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a b s t r a c t

The characteristics of civil structures inevitably suffer a certain level of damage during its
lifetime and cheap, non-destructive and reliable methods to assess their correct perfor-
mance are of high importance. Structural System Identification (SSI) using measured
response is the way to fine why performance is not correct and identify where the
problems can be found. Different methods of SSI exist, both using static and vibration
experimental data. However, using these methods is not always possible to decide if
available measurements are sufficient to uniquely obtain the unknown. A (SSI) method
that uses constrained observability method (COM) has already been developed based on
the information provided by the monitoring of static non-destructive tests - using de-
flections and rotations under a known loading case. The method assures that all observable
variables can be obtained with the available measured data. In the present paper, the
problem of determining the actual characteristics of the members of a structure such as
axial stiffness, flexural stiffness and mass using vibration data is analyzed. Subsets of
natural frequencies and/or modal shapes are used. To give a better understanding of the
proposed method and to demonstrate its potential applicability, several examples of
growing complexity are analyzed, and the results show how constrained observability
techniques might be efficiently used for the dynamic identification of structural systems
using dynamic data. These lead to significant conclusions regarding the functioning of an
SSI method based on dynamic behavior.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

The up-dated knowledge of the integrity of in-service structures through its lifetime is a very important objective for
owners, end-users and both, construction and maintenance teams, to whom this information might help in decision making
[1e3].

Simplified Finite Element Models (FEMs) are often used to simulate the response of civil structures [4]. When this
structural response is modeled through computer simulations, mechanical and geometrical properties of the structural
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elements, such as the Young's modulus and the cross-section area are assumed to be known. Nevertheless, in most of the
cases, the actual characteristics are unknown due to damage and uncertainties in the construction methods or stress state.
System identification is the process of developing or improving a mathematical model of a physical system using experi-
mental data to describe the input, output or response, and noise relationship [5]. The range of possible uses of system
identification is wide. When performed in order to model a structural system, system identification allows the identification
of structural parameters, such as stiffness, mass or stress and strain [6,7].

Structural System Identification (SSI) methods can be classified according to the relationship between inputs and outputs
used to calibrate the model. On the one hand, non-parametric methods link outputs and inputs creating a mathematical
model to characterize the system. Hence, the established relationship has no explicit physical meaning. Examples of non-
parametric SSI methods might be found in Refs. [8e10]. On the other hand, parametric methods relate inputs to outputs
on the basis of an actual physical meaning; due to this physical basis, this type of methods drive to a better understanding of
the problem and of the sensitivity to certain parameters. Examples of these methods might be found in Refs. [11,12].

Besides the non-parametric/parametric classification, SSI might be classified depending on the nature of the excitation test
used for the calibration; this is, dynamic and static ones, according towhether or not they engage inertial effects. Examples of
different techniques involving static identification can be found in Refs. [13,14]. On the other hand, examples of dynamic
identificationmethods can be found in Refs. [15e18]. There have also been attempts to combine dynamic and static data in the
SSI [13,19,20].

Particularly, the observability method (OM) has recently been implemented as a SSI method in the static scenario [7]. The
observability analysis lie its basis on the problem of identifying if a set of available measurements is sufficient to uniquely
estimate the state of a system or of a part of it. The application of this technique has the advantage of providing, for the first
time in the literature, parametric equations of the estimates. Thismathematical approach has been used in other fields such as
hydraulics [21], electrical and power networks [22,23] or transportation [24,25]. In addition, Lei [26] proposed the con-
strained observability method (COM) to overcome the deficiency of SSI by OM, which can prevent cutting off the observability
tree due to the improper selection of measurement sets. However, there are researchers [27] that argue that from a practical
point of view, estimation of parameters from static response is less appealing than doing it frommodal or dynamic response.
This is so because it is much easier to dynamically excite a large structure than statically, especially in large scale structures.
Moreover, it is easier to measure accelerations than displacements because of the simplicity of establishing an inertial
reference frame for measuring accelerations [27]. Hence, within the framework of observability, the problem of dynamic
identification from vibration modes and frequencies can be also addressed, with a mathematical approach similar to the
problem of static identification [28]. However, the observability method (OM) [29] has great limitations for complex structure
and might not be able to detect any parameter.

Therefore, the aim of this paper is to propose a new constrained dynamic SSI methodology; namely, a technique that
allows the identification of a subset of characteristics of a structure, such as axial or flexural stiffnesses that might be uniquely
defined when a subset of natural frequencies and modal shapes is obtained from an experimental modal analysis. Two ex-
amples in Refs. [30,31] and Ref. [32] are used as a proof of concept of the dynamic COM proposed in this paper.

This paper is organized as follows. In Section 2, the constrained observability technique is presented on the basis of the
formulation of the static SSI approach. In Section 3, the application of constrained observability techniques to the dynamic
eigenvalue equation is described. Section 4 includes the algorithms of the dynamic constrained observability technique. A
numerical example of application based on the simple frame used in Ref. [29], is used to illustrate the functioning of COM step
by step, and the results from OM and COM are compared, showing the advantages of COM over OM also in the dynamic case.
After that, two examples presented in the literature are employed to test the feasibility and reliability of the method when
experimental data is used. Section 5 presents a large case, a multiple-story building, in order to show the applicability of the
method in real structures. Finally, in Section 6, some conclusions are drawn.
2. SSI by constrained observability method: static approach

It is said that a subset of variables is observable when the system of equations derived from a set of experimental mea-
surements implies a unique solution for this subset [3], even though the remaining variables remain undetermined.When the
system is observable, it might be relevant to identify critical measurements; this is, those measurements that, if unknown,
render the state of the system unobservable. Conversely, if the system is unobservable, it is relevant to identify observable
islands; this is, those areas of the system whose respective states can be estimated. It is also important to identify the
minimum set of additional measurements that renders the whole system observable. Therefore, observability analysis is the
previous step to the identification of the system. It addresses the question of stating whether we have enough measurements
to estimate the state of a system. The static approach of the SSI by OM lies its basis on the stiffness matrix method. It will be
briefly introduced as it may be interesting to the reader for the sake of comparison with the dynamic observability.

The equations corresponding to this method are written in terms of nodal forces and displacements. For a certain
structure, the following matrix equation can be written:

Kð3NN�3NNÞdð3NN�1Þ ¼ fð3NN�1Þ (1)
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where K stands for the stiffness matrix, d for the vector of displacements and ffor the vector of forces; the sizes of the
matrices are indicated by its superscripts, inwhich NN denotes the number of nodes. To solve this system of equations, where
unknowns appear in K (bending and axial stiffnesses); d(displacements) and f(reactions); once the boundary conditions and
applied forces at nodes are introduced in Eq. (1), the terms of K and dcan be rearranged as shown in Eq. (2), by extracting the
unknown bending or axial sfiffness fromK to and removing themeasured variables from d, in such away that K*is a matrix of

known coefficients and d*is a vector of knowns and unknowns, either bending or axial stiffness, unknown displacements or a
product of both.

The subset d*1of d
*and the subset f *1 of f*are known, and the remaining subsets d*0of d

*and a subset f *0 of f*are not.

K*d* ¼
2
4K*pxr

00 K*pxs
01

K*qxr
10 K*qxs

11

3
5
8<
: d*rx10

d*sx11

9=
;¼

8<
: f *px10

f *qx11

9=
;¼ f* (2)

K*pxr
00 ; K*pxs

01 ; K*qxr
10 ; K*qxs

11 ; are the partitioned matrices of K*and d*rx10 ; d*sx11 , f *px10 , f *qx11 are the partitioned vectors of d*and

f*respectively. The dimensions of each of the elements are given by their superscripts.
In order to apply the OM, it is necessary to join together all the known variables in one side to form a vector D of known

parameters and all the unknowns to the other side, forming a vector z of unknownparameters; this is done by rearranging the
system in an equivalent form, which in this case yields into:

Bz¼
2
4Kqxr

10 0

Kpxr
00 �Ipxq

3
5
8<
: drx10

f px10

9=
;¼

n
f qx11 �Kqxs

11 dsx11 � Kpxs
01 dsx11

o
¼D (3)
In Eq. (3), taking the product of unknowns in zas a new single variable, then Bz ¼ Dis a system of linear equations and its
general solution can be written in terms of the particular solution zp, and the homogeneous one, znh, which will correspond
to the case Bz ¼ 0. Therefore, zp þ znh will also be a solution of the system of equations. This general solution is given by:

z¼
8<
: drx100

f px100

9=
;þ ½V �frg (4)

where

8<
: drx100

f px100

9=
;is the particular solution of the system and ½V �frg is the homogeneous one and represents a generic vector in

the null space. In this vector, ½V � is a basis of the space and frg are arbitrary real values that represent the coefficients of all
possible linear combinations. For the system of equations to have a unique solution vector, ½V � has to either be null or have
some null rows. However, even if the system of equations does not have a unique solution, any unknown associated with a
null row in the null space ½V � is observable. In this case, the general solution equals the particular one and it can be computed
by calculating the pseudo inverse of matrix B. If there are observed parameters, the input is updated by incorporating
observed variables and the previous procedure repeated until no new variables are observable. If some variables remain non-
observed, the equation of the last recursive step is recorded and denoted as Bomzom ¼ Dom. Here, Bom, zomand Domare the
coefficient matrix, vector of unknowns and constant vector from the last recursive step by OM, respectively.

However, it should be noted that in static SSI by OM, the vector zin Eq. (3) might contain two types of unknowns: (a)
monomials of degree one, for example, axial and flexural stiffness, horizontal and vertical displacements, and the rotations,
{EAj, EIj; uik;vik;wik}, and (b) monomials of degree two, for example,{ EAjuik ; EIjvik; EIjwik} and they are all regarded as simple
variables in z. In fact, there is a relation between somemonomials of degree one {EAj, EIj; uik;vik;wik} andmonomials of degree
two { EAjuik ; EIjvik; EIjwik}, that is, EAjuik ¼ EAj*uik, EIjvik ¼ EIj*vik, EIjwik ¼ EIj*wik. As these constrains cannot be imposed in
SSI by OM because it is a linearmethod, the variablesmay not be successfully detected in some cases (i.e., it might happen that
full observability is not achieved). Constrained observability method (COM) [26] is proposed to overcome the drawback of OM
to continue the identification of unknown parameters by defining the residual values:

ε¼Bomzom � Dom (5)
The unknown variables in zom are identified by minimizing the squared sum of the residual.
Several articles have been published regarding the SSI by OM and COM using static measurements. It is the case, for

example, of [28], which studied the application of themethodology to cable-stayed bridges. Besides, in Ref. [34] amethodwas
proposed to select the set of static measurements in order to apply SSI on bridges. Themathematical approach of these papers
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was complemented by Ref. [35] by developing the numerical application of the method. Other applications of the static SSI by
OM and COM include those in Refs. [26,36,37].

3. SSI by constrained observability: dynamic approach

3.1. Methodology

The application of the OM to dynamic analysis proposed in this paper is based on the dynamic equation of motion of a
systemwith no damping and no external applied forces [37]. The equation can be expressed for a two-dimensional structure
with NN nodes, NBboundary conditions and Rvibration modes as:

K½ð3NN�NBÞ�ð3NN�NBÞ �∅i
½ð3NN�NBÞ�1 � ¼ liM

½ð3NN�NBÞ�ð3NN�NBÞ �∅i
½ð3NN�NBÞ�1��

ði ¼ 1;2;3…;RÞ (6)

where K and Mstand for the stiffness matrix and the mass matrix, respectively. Besides, ∅i represents the vector of modal
displacements, for a 2D model with beam elements, this vector includes the deformation in the x-direction (uik), y-direction
(vik) and rotation (wik) at each node kfor each vibration mode i. And li stand for the squared frequency for ithvibrationmode.

As done with the static approach [36e38], the previous Eq. (6) might be written in terms of its known and unknown
parameters in modal vector, these being indicated by subscripts 1 and 0, respectively. These operations generate the modified
stiffness and mass matrices K*

i and M*
i and the modified modal shapes ∅*

Ki and ∅*
Mias shown in Eq. (7).

K*
i∅

*
Ki ¼

h
K*ð3NN�NBÞ�rx
i;0 K*ð3NN�NBÞ�sx

i;1

i8><
>:

∅*rx�1
Ki;0

∅*sx�1
Ki;1

9>=
>;

¼
h
M*ð3NN�NBÞ�mx

i;0 M*ð3NN�NBÞ�nx
i;1

i8><
>:

∅*mx�1
Mi;0

∅*nx�1
Mi;1

9>=
>; ¼ M*

i∅
*
Mi

ði ¼ 1;2;3…;RÞ

(7)
Note that now the squared frequencies are included in the right-hand side of the equationM*
i and from this step on product

variables might be obtained from coupling the target unknowns with other unknowns. Examples of these product variables
are EAjuik, EAjvik, EIjuik, EIjvikandEIjwikon the left-hand side of the equation, in ∅*rx�1

Ki;0 , and limjuik, limjvik

and limjwik on the right-hand side, in ∅*mx�1
Mi;0 , where j represents the jthelement and krepresents kthnode. ∅*mx�1

Mi;0 might

content the simple variables uik, vik, wik once the value of limj is known.
As a consequence of these product variables, nonlinear parameters appear and the system of equations becomes a non-

linear one. Due to the fact that the observability technique requires linear equations in order to properly determine the
observed parameters, this is solved by treating product variables as single linear variables, which linearizes the system.

The final step is to rearrange all the system in order to have all the unknowns of the system in one column vector. By doing
so, it is possible to obtain the system of equations in the form Eq. (8)

Bizi ¼
h
K*ð3NN�NBÞ�rx
i;0 �M*ð3NN�NBÞ�mx

i;0

i8><
>:

∅*rx�1
Ki;0

∅*mx�1
Mi;0

9>=
>; ¼

n
M*ð3NN�NBÞ�nx

i;1 ∅*nx�1
Mi;1 � K*ð3NN�NBÞ�sx

i;1 ∅*sx�1
Ki;1

o
¼ Di

ði ¼ 1;2;3…;RÞ

(8)
When multiple modal frequencies are considered together, the equationwill be built by combining information of several
models. For example, the first Rmodal information is given by Bz ¼ Dshown as follows:

Bz¼

2
664
B1 0 0 0
0 B2 0 0
0 0 1 0
0 0 0 BR

3
775
8>><
>>:

z1
z2
«
zR

9>>=
>>; ¼

2
664
D1 0 0 0
0 D2 0 0
0 0 1 0
0 0 0 DR

3
775 ¼ D (9)
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Expression in which Bis a matrix of constant coefficients, D is a fully known vector and zicontains the full set of unknown
variables. This system can be solved obtaining the solution of the coupled variables as presented in Eq. (4). Thus, the identified
coupled variables (e.g., EIjwik) are referred as observed variables. In other to uncouple the observed variables, e.g., EIjwik¼ EIj*
wik, the dynamic COM is here proposed based in a similar way as in the static case. However, in this case, the objective
function is defined as:

J¼Wl

XR
i¼1

�
Dlieli

�2

þW∅
XR

i¼1

ð1�MACiÞ2 (10)

�
∅T g∅ �2
MACi ð∅mi; g∅miÞ¼ mi mi�
∅T

mi∅mi

��g∅mi
T g∅mi

	 (11)
The modal assurance criterion (MACi) [32] is used in Eq. (10), which consists of computing the so-called MAC values as a
measure for the correspondence between the calculated mode shape ∅mi, obtained from the inverse analysis using the
estimated stiffnesses and areas and the measured shape g∅mias shown in Eq. (11). Besides, Dliare the differences between the

measured, eli, and the estimated.WlandW∅represent the weight factors of frequencies and mode-shapes respectively. In this
study, Wland W∅are assumed to be equal [39].

The solution is obtained by minimizing Eq. (10) with the imposed constraints of the form: EAjuik ¼ EAj*uik, EIjvik ¼ EIj* vik,
EIjwik ¼ EIj*wikpresent in Eq. (9).

The proposed approach addresses the possibility of ill-conditioning by means of two actions. First, the unknowns are
normalized by the a-priori best estimate, such as designer parameters (Section 4.3), which can make the condition number of
coefficient matrix smaller. Second, the range of some normalized unknowns is given when the optimization process is
conducted according to Eq. (10) to capture the fact that they have a physical meaning and their values cannot be either
negative or extremely high (Section 5), which helps to accelerate optimization and limit value range. These two actions
reduce the effect of a potential ill-conditioned equation. If the result does not make sense, then the process will be repeated
with a new initial guess.

The functioning of COM will be explained step by step in Section 4 with a simple numerical example, which, additionally,
fully demonstrates the excellence of COM compared to OM in the dynamic case.

4. Application of the constrained observability method to the dynamic analysis

4.1. Proposed algorithm by constrained observability

The proposed algorithm takes as inputs the topology of the structure, node connectivity and the subset of measured
variables, which are the mode shapes (fully or partially known) and natural frequencies obtained from the modal analysis. On
the other hand, the outputs obtained from the known data are the subset of observable variables alongwith their estimations.

The algorithm for the structure system identification by COM is depicted in Algorithm 1. For the sake of illustration, Section
4.2 shows its application to an academic example.

Algorithm 1 Constrained Observability Method

Input: Geometric information (Geom), boundary conditions (Bound), measured partial mode shapes and frequecies (∅mi;1; and li;1Þ, known structural
parameters (EIj,1, EAj,1 and mj;1) and number of modes to consider (R).

Output: Observable variables fEI;0;EA; 0g
1: ðK;∅iÞ) BuildStiffnessMatrix (Geom, Bound)
2: ðM;liÞ) BuildMassMatrix (Geom)

3:ðK*
i ;M

*
i ;∅

*
Ki ;∅

*
Mi) ) RearrangeMatrices (K;M;∅i;li)

4: ð½Bi�; fzig;fDigÞ) ObservabilityEquation (K*
i ;M

*
i ;∅

*
Ki;∅

*
Mi , li;1;∅mi;1; EIj,1, EAj,1)

5: ðB;z;D)CombineModalFreq (Bi;zi;Di , R)
6: fIdentified} ) 1
7: While fIdentifiedgis not empty
8： ½V � ) ObtainNullSpace (B)
9: fIdentifiedg) IdentifyObservableVariables (½V �)
10: If fIdentifiedgis not empty
11: fValueIdentifiedg) GetParticularSolution (B;z;D,fIdentifiedg)
12: (B;z;D) ) UpdateEquation (B;z;D,fIdentifiedg, fValueIdentifiedg)
13: {Estimated} ) Collect (fIdentifiedg)
14 end if

(continued on next page)
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(continued )

Algorithm 1 Constrained Observability Method

15: end while %OM end
16: ð Bom ;zom ;DomÞ) ExtractEquations (B;z;D)
17: If zom is not empty
18: z*) GetHiddenUnknowns (zom)

19:ðB*;z*;Dom))DefineEquations ( Bom;zom;Dom;z*)
20: Constraints ) GetNonlinearConstraints (z*)
21: z*) Optimization (B*;z*;Dom , Constraints)
22: end %COM end
23: fEI;0;EA; 0g) Findresult ({Estimated}, z*)
Note: Known and unknown are being indicated by subscripts 1 and 0.

4.2. Example 1 of frame by constrained observability method

In this section, the academic example presented in Fig. 1 is analyzed symbolically step by step with the objective of
achieving a better understanding of the proposed methodology. The structure is composed of 2 elements and 3 nodes. One
single mode of vibration is studied, although the technique can be applied to multiple vibration modes. Therefore, the size of
thematrix of coefficients of the system of equations is ð3NN �NBÞ� ð3NN �NBÞ. The structure has the vertical and horizontal
displacements restrained at nodes 1 and 3, that is, NB ¼ 4. In this structure, the consistent mass matrix formulation has been
used. Then, for each structural element j the mass matrix depends on the total mass of the element mj and on its length Lj.

For the problem in Fig. 1, the axial and flexural stiffness of elements 1, EA1, EI1, the squared value of the first natural
frequency, l1, the length of the elements, L1¼L2 ¼ L, and their masses per unit length, m1and m2, are assumed to be known.
Besides, to show the application, three known parameters are introduced: the first natural frequency and the horizontal
displacement and rotation at node 2 of the first mode shape (u12;w12). The known and unknowns properties are shown in
Fig. 1. Thus, the input includes geometric information, boundary conditions, measured partial mode shapes and squared
frequency (u12;w12 and l1, known structural parameters (EA1, EI1 andm1,m2) and number of modes to consider (R ¼ 1). The
goal output of this analysis is EA2 and EI2.

If the example was experimentally analyzed, the modal frequency and the components of the vibration mode would be
obtained by performing a modal analysis of measured vibrations of the real structure. In order to identify the observable
variables (namely, set of variables that can be estimated on the basis of the mentionedmeasured data) the following steps are
considered according to Algorithm 1.

Step 1. First, the characteristic equation of the system is written by building the stiffness Kmatrix of the structure, its mass
matrix M and the modal displacements vector (line 1 and line 2). This is shown in Fig. 2.
Fig. 1. Frame studied in Example 1 and degrees of freedom with positive value.



Fig. 2. Example 1. Characteristic equation of the structure in Fig. 2.

Fig. 3. Example 1. Modified stiffness and mass matrices from Fig. 3.
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Steps 2. To generate the modified stiffness and mass matrices, those parameters made up of several summands are
separated and all the possible unknown parameters are moved to the column vectors as shown in Fig. 3 (line 3). With this,
new variables appear as a result of having stiffnesses (EAj, EIj) coupled with modal displacements (u1k; v1k;w1k).
Step 3. In line 4, the stiffness and mass matrices are updated by introducing the known variables. This is done by
multiplying the columns associated with known variables by its corresponding values and by removing the associated
factors from the vectors. Note that a new column vector appears after carrying out this step; this is a vector of independent
terms, which is built by all those terms that become fully known after introducing measured variables. Since there are
terms in the modified vectors of modal displacements that appear more than once, these are joined by adding together
their corresponding columns resulting in K*

1and M*
1. Besides, if there are null columns in the matrices, they can be

removed together with their corresponding variable giving us vectors ∅*
K1and ∅*

M1. The resulting system of equations can
be seen in Fig. 4. Matrix Biis assembled using matrices K*

i and M*
i and vector ziis formed by joining all the unknown in-

formation of the system as presented in Eq. (8) as shown in Fig. 5.
Step 4. When multiple modal frequencies are considered together, the equation will be built by combining information of
several models Bizi ¼ Di(line 5). In this example, R ¼ 1, thus Bz ¼ Dis same as Fig. 5.
Steps 5. Afterwards, the null space [V] of matrix Bis obtained (line 8). This allows the identification of the null rows of the
null space, which corresponds to the observable parameters (Fig. 6).

From the expression of z in Fig. 6, the EA2 andw11can be uniquely specified (line 9) and observable as the associated rows
in ½V � are null and their values will not be affected by r1:1, r1:2 (line 11). Because it is a parametric method, the proposed
technique allows the parametric expressions of the variables in this case. However, because of the complexity of these ex-
pressions they are not shown here due to space limitations.

Step 6. New variables are obtained in step 6. The unknowns obtained here in previous step, EA2 and w11are merged in to
the initial inputs by OM. Therefore, the new set of variables, that is, {l1;w11,u12; EA2 andw12} are considered as known for
the next iteration to renew the Bz ¼ D(line 12).



Fig. 4. Example 1. Modified stiffness and mass matrices of the structure in Fig. 2 after updating themwith measured variables and summing up the columns with
common terms.

Fig. 5. Example 1. System of equations in the form of Eq. (9) for the structure in Fig. 2.
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Step 7. EA2 and w11are collected into the list of estimated items (line 13).
Step 8. Given that some variables were identified in the previous iteration, a next iteration starts. The null space, ½V �and the
general solution of Fig. 7 (line 8), are given as:



Fig. 6. Example 1. Solution given by the particular and the homogeneous solution.
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Step9. It is obvious that no new variable is observable as no null row exists in the null space of ½V � (line 9). Therefore, no
new yielded variable can be identified through the OM (line 10), thus, the iterative process of line 7 stops (line 14).
Steps 10. Extract the equation Bomzom ¼ Domfrom OM, Fig. 7 (line 16). Only partial observability is achieved and still 3
unknowns remain, especially the stiffness EI2. Hence, the full observability is not achieved, triggering the execution of
COM (from line 17). and check if hidden unknowns exist or not (line 18). First split the complex variables zc ¼ {EI2v12;
EI2w13} of z2into single ones { EI2;v12;w13}, which are included in single variables zs ¼{ EI2;v12;w13}. Thus z* ¼ f EI2v12;
EI2w13;EI2; v12;w13 }, B*z* ¼ Bomzom ¼ Dom(line 19).
Steps 11. Identify the nonlinear constraints in z* (line 20). Establish the constraints EI2v12¼EI2*v12,EI2w13¼EI2*w13.Then
an optimization routine, is used to achieve the fully exploitation of the information in measurements with the acquired
nonlinear constraints and all the parameters observed (line 21). In the optimization process, the nonlinear constraints are
imposed by ensuring the equality between the coupled unknowns and the product of corresponding single unknowns.
Thus, all the unknowns are obtained successfully.
Fig. 7. Example 1. System of equations in the form of Eq. (9) for the structure in Fig. 2.

Fig. 8. Example 1. Solution given by the particular and the homogeneous solution.



Fig. 9. Frequency of the occurrence of fully observability by OM and COM in the first mode.
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As shown, just using OM (step 1 to step 10) to solve the problem, the structural parameter, EI2, cannot be identified, and
the recursive process will end at step 10. Although r2:1and r2:2in Fig. 8 play the essential role to make the establishment of
constraints EI2v12 ¼ EI2*v12, EI2w13 ¼ EI2*w13and to make sure the identification of EI2v12, EI2w13; EI2;v12;w13, the value of
r2:1and r2:2cannot be uniquely determined by OM. Hence, the main idea of COM is to introduce the nonlinear constraint
relationship between the coupled unknowns and single unknowns of OM. After that, the optimization is performed to achieve
fully observability by the objective function in Eq. (10).

Fig. 9 shows the comparison of fully observability obtained by OM and by COM for this simple structure. It can be seen that
COM, as an extended version of OM, enhances the performance of OM. Especially, the frequency of fully observability soars
from 0 to 100% when the number of measured components of the first mode shape is equal to 2. The larger the number of
measured components, the larger the likelihood of fully observability, nevertheless, the restriction of the feasible number of
sensors in real structures should be considered. Because the values of the mode-shapes are normalized by a reference value,
considering just one single measure of each vibration mode does not provide meaningful information, therefore single
measures can be ignored. Hence, COM has demonstrated great superiority when compared to OM even in this simple case
with numerical and non-experimental values. Therefore, COM should be strongly recommended in the following examples
where real experimental data is used.

4.3. Example 2eTWO DOF by constrained observability

In this example, taken from Ref. [30], the reliability of the proposed dynamic COMmethod is checked when experimental
data is considered. Whereas a simple academic example was used in the previous section for the sake of illustration, this
example allows the comparison of the method with existing results.

The dynamic COM is applied to identify the stiffness properties of two floors. For this, the structure is modeled by a two-
DOF linear lumpedmass shear building model as schematically shown in Fig. 10 a). In the modeling, the masses are treated as
Fig. 10. (a) Two DOF lumped mass model (b) experimental modal frequencies and mode-shapes.



Table 1
Observed properties in Fig. 12.

Method Fully Observability x ¼ [x1 x2] Df1(%) Df2(%) MAC(∅i;∅j)

COM YES ½0:5167 0:7091� 0.32 �0.42


0:976 0:0063
0:010 0:982

�
Reference results 1 YES ½0:546 0:648� 1.384 �3.174



0:983 0:011
0:006 0:976

�
Reference results 2 YES ½0:511 0:718� 0.025 �0.057



0:974 0:0057
0:011 0:983

�

Fig. 11. (a) set-up of static loading (b) image of vibration testing [32].
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deterministic, while the model parameters are chosen to be the two interstory stiffness of the two-story building. According
to Ref. [30], the model masses were estimated from the structural drawings to be m1 ¼ 3.9562 kg and m2 ¼ 4.4482 kg. The a
priori best estimate of the interstory stiffness calculated from the structural drawings is the same for both stories and equal

to k0 ¼ 2:3694� 105 Nm�1. The following parameterization of the two- DOF model shown in Fig. 10 is used: ki ¼ xik0; i ¼
1;2, which can avoid the ill-posed problems since the unknowns xiwere normalized by the a-priori best estimate and it can
reduce the morbidity of the matrix. The purpose of the identification is to update the values of the stiffness parameters x1and
x2using the measured modal data reported in Fig. 12 b).

Through the COM analysis, the results are displayed in Table 1, and comparedwith the two reference results [30]. Here, the
measured data in Fig. 10 b) are assumed as true values.

From Table 1, the results of frequencies from COM are between Reference results 1 and 2. The total errors of frequencies
and MAC of the results are calculated by the sum of squares of the difference between the obtained and the theoretical values
obtaining, Ef�com ¼ 2:75� 10�5 , EMAC�com ¼ 1:039� 10�3and Ef�Re2 ¼ 3:874� 10�7 , EMAC�Re2 ¼ 1:12� 10�3. Reference

results 2, x¼ [0:511 0:718], fit very well the frequency properties to values as low as Ef�Re2 ¼ 3:874� 10�7 at the expense of

deteriorating significantly the fit of modal properties to the values as high EMAC�Re2 ¼ 1:12� 10�3compared with the COM
results. This could suggest that if the tiny sacrifice in the fit of frequencies is not of concern in the identification to preserve the
accuracy of modal information, the results of COM x ¼ [0:5167 0:7091] are is the most representative of this structure.
4.4. Example 3eReinforced concrete beam by constrained observability

The dynamic COM is applied to the damage assessment of a reinforced concrete beamwith a length of 6m and dimensions
as shown in Fig. 11 [32]. The transverse mode shape displacements are observed at 31 point equidistant locations along the
beam, and the resulting mode shape measurements are shown with their corresponding natural frequencies in Fig. 14.

Initially, all bending stiffness parameters are assumed to be equal EIint ¼ 7:23� 106 Nm�2. The beam is divided into 10
substructures with a uniform stiffness value or Young's modulus in Fig. 11 (a). The following parameterization of the 10
bending stiffness model shown in Fig. 12 is used: EIi ¼ xiEIint; i ¼ 1e10:The purpose of the identification is to update the
values of the stiffness parameters x1~x10 using the measured modal data reported in Fig. 12.

The estimated yielded by COM analysis are ½1:153 1:031 0:860 0:903 0:799 0:511 0:563.
0:717 0:864�. Here, the measured data in Fig. 12 are assumed as true values, which come from the original data shown in

Ref. [32]. This result gives the engineer the best approximation, as justified below, and determines the location of damage; the
most serious damage is located in substructure 6 and 7. The comparison of frequencies and MAC are shown in Table 2 where
these are provided with high precision. All the errors between the estimated frequencies and the experimental ones are lower



Fig. 12. The first four experimental bending mode and the corresponding frequencies.

Table 2
Observed properties in Fig. 13.

Method Fully Observability x ¼ [x1~x10] Mode Df (%) MAC(∅i;∅i)

COM YES ½1:154 1:029 0:856
0:902 0:797 0:544
0:508 0:560 0:713
0:864�

1 �1.05 0.996
2 �0.76 0.999
3 �0.04 0.999
4 1.68 0.999

Fig. 13. Bending stiffness of COM method and Reference results [32].
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than 5%. This value is the maximum precision that can be expected according to the results presented in Ref. [33] for a
reinforced concrete structure. In addition, MAC is very close to 1, that is to say, the estimated mode shapes fit well with the
data from Fig. 12. Regarding the comparison between these estimated stiffnesses and the values from Ref. [32] and from
Fig. 13, it is to highlight that the largest difference between two outcomes is 1.2%.



Fig. 14. Illustration of the 13-floor frame studied in Example 3. (a)The members with different characteristics are represented with different colours, (b) Sets of
measurements used in the global analysis, (c) First mode shape. (For interpretation of the references to colour in this figure legend, the reader is referred to the
Web version of this article.)

Table 3
Properties of the frame shown in Fig. 14.

Section Elements Aðm2Þ Iðm4Þ
I : Outer Bottom Columns 1 to 4 and 53 to 56 0:563 0:026
II : Outer Intermediate Columns 5 to 8 and 57 to 60 0:360 0:011
III : OuterUpper Columns 9 to 13 and 61 to 65 0:250 0:005
Ⅳ : Interior Bottom Columns 14 to 17and 40 to 43 0:360 0:011
Ⅴ : Interior Intermediate Columns 18 to 21and 44 to 47 0:250 0:011
Ⅵ : Interior Upper Columns 22 to 26 and 48 to 52 0:160 0:002
Ⅶ : Central Core 27 to 39 1:800 5:400
Ⅷ : Beams 66 to 273 0:180 0:005
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5. Example of 13-story building

In order to show the possible applications and potential of the proposed methodology to real world structures, a more
complex structure is presented in this example. The 13-story building shown in Fig.14 is taken under study. This structurewas
already considered in Ref. [37].

This frame is modeled using a total of 226 nodes and 273 elements and it is composed of a set of 8 different sections
described in Fig. 14 and Table 3. Therefore, the size of the system of equations is 678� 678. In this study, all these 16 me-
chanical parameters are perturbed by random numbers in order to simulate measurement errors. To illustrate the robustness
Fig. 15. Estimated bending stiffnesses in four random perturbation factors sets.
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of the dynamic COM, four sets of the 16 mechanical parameters are synthesized by the product of the intact values and
randomnumbers evenly distributed in the interval [0.8,1.2], referred as perturbation factors later. The first mode shape of this
frame calculated by SAP200 using these four parameter sets and shown in Fig.14c) is used as the input of dynamic SSI by COM.

Performing a global study is of interest whenever it might be necessary to know the state of the whole structure or when
the damage location is unknown. One study is carried out in order to check the effectiveness of the method, considering a set
of known measurements. These sets of known measurements are measured at nodes 5, 9, 14, 19, 23, 28, 33, 37, 42, 47, 51, 56,
61, 65, 70 consisting on the vertical and horizontal displacements in the first mode at each of the mentioned nodes as seen in
Fig. 14 (b) and 14 (c). The unknown parameters are bending stiffness, EI of elements I to VIII and the displacements of the
nodes that are notmeasured. The areas of elements are assumed to take the theoretical values. For this purpose, the estimated
values of the structural parameters in four different sets affected by random perturbed factors of mechanical parameters are
provided in Fig.15. The values of flexural stiffness are bounded as they have a physical meaning; their values cannot be neither
negative or extremely high. Hence, the range for estimated normalized values should be in the range [0, 1.5]. From the
observed ratio between the estimate and the true value, the error is within 8%, which is acceptable. It should be noted that no
inertia (bending stiffness) can be identified by OM, while all these parameters are yielded by COM using only the first-mode
information.

6. Conclusions

This article proposes the first application of constrained observability techniques for parametric estimation of structures
using dynamic information such as frequencies and mode-shapes.

The nonlinearity of the system obtained when observability is applied, can be properly treated to identify the unknown
variables by rearranging the matrix expression and moving the parameters to the modified vectors of mode-shapes and by
considering the coupled variables as single variables. After that, the nonlinear constraints between the unknowns are added
to tackle the issue of partial observability, as can be seen in Section 4.1 and the example in Section 4.2. Besides, themerit of the
dynamic COM is demonstrated as a good solution to the fully observability which OM cannot achieve. In order to verify the
feasibility of this method, two examples using experimental data are used as a proof of concept. In both examples, the dy-
namic COM shows acceptable errors of frequencies and MAC, providing similar or sometimes higher accuracy compared to
the reference data. The identified frequencies are approved with less than 2% error with respect to the experimental ones. At
the same time, the errors in the MAC values are less than 3% in the first example and 0.5% in the second example. However, a
main advantage is obtained by using dynamic COM compared to other SSI methods. This is the possibility to identify if a set of
available measurements is sufficient or not to uniquely estimate the state of the structure or a part of it.

To test the performance of the proposed method in real world scenarios, a large structure is used whose real mechanical
parameters are perturbed by random numbers in order to simulate measurement errors. It can be seen that the flexural
stiffness of all elements can be estimated within acceptable errors. These may allow global application and local identification
by choosing the most adequate sets of measurements according to the supposed particular condition of the structure. Un-
dergoing researches focus on efficiently dealing with feasible experimental errors in the measurements.
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Appendix: List of symbols and notation
Symbol Significance
B Total coefficient matrix
Bi Coefficient matrix of ithmode
Bom Coefficient matrix from the last recursive step by OM
D Total constant vector
Di Constant vector of ithmode
Dom Constant vector from the last recursive step by OM
EAj Axial stiffness of jthelement

EIj Flexural stiffness of jthelement
f Vector of forces
K Stiffness matrix
K* Modified stiffness matrices of static analysis
½K*

i � Modified stiffness matrices of ithmode

Lj length of jthelement
mj Mass density of jthelement
M Mass matrix
M*

i Modified mass matrices of ithmode
NB Number of boundary condition
NN Number of nodes
½V � Null space of B
R Total number of modes considered
uik Horizontal displacement of kthpoint and ithmode
vik Vertical displacement of kthpoint and ithmode
wik Rotation of kthpoint under ithmode
Wl Weight factors of squared frequencies
W∅ Weight factors of mode-shapes
z Total vector of unknowns
zi Vector of unknowns of ithmode
znh Vector of homogeneous solution
zom Vector of unknowns from the last recursive step by OM
zp Particular solution
d Vector of displacements

d* Vector of knowns and unknowns of static analysis
ε Squared sum of the residual
∅i Mode-shape vector under ithmode
∅mi Measured mode-shape vector under ithmodeg∅mi Estimated mode-shape vector under ithmode corresponded to measured nodes
∅*

Ki Modified modal shapes for the part of stiffness and ithmode

∅*
Mi Modified modal shapes for the part of mass and ithmode

li Theoretical circular frequency under ithmodeeli Measured frequencies, ~l

Dli Differences between the measured, eli, and the estimated frequencies
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