layer
We now consider a spatially-developing zero-pressure-

gradient supersonic turbulent boundary layer evolving over

a flat plate. A direct numerical simulation is carried out at

free-stream Mach number M∞ = 2 and Reynolds number

in the low-moderate regime, up to a momentum thickness

Reynolds number Re�2 ≈ 1900, corresponding to a fric-

tion Reynolds number Re� ≈ 600. Similar to the previous

case, shocklets are not expected at this Mach number, hence

the baseline fourth-order energy-preserving flux is applied

throughout. To properly capture the large-scale structures

of the boundary layer (known as superstructures), the simu-

lation is carried out in a long and wide computational box,

which extends for Lx = 105�in, Ly = 12�in, Lz = 10�in, in

the streamwise (x), wall-normal (y) and spanwise (z) direc-

tions, �in being the boundary layer thickness at the inflow

station, computed considering the 99% of the free-stream

velocity. The computational domain is discretized with a

mesh consisting of Nx = 4096, Ny = 256, Nz = 512 grid

nodes. Uniform mesh spacing is used in the wall-parallel

directions, and a hyperbolic sine stretching is applied in the

wall-normal direction to cluster grid nodes close to the wall,

where the spacing is Δy+w = 0.8. A key ingredient for the

simulation of a compressible turbulent boundary layer is cor-

rect implementation of the boundary conditions, which here

are specified as follows. At the upper and outflow bound-

aries non-reflecting boundary conditions are imposed based

on characteristic decomposition in the direction normal to

the boundary (43). A similar characteristic wave treatment is

also applied at the no-slip wall boundary, at which the wall

temperature is set to its nominal recovery value, Tr∕T∞ =

1 + (
 − 1)∕2 rM2
∞

, with r = P r1∕3. The flow is assumed

: Preprint submitted to Elsevier Page 5 of 17
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Figure 4: Instantaneous streamwise velocity for plane supersonic channel flow at Re� = 500 and Mb = 1.5. The wall-parallel
plane is at y+ = 15.

to be statistically homogeneous in the spanwise direction,

and periodic boundary conditions are thus applied. A crit-

ical issue in the simulation of spatially-evolving turbulent

flows is the prescription of the inflow turbulence genera-

tion method. In STREAmS, velocity fluctuations at the in-

let plane are imposed by means of a synthetic digital filter-

ing (DF) approach (44), extended to the compressible case

through use of the strong Reynolds analogy (45). An effi-

cient implementation of the method is achieved using an op-

timized DF procedure (46), whereby the filtering operation is

decomposed in a sequence of fast one-dimensional convolu-

tions. The implementation requires the specification of the

Reynolds stress tensor at the inflow plane, which is interpo-

lated by a dataset of previous DNS of supersonic boundary

layers by the same group (47). The computation is initialized

by prescribing a mean fully developed turbulent compress-

ible boundary layer obtained by applying the inverse van

Driest transformation (48) to an incompressible profile of the

Musker family (49).

In figure 6 we show a snapshot of the instantaneous

density field in a streamwise wall-normal plane. The figure

highlights the main features of the turbulent boundary layer

and its multi-scale structure, characterized by an extremely

intermittent behavior in the outer layer, with regions of rel-

atively quiescent, high-speed irrotational fluid interspersed

with slower, large-scale rotational bulges. The distributions

of the van Driest transformed mean streamwise velocity

profile and velocity fluctuation intensities at a reference

station (xref = 90�in) are reported in figure 7 in inner scal-

ing. The DNS data are compared with the incompressible

boundary layer datasets (40,41) at similar friction Reynolds

number (Re ≈ 580). The figure shows near collapse of

compressible and incompressible DNS data, after density

variations are accounted for.

To assess the code capabilities at higher Mach numbers

we also carry out a DNS of a shock-free turbulent bound-

ary layer in the hypersonic regime and compare STREAmS

results with reference hypersonic boundary layer data (42).

The free-stream Mach number is M∞ = 5.86, the inlet fric-

tion Reynolds number Re� = 268 and the wall to recov-

ery temperature ratio Tw∕Tr = 0.76. The boundary con-

ditions are the same employed for the supersonic test case,

whereas the spatial discretization relies on the hybrid sixth-

order central/fifth-order WENO discretization. We use a box

of size Lx = 50�in, Ly = 15�in, Lz = 12.5�in, discretized

using Nx = 2048, Ny = 384, Nz = 800 points, correspond-

ing to a maximum spacing in wall units in the wall parallel

directions Δx+ = 8.3, Δz+ = 5.3, and a wall-normal spac-

ing at the wall Δyw = 0.8. Figure 8 compares the mean

streamwise velocity transformed according to van Driest and

the density-scaled Reynolds stresses. Excellent agreement is

found, also considering that simulations have been carried

out with different inflow methods and different numerical

schemes.

3.3. Shock-wave/turbulent boundary layer

interaction
We present a third flow case to test the shock-capturing

capabilities of STREAmS. We carry out DNS of shock-

wave/turbulent boundary layer interaction to replicate the

flow conditions of reference experiments (50), characterized

by a free-stream Mach number M = 2.28 and incidence

angle of the shock generator � = 8◦.

The simulation is performed in a computational domain

of sizeLx×Ly×Lz = [100×12×6]�in discretized usingNx×

Ny×Nz = [4096×384×288] grid points. Here �in denotes

the thickness of the incoming boundary layer upstream of

the interaction. The specification of the boundary conditions

follows the setup adopted for the previous flow case, except

for the upper boundary of the computational domain, where
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Figure 5: (a) Mean streamwise velocity profile in viscous units u+ = u∕u� and (b,c,d) normal turbulent stresses �ii = �ũ′′i u
′′
i as

a function of the viscous scaled wall-normal coordinate y+ = y∕�v, for supersonic turbulent channel flow at bulk Mach number
Mb = 1.5 and bulk Reynolds number Reb = 15241. Different curves refer to different numerical discretization of convective fluxes:
sixth-order energy conserving (black solid), fourth-order energy conserving (red squares), hybrid sixth-order energy conserving/fifth
order WENO (shock sensor threshold � = 0.05) (green triangles), full fifth-order WENO (black dotted), full third-order WENO
(cyan dash-dotted).

Figure 6: Instantaneous density field in a streamwise wall-normal plane. Contour levels are shown in the range 0.55 < �∕�∞ < 1.05.

the shock is artificially injected through hard enforcement

of the inviscid oblique shock solution corresponding to the

selected flow deflection angle.

The flow organization in the investigated SBLI is given

by figure 9, where contours of the density field are shown in a

streamwise-wall-normal plane superposed with contours of

the streamwise velocity fluctuations in a wall-parallel plane.

The figure shows the complex structure of the interaction,

characterized by the presence of an impinging and a reflected

shock, which cause thickening of the incoming boundary

layer, and the formation of a small recirculation bubble. The

typical pattern of high- and low-speed streaks that character-

izes the organization of the streamwise velocity disappears

across the interaction region, and reforms towards the end of

the computational domain, where the boundary layer gradu-

ally relaxes to the equilibrium state.

A comparison of DNS data with the reference experi-

ment is reported in Fig 10, where the distribution of the

mean wall pressure and of the streamwise fluctuation inten-

sity is shown across the interaction zone, in terms of the

scaled interaction coordinate (x− ximp)∕L, L being the dis-

tance between the nominal impingement point of the incom-

ing shock and the apparent origin of the reflected shock. It

turns out that the structure of the interaction zone is well

captured by the simulation, which predicts a wall pressure

rise in excellent agreement with the available experimen-
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Figure 7: Comparison of van-Driest transformed mean stream-
wise velocity (a) and fluctuating velocity statistics (b) scaled
in wall units, with reference incompressible DNS (40,41) data
at similar friction Reynolds number. Solid line, present DNS;
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linear u
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tal data. Similarly, very good agreement is observed for

the root-mean-square of the streamwise fluctuation inten-

sity, whose increase in the interaction region is associated

with the amplification of turbulence caused by the adverse

pressure gradient imparted by the shock system. An exten-

sive validation of the CPU version of STREAmS for the case

of shock/boundary layer interaction is available in previous

studies of our group (28,51), where comparisons with experi-

ments and DNS carried out by other groups are reported.

4. Implementation and performance

4.1. Programming paradigm and GPU porting
HPC is currently facing a major transition as the ma-

jority of systems in operation is still based on CPUs, but

GPU-based systems are experiencing rapid growth. For this

reason in this phase it is very useful to have a code which

can be used on different architectures without requiring fur-

ther modifications. Tuning the code for different architec-

tures typically involves considerable commitment, including

management effort in maintaining, updating or modifying

multiple versions of the same code. For this reason we de-

signed STREAmS to efficiently work on the most common

HPC architectures operating today. The code is written in

the Fortran language – mostly using Fortran 90 features –

which is widely used in HPC, and it is parallelized using

the MPI paradigm. Domain decomposition is carried out in

two directions (streamwise and spanwise) in order to limit

the amount of data transferred for updating the ghost nodes,

considering that the communication times may become im-

portant when using a large number of tasks.
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Figure 8: Comparison of van-Driest transformed mean stream-
wise velocity for hypersonic turbulent boundary layer at M∞ =

5.86, Re� = 436 (a) and fluctuating velocity statistics (b)
scaled in wall units, compared to reference DNS data (42) at
similar friction Reynolds number. Dashed line, present DNS;
solid line with circles, reference data.

STREAmS has been developed to support the use of

multi-GPUs architectures, while retaining the possibility

to compile and use the code on standard CPU-based

systems. To achieve this goal, different programming

approaches are possible. A first option is using directives,

for instance OpenACC (52) or OpenMP (53), which allows

to keep the CPU code completely unchanged. A second

approach relies on the use of specialized platforms for a

specific hardware, which for NVIDIA GPUs are CUDA (54)

and CUDA-Fortran (55). A third strategy is to use more

portable but more inconvenient or less popular tools, such

as OpenCL (56) or HIP: C ++ Heterogeneous-Compute

Interface for Portability (57).

For these reasons in STREAmS we opt for CUDA-

Fortran as this allows us to achieve good parallel perfor-

mance while limiting the changes to the initial CPU code.

In particular, the use of the cuf automatic kernels allows the

large majority of the code to remain unaltered, thus avoiding

keeping different versions of the code. The GPU-specific

parts of the solver are marked by the #ifdef USE_CUDA pre-

processing directive. This strategy resembles the approach

previously adopted by other popular codes in the field of

incompressible turbulence such as AFiD (13) and CaNS (9).

Another important part of the GPU porting is repre-

sented by the memory management between CPU and

GPU. AFiD employs duplicated arrays residing on host and

device, e.g. w and w_gpu, respectively. The device arrays are

distinguished using the CUDA Fortran device attribute and

are active only when CUDA compilation is enabled, i.e.

declared in modules inside preprocessing regions marked

by USE_CUDA tokens. When using device variables in the

: Preprint submitted to Elsevier Page 8 of 17
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Figure 9: Visualization of main SBLI features. Contours of the instantaneous density field in a streamwise wall-normal plane
(twenty-four levels in the range 0.6 < �∕�∞ < 1.9), superposed with contours of streamwise velocity in a wall-parallel plane at
y+ = 30 (twenty-four levels in the range 0.4 < u∕u∞ < 0.8).
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Figure 10: Distribution of (a) mean wall pressure and (b)
streamwise turbulent fluctuation intensity at y = 0.1L as a
function of the scaled interaction coordinate (x−ximp)∕L. Solid

line, DNS data; open triangles, reference experiment (50).

computing procedures, the variables are renamed inside

USE_CUDA regions using Fortran module aliasing so that

the computations can always work with the normal (host)

names, i.e. use param, only: w => w_gpu. If the variables

are passed, the declaration of the dummy arguments must

also be distinguished by adding attributes (device) inside

USE_CUDA regions. CaNS instead uses a more recent approach

based on CUDA managed memory. The managed memory

potentially allows to avoid completely the declaration of the

CPU and GPU versions of the same variable that can instead

be used both in CPU and GPU code sections. However,

the use of managed memory requires particular care to

optimize the underlying transfers and to avoid undesired

automatic transfers. To achieve a good managed memory

implementation, some information must be provided to the

CUDA platform, for example through the cudaMemAd-

vise and cudaMemPrefetchAsync functions, which in our

opinion reduce the readability of the code. For this reason

in STREAmS we followed a different approach, based on

the following strategy. For each array, two versions are

declared inside the Fortran module: a baseline array w and

the corresponding computing array w_gpu. The latter resides

on the device, i.e. has the device attribute, only if the code

is compiled by activating CUDA.

real, allocatable, dimension(:,:,:,:) :: w, w_gpu

#ifdef USE_CUDA

attributes(device) :: w_gpu

#endif

Moreover, w_gpu is explicitly allocated only if CUDA

compilation is active.

#ifdef USE_CUDA

allocate(w_gpu(1:nx, 1:ny, 1:nz, 5))

#endif

The baseline array w is used during the code initializa-

tion and finalization stages while w_gpu is used during the

time marching section. To this aim, before starting the time

evolution it is necessary to ensure that w_gpu contains the

same data as w. If CUDA is active, this is achieved by mak-

ing a CPU-to-GPU copy managed transparently by CUDA-

Fortran. If CUDA is not active, Fortran’s move_alloc proce-

dure is used, which allows to move the allocation from w to

w_gpu, both on CPU.

#ifdef USE_CUDA

w_gpu = w
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#else

call move_alloc(w, w_gpu)

#endif

A similar procedure is applied for the reverse transfer

from GPU to CPU. In conclusion, with this memory man-

agement the changes to the original solver are limited to

variable declaration and allocation and data transfer between

CPU and GPU at the beginning and at the end of the com-

putation, while all the other parts of the code may remain

mostly unchanged. Specification of the CUDA kernels is

done by using automatic cuf syntax,

!$cuf kernel do(3) <<<*,*>>>

do k=1,nz

do j=1,ny

do i=1,nx

do m=1,nv

w_gpu(m,i,j,k) = w_gpu(m,i,j,k)+fln_gpu(m,i,j,k)

enddo

enddo

enddo

enddo

!@cuf iercuda=cudaDeviceSynchronize()

The use of automatic kernels requires following some best

practices to satisfy the constraints of the cuf directives, as

the elimination of the interdependencies among loop itera-

tions. The GPU code obtained using automatic kernels has

satisfactory performance, both in terms of time to solution

and scalability, but superior performance can be achieved us-

ing advanced optimization techniques, which are discussed

in the following section.

4.2. Single-GPU optimization and performance
For the purpose of optimization, an important prelimi-

nary step is the identification of the most computationally

demanding code sections, which in a fluid dynamics solver

correspond to the evaluation of the convective (Eulerian)

and viscous fluxes. In STREAmS, an efficient implementa-

tion of the convective fluxes for CPUs was proposed by (34),

which however cannot be directly ported to GPU, owing to

use of large temporary arrays which would be allocated to

the CUDA kernel stack. Hence, STREAmS relies on differ-

ent implementation of the Eulerian fluxes on CPU and GPU,

and in the latter case cuf directives are replaced by explicit

kernels.

Starting from the baseline implementation, various op-

timization steps have been performed to accelerate the code

on GPUs, with particular focus on the latest NVIDIA V100

card. A preliminary performance analysis carried out with

the nvprof profiler revealed that STREAmS has low arith-

metic intensity and its performance is memory bound, as

typical of structured, finite-difference solvers. For this rea-

son, the management of memory accesses is crucial for op-

timization. The following optimization steps were then car-

ried out:

(A) Start: Baseline code.

(B) Layout: Change the layout of field and flux variables

from, e.g., w_gpu(nv,nx,ny,nz) to w_gpu(nx,ny,nz,nv).

This allows in principle to improve GPU access, and

in particular to get coalesced access where contiguous

indices in the innermost array component are accessed

by contiguous threads in the CUDA blocks.

(C) Transpose: In the case of the calculation of convec-

tive terms along the x direction, the CUDA threads

correspond to different y and z components, which

makes coalesced accesses incompatible with the

memory layout. For this reason in the x-convective

kernels we introduced support arrays with memory

layout w_trans_gpu(ny,nx,nz,nv). These arrays are

populated by transposing the original arrays, which is

performed very quickly using cuf kernels thanks to

specialized algorithms used by the compiler (optimal

implementations typically rely on CUDA shared

memory).

(D) Primitive - Primitive variables are pre-calculated at

each step and used for the calculation of convective

and diffusive terms. This change reduces the number

of memory accesses, the number of divisions by the

density and potentially helps limiting the number of

used registers, which can be crucial to avoid register

spilling.

(E) MPI buffer layout - MPI buffer layout has also been up-

dated to improve coalescence of accesses.

In table 1 we report the performance in terms of elapsed

time for the most demanding code sections, after the various

optimization steps described above. In particular, we report

the elapsed time for the evaluation of the convective fluxes

(Euler-x, Euler-y, Euler-z), diffusive fluxes (Viscous-I,

Viscous-II) and Runge-Kutta updates (RK-I).

As expected, we note that in the baseline solver the

evaluation of convective fluxes in x direction is considerably

more expensive than in y and z. Changing the memory

layout (step B) yields global performance degradation, but

it is instrumental to fully exploiting memory transposition

for computing the x fluxes implemented in step C, after

which we observe significant performance improvement.

Pre-storing primitive variables (step D) yields significant

reduction of the elapsed time, especially in the evaluation

of the viscous fluxes, which may be traced back to reduced

number of memory accesses and to reduced number of

registers, so that register spilling no longer occurs. Finally,

adjusting the MPI buffer layout (step E) further allows us to

reduce to total time to solution, yielding overall speed-up of

a factor of 2.2 with respect to the baseline code version.

In order to quantify the advantages of the code optimiza-

tion, we extract relevant performance metrics, using the

nvprof profiler. Considering that STREAmS is a memory

bound solver, we focus on the efficiency of memory ac-

cesses, and in table 2 we compare the value of the following

metrics for the initial and final (optimized) version of the

code:

• dram_read_throughput: Device Memory (DRAM)

Read Throughput
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• dram_write_throughput: Device Memory (DRAM)

Write Throughput

• gld_requested_throughput: Requested Global Load

Throughput

• gst_requested_throughput: Requested Global Store

Throughput

• gld_throughput: Global Load Throughput

• gst_throughput: Global Store Throughput

• gld_efficiency: Global Memory Load Efficiency

• gst_efficiency: Global Memory Store Efficiency

As expected from a structured finite difference code, the

DRAM throughputs show that the access to device mem-

ory is intensive, whereas the weight of floating point op-

erations, data dependencies or other operations is limited.

These throughputs however do not allow us to extract the

actual code efficiency. Although these values show improve-

ments for the optimized code (except for Viscous-II), these

minor variations alone do not explain the significant overall

runtime advantage between the baseline and optimized code

(speed-up around 2.2). To understand the reasons for such

behavior, it is necessary to consider the other metrics that can

also give better estimates of the code absolute performance.

The Requested Global Throughputs correspond to the

requested accesses from the programmer point of view

and thus represent significant parameters for evaluating

the code efficiency. Indeed remarkable improvements

are found for all code sections (see Table 2), consistently

with the observed code speed up. In some cases the

requested throughputs significantly exceed the real peak

value of the GPU memory (about 825 GB/s), which is

possible thanks to cache effects that limit the number of

accesses to the device’s memory. To explain the reason

for the improvement of Requested Global Throughputs

it is necessary to investigate the Global Throughputs,

which correspond to the required memory accesses. The

ratio between the requested throughputs and the required

throughputs represents the throughput efficiency, and this

quantity shows a dramatic improvement between baseline

and optimized code. In particular, most sections of the

optimized code exceed 90% efficiency, whereas this metric

never exceeds 30% for the baseline version. The optimized

code requests memory accesses in a more effective way so

that the required accesses are closer to the requested ones.

On the contrary, the baseline code reaches very high Global

Throughputs values due to cache effects, but the number

of accesses required to satisfy these requests is too high,

mainly due to the memory layout which is not adequate for

the card architecture.

It is interesting to note that for Euler-x the need to manu-

ally transpose the data to have efficient memory access limits

the global memory efficiency to approximately 60% in read-

ing, even in the optimized case. On the contrary, Euler-y
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Figure 11: Elapsed time per time step (s) for STREAmS, us-
ing different HPC architectures. For CPU-based runs a sin-
gle computing node is employed using the MPI parallelization.
For GPU-based runs a single GPU is used. Convective fluxes
are evaluated using the energy conserving discretization with
a mesh 360 × 240 × 360. The upper horizontal axis shows the
release dates of each architecture.

and Euler-z do not require data transposition to obtain coa-

lescence and therefore achieve efficiencies close to 100%. It

is also interesting to note that Viscous-II presents lower val-

ues for both global and DRAM throughputs when switching

to the optimized version. However, the significant increase

in the efficiency allows for a important improvement of the

requested access throughputs, and therefore of the time-to-

solution.

A concise evaluation of STREAmS performance on dif-

ferent CPU and GPU architectures is provided in Figure 11.

The reference unit for CPU architectures is the single com-

pute node that is exploited using MPI parallelization, and in

particular the IntelMPI library. As for GPUs, the reference

is the single card. The improvement over the years of per-

formance per node and per GPU is evident and it appears

more marked for GPUs for which the advantage over the tra-

ditional node is considerable. More specific performance

metrics (e.g. related for example to power consumption)

would be necessary for a fair comparison between the two

architectures, but this is beyond our objectives.

4.3. Parallel optimization and scalability
Large computational domains require the use of multiple

GPUs, in which each MPI process typically manages one

graphic card. Communication between multiple GPUs can

be carried out in two main fashions. The first option relies

on manual copy between host and GPU to guarantee that the

MPI communications always occur between variables re-

siding on the host. The second option relies on the so-called

CUDA-Aware MPI implementations which allow the user to

call MPI application programming interface (API) passing

device-resident variables. STREAmS has been parallelized

to support both data communication patterns, selectable

according to compilation options. This allows to correctly

run in environments where CUDA-Aware implementations

are not available. To improve the scalability performance,
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Steps A B C D E

Optimization Start Layout Transpose Primitive MPI buffer layout

Metric Time (ms) Time (ms) Time (ms) Time (ms) Time (ms)

Euler-x 76 330 36 24 24

Euler-y 18 22 22 16 14

Euler-z 20 22 22 15 15

Viscous-I 45 54 54 11 11

Viscous-II 10 7.5 7.5 6.6 6.6

RK-I 20 5 5 5 5

Total 656 1396 515 311 297

Table 1

Performance results using the energy conserving fluxes for turbulent channel flow with mesh
360 × 240 × 360 on one V100 GPU. For the most computationally demanding sections of
the code, i.e. convective fluxes calculations (Euler-x, Euler-y, Euler-z), diffusive fluxes
(Viscous-I, Viscous-II) and a Runge-Kutta update (RK-I), the execution times are shown
at the different optimization stages A-B-C-D-E.

DRAM
Throughputs [GB/s]

Requested Global
Throughputs [GB/s]

Global
Throughputs [GB/s]

Global Memory
Efficiencies [%]

Elapsed
Times [ms] Read Write Load Store Load Store Load Store

# Sections Base Opt Base Opt Base Opt Base Opt Base Opt Base Opt Base Opt Base Opt Base Opt

Euler-x 76 24 173 264 46 174 160 523 30 130 660 734 122 150 25 63 25 90

Euler-y 18 14 316 358 153 169 685 824 128 161 2444 920 514 170 28 90 25 94

Euler-z 20 15 301 356 138 161 634 782 120 153 2267 874 477 163 28 90 25 94

Viscous-I 45 11 250 260 62 105 702 2270 26 103 2372 2630 104 106 30 86 25 97

Viscous-II 10 6.6 548 350 118 139 553 781 94 139 2069 973 378 139 27 80 25 100

RK-I 20 5 228 232 323 464 80 327 113 463 319 603 454 464 25 54 25 100

Table 2

Performance results using the energy conserving fluxes for turbulent channel flow with mesh
360×240×360 on one V100 GPU. For the most demanding code sections, elapsed times and
8 significant metrics concerning memory access are reported, namely: dram_read_throughput,
dram_write_throughput, gld_requested_throughput, gst_requested_throughput, gld_throughput,
gst_throughput, gld_efficiency, gst_efficiency. Baseline code version A and optimized ver-
sion E in table 1 are compared.

the GPU implementation of STREAmS optionally supports

asynchronous patterns in which the GPU computations

are overlapped with the swapping procedure necessary

to exchange information across adjacent blocks. This is

done by exploiting the built-in asynchrony of the CUDA

kernels and the capabilities of the CUDA streams. In this

regard, two slightly different well-established strategies

were implemented depending on the availability of the

CUDA-Aware MPI. As an example, figure 12 shows a

sketch of the time-lines corresponding to the evaluation

of the streamwise convective fluxes. Fluxes at interior

nodes can be evaluated before updating ghost nodes, which

allows overlapping with MPI communications. Following

this idea, the CUDA-Aware MPI implementation (left) is

GPU-stream1

GPU-stream2

MPI standard

D2H H2D

SendRecv

Euler-x internal E-x boundary

GPU

MPI CUDA-aware SendRecv

Euler-x internal E-x boundary

(a) (b)

Figure 12: Sketch of asynchronous time lines for the evaluation of convective fluxes. (a) CUDA-aware implementation in which
the evaluation of convective fluxes at interior nodes (Euler-x internal) is superposed to MPI communications (SendRecv), followed
by evaluation of the convective fluxes at boundary nodes. (b) Standard MPI implementation in which the evaluation of convective
fluxes at interior nodes is superposed to device-to-host transfers (D2H), MPI communications and host-to-device transfers (H2D),
followed by evaluation of the convective fluxes at boundary nodes.
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Figure 13: Weak (a) and strong (b) scaling performance of STREAmS for the synchronous (circles) and asynchronous (triangles)
communications, using the GPU V100 powered cluster Marconi100. The weak scaling is plotted as time ratio (elapsed time
using N GPUs divided by the elapsed time using 1 GPU) versus the number of GPUs using the sixth-order energy conserving
discretization for the convective fluxes with 360×240×360 grid for each GPU. The strong scaling is plotted as speed-up (elapsed
time using 1 GPU divided by elapsed time using N GPUs) using the sixth-order energy conserving discretization for the convective
fluxes with mesh 512 × 230 × 360. The upper horizontal axis in (b) shows the millions of grid points processed by each GPU.

straightforward while the standard MPI implementation

(right) requires asynchronous CPU-GPU transfers using

cudaMemcpyAsync in a specific CUDA stream. After

receiving ghost nodes values, fluxes at boundary nodes can

be evaluated. A similar strategy is implemented in different

sections of the code to increase the compute-communication

overlapping as much as possible.

Parallel performance was evaluated on the CINECA

Marconi100 Cluster, based on Power 9 Architecture and

coupled with NVIDIA Tesla Volta GPUs V100 – 4 GPUs

per node – and equipped with NVLink. The compiler is

the NVIDIA HPC-SDK compiler, which inherited the PGI

compiler history.

Figure 13(a) shows the weak scaling as a function of the

number of GPUs for synchronous and asynchronous com-

munications, using 360 × 240 × 360 grid points per GPU.

We find improved weak scaling for the asynchronous pat-

tern, especially for a large number of GPUs, with efficiency

of about 97% on 1024 GPUs.

Figure 13 (b) shows the strong scaling speed-up of

the synchronous and asynchronous versions of the code,

i.e. keeping constant the total number of grid points

512 × 230 × 360. The efficiency is larger than 90% for 8

GPUs, whereas it is drops to 70% for 16 GPUs. On the

upper horizontal axis of figure 13 (b) we also show the

number of grid points per GPU, which suggests that the

optimal number of grid points per GPUs before perfor-

mance degradation is about 500,000. The advantage of

the asynchronous version of the code is visible, but not

remarkable.

4.4. Performance comparison
It is valuable to compare the global performance of

STREAmS against pre-existing compressible solvers, and

in particular codes optimized for multi-GPU use. Generally,

direct comparison between codes implementing different

numerical approaches is not straightforward. For this

purpose, we follow the strategy used to compare various

community codes for turbulent Rayleigh–Bénard convec-

tion (59), which consists in performance comparison for

code configurations yielding the same quality of results.

In the present work, the ZEFR code (23) was selected for

comparison. ZEFR is a recently released state-of-the-art

solver that uses high-accuracy Flux-Reconstruction (60)

methods on unstructured grids, and features a highly

optimized multi-GPU implementation. ZEFR is capable of

simulating complex geometries also in overset grid mode

and can therefore be used for realistic flow simulations,

whereas STREAmS is rather oriented to research in basic

flow physics. For performance comparison, turbulent

channel flow at Re� = 180 was selected. The bulk Mach

number is set to 0.2, so that compressibility effects may be

regarded as negligible, and incompressible data (58) may be

taken as benchmark.

We use a computational domain with size 4� × 2 × 2�,

with uniform mesh in the streamwise and spanwise direc-

tions, and stretching in the wall-normal direction to have

Δy+ ≈1 at the wall. The M1 reference (coarse) mesh con-

sists of 60×40×60 points for STREAmS, which is operated

with fourth-order accuracy. The reference mesh for ZEFR

has 15 × 10 × 15 cells, hence using fourth-order polynomi-

als for flux reconstruction allows us to match the number of

degree of freedoms (DOF) between the two codes. We have

then carried out a mesh refinement study in which meshes

M2, M4, M6, M8 have 2, 4, 6, 8 as many points as the base-

line mesh, in each coordinate direction. The viscous-scaled

wall-normal spacing at the wall is kept the same for all cases.
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Figure 14: Mesh sensitivity analysis for STREAmS and ZEFR using turbulent channel flow at Re� = 180, (a,b) u+, (d,e) �ũ′′u′′∕�w,

(g,h) �ṽ′′v′′∕�w, (j,k) �w′′w′′∕�w, (m,n) �ũ′′v′′∕�w. Reference incompressible data (58) are also reported both for STREAmS (first
column) and ZEFR (zecond column). (c,f,i,l,o) Convergence error as defined in Eqn. (15) as a function of mesh resolution level.
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Quantity Symbol STREAmS ZEFR

Elapsed time per point/DOF (ns) ETP 9.6 28.3
Memory per point (B) MPP 350 2060
Equivalent number of points/DOFs (M) ENP 9.2 31.1
Equivalent elapsed time ETP×ENP 88 880
Equivalent memory MPP×ENP 3.2 64.1

Table 3

Performance comparison between STREAmS and ZEFR codes based on mesh sensitivity
analyses for turbulent channel flow at Re� = 180, Mb = 0.2. The codes are compared
at mesh resolution which allows to achieve the same error level. ETP and MPP values
are evaluated running single-GPU simulations in optimal performance conditions for both
codes, i.e. when most GPU memory is used.

Figure 14 compares profiles of mean velocity and Reynolds

stresses, along with the convergence error in terms of theL∞

norm of the distance of the computed solution on mesh Mi

from the reference solution,

E'(i) =
maxy(|'(i) − 'ref |

maxy(|'ref |) . (15)

The trends in the first two columns show that both codes

converge to the reference solution, however at different

rates. The third column allows quantitative assessment of

the convergence and shows that, for the same number of

grid nodes/DOF, STREAmS is more accurate than ZEFR.

This trend applies to all mesh levels, including simulations

that can be considered properly resolved. In particular,

the M4 mesh has resolution in the wall-parallel directions

Δx+ = 9.4, Δz+ = 4.7, which are generally regarded to be

adequate for DNS of turbulent channel flow. For STREAmS

this mesh resolution yields convergence errors of 3% or less

with respect to reference data, whereas achieving the same

error levels with ZEFR requires three times the number of

DOF (i.e. the M6 mesh).

The outcome of the performance comparison is de-

tailed in table 3, where data concerning computer time

and memory usage are reported. To avoid issues related

to different level of parallelism between the two codes,

performance evaluation is based on single GPU simulations,

with memory allocation greater than 50%. The elapsed time

per point/DOF per iteration (ETP) shows that STREAmS

is about three times faster than ZEFR, and the memory

allocation per grid point (MPP) is about six times lower.

It is worth noting that the energy-conserving scheme

used in STREAmS requires repeated memory access to the

fluid dynamic fields, due to the double summation in the

evaluation of the numerical fluxes (7). Therefore, compared

to the flux reconstruction scheme used in ZEFR, we do not

expect the memory saving per degree of freedom to scale

linearly with computational time saving. Nevertheless, the

computational time saving per degree of freedom is still

important, and the optimization strategies we have adopted

are fundamental to achieve this performance.

In table 3 we also define an equivalent number of points

(ENP) based on the comparison of accuracy results obtained

above, i.e. ZEFR requires three times the number of DOF to

achieve the same results accuracy. In the end, we find that

for direct numerical simulation of canonical wall-bounded

flows the time to solution of STREAmS is ETP × ENP ∼

10 lower than in ZEFR, and the equivalent memory usage

(MPP× ENP) is about twenty-one times less.

In a nutshell, the results show that using a solver

specifically designed for DNS of canonical turbulent flows

such as STREAmS yields much higher performance than

a general-purpose code, such as ZEFR. This conclusion

is similar to what found for incompressible solvers for

turbulent Rayleigh–Bénard convection (59). This is also

confirmed by the fact that the largest DNS of turbulent flows

carried out in recent years (61,26,62,63) have been performed

using dedicated flow solvers, rather than multi-purpose

codes.

5. Conclusions

We have presented a recent version of our in-house

compressible flow solver STREAmS, which has been been

ported to CUDA-Fortran. The solver is tailored to canonical

compressible turbulent wall-bounded flows, including

channels, supersonic and hypersonic boundary layers,

and shock wave/turbulent boundary layer interactions.

STREAmS stems from two decades experience of our re-

search group in DNS of compressible wall-bounded flows,

and a baseline version of the solver is released open-source

under GPLv3 license, with the aim of providing the fluid

dynamics community with a highly-parallel and efficient

compressible flow solver. The use of CUDA-Fortran with

the use of cuf automatic kernels allows the user to limit

modifications to the original code, and to compile and

run the code on different HPC architectures. However,

implementing ad-hoc GPU optimization allows us to speed

up the solver by a factor of about two. Tests carried out

on the GPU cluster Marconi100 at CINECA show very

good scalability performance, proving that the solver can be

used for large-scale direct numerical simulations. A mesh

sensitivity analysis for a turbulent channel flow has been

carried out to compare the performance of STREAmS with

that of ZEFR, which is a state-of-the-art, general-purpose

compressible solver. The study has revealed significant

advantage of STREAmS in terms of reduced computational
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effort to reach similar results, although limited to the

simple geometrical configurations handled by STREAmS.

The availability of the GPU version of the solver allows

the flow community to take advantage of contempo-

rary pre-Exascale systems and of the next generation of

Exascale supercomputers currently under development,

thus providing a state-of-the art platform to significantly

extend the range of simulated Reynolds number to the

genuine high-Reynolds number regime (Re� > 104), and

provide definite answers to key issues in turbulence research.
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