
 
 

Delft University of Technology

2D body-wave seismic interferometry as a tool for reconnaissance studies and
optimization of passive reflection seismic surveys in hardrock environments

Chamarczuk, Michał; Malinowski, Michał; Draganov, Deyan

DOI
10.1016/j.jappgeo.2021.104288
Publication date
2021
Document Version
Accepted author manuscript
Published in
Journal of Applied Geophysics

Citation (APA)
Chamarczuk, M., Malinowski, M., & Draganov, D. (2021). 2D body-wave seismic interferometry as a tool for
reconnaissance studies and optimization of passive reflection seismic surveys in hardrock environments.
Journal of Applied Geophysics, 187, Article 104288. https://doi.org/10.1016/j.jappgeo.2021.104288

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.jappgeo.2021.104288
https://doi.org/10.1016/j.jappgeo.2021.104288


1 

2D body-wave seismic interferometry as a tool for reconnaissance studies and 1 

optimization of passive reflection seismic surveys in hardrock environments 2 

ABSTRACT 3 

Despite the unrivalled spatial resolution and depth penetration of active-source seismic methods 4 

used for mineral exploration in hardrock environment, economic and environmental restrictions 5 

(e.g., source permitting) may preclude its full-scale application. In such a case, 2D passive 6 

reflection seismics can be considered a cost-effective way to perform reconnaissance-type 7 

survey and provide body-wave structural imaging using ambient-noise seismic interferometry 8 

(ANSI). This is, however, conditional to the presence of noise sources in the subsurface, for 9 

example produced by underground mining activity. Here, we propose a 2D ANSI workflow as 10 

an intermediate step prior to a full-scale 3D ANSI survey and an affordable tool in brownfield 11 

exploration, e.g., when trying to update current geological models beyond the drilled area. We 12 

test the applicability of this approach by analysing selected receiver lines from a 3D passive 13 

dataset acquired over the Kylylahti mine in Finland. Our methodology aims at choosing the 14 

optimal processing strategy at possibly lowest acquisition (2D geometry) and computational 15 

(small amount of data) cost. We address the fundamental questions in ANSI, i.e., (i) how much 16 

AN should one record and (ii) which SI processing approach should one choose. Therefore, we 17 

test different processing steps necessary to produce virtual shot gathers (VSG): preprocessing, 18 

selection of the ambient-noise portion, and selection of the method for retrieving the impulse 19 

responses between the receivers (crosscorrelation - CC, crosscoherence - CCh, 20 

multidimensional deconvolution - MDD). We conclude that trace energy normalization and 21 

high-pass filtering are the preferred preprocessing steps, while the best imaging is obtained 22 

when VSGs are retrieved using MDD applied in the noise-volume approach or CC in the event-23 

driven approach. An event-driven approach may significantly reduce the acquisition time: for 24 

the Kylylahti dataset, using 10 events with energetic body-wave arrivals, extracted from one 25 

© 2021 Manuscript version made available under CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/



2 
 

hour of data, was enough to provide results comparable to the results from the noise-volume 26 

approach using the complete one hour of noise.    27 

1. INTRODUCTION 28 

The most comprehensive method to fully resolve the structural complexity characterizing 29 

highly deformed crystalline rocks hosting mineralization (referred to as ‘hardrock 30 

environment’, Eaton et al., 2003) are the 3D seismic surveys (e.g., Malehmir et al., 2012a). 31 

However, such surveys are not always the method of choice (Koivisto et al., 2012). Economic 32 

and environmental restrictions, source permitting, and challenging terrain conditions might 33 

significantly reduce the feasibility of a full-scale 3D survey at a given site (Cheraghi et al., 34 

2012). Thus, 3D surveys are mainly conducted at well-recognized sites with ongoing 35 

exploration/production (brown-field exploration) with the aim to expand the knowledge about 36 

subsurface/reserves beyond the current geological models’ boundaries (Malehmir et al., 2012b; 37 

White et al., 2012; Singh et al., 2019). In such cases, a 3D passive survey based on the principles 38 

of ambient-noise seismic interferometry (ANSI) offers a cost-effective solution. 39 

The successful applications of seismic interferometry (SI) in reflection imaging, and in 40 

particular the possibility of using ambient noise (AN) instead of active (controlled) sources 41 

(Draganov et al., 2013), eventually brought the concept of SI to the mining industry (Cheraghi 42 

et al., 2015). Recent applications demonstrated the feasibility of ANSI to support imaging in 43 

operating mine environments using surface waves (Olivier et al., 2015b; Czarny et al., 2016) 44 

and body waves (Cheraghi et al., 2015; Roots et al., 2017; Polychronopoulou et al., 2020). 45 

These experiments involved both underground (Olivier et al., 2015a) and surface measurements 46 

(Cheraghi et al., 2015).  47 

2D seismic reflection projects aim at reconnaissance and initial exploration at a regional scale 48 

(Cheraghi et al., 2011; Calvert and Li, 1999). However, when dealing with a complex 3D 49 
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medium, only limited information of the true orientation of reflectors can be obtained from 2D 50 

surveys (Malehmir et al., 2012a, White et al., 2012). Ideally, one should combine both 2D (for 51 

higher resolution and lower acquisition cost) and 3D surveys (for wider azimuthal illumination 52 

and proper reflection positioning) (e.g., Hajnal et al., 2010).  53 

Both 2D and 3D seismic surveys face the same problems typical for hardrock environments: 54 

strong scattering of seismic waves, low velocity gradients and small impedance contrasts 55 

between the rocks (with a notable exception of the massive sulphide mineralization), resulting 56 

in the inherently low signal-to-noise ratio (SNR), which is additionally degraded by the 57 

presence of anthropogenic noise (e.g., due to the mine infrastructure) (Eaton et al., 2003). All 58 

these factors impact negatively the reflections present in the 3D active-source data and decrease 59 

the overall SNR (compare the top and middle rows in Figure 1a). 60 

Lower fold of the 3D surveys (and hence necessity of using wider bins and resulting lower 61 

resolution) is dictated by the source cost/effort. In the conventional, orthogonal design, shot 62 

lines are spaced between 1 to 2 receiver line spacings. In this regard, SI allows to obtain virtual-63 

shot gathers (VSGs) at every receiver position, thus the dense array of receivers theoretically 64 

suffices to obtain high-fold 3D coverage and thus reflectivity similar to the active data (see 65 

bottom row in Figure 1a).  The limitation though is related to the necessity of placing additional 66 

receivers to maintain the crossline fold. 67 

As compared to the active acquisition, when designing a 3D passive survey, one should 68 

additionally consider, e.g., recording time, array geometry and its orientation with respect to 69 

the dominant noise sources, and number of receivers and their spacing (note again that sources 70 

will be retrieved at receiver positions). In such cases, the 2D geometry provides the minimal 71 

array configuration required for evaluating the dominant AN events present in the study area. 72 

Observations derived from processing steps of 2D ANSI regarding basic AN characteristics 73 

(periodicity and location of noise-sources activity and body-to-surface wave content) can help 74 
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estimate the length of the recording time and location of the array. Another advantage of 2D 75 

ANSI is that for distant sources (i.e., the distance to a source is much larger than the length of 76 

the array), the plane-wave approximation allows one to treat the arriving energy as separate 77 

plane waves with small ray parameters corresponding to body waves (Ruigrok et al., 2010). 78 

Thus, as compared to 3D ANSI, the 2D approach allows broadening the effective stationary-79 

phase region and utilizing more AN sources, as long as their phases are consistent and in-plane 80 

with the array.   81 

Acknowledging the aforementioned limitations of 2D imaging and differences between passive 82 

and active surveys, we evaluate the 2D ANSI method as an intermediate step prior to a full-83 

scale 3D ANSI survey, as well as a cost-effective solution for brownfield exploration. Towards 84 

this end, we use passive seismic data acquired over the Kylylahti mine in Finland and synthetic 85 

data simulated using the geological model of the mine area.  The methodology we develop in 86 

this study might be used to: (i) evaluate the acquisition parameters for a potential follow-up 3D 87 

seismic survey (both active and passive), (ii) estimate the length of the recording time and 88 

selection of SI processing steps for 3D ANSI, (iii) mapping the general structural framework in 89 

the area of interest, and (iv) constructing 3D geologic model from a network of seismic profiles.  90 

We investigate the whole 2D ANSI processing flow, including data preprocessing, up to the 91 

VSGs retrieval (Figure 2). We put special emphasis on the choice of (i) an SI technique used to 92 

retrieve the impulse responses between the receivers and (ii) segments of recorded AN used for 93 

retrieval of VSGs, providing best-quality imaging. With the latter, we address the fundamental 94 

questions related to ANSI: (i) how much noise one should use (acquisition time), (ii) whether 95 

one should process continuous recordings (i.e., AN volumes) or noise panels containing events 96 

from separate sources (i.e., event-driven approach; Draganov et al., 2013).  97 

Since the imaging part, i.e., selection of a migration algorithm, is not the scope of this study, 98 

we choose a conventional approach used in hard-rock data processing and mining applications 99 
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(e.g., Adam et al., 2003, Malehmir et al., 2012) of dip-moveout (DMO) stack and post-stack 100 

time migration to qualitatively compare the results of various SI approaches.  101 

Note that our processing workflow can be evaluated at three different levels of details. At the 102 

level of ‘General procedure’ (Figure 2a), it contains all the steps we believe must be investigated 103 

in 2D ANSI. At the level of ‘Recommended approach’ (Figure 2b), we gather all the tools that 104 

should be used to address the ‘General procedure’. At the final level of ‘Variables specific for 105 

Kylylahti’ (Figure 2c), we summarize our case-specific selection of tools and processing 106 

parameters. 107 

We first describe the methodology used in this study: SI methods, selection of AN segments 108 

using illumination diagnosis, different stacking approaches and semblance analysis. Next, we 109 

briefly introduce our 2D ANSI workflow followed by the description of the dataset used in this 110 

study (Kylylahti array). To provide the basis for verification of the 2D ANSI results, we further 111 

perform numerical tests and investigate the overall feasibility of reflection retrieval with active 112 

and passive seismic methods using a simplified geological model representative for our study 113 

area. For the passive case, we additionally investigate the role of illumination imposed by one-114 

sided AN source localization. Subsequently, the 2D ANSI workflow is applied to the field 115 

recordings to assess the performance of every processing step. We further compare VSGs 116 

retrieved using all 9 approaches (3 VSGs retrieval techniques vs. 3 segments of AN data). We 117 

evaluate the reflectivity retrieved in VSGs by visual inspection and an automatic quantitative 118 

measure (semblance). Then, we compare migrated sections for all 9 configurations. Finally, we 119 

show 2D ANSI processing results with the preferred workflow applied to three adjacent 120 

receiver lines from the Kylylahti array. The migrated sections consistently show repeatable 121 

reflectivity patterns, which were previously identified in the synthetic data. 122 
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2. METHODOLOGY 123 

Our 2D ANSI processing workflow (Figure 2) builds upon and combines experiences from 124 

previous SI experiments for both oil and gas exploration and mining-industry applications 125 

(Draganov et al., 2013; Cheraghi et al., 2015) as well as studies analyzing the performance of 126 

different SI methods: crosscorrelation (CC), crosscoherence (CCh), and multidimensional 127 

deconvolution (MDD) (Snieder et al., 2009; Nakata et al., 2011; and Wapenaar et al., 2011). 128 

We start with a brief description of the specific challenges faced when adapting ANSI to 129 

hardrock environments, as well as justification of the 2D approach in case of the available 3D 130 

passive data and complex geology.   131 

2.1 Challenges of adapting ANSI to hardrock environments 132 
The complex hardrock environment is very challenging for active-source seismics, and thus 133 

poses a big challenge for ANSI as well, as the changes in temporal and spatial stationarity of 134 

noise sources may cause destructive interference of potential reflection events during stacking 135 

(compare rows in Figure 1b). It means that results from stacking smaller amounts of data might 136 

exhibit higher SNR than those obtained from more data (see top row of Figure 1b, where stack 137 

for one day exhibits different coherent events than those obtained for more AN). This 138 

counterintuitive observation is even more evident for weak reflectivity observed in 3D passive 139 

data (see bottom row in Figure 1a), which might be very easily hindered during the stacking 140 

process (in the Kylylahti data such reflections exhibit low SNR and are observed only along 141 

20-30 neighbouring traces out of all 994 traces). Therefore, contrary to the conventional 142 

approach used in ANSI, i.e., recording as much noise as possible and then stacking all the noise 143 

panels (e.g., Cheraghi et al., 2015; Chamarczuk et al., 2018), one needs to be more selective in 144 

the stacking process. It applies both to the noise-volume and event-driven approach. As a 145 

remedy, we propose to include novel illumination-diagnosis techniques in the ANSI workflow, 146 

allowing to (i) assess the temporal and spatial stationarity of noise sources (useful for designing 147 
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the 3D survey orientation and minimum recording time) and (ii) stack the periods of data 148 

containing body-wave illumination (useful in designing the processing workflow). 149 

2.2 Value of the 2D approach at initial stages of processing of 3D data 150 
When analyzing a full 3D passive dataset, the 2D ANSI approach seems to be a necessary 151 

intermediate step allowing to test the performance of an SI processing flow (SI techniques, AN 152 

segmentation, and preferred illumination-diagnosis techniques) at much lower computational 153 

cost. For example, the results shown in the bottom row of Figure 1a were obtained using an 154 

event-driven approach combined with CC (one of our preferred approaches) in a full 3D manner 155 

and visual inspection of hundreds of VSGs. Computing this collection of VSGs took 156 

approximately 60 hours on graphical processing units (GPU), and was preceded by several 157 

preprocessing steps (requiring analysis of the whole dataset, i.e., 600 hours of AN) necessary 158 

for the event-driven approach (which was only one of the possible solutions). Without initial 159 

testing using the 2D workflow (i.e., considering a representative receiver line), choosing the 160 

optimal combination of preprocessing, noise-panel selection, evaluating methods to retrieve 161 

impulse responses and the actual responses (e.g., choosing between causal and acausal part) 162 

and finally the stacking itself, would have been a daunting task.  163 

2.3 Impulse-response retrieval: transient vs diffuse fields 164 

Ambient noise can originate from a diffuse wavefield caused by multiple scattering in a 165 

heterogeneous medium and/or energy from transient sources in a deterministic medium 166 

(Wapenaar et al., 2004). From a practical point of view, it means that the reflection response of 167 

a medium can be obtained using SI either by correlating long recordings (possibly overlapping 168 

in time) of uncorrelated noise sources (diffuse-wavefield case) or by stacking correlations from 169 

separately acting sources (deterministic-wavefield case). In this study, we refer to those two 170 

cases as noise-volume and event-driven approach, respectively. To indicate the relevance of 171 

evaluating the influence of different segments of AN, we follow Wapenaar et al. (2006) and 172 
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describe the retrieval of the impulse response (i.e., Green’s function) by CC for the case of 173 

transient and uncorrelated noise sources. 174 

The transient-source case relates to the situation when a noise panel contains the wavefield 175 

resulting from a single seismic source. In such a case, we can write the wavefields 𝑢𝑢 recorded 176 

by receivers at 𝑥𝑥𝐴𝐴 and 𝑥𝑥𝐵𝐵 in the frequency domain as 177 

𝑢𝑢(𝑥𝑥𝐴𝐴, 𝑥𝑥𝑆𝑆,𝜔𝜔) = 𝑆𝑆(𝑥𝑥𝑆𝑆,𝜔𝜔)𝐺𝐺(𝑥𝑥𝐴𝐴, 𝑥𝑥𝑆𝑆,𝜔𝜔),        (1) 178 

𝑢𝑢(𝑥𝑥𝐵𝐵, 𝑥𝑥𝑆𝑆,𝜔𝜔) = 𝑆𝑆(𝑥𝑥𝑆𝑆,𝜔𝜔)𝐺𝐺(𝑥𝑥𝐵𝐵, 𝑥𝑥𝑆𝑆,𝜔𝜔),       (2) 179 

where 𝐺𝐺(𝑥𝑥𝐴𝐴, 𝑥𝑥𝑆𝑆,𝜔𝜔) and 𝐺𝐺(𝑥𝑥𝐵𝐵, 𝑥𝑥𝑆𝑆,𝜔𝜔) are the Green’s functions recorded by receivers at 𝑥𝑥𝐴𝐴 and 180 

𝑥𝑥𝐵𝐵, respectively, and  𝑆𝑆(𝑥𝑥𝑆𝑆,𝜔𝜔) denotes the source time function.  181 

Then, the correlation of those two wavefields is given by 182 

𝐶𝐶(𝑥𝑥𝐵𝐵, 𝑥𝑥𝐴𝐴,𝜔𝜔) = � |𝑆𝑆(𝑥𝑥𝑆𝑆,𝜔𝜔)|2𝑢𝑢(𝑥𝑥𝐵𝐵, 𝑥𝑥𝑆𝑆 ,𝜔𝜔)
𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠

𝑢𝑢∗(𝑥𝑥𝐴𝐴, 𝑥𝑥𝑆𝑆,𝜔𝜔)𝑑𝑑𝑥𝑥𝑆𝑆 183 

  (3) 184 

where superscript asterisk ∗ denotes complex conjugation. Hence, the correlation function 185 

𝐶𝐶(𝑥𝑥𝐵𝐵, 𝑥𝑥𝐴𝐴,𝜔𝜔) is proportional to the Green’s function between 𝑥𝑥𝐵𝐵 and 𝑥𝑥𝐴𝐴,𝐺𝐺(𝑥𝑥𝐵𝐵, 𝑥𝑥𝐴𝐴,𝜔𝜔), 186 

convolved with the averaged transient-source wavelet.  187 

In the case of recording uncorrelated noise sources characterized each by source time function 188 

𝑁𝑁(𝑥𝑥𝑆𝑆,𝜔𝜔), the responses at 𝑥𝑥𝐴𝐴 and 𝑥𝑥𝐵𝐵 are defined as 189 

𝑢𝑢(𝑥𝑥𝐴𝐴,𝜔𝜔) = � 𝑁𝑁(𝑥𝑥𝑆𝑆,𝜔𝜔)𝐺𝐺(𝑥𝑥𝐴𝐴, 𝑥𝑥𝑆𝑆,𝜔𝜔) 𝑑𝑑𝑥𝑥𝑆𝑆
𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠

   (4) 191 

     190 

and 192 
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𝑢𝑢(𝑥𝑥𝐵𝐵,𝜔𝜔) = � 𝑁𝑁(𝑥𝑥′𝑆𝑆,𝜔𝜔)𝐺𝐺(𝑥𝑥𝐵𝐵, 𝑥𝑥𝑆𝑆,𝜔𝜔)𝑑𝑑𝑥𝑥𝑆𝑆
𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠

,   (5) 193 

respectively.    194 

The assumption of uncorrelated noise sources invokes processing of continuous recordings of 195 

simultaneously acting passive sources. In this case, the summation over the sources is replaced 196 

with time averaging. We assume that two noise sources 𝑁𝑁(𝑥𝑥𝑆𝑆,𝜔𝜔) and 𝑁𝑁(𝑥𝑥′𝑆𝑆,𝜔𝜔) are mutually 197 

uncorrelated for any 𝑥𝑥𝑆𝑆 ≠ 𝑥𝑥′𝑆𝑆 and have an equal power spectrum. The ensemble average 〈 〉 198 

taken over them is equal to  199 

〈𝑁𝑁(𝑥𝑥′𝑆𝑆,𝜔𝜔)𝑁𝑁∗(𝑥𝑥𝑆𝑆,𝜔𝜔)〉 = 𝑆𝑆(𝜔𝜔)𝛿𝛿(𝑥𝑥𝑆𝑆 − 𝑥𝑥′𝑆𝑆) ,  (6) 200 

where  𝑆𝑆(𝜔𝜔) is the autocorrelation of the AN source. 201 

Then, the correlation of equations 4 and 5 is defined as  202 

𝐶𝐶(𝑥𝑥𝐵𝐵, 𝑥𝑥𝐴𝐴,𝜔𝜔) = 〈𝑢𝑢(𝑥𝑥𝐵𝐵,𝜔𝜔)𝑢𝑢∗(𝑥𝑥𝐴𝐴,𝜔𝜔)〉.        (7) 203 

The above discrimination between AN considered as originating from transient and 204 

simultaneously acting sources is our motivation to investigate the influence of different 205 

segments of the AN recordings on the reflection retrieval in crystalline environments. Equations 206 

3 and 7 state that the correlation function yields the Green’s function between 𝑥𝑥𝐵𝐵 and 𝑥𝑥𝐴𝐴 207 

(Wapenaar et al., 2011). Considering practical applications, the characteristics of the AN 208 

wavefield at a given site determine the eventual preponderance of either approach.  209 

The imprint of a source signature 𝑆𝑆(𝜔𝜔) on the correlation result 𝐶𝐶(𝑥𝑥𝐵𝐵, 𝑥𝑥𝐴𝐴,𝜔𝜔) is removed by 210 

applying a wavelet deconvolution per every correlated trace. The deconvolution operator is 211 

estimated by extracting a short segment around t=0 s from the correlation result 𝐶𝐶(𝑥𝑥𝐵𝐵, 𝑥𝑥𝐴𝐴,𝜔𝜔) 212 

for 𝑥𝑥𝐴𝐴=𝑥𝑥𝐵𝐵, i.e., the trace autocorrelation (AC).  213 
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The important parameter to establish before the actual correlation is the length of the noise 214 

panels to be used as the input for SI (Draganov et al., 2007; Almagro Vidal et al., 2014; 215 

Cheraghi et al., 2016). Regardless of transient sources or volumes of noise, the minimum length 216 

should be greater than or equal to the two-way traveltime (TWT) to the deepest reflection event 217 

of interest. To capture possible surface-related multiples of that event (as well as multiply 218 

scattered contributions), this length should be further extended to at least double that TWT. 219 

Furthermore, because our processing is specific for a situation in which seismic events are 220 

induced by underground mine activity, the record length should account for the maximum depth 221 

of mining operations (~1000 m depth). Taking these factors into account, for all the analyses 222 

shown in this study, we use a window length of 10 s for both the noise-volume and event-driven 223 

approach. 224 

2.4 Impulse-response retrieval: SI methods  225 

Further part of the comparison analyzed in this study relates to the application of the three main 226 

SI methods to retrieve impulse responses (Wapenaar et al., 2011).  227 

CCh is equivalent to the CC normalized in the frequency domain: 228 

𝐶𝐶𝑐𝑐ℎ(𝑥𝑥𝐵𝐵, 𝑥𝑥𝐴𝐴,𝜔𝜔) = ∫ 𝑢𝑢(𝑥𝑥𝐴𝐴,𝑥𝑥𝑆𝑆,𝜔𝜔)𝑢𝑢∗(𝑥𝑥𝐵𝐵,𝑥𝑥𝑆𝑆,𝜔𝜔)
|𝑢𝑢(𝑥𝑥𝐴𝐴,𝑥𝑥𝑆𝑆,𝜔𝜔)||𝑢𝑢(𝑥𝑥𝐵𝐵,𝑥𝑥𝑆𝑆,𝜔𝜔)|+𝜀𝜀𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠

 , (8) 229 

where 𝑢𝑢(𝑥𝑥𝐴𝐴, 𝑥𝑥𝑆𝑆,𝜔𝜔) and 𝑢𝑢(𝑥𝑥𝐵𝐵, 𝑥𝑥𝑆𝑆,𝜔𝜔) are the responses at 𝑥𝑥𝐴𝐴 and 𝑥𝑥𝐵𝐵 in the frequency domain, 𝜔𝜔 230 

denotes the angular frequency, and the asterisk denotes complex conjugate. In CCh, the 231 

nominator is equal to the CC (equation 3) and is divided by the amplitude cross-power spectrum 232 

|𝑢𝑢(𝑥𝑥𝐴𝐴,𝑥𝑥𝑆𝑆 ,𝜔𝜔)||𝑢𝑢(𝑥𝑥𝐵𝐵, 𝑥𝑥𝑆𝑆,𝜔𝜔)|. The regularization parameter 𝜀𝜀 is added to provide numerical 233 

stability, and could be estimated for example by taking 1% of the cross-spectrum value per each 234 

frequency component, averaged over many time windows. The spectral division in equation 8 235 

removes any contributions related to noise-source wavelets. Thus, the estimation of 𝑆𝑆(𝜔𝜔) and 236 

wavelet deconvolution required by the CC approach is omitted in CCh processing.       237 
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Both CC and CCh are trace-by-trace operations and their definitions assume lossless medium, 238 

isotropic illumination from the sources and regular source distribution (assumptions not 239 

possible to meet in real data scenario).  240 

There were many solutions proposed to account for directionally biased illumination (see 241 

Bakulin and Calvert, 2006; Snieder et al., 2006; Mehta et al., 2007). However, most of them 242 

are essentially deconvolution-based trace-by-trace operations which mostly account for source-243 

wavelet issues and do not address the asymmetric illumination of noise sources (Wapenaar et 244 

al., 2011). Wapenaar et al. (2008) proposed a method in which deconvolution is performed on 245 

all traces simultaneously thus allowing to account for assumptions limiting the validity of the 246 

Green’s functions retrieved using CC and CCh. In this multidimensional deconvolution (MDD), 247 

an improved version of the frequency-domain Green’s function 𝐺𝐺𝑆𝑆(𝑥𝑥𝐵𝐵, 𝑥𝑥𝑆𝑆,𝜔𝜔) is obtained by 248 

deconvolving the raw correlation output 𝐶𝐶(𝑥𝑥𝐵𝐵, 𝑥𝑥𝐴𝐴,𝜔𝜔) by a 2D deconvolution operator 249 

Γ(𝑥𝑥, 𝑥𝑥𝐴𝐴,𝜔𝜔): 250 

𝐶𝐶(𝑥𝑥𝐵𝐵, 𝑥𝑥𝐴𝐴,𝜔𝜔) = ∫ 𝐺𝐺𝑆𝑆(𝑥𝑥𝐵𝐵, 𝑥𝑥,𝜔𝜔)Γ(𝑥𝑥, 𝑥𝑥𝐴𝐴,𝜔𝜔) 𝑑𝑑𝑥𝑥𝑆𝑆𝑠𝑠𝑟𝑟𝑠𝑠
,   (9)  251 

where 𝐺𝐺𝑆𝑆(𝑥𝑥𝐵𝐵, 𝑥𝑥𝑆𝑆,𝜔𝜔) is the scattered part of the Green’s function (total Green’s function minus 252 

the direct wave) and Γ(𝑥𝑥, 𝑥𝑥𝐴𝐴,𝜔𝜔) is so-called point-spread function (PSF; van der Neut et al., 253 

2010, 2011). Equation 9 shows that the CC function is actually a blurred variant of the Green’s 254 

function 𝐺𝐺𝑆𝑆(𝑥𝑥𝐵𝐵, 𝑥𝑥𝑆𝑆,𝜔𝜔), where the blur in time and space is quantified by the PSF and is 255 

connected to source-related factors (source time functions, source distribution, relative strength, 256 

etc.). The underlying assumption for MDD is that PSF be optimally obtained from CC (equation 257 

3) such that it accounts for the source-related distortions. Note that the integration in equation 258 

3 is performed along the source boundary 𝑆𝑆𝑠𝑠𝑠𝑠𝑐𝑐, while in equation 9 - over receivers, which 259 

removes the requirement for regular source distribution. However, this also means that regular 260 

receiver distribution is required. MDD is realized by solving for 𝐺𝐺𝑆𝑆(𝑥𝑥𝐵𝐵, 𝑥𝑥,𝜔𝜔) in equation 9 by 261 
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deconvolving 𝐶𝐶(𝑥𝑥𝐵𝐵, 𝑥𝑥𝐴𝐴,𝜔𝜔) with Γ(𝑥𝑥, 𝑥𝑥𝐴𝐴,𝜔𝜔). To avoid ill-posedness, equation 9 is solved for 262 

each source position 𝑥𝑥𝐴𝐴 and for each available source component at 𝑥𝑥𝐴𝐴, resulting in an ensemble 263 

of equations for 𝐺𝐺𝑆𝑆(𝑥𝑥𝐵𝐵, 𝑥𝑥,𝜔𝜔). Γ(𝑥𝑥, 𝑥𝑥𝐴𝐴,𝜔𝜔), as proposed by van der Neut et al. (2011), can be 264 

obtained by time windowing the CC output around t=0 s (summed over sources for the transient 265 

case or over time instances for uncorrelated noise sources). This time widowing yields a 266 

butterfly-shaped seismic record with its thinnest part at 𝑥𝑥𝐴𝐴=𝑥𝑥𝐵𝐵 (Nishitsuji et al., 2016) and with 267 

slopes determined by the apparent slowness of the dominant events. In practice, MDD (equation 268 

9) is recast in a matrix form using a least-square approach or a singular value decomposition 269 

(see e.g., Nishitsuji et al., 2016 for the details of MDD discretization).  270 

In this study, we approximate the PSF by extracting the butterfly-shaped seismic record from 271 

body-wave events captured in individual noise panels (in the event-driven approach). For the 272 

noise-volume approach, we extract the PSF from every correlated 10-s-long panel. For both 273 

approaches, we invert for 𝐺𝐺𝑆𝑆(𝑥𝑥𝐵𝐵, 𝑥𝑥,𝜔𝜔) using all noise panel simultaneously. For longer 274 

recordings, this becomes a computationally intensive task. As we are interested in the general 275 

performance of the noise-volume approach, we test MDD on an exemplary 1-hour-long 276 

recording.  277 

The main difference between all three methods is related to the different type of deconvolution 278 

inherent in each of them. In CC, windowed AC of the master trace is used as a source-function 279 

estimate to divide each trace in the spectral domain. Deconvolution in CCh is done by dividing 280 

the CC output of two traces by the multiplication of the amplitude spectra of both traces, i.e., a 281 

cross-power normalization is actually performed. Compared to CC and CCh, the deconvolution 282 

in MDD is much more comprehensive, i.e., deconvolution is performed simultaneously for 283 

every trace in the currently analysed VSG. The theoretical improvements from applying MDD 284 

compared to CC are: (i) removing source signature(s), (ii) improved radiation characteristics of 285 

the retrieved source, (iii) relaxation of the assumptions of a closed surface of regularly sampled 286 
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sources (when directional illumination is present), and (iv) works correctly in dissipative 287 

medium. A disadvantage of MDD is that it requires a regular sampling of the receiver array.  288 

From a theoretical point of view, CC should result in the correct phase and relative amplitude 289 

of arrivals, CCh - only the phase, and MDD - the absolute amplitude, phase, and correction for 290 

the unbalanced illumination. The robustness of CCh is useful when recordings contain 291 

unwanted instrument noise or poor-coupling effects. It could be appealing in case of surveys 292 

performed in hardrock environment, where the terrain conditions can vary quickly across the 293 

survey, yet the unwanted effect of CCh is data whitening, which can be harmful for retrieving 294 

weak reflectivity. 295 

2.5 Evaluation of preprocessing on virtual zero-offset data 296 

Reflection retrieval using ANSI involves correlating the separate body-wave sources or 297 

volumes of noise with dominant presence of body-wave arrivals. In such cases, the first aim of 298 

the preprocessing is to assure that the AN segments contain body waves with higher energy 299 

than surface waves. Additionally, the routine part of ANSI preprocessing is trace-energy 300 

normalization applied for each noise panel (Draganov et al., 2007, 2013). The energy 301 

normalization aims at equalizing the contribution of each correlated panel, i.e., fulfilling the 302 

assumption of equal energy of the different AN sources (Ruigrok et al., 2010; Nishitsuji et al., 303 

2016). The inevitable consequence of applying CC to noise panels is enhancing the strongest 304 

event present in the given data segment (Almagro Vidal et al., 2014). As a consequence, the 305 

virtual-source function is determined by the strongest event in the pre-correlated noise panel. 306 

The illumination diagnosis method (Almagro Vidal et al., 2014) can be used to scan for panels 307 

with dominant presence of body waves. However, by providing appropriate preprocessing, even 308 

those noise panels which are dominated by surface waves might be turned into useful data.  309 

In our 2D ANSI workflow, we use AC (Clearbout, 1968; Daneshvar et al., 1995) to obtain 310 

virtual zero-offset data and asses the influence of given preprocessing on the Green’s function 311 
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retrieval. Analysing virtual zero-offset data allows for direct visual assessment of amplitudes 312 

and phases of waveforms in a time window of reflections indicated by simulated active-source 313 

data. 314 

2.6 Selection of ambient-noise segments 315 

The next step in the 2D ANSI processing workflow is the extraction of AN segments. The 316 

formulations of CC for transient sources (equation 3) and uncorrelated noise sources (equation 317 

7) indicate two possible approaches in processing AN data (Draganov et al., 2013): (1) an event-318 

driven approach, where separate noise sources can be detected and extracted from the 319 

continuous AN recordings, or (2) a noise-volume approach, where long, continuous data are 320 

automatically separated into time windows of equal length with the assumption that most of the 321 

windows contains body-wave events that after stacking will not be masked by retrieved surface 322 

waves. For data extraction in the event-driven and noise-volume approaches, we apply 323 

dedicated illumination diagnoses. For the noise-volume approach, we apply a 2D illumination 324 

diagnosis (Almagro Vidal et al., 2014; Panea et al., 2014) to choose 1 hour of the AN recordings 325 

dominated by low-slowness arrivals. Note that, when using the noise-volume approach with all 326 

the noise, there is no need for illumination diagnosis. For selecting body-wave events in the 327 

event-driven approach, we use the two-step wavefield evaluation and event detection (TWEED) 328 

method (Chamarczuk et al., 2019). 329 

In the event-driven approach, we aim to choose sources bounding the target area. According to 330 

Wapenaar et al. (2008, and 2011) even though the MDD approach can be carried out without 331 

assumptions with respect to the regularity of the source positions. The MDD results quality 332 

depends mainly on the source density (with a rule of thumb of average horizontal distance 333 

between sources being less than half of the dominant wavelength; see Wapenaar et al., 2008). 334 

Thus, during noise-panel selection we try to find events fulfilling this condition and located 335 

approximately on the contour outlining the main target (in this case Kylylahti ultramafic body). 336 
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Assuming high-frequency body-wave events with peak frequency around 50 Hz (see Figure 3b) 337 

and background velocity of the host rock of 5000 m/s, the optimal source separation should be 338 

less than 50 m. As the distribution of sources is constrained by the location of the noise sources, 339 

the sources subset used in this study will only approximate the desired distribution.   340 

In order to assure retrieval of reflections when applying the noise-volume approach to only 1 341 

hour of AN, we have to make sure that this hour is characterized by a dominant body-wave 342 

energy. To estimate the general body-wave energy content we use the aforementioned 2D 343 

illumination diagnosis (Almagro Vidal et al., 2014; Panea et al., 2014). In this approach, we 344 

use the slant-stack transform (Chapman, 1981) of the wavefield 𝑣𝑣, 𝑣𝑣�(𝑝𝑝, 𝜏𝜏) = ∫𝑣𝑣(𝑥𝑥, 𝜏𝜏 + 𝑝𝑝𝑥𝑥)𝑑𝑑𝑥𝑥, 345 

where 𝑝𝑝 is the ray parameter, 𝑥𝑥 is the offset, and 𝜏𝜏 is the intercept time at 𝑝𝑝 = 0. The slant-stack 346 

at 𝜏𝜏 = 0 for each correlated noise panel 𝐶𝐶𝑆𝑆 can be described as 347 

�̃�𝐶𝑆𝑆(𝑥𝑥𝐴𝐴,𝑝𝑝, 𝜏𝜏) = ∫𝐶𝐶𝑆𝑆[𝑥𝑥𝐵𝐵, 𝑥𝑥𝐴𝐴, 𝜏𝜏 + 𝑝𝑝 ∙ (𝑥𝑥𝐵𝐵 − 𝑥𝑥𝐴𝐴)]𝑑𝑑𝑥𝑥𝐵𝐵,       (10) 348 

where �̃�𝐶𝑆𝑆 is the representation of the virtual-source function of the transient source 𝑆𝑆 in the 𝜏𝜏 −349 

p domain. Therefore, �̃�𝐶𝑆𝑆 describes the dominant ray-parameter contribution from the transient 350 

source to the virtual source located at 𝑥𝑥𝐴𝐴 and recorded at 𝑥𝑥𝐵𝐵. Then, a discrimination test is 351 

performed by comparing the dominant ray-parameter value 𝑚𝑚𝑚𝑚𝑥𝑥���̃�𝐶𝐿𝐿𝑠𝑠(𝑥𝑥𝐴𝐴,𝒑𝒑)�� with a 352 

predefined ray-parameter threshold 𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 characteristic for the body waves in the recording 353 

area. 354 

For the event-driven approach, the number of used noise panels could be far lower than for the 355 

noise-volume approach (which is the case for the Kylylahti data), thus if for the latter it is 356 

sufficient to have the majority of the panels containing body-wave events, the event-driven 357 

approach demands that every noise panel contains body-wave events. To assure this, we use 358 

illumination diagnosis method extended to 3D, i.e., the TWEED method (Chamarczuk et al. 359 

2019). TWEED was developed to overcome the insufficient crossline receiver spacing (i.e., no 360 
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receiver lines in the crossline direction deployed) by simultaneous analysis of the adjacent 361 

(parallel) receiver lines.  362 

We use the illumination diagnosis for extracting two AN segments dominated by body-wave 363 

activity and surface-wave activity. Then, we apply the same SI processing to both volumes and 364 

compare the resulting VSGs.   365 

2.7 Semblance analysis 366 

Because of the inherent ambiguity in visual comparison of reflection patterns observed in pre-367 

stack data, we propose to use a similarity measure. Similarity measures are commonly used in 368 

comparison of multiple datasets from various sources (Cooper and Cowan, 2008) and are well-369 

known tools for analysing active-source seismic data (Neidell and Taner, 1971). Aiming to 370 

decrease the subjectivity of visual comparison of our passive results, we incorporate the 371 

semblance method, which enables comparison of time-series data in quantitative manner.  372 

Semblance filtering compares two datasets on the basis of their phase as a function of frequency. 373 

The semblance is calculated using the continuous wavelet transform (CWT; e.g., Sinha et al., 374 

2005). The CWT is defined as the correlation of the given time series ℎ(𝑡𝑡) with a scaled 375 

arbitrary wavelet 𝛹𝛹: 376 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑢𝑢, 𝑠𝑠) = ∫ ℎ(𝑡𝑡) 1
|𝑠𝑠|0,5 𝛹𝛹∗ �𝑙𝑙−𝑢𝑢

𝑠𝑠
�∞

−∞ 𝑑𝑑𝑡𝑡,   (11)        377 

where s denotes the scale, u is displacement, and ∗ denotes the complex conjugate. Using the 378 

wavelet approach allows to account for temporal variability in the spectral character. 379 

Comparison of the two wavelet-transformed time series can be achieved using the cross-wavelet 380 

transform according to  381 

𝐶𝐶𝐶𝐶𝐶𝐶1,2 = 𝐶𝐶𝐶𝐶𝐶𝐶1 × 𝐶𝐶𝐶𝐶𝐶𝐶2∗,  (12) 382 
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with the result being a complex quantity with an amplitude 𝐴𝐴 = �𝐶𝐶𝐶𝐶𝐶𝐶1,2� 383 

and local phase 𝜃𝜃 = 𝑡𝑡𝑚𝑚𝑡𝑡−1(𝐼𝐼𝑚𝑚𝐼𝐼(𝐶𝐶𝐶𝐶𝐶𝐶1,2)/𝑅𝑅𝑅𝑅(𝐶𝐶𝐶𝐶𝐶𝐶1,2)).  𝐶𝐶𝐶𝐶𝐶𝐶1,2 is the relation between the 384 

imaginary and real part of the cross-wavelet transform and is valued between−𝜋𝜋 and  +𝜋𝜋. Then, 385 

the similarity between the two wavelet-transformed time series can be defined as semblance: 386 

𝑆𝑆 = 𝑐𝑐𝑐𝑐𝑠𝑠𝑛𝑛(𝜃𝜃),      (13) 387 

where n is a positive odd integer. S is a measure of the phase correlation between the two 388 

datasets and takes values between -1 and 1. In this study, we use the semblance value to compare 389 

the reflectivity patterns present in the VSGs retrieved with the 2D ANSI processing and in the 390 

synthetic active-source data.  391 

2.8 Imaging approach 392 

After applying our 2D ANSI workflow, we use the VSGs as input to standard time imaging to 393 

retrieve reflectivity sections. For simplicity, we use conventional constant-velocity Stolt f-k 394 

migration (Stolt and Benson, 1986) applied on DMO-corrected sections (with integral T-X 395 

DMO run on common-offset planes, Hale (1984)). Additionally, we apply a top mute to remove 396 

first arrivals and, in the case of the ANSI results, SI artefacts earlier than the first arrivals, and 397 

balance the amplitudes by dividing by the root-mean-square (RMS) value. We argue that the 398 

expected quality of the migrated sections can be already deduced from comparison of the VSGs. 399 

Since the scope of this study is limited to explaining and comparing different processing 400 

strategies for 2D ANSI in the mineral-exploration context, we focus on the SI methodology 401 

itself. Hence, selection of the imaging techniques for the recovery of the best-possible 402 

reflectivity image is outside the scope of this study. Despite the fact that considering the 403 

complexity of structures as in the Kylylahti mine area, pre-stack depth migration was deemed 404 

the most-appropriate approach (see Heinonen et al., 2019; Singh et al., 2019), we prefer to use 405 

the above post-stack time migration approach. Since the potential of 2D ANSI is to use it as a 406 
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reconnaissance tool in mineral exploration, we assume that no detailed knowledge of the 407 

velocity structure is known prior to acquisition, which hampers application of pre-stack depth 408 

migration.  409 

3. DATASET  410 
The 2D passive data used in this study comprises a single receiver line (line 7) of the Kylylahti 411 

array (Chamarczuk et al., 2019). Additionally, lines 8 and 9 are used to show the consistency 412 

of the 2D ANSI processing results. Figure 3a shows the layout of the Kylylahti array, 413 

highlighting the lines used in this study and their relation to the known extent of the Kylylahti 414 

mineralization. The Kylyahti array was deployed as a part of the COGITO-MIN project tackling 415 

the cost-effectiveness of various novel seismic exploration technologies targeting high-416 

resolution resource delineation (Riedel et al., 2018). The primary purpose of the Kylylahti array 417 

deployment was to advance the development of ANSI imaging techniques for mineral 418 

exploration and provide a baseline for testing novel array-processing techniques (see 419 

Chamarczuk et al., 2020).  420 

The array was deployed over the active Kylylahti polymetallic mine (Outokumpu mineral belt, 421 

Eastern Finland) in the direct vicinity of the town of Polvijärvi. The array consisted of 994 422 

receiver stations distributed regularly over a 3.5 x 3 km area with 200 m line spacing and 50 m 423 

receiver spacing. Each receiver station was equipped with a bunched string of six 10-Hz 424 

vertical-component geophones and a wireless data logger, recording AN at 2 ms for 20 hours 425 

per day during 30 days, resulting in ~600 hours of passive seismic data. The Kylylahti mine 426 

was active during the whole recording period. Routine mining activities included, among 427 

others, drillings (surface and underground), transporting ore and waste rock (surface and 428 

underground), scaling (underground), mine ventilation (surface). Another source generating 429 

strong energy are the mine blasts which occurred daily at depths ranging from a few hundred 430 

meters down to approximately 800 meters below the surface. We expect all of these activities 431 
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to significantly contribute to the AN wavefield in the Kylylahti area and provide us the 432 

opportunity to record body-wave arrivals. In Figure 3b, we show the power-spectral-density 433 

(PSD) estimate for the whole array averaged over one day of recordings. The PSD analysis 434 

indicates a broad frequency content of AN in the Kylylahti area, with highest energy peaks 435 

between 10-15 Hz and 30-40 Hz. Areas in the direct vicinity of the mine (denoted with red 436 

dashed line in Figure 3b) exhibit PSD peaks also in the 65-80 Hz range. 437 

4. NUMERICAL TESTS  438 

 439 

To investigate the feasibility of 2D ANSI in a setting dominated by operating-mine activity, we 440 

perform 2D numerical tests including: (i) synthetic active-source data to provide a benchmark 441 

of the imaging quality expected from surface-seismic data (see Figure 4a); (ii) passive seismic 442 

simulation with regular source distribution to show the maximum achievable performance (in 443 

the case of the array deployed directly over the mine and assuming the AN sources to be 444 

generated by mine-related activities) of 2D ANSI (see Figure 5), and (iii) supporting test to 445 

evaluate the influence of the directional AN sources illumination breaking the omnidirectional 446 

AN distribution condition, which is a situation commonly encountered in field experiments (see 447 

Figure 6). The synthetic active-source data are our benchmark in this study for verifying the 448 

fidelity of reflections visible in the 2D ANSI. Furthermore, the synthetic active-source data 449 

juxtaposed with the 2D ANSI results from the field and synthetic data should indicate the 450 

potential deviations from desired imaging results, i.e., misplaced and/or flattened reflections, 451 

artifacts (near-surface noise, non-physical reflections), and general hints in terms of SNR. The 452 

velocity model used for modelling includes the ore body and is representative for one of the 453 

receiver lines of the Kylylahti array (receiver line 7 in Fig. 3). 454 
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4.1 Synthetic model 455 
For all synthetic tests, we use a 3D seismic impedance model based on a simplified geological 456 

model of the Kylylahti area (Riedel et al., 2018). The model is based on comprehensive drilling 457 

(i.e., the geology at this location is well known) and consists of the following four main rock 458 

units: (1) the sulphide-bearing schist (SULBS), (2) Outokumpu ultramafic rocks (OUM) – 459 

Kylylahti body, (3) Outokumpu altered ultramafic rocks (OME), and (4) massive to semi-460 

massive sulphide (S/MS) mineralisation. The ore body is located at approximately 300 m depth 461 

(indicated by a yellow inclusion in Figures 4a and 5a). The petrophysical characterization of 462 

the targets indicates that S/MS should cause a strong reflected signal when in contact with any 463 

of the hosting rocks, mainly due to the notably higher densities of ore compared to those of the 464 

other rock types (Luhta, 2019). In Table 1, we provide the P-wave velocities, densities, and 465 

impedances of the units building the input model used for the acoustic modelling. The white 466 

dashed lines shown in Figure 4a indicate areas of expected reflectivity.  467 

For the 2D synthetic modelling, we used a receiver spread mimicking the field acquisition 468 

geometry, i.e., a line of 29 sensors placed on the top of the model with 50 m spacing giving a 469 

total length of the line of 1400 m. For such а configuration, the theoretical maximum unaliased 470 

frequency is equal to 𝑓𝑓𝑢𝑢𝑛𝑛 = 𝑉𝑉/(4𝐵𝐵𝑠𝑠𝐵𝐵𝑡𝑡(𝜃𝜃)), where 𝑉𝑉 is the average medium velocity, 𝐵𝐵 is the 471 

bin size, and 𝜃𝜃 is the geological dip. Assuming a dominant dip of the target of 60°, a common-472 

depth-point (CDP) bin size of 25 m, and average P-wave velocity in the medium of 6000 m/s, 473 

the maximum unaliased frequency is approximately 58 Hz. The dominant frequency of the AN 474 

sources in the Kylylahti area is not higher than 60 Hz (see Figure 3b), thus we do not expect 475 

frequency aliasing for the passive results due to the steep dips.  476 

The synthetic modelling was done using a 2D finite-difference acoustic modelling scheme 477 

(Thorbecke and Draganov, 2011). First, we test the performance of the 2D active-source seismic 478 

method using a linear array of sources deployed on the surface. To facilitate comparison with 479 



21 
 

data retrieved using SI, the synthetic shots are collocated with the receivers. We use a pressure 480 

source with a Ricker wavelet with centre frequency of 60 Hz and 40 Hz for the active and 481 

passive case, respectively. The synthetic active-shot gather is shown in Figure 4b. In Figure 4c, 482 

we show the migrated section obtained from all synthetic active-shot gathers. The reflectivity 483 

related to the main geological units (shown with dashed black lines) is visible both on the pre-484 

stack (Figure 4b) and post-stack data (Figure 4c). We can distinguish three reflection packages 485 

(RPs) related to the velocity contrast between the host rock and the background (RP1), the S/MS 486 

mineralization (RP2), and the bottom of the Kylylahti body (RP3).   487 

Next, we simulate the passive seismic survey. We use idealized regular noise distribution of 488 

underground sources. The rectangular polygon of sources together with the free surface form a 489 

surface enclosing the area of potential reflectivity. Theoretically, integrating over this surface 490 

(summing over separate sources) should provide a reliable estimate of the subsurface 491 

reflectivity (Wapenaar and Fokkema, 2006). The exemplary procedure to obtain Green’s 492 

functions for the synthetic data by CC for a central receiver acting as a virtual source is as 493 

follows: for a fixed source position, we crosscorrelate the trace at the central receiver with the 494 

traces at all other receivers; we repeat this for all sources along the ‘box’; the result is then 495 

summed per receiver over all sources. The erroneous amplitudes visible in the VSG obtained 496 

for the synthetic passive case (Figure 5b) are related to deviating from the far-field 497 

approximation of source boundary from the receivers and the assumption of smooth impedance 498 

contrast across the source boundary (see the ‘Discussion’ section for more detailed 499 

explanation). The migrated section in Figure 5c exhibits reflections in all the areas of expected 500 

reflectivity. We note, that it is very unlikely that AN sources in the actual field situation would 501 

appear with such a regular distribution and that serious deviations from this preferred 502 

illumination could be expected in actual field conditions; however, we want to examine the best 503 
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theoretically achievable performance of SI assuming preferable alignment of mine-induced 504 

seismic sources in the Kylylahti geological setting.  505 

4.1.1 Directional illumination test  506 
To investigate the influence of directional distribution of AN sources, we investigate three 507 

scenarios with sources distributed along one of the three sides of the target area (distributions 508 

of sources shown as insets in Figure 6). We compare migrated images obtained using VSGs 509 

produced from pressure sources illuminating the target area from the left (Figure 6a), bottom 510 

(Figure 6b), and right (Figure 6c) side of the rectangle bounding the target area.  511 

The migrated sections obtained from directionally biased source distributions are generally 512 

dominated by artifacts, but it is still possible to track the reflectivity in the expected areas 513 

(indicated with dashed black contours). Sources distributed underneath the target (Figure 6b) 514 

provide the clearest image of the three cases, in which each RP can be visually separated. The 515 

sources illuminating the target from the left side (Figure 6a) provide an image similar to the one 516 

from the bottom distribution, yet the presence of a strong dipping artifact stretching from the 517 

depth of 800 m until ~1000 m distorts the reflection related to the bottom of the OUM 518 

formation. The relatively worst image is provided using sources distributed along the right side 519 

of the target (Figure 6c), with a prominent horizontal artifact stretching for the whole section at 520 

the depth of 400 m and masking the RP related to part of the target with high-impedance 521 

inclusion (see RP2 in Figure 6c). On the other hand, the section shown in Figure 6c exhibits the 522 

highest level of SNR in the area between the RPs. Overall, the simulation results shown in 523 

Figure 6 aid the interpretation of the migrated field data by explaining artifacts related to 524 

directional source distributions.  525 

4.2 Validity of the 2D approach: 3D synthetic modelling 526 
One may argue that the qualitatively good results of ANSI imaging applied to 2D synthetics 527 

might be misleading as we are ultimately aiming at imaging complex 3D structures.  In order 528 
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to support the reliability of the 2D ANSI approach (Figures 5-6) we additionally performed 3D 529 

finite-difference acoustic modelling. We used SOFI3D open-source modelling code (Bohlen, 530 

2002) to simulate 648 separately acting AN sources and the full 3D model for the Kylylahti 531 

area (Riedel et al. 2018). The locations of those sources were obtained from the result of the 532 

InterLoc procedure (Dales et al., 2017a) applied to the events detected with TWEED 533 

(Chamarczuk et al. 2019, 2020) using the Kylylahti array data. In such a way, we used realistic 534 

3D distribution of passive sources. The sections shown in Figure 7 were obtained along the 535 

same receiver line as in the 2D synthetic case. Similar to the test of the directional illumination 536 

in 2D discussed above (Figure 6), we selectively stack sources on the left, bottom, and right of 537 

the target (Figure 7b, 7c, 7d, respectively). Additionally, we produce VSGs with all the sources 538 

included (Figure 7e) and a subset of sources mimicking the event-driven stacking (Figure 7f). 539 

When comparing the 2D results with those from the 3D approach, we can note that albeit the 540 

individual reflection packages are slightly shifted, structures inferred from the purely 2D 541 

approach agrees well with the synthetic model. Therefore, we conclude that the 2D ANSI can 542 

provide relatively robust imaging of 3D structures in the Kylylahti area. 543 

5 FIELD DATA APPLICATION 544 
 545 

5.1 Auto-correlations of traces 546 
In this section, we evaluate the influence of the different AN preprocessing techniques by 547 

comparing virtual zero-offset traces. We obtain the zero-offset data by stacking the ACs of 548 

arbitrarily chosen one-hour-long AN segment. We focus on comparing the SNR in the time 549 

window of expected reflection arrivals and the general resemblance of the virtual data to its 550 

active counterpart. We compare zero-offset data for the 17th trace in the active-shot synthetic 551 

gather shown in Figure 4b and the corresponding trace extracted from line 7 of the Kylylahti 552 

array. Figure 8 shows the comparison of stacked zero-offset virtual traces retrieved using the 553 

various preprocessing schemes applied prior to AC. To facilitate the comparison between the 554 
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synthetic active-shot trace and virtual ACs, we show the zero-offset active-shot trace after 555 

concatenating its time-reversed variant (Figure 8a). In order to demonstrate the influence of 556 

each processing step, we show the raw AC result (Figure 8b). Applying time windowing (Figure 557 

8c) and filtering (Figure 8f and 8g) enhances the peaks in the time window not related to 558 

reflections (outside the grey shaded area shown in Figure 8) and the traces exhibit high-559 

amplitude ringing noise. The high-amplitude event appearing between the pulse at t=0 s and the 560 

grey shaded area (the expected arrival time of target reflections) in the AC traces suggests 561 

possible problems with the near-surface noise (caused by destructive interference of reflection 562 

and spurious events) retrieved in VSGs. On the other hand, peaks visible around the time 563 

window related to target reflections suggest the possibility of retrieving such reflections in the 564 

VSGs. The ‘ringing’ appearance of traces indicates possible problems due to overall low SNR 565 

in the retrieved VSGs. The auto-coherence (Figure 8e) exhibits a single positive peak, which is 566 

due to the spectral whitening performed intrinsically with this process (it is the AC normalized 567 

similarly to CCh). Energy normalization does not significantly affect the shape of AC (Figure 568 

8h). However, it has to be applied to assure equal contribution from separate stacks of correlated 569 

AN panels (Draganov et al., 2009). In general, applying one-bit and sliding-window energy 570 

normalization (Figures 8d and 8i, respectively) provides AC traces exhibiting highest 571 

amplitudes near the area of the expected reflections, while the ringing-amplitude effect visible 572 

in the raw CC (Figure 8b) is highly reduced. Based on those results, for the final processing of 573 

the field data we choose the routine time-windowing and energy normalization followed by 574 

high-pass filtering (Figure 8g) to further enhance the expected body-wave content.  575 

5.2 Noise-volume quality control and selection using illumination diagnosis  576 
In order to assure selection of high-quality AN segments for the 2D ANSI noise-volume 577 

approach, we apply illumination diagnosis to determine periods with the desired body-wave 578 

illumination. Subsequently, to show the relevance of illumination quality control (QC), we 579 
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investigate the consequence of applying CC to two different hours of noise. Towards this end, 580 

we extract two AN segments dominated by body-wave activity and surface-wave activity, 581 

respectively. We apply the same SI processing to both volumes and compare the resulting 582 

VSGs.   583 

Figure 9 shows the illumination diagnosis panels for three adjacent receiver lines 7, 8, and 9 584 

(highlighted in Figure 3a). We obtain this plot by employing equation 10 for the whole day of 585 

recording (divided into 10-s-long noise panels) from those three lines and automatically picking 586 

the slowness characterizing the strongest event in each noise panel. We denote picks with green 587 

and black crosses for low- and high-slowness event, respectively. Note that line 7 contains the 588 

highest number of the low-slowness events, as it is located in the direct vicinity of the mine and 589 

the mine is expected to produce body-wave events. We select 1-hour-long recordings based on 590 

their illumination characteristics. Collating observations from all 3 receiver lines, we select the 591 

first 1-hour-long segment by choosing a period when at least several events with dominant 592 

slowness values fall into the limit of body-wave slownesses (< 0.2 s/km) for all lines (see hour 593 

A in Figure 9). We choose a typical AN recording dominated by surface-wave energy as the 594 

second data segment. For that, we select an hour when zero low-slowness events occurred 595 

simultaneously on adjacent receiver lines (see Hour B in Figure 9). As indicated in the ACs of 596 

the zero-offset virtual traces (Figure 8), the most optimal preprocessing sequence is RMS 597 

energy normalization followed by a high-pass filtering. We apply this sequence to both selected 598 

hours and then retrieve VSGs using equation 7. The VSG retrieved using hour A (Figure 10b) 599 

has higher SNR compared to the VSG obtained using hour B (Figure 10c). Both VSGs exhibit 600 

the same reflection events, but the gather obtained from the low-slowness hour is characterized 601 

by less artifacts (see the events inside the blue rectangles in Figures 10b, c). To assure minimum 602 

number of artifacts, for further comparisons we select VSGs obtained using hour A.  603 
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5.3 Event-driven 2D ANSI 604 
We evaluate the performance of the event-driven approach of 2D ANSI using body-wave events 605 

detected with the TWEED method. In order to construct the contour enclosing the target (see 606 

subsection 4.1), we use the InterLoc method (Dales et al., 2017a) to compute the location of 607 

every event captured with TWEED. Those locations were already used to calculate 3D 608 

synthetics (subsection 4.2). From these hypocenters, we select an ensemble of events 609 

mimicking the synthetic regular noise-sources distribution shown in Figure 5a. In Figure 11a, 610 

we indicate ten body-wave events selected for the event-driven approach considering the 611 

orientation of line 7 and the geological section shown in Figure 4a. In Figure 11b, we show the 612 

seismograms of those 10 events. Note that in order to detect and locate those events, we needed 613 

to scan the AN data over the whole recording period. Some of the selected events overlap with 614 

the low-slowness events from hour A (marked by dashed white circles in Figure 11a). 615 

Compared to the event-driven approach, body waves from the single hour are distributed 616 

directionally and illuminate the target area mainly from the right side. This suggests that the 617 

imaging using the event-driven approach should produce less artifacts related to directional 618 

illumination compared to the noise-volume approach.  619 

5.4 2D ANSI methods applied to various segments of ambient noise 620 

5.4.1 Visual inspection 621 
In this section, we apply CC, CCh, and MDD techniques to the AN segments consisting of (i) 622 

a single event, (ii) 10 events, and (iii) AN volume of 1-hour recording with the preferred 623 

illumination characteristics (hour A). In the subjective, visual comparison of the results 624 

described here we focus on: (i) resemblance to the synthetic active-source data, (ii) near-surface 625 

effects (up to 0.1 s TWT), (iii) general reflectivity content, and (iv) random noise on traces. 626 

The VSG obtained with MDD (Figure 12 b, e, and h) exhibits the most prominent reflectivity 627 

for 1 hour (see the blue rectangle in Figure 12h). This result is also resembling the synthetic 628 

active-shot gather best. Generally, MDD exhibits the highest SNR of traces of all three 2D 629 
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ANSI techniques, and the first 0.1 seconds of the VSG exhibit distinguishable reflectivity. We 630 

also note that increasing the AN volume seems to have constructive influence on the quality of 631 

VSG retrieved with MDD.  632 

The VSGs obtained using the CCh approach (Figures 12 c, f, and i) exhibit the lowest quality 633 

of all three applied SI techniques. The traces are noisy, almost no reflectivity is visible, and the 634 

near-surface artifacts seem to either dominate the whole gathers as in the case of 10 events and 635 

1 hour (see Figure 12f and 12i, respectively) or the whole gather is dominated by random noise 636 

(Figure 12c). The best result from the CCh appears to be achieved for the case of 1-hour-long 637 

recording (Figure 12i), in which the reflectivity is partially similar to the one obtained with 638 

MDD for 1-hour-long recording (Figure 12g). Note the lack of any coherent events in Figure 639 

12c.  640 

The VSGs retrieved using CC (Figures 12d, g, and j) exhibit higher quality compared to the 641 

CCh results. The near-surface noise visible in the CCh results is not retrieved in all VSGs 642 

obtained using CC (note that some reflectivity in the first 0.1 s can be clearly tracked). The 643 

reflections in the green area expected from the synthetic active shot are best retrieved in case 644 

of 10 events (Figure 12g). Surprisingly, even the single-event CC (Figure 12c) allows to retrieve 645 

some reflectivity, yet clearly stacking over higher number of noise panels increases the SNR of 646 

most reflections and retrieves the new events. Generally, all VSGs (except the CCh for 1 event) 647 

exhibit more prominent reflectivity in the shallow parts of the data (first 0.1 s of TWT). 648 

Another reflective feature retrieved with 2D ANSI and visible in the synthetic active-source 649 

data are the two events denoted with the shaded green colour in Figure 12. These are retrieved 650 

with all MDD approaches and CC for 10 events. 651 

Apart from reflections expected from the synthetic active-source data, the VSGs contain some 652 

more coherent events. However, it is difficult to interpret them because their origin is uncertain. 653 
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Obviously, they are not predicted by our simplified geological model, but we should stress that 654 

it is hard to obtain shallow reflectivity from the real active-source data due to the shot-generated 655 

noise, muting, and low fold at shallow depths. Thus, they might be related to true geological 656 

features in the subsurface. The reflection events in the area of interest retrieved with 2D ANSI 657 

are shifted towards earlier times and exhibit less steeper dips compared to the synthetic active-658 

source data.  659 

5.4.2 Semblance analysis 660 
In order to compare reflectivity patterns retrieved with the synthetic active and field passive 661 

data in a more objective manner, we calculate semblances employing equation 11. CWT is 662 

calculated as both a function of scale and time, and, therefore, allows measuring the temporal 663 

change of the phase. We use part of the traces falling into the spatio-temporal window denoted 664 

with the blue rectangle in Figure 12 as input data. We calculate the semblance between every 665 

part of the trace falling in the analysed window and its corresponding trace in the synthetic 666 

active shot.  As a result, we obtain a 2D matrix with phase and amplitude correlation coefficient 667 

for every trace. For comparison purposes, we average all results over amplitudes and obtain the 668 

mean phase-correlation value for every sample per each trace.  In Figure 13, we show these 669 

average semblances calculated for VSGs obtained with the nine different processing 670 

approaches. To indicate the benchmark value, Figure 13a shows the part of the synthetic active-671 

source used as base input for semblance calculation and Figure 13b shows its auto-semblance 672 

exhibiting maximum correlation represented with a red colour. The semblance plots in Figure 673 

13c to 13k are presented in the same layout as VSGs in Figure 12.  674 

The red patches visible in the semblance plots indicate areas of high correlation, while the blue 675 

colour denote high anti-correlated part of data (all values fall in the range between -1 to 1). 676 

Considering that the 2D ANSI results contain significant amount of noise (see Figure 12), we 677 

expect that areas outside the targeted reflection would be strongly uncorrelated, because the 678 
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synthetic active-source data do not contain noise. Thus, if the VSG contains a coherent 679 

reflection similar to the one observed in the synthetic active-source data, the semblance plot 680 

should display a broad continuous red patch extending over the whole plot with generally 681 

similar curvature as the reflection visible in Figure 13a.  To some extent this feature can be 682 

observed in the MDD (Figures 13f, and i) and CC results (Figure 13h) and is highlighted with 683 

white arrows. A semblance anomaly appearing as scattered remnant of the above feature 684 

appears in Figures 13j, and 13k, possibly indicating the faded imprint of expected reflectivity. 685 

Another potentially significant feature is the red area visible in the top-right segment of Figures 686 

13 c, e, f, j, k, and g, possibly related to partial correlation with the direct wave shown in Figure 687 

13a. To facilitate distinguishing between semblance anomalies related to the direct wave and 688 

reflection event, we indicate the line separating both type of arrivals with the black dashed line. 689 

The general orientation of positive anomalies in Figure 13 c-k is horizontal, implying that the 690 

coherent features are stretching across the receivers, yet the anomalies have a narrow temporal 691 

extent (usually up to several time samples).  The semblance plots shown in Figures 13 c, d, e, 692 

and g exhibit relatively broad, scattered red patterns indicating similarity which is likely 693 

random. Thus, they are not related to credible reflectivity content in the synthetic active-source 694 

data and we qualify them as not-resembling the expected result. Overall, we interpret the 695 

semblance anomalies denoted with white arrows in Figure 13f, 13h, and 13i, as features related 696 

to part of the reflection shown in Figure 13a. This means that the VSG obtained with MDD on 697 

10 events and 1 hour (see Figure 12e and 12h, respectively) as well as the VSG obtained with 698 

CC applied on 10 events (see Figure 12g) exhibit a reflection event similar to the one in the 699 

synthetic active-source data.   700 

5.4.3 Imaging results 701 
For all nine 2D ANSI configurations presented in Figure 12, we retrieve VSGs for every 702 

receiver position. Subsequently, we apply top-mute and amplitude scaling, common-offset 703 
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DMO with a constant velocity V=6000 m/s, and normal CDP stack. The CDP stack is migrated 704 

using constant-velocity Stolt migration and time-to-depth-converted with a constant velocity of 705 

6000 m/s. 706 

The resulting depth sections are shown in Figure 14 using the same layout as in Figure 12. As 707 

the quality of the imaged reflectivity differs significantly, we focus only on the general SNR of 708 

the retrieved images and quality of reflections retrieved with 2D ANSI in the areas of the 709 

reflectivity predicted by the synthetic model (see dashed black lines in Figure 14). The migrated 710 

sections obtained using the single-event approach (Figure 14 b-d) exhibit a similar, low-711 

frequency blurred pattern of reflectivity for every tested method, with low SNR, where the 712 

target RPs are hardly distinguishable from the image noise. For the single-event approach, RP1 713 

is best retrieved using MDD (Figure 14b) and is to some extent visible in the CCh result (Figure 714 

14c). RP3 is best visible in the CC panel (Figure 14c). In the single-event case, all three sections 715 

(Figure 14b-d) contain reflectivity in the expected areas, yet they are difficult to interpret as 716 

they are masked by the reflection artifacts of similar order of amplitude. The RP2 retrieval is 717 

of the poorest quality. 718 

The images obtained using 10 events (Figure 14e-g) are much clearer than those obtained from 719 

the single event. The lowest number of artifacts is obtained with the MDD approach (Figure 720 

14e), yet the reflectivity packages expected from the synthetic data are best visible in the CC 721 

section (Figure 14g). Again, RP2 is poorly constrained. The x-shaped reflection visible in the 722 

CC result (see Figure 14g, in the proximity of the RP3 area) is discernible also in the CCh result 723 

(Figure 14f), yet it is shifted towards shallower depths. The CCh section obtained for 10 events 724 

(Figure 14f) exhibits almost no coherent reflections in the shallower part (up to 750 meters) and 725 

the only recognizable feature is the x-shaped reflection related to RP3.  726 

The reflectivity images obtained using the noise-volume approach (Figure 14 h-j) bring the 727 

highest quality image for the MDD and CCh case. Especially, the MDD with 1 hour of AN 728 
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(Figure 14h) enables retrieval of reflections related to all RPs expected from the synthetic data 729 

(Figure 14a).  On the other hand, the CC result for 1 hour (Figure 14j) brings a relatively poor 730 

image where no expected reflections can be tracked, with the exception of an ‘x’-shaped 731 

reflection similar to the observed in Figures 14f and g, barely visible again in the RP3 area. The 732 

CCh results for 1 hour (Figure 14i) show RP1 and RP2; however, the ringing noise in the RP2 733 

area and broad, horizontal artifacts, visible at approximately 750 m depth, are most likely not 734 

related to any geological features.  735 

From all the images shown in Figure 14, the image resembling best the synthetic migrated 736 

section is obtained for the MDD 1-hour approach (Figure 14h). The second-best image 737 

resembling the synthetic active-source data is obtained using the event-driven CC approach 738 

(Figure 14g). Based on the visual inspection and semblance analysis of VSGs, we select the 739 

most optimal 2D ANSI approach, which is MDD applied to 1 hour of AN (see Figure 12h and 740 

13h for the VSG and migrated section, respectively) and we use this approach to process the 741 

adjacent receiver lines. In Figure 15, we show migrated images for receiver lines 7, 8, and 9. 742 

Persistence of the imaged features across the receiver lines corroborates our findings. 743 

6 DISCUSSION 744 

6.1 Optimizing the array – inferences from synthetic modelling 745 
The synthetic passive data obtained with a preferable, i.e., regular distribution of sources around 746 

the target, provide ANSI results similar to the ones from the synthetic active-source data, but 747 

also contain artifacts. The artifacts in the virtual-shot domain (Figure 5b) are represented with 748 

arrivals visible before the line of the first breaks. Furthermore, in the synthetic active shot, the 749 

reflection related to the target at 0.1 s at ~20-29th trace is stronger than the reflection on the 750 

opposite side of the gather, while the synthetic passive case exhibits a reversed tendency. These 751 

amplitude errors are related to the imperfect distribution of simulated sources, i.e., instead of a 752 

sphere with a large radius and/or sources in the far-field (Wapenaar et al., 2010), we used the 753 
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rectangular polygon of sources located in the direct vicinity of the target. Furthermore, because 754 

the location of the mine imposes inducing seismic events mostly in the direct vicinity of the 755 

Kylylahti body, the contour of sources is crossing a sharp contrast in impedances (see the left 756 

flank of sources in Figure 5a). Not complying with the required source assumptions results in 757 

Green’s functions with a correct phase of the arrivals, but with distorted amplitudes, which is 758 

clearly visible in Figure 5b. Fulfilling these assumptions in the field conditions would require 759 

moving the recording array away from the underground mine infrastructure, to approach the 760 

far-field approximation, but at the expense of a one-sided illumination. As shown in Olivier et 761 

al. (2016), the mine tunnels can act as scatterers, hence approximating the inhomogeneous 762 

medium, where seismic energy is scattered back to the receivers. In such case, one-sided 763 

illumination might be sufficient (Wapenaar et al., 2006a). 764 

The image obtained from migration of the passive synthetic source data (Figure 5c) contains 765 

RPs similar to those in the synthetic active-source data, yet we could see a strong horizontal 766 

artifact hindering the clear outline of RP2; this artefact is mainly arising due to the right flank 767 

of the subsurface sources (see Figure 6c). 768 

The illumination test shown in Figure 6 allows us to investigate the consequence of directionally 769 

biased illumination, which is a common issue in field measurements. The important conclusion 770 

from the reflection patterns visible in Figure 6 is the possibility to image the target even using 771 

an irregular sources distribution. The relatively best image is retrieved with sources underneath 772 

the target (see Figure 6b); however, such distribution is difficult to achieve in field conditions. 773 

Depending on the noise-sources location, we could obtain a response of the same structures but 774 

represented with different reflectivity patterns. For this reason, if it is possible to estimate the 775 

AN sources distribution prior to deployment (e.g., from the locations of the dominant noise 776 

sources in the area), one could estimate what part of the target would be illuminated best and 777 

how to layout the recording array with respect to the dominant AN source locations. 778 
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In the active mining camps, most of the AN sources would be related to routine mining activities 779 

concentrated in one place. Thus, the array should be oriented in accordance to the mutual 780 

orientation of the target and the mine area, with the general requirement to obtain a recording 781 

geometry allowing to capture the sources which emit wavefronts with ray paths connecting the 782 

traces being crosscorrelated and the point to be imaged. In the case of an operating mine where 783 

most activities are vertically aligned under the surface, the spatial distribution of ambient-noise 784 

sources may be approximated by a situation, where the sources are distributed in the vertical 785 

flanks (as shown in Figures 6a and 6c). For instance, if the target of interest is a dipping 786 

reflector, then the recording array could be deployed: (i) at some distance from the mine area 787 

(such that the far offsets for sources located toward the dipping direction are obtained, or (ii) 788 

directly above the mine for the sources located in direction opposite to the dip of the target 789 

reflector (see e.g., Roots et al., 2017 for details of imaging the dipping reflectors with SI).  790 

6.2 Influence of data preprocessing 791 
We incorporated two well-established SI QC tools: virtual zero-offset traces (Claerbout, 1968) 792 

and illumination diagnosis (Almagro Vidal et al., 2014) as parts of our ANSI workflow. 793 

Analysing virtual zero-offset traces allows for computationally effective evaluation of the 794 

preprocessing at the initial stage of data analysis. The pitfall related to assessment of amplitudes 795 

in a reflection time window from AC traces relates to the estimation of the deconvolution 796 

operator in the CC case. The side lobes visible in the grey shaded areas in Figure 8 are possibly 797 

related to the reflectivity targets; time-windowing of ACs around t=0 s might remove such 798 

events during the source-function deconvolution usually performed after stacking of all 799 

correlated panels (Draganov et al., 2009). This is a consequence of having relatively low 800 

frequency (causing broadening of the side lobes) in our data. Therefore, we additionally applied 801 

high-pass filtering. Out of all compared preprocessing techniques, the one-bit normalization is 802 

particularly effective solution for extracting coherent information from AN. By removing the 803 

amplitude information, it could potentially retrieve all coherent events travelling between the 804 
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two receivers (Väkevä, 2019). However, for body-wave retrieval, it requires preferential 805 

illumination from body-wave sources (like having a receiver line oriented inline towards a 806 

railway, see e.g., Quiros et al., 2016). Otherwise, the body-wave events may be hindered by 807 

interfering, and usually much stronger. surface waves. In the Kylylahti case, the mine area is 808 

located approximately perpendicular to the line orientation, and thus applying one-bit 809 

normalization could result in degrading the body-wave arrivals. However, as demonstrated by 810 

Väkevä (2019), one-bit normalization in conjunction with bandpass filtering, and f-k filtering 811 

can be effectively used for suppressing the dominant surface-wave content and reveal the 812 

reflectivity content in the Kylylahti area. The recent developments in autocorrelation studies 813 

using AN recordings (Clayton, 2020) indicate the potential to further improve the performance 814 

of the preprocessing step in the 2D ANSI workflow. 815 

6.3 Body-wave- vs surface-wave-dominated recordings 816 
We used illumination diagnosis to identify periods of AN dominated by body waves. Noise-817 

volume selection (one-hour-long recording in this study) is an ambivalent choice and has 818 

implication in the resulting VSGs (see Figure 10 b, and c). We argue that even when stacking 819 

continuous data (noise-volume approach), it is beneficial to perform illumination diagnosis and 820 

scan for the noise panels dominated by low-slowness events. The VSGs shown in Figure 10b 821 

and 9c suggest that stacking over volumes of noise recorded during different periods (see 822 

illumination characteristics of these periods in Figure 9) bring generally similar results, yet 823 

varying in terms of SNR of the retrieved reflections and number of artifacts. Practically, it 824 

means that acquiring longer recordings does not necessarily bring better results, as 825 

improvement mainly depends on the eventual body-to-surface-wave content ratio. The potential 826 

pitfall of stacking an hour dominated by body waves is that despite capturing events with low 827 

slownesses, their distribution might be asymmetric as shown in Figure 11a. An event-driven 828 

approach allows directly to choose which sources we want to stack and, hence, overcomes the 829 

directional-illumination issue. However, the need for scanning more data and computing the 830 
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illumination direction of recorded sources makes this approach more computationally 831 

expensive. This process can be automated though with machine-learning tools (Chamarczuk et 832 

al. 2019, 2020).  Furthermore, even scanning the whole available data volume does not 833 

guarantee proper illumination, i.e., the subset of the available sources to choose from is 834 

determined by the location of the sources comprising the AN at a given recording site, which 835 

in the case of the Kylylahti data is mostly limited to the extent of the mine infrastructure.  The 836 

practical implication of choosing an event-driven approach over a noise-volume approach is in 837 

the required recording time, since theoretically a few body-wave events should bring equal 838 

results to stacking over long periods of noise, thus possibly reducing the necessary acquisition 839 

time if a number of events, deemed sufficient, is already detected.  840 

6.4 Quality of the virtual shot gathers 841 
The main goal of applying 2D ANSI is to produce VSGs, which will allow to obtain structural 842 

imaging comparable to the one from the active-source surveys, but using ambient-noise sources 843 

(Draganov and Ruigrok, 2015). We rated the performance of SI processing strategies by 844 

comparing VSGs obtained using three different SI methods and benchmarking the results with 845 

the synthetic active-source data. In the case of the Kylylahti data, the CCh method yields the 846 

noisiest results, with relatively better performance for 1 hour of noise (see Figure 12 i). We 847 

argue that possibly many reflections are retrieved with CCh, yet they are buried in the noisy 848 

traces of the retrieved VSGs. A reflection in the target area is present (see blue rectangles in 849 

Figures 12f and i), yet it is hard to track as it exhibits low SNR. The poor performance of CCh 850 

is mostly related to the relatively low SNR of any reflection events in the noise panels, which 851 

further gets undermined in the correlated gathers. The consequence of applying CCh is bringing 852 

all recorded events to the same amplitude level. As a result, when the raw noise panels contain 853 

surface waves, the virtual shots after CCh will contain reflection events with amplitudes of the 854 

same magnitude as surface waves. The CC produces generally higher-quality results than CCh 855 

(Figure 12 d, g, and j). The best result is obtained for the event-driven approach (see Figure 856 
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12g). The CC result for 1 event (Figure 12d) is comparable for the result retrieved using 1 hour 857 

of noise (Figure 12j). Furthermore, the result for 10 events (Figure 12g) resembles to some 858 

extent the MDD result for 1 hour of noise (Figure 12h), exhibiting both reflectivity in the target 859 

area (denoted with blue rectangles in Figure 12) and also deeper reflections (denoted with green 860 

dashed colour in Figure 12) visible in the MDD result. The better performance of CC over CCh 861 

is related to the fact that the deconvolution operator in CC is derived from the data itself, and 862 

allows suppressing the ringing-amplitude pattern visible in the CCh results. Theoretically, 863 

MDD should bring better results than CC, as deconvolving by PSF should correct for varying 864 

noise-sources signatures, intrinsic attenuation, and irregular noise-source illumination. 865 

Accordingly, the MDD technique seems to produce VSGs resembling most the synthetic active-866 

source data (see Figure 12b-h). Next to the reflections expected from the synthetic data, deeper 867 

reflectivity is also retrieved. The best result for the MDD case is achieved using 1 hour of AN 868 

(Figure 12h). Since MDD relies on deblurring the correlation output with PSF (equation 9), the 869 

main reason for differences observed in the virtual shots compared to the other two techniques 870 

is related to the PSF estimation. Deblurring the correlation function with PSF should eliminate 871 

the crosstalk from the correlation function and give the deblended virtual-source response. The 872 

potential distortions of the MDD result might be related to crosstalk contributions contained in 873 

PSF itself (Wapenaar et al., 2011), as well as incorrect extraction of the PSF. The exact 874 

influence of the PSF estimation on the reflection retrieval deserves a separate study, but is also 875 

thoroughly discussed, e.g., in Nishitsuji et al. (2016). On top of the shallow reflectivity, the 876 

MDD results brought also very clear reflections at ~1 s (not shown here); however, their fidelity 877 

is yet to be verified and is outside the target depths for exploration (but such reflectors were 878 

present in the active-source imaging of Heinonen et al. 2019 and Singh et al. 2019). 879 

Generally, all VSGs exhibit very prominent reflectivity at shallower depths. The differences 880 

between the three techniques are mostly related to the specific type of deconvolution implied 881 
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by them. The event-driven approach for MDD and CCh (Figure 12e and f) performs worse than 882 

the noise-volume approach. Nevertheless, these gathers still exhibit some reflectivity, which is 883 

promising in terms of similar SI applications with refined processing. For the MDD method, 884 

when adding more AN, both the deconvolution operator and the scattered field become updated, 885 

while for the CC only the raw correlation is stacked and the deconvolution operator is derived 886 

from the stacked correlogram, hence, theoretically, it cannot account for the whole complexity 887 

of the wavefield. For the CC method, the event-driven approach (see Figure 12g) performs best, 888 

and it could be potentially further enhanced by applying deconvolution per-event (Ruigrok et 889 

al., 2010).  890 

6.5 Imaging 891 
The general diversity of the retrieved reflectivity makes it hard to directly asses the quality of 892 

the processing approaches for selecting an optimal one using these migrated images. For this 893 

reason. and from the point of view of computational efficiency, the assessment of the 894 

effectiveness of the processing strategies should be carried out before migration, at the level of 895 

noise panels and VSGs (including e.g., the introduced semblance evaluation method). We leave 896 

it up to the reader to review the presented images and draw their own conclusions. Yet, based 897 

on both the visual similarity to the synthetic shots and semblance analysis, we think that the 898 

results from MDD with 1 hour of AN (Figure 14h) and CC with 10 events (Figure 14g) exhibit 899 

reflectivity resembling most the image obtained from the synthetic data. The results of imaging 900 

for adjacent receiver lines (Figure 15) suggest the redundancy of 2D ANSI imaging (provided 901 

the same processing sequence is applied to the data from every line). The reflectivity packages 902 

in the synthetic section are visible in line 7 collocated with the synthetic model, and the 903 

reflectivity patterns visible along the two adjacent lines deployed to the south of line 7 (Figures 904 

15 c and d) are persistent. 905 

The results shown in Figure 15 were obtained with only 1 hour of AN. The hour used for 906 

imaging was selected after thorough illumination diagnosis (see Figure 9 for illumination-907 
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diagnosis QC panel). Note that even if the amount of data we used is not significant, we still 908 

needed to process the bigger dataset to increase the probability of capturing AN with satisfying 909 

illumination characteristics. Some of the RPs visible in the migrated sections might still be 910 

related to out-of-plane targets and the full-3D ANSI processing could address their geometry 911 

properly. 912 

6.6 Future developments and recommendations  913 
The core of the 2D ANSI methodology is the comparison of different SI processing techniques 914 

to determine the most optimal sequence of processing steps for a given case study. Practically, 915 

it means that it requires repeating the complete processing flows starting from extraction of the 916 

recorded passive data up to the generation of the VSGs. This idea is illustrated in Figure 16, 917 

where the 2D ANSI methodology is represented with parallel processing flowcharts allowing 918 

for the practical implementation of the comparison between various tools advocated in this 919 

study. 920 

We believe that 2D ANSI is capable of imaging targets in a hardrock environment. However, 921 

the quality of the imaging, apart from the acquisition geometry and strength of the impedance 922 

contrasts and the complexity of the medium (e.g., dip angles), depends on the selected SI 923 

method and the selection of AN segments. The results obtained for the real-case scenario of the 924 

complex structure at the Kylylahti site are generally quite noisy, and most of the compared 925 

approaches differ significantly in the imaging quality. Therefore, when applying 2D ANSI, a 926 

comparison of different approaches should be an essential part of the processing workflow. 927 

We recommend using 2D ANSI as a reconnaissance tool prior to the massive 3D deployments 928 

(either active or passive) as it allows to determine the cycle of body-wave event activity (related 929 

to the mine operations). As we show in Figure 9, some periods of AN exhibit higher density of 930 

body-wave events. For instance, receiver line 7, i.e., the line which is closest to the mine area, 931 

could serve as a good indicator of potential body-wave content in AN in the Kylylahti area. 932 

Knowing that the mine operations produce body-wave events in repeatable cycles could allow 933 
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reducing the recording time with a full array to periods when mine-induced sources with 934 

preferable illumination are likely to be recorded.  Our results can be used to derive general 935 

recommendations in terms of planning future SI experiments for mineral exploration purposes: 936 

(i) orienting the acquisition array considering the location of the dominant noise sources and 937 

targets, and (ii) considering the possibility to reduce the continuous recording time to 938 

preselected time period, i.e., it is safe to assume that scheduled drilling and mine blasting 939 

occurring at several hundred meters below the surface would produce body-wave events.  Each 940 

passive dataset would be recorded in a different AN setting, yet because we address active mine 941 

camps, the general characteristic of the AN wavefield would exhibit similar dominant features 942 

due to the dominance of mine-induced noise (Cheraghi et al., 2015; Oliver et al., 2016a,b; Dales 943 

et al., 2017a,b; Roots et al., 2017) and particularly unusually high ratio of body-to-surface wave 944 

energy with highly asymmetric distribution. In the Kylylahti case, for a single 3D virtual shot 945 

gather, reflection events are observed only along 20-30 traces out of all 994 receivers (top row 946 

in Fig. 1a) and are much less prominent than in the active 3D data (bottom row in Fig. 1a). The 947 

processing method aiming for automatic detection of such sparse, coherent events deserves 948 

dedicated tailored approach including scanning of hundreds of receivers for hundreds of virtual 949 

shots, which is not established yet and computationally not feasible. At this point we argue that 950 

prior to developing the 3D ANSI methodology, it is beneficial to know which combination of 951 

SI techniques and AN segmentation offers the highest probability for reflection retrieval and as 952 

such we need to develop 2D ANSI methodology first. 953 

7 CONCLUSIONS 954 
We introduced a 2D ambient-noise seismic interferometry (ANSI) processing workflow, which 955 

can be applied to passive seismic data acquired along a test profile to serve as a reconnaissance 956 

tool for AN evaluation and future more detailed seismic acquisition (passive or active) in active-957 

mine environments. Using synthetic and field data from the Kylylahti mine (Finland), we 958 
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indicated the relevance of 2D ANSI in general structural delineation and optimization of both 959 

the acquisition design and AN recording parameters. The synthetic modelling indicated that the 960 

passive data can be used to reproduce similar details of the complex geological model as the 961 

active-source data. The differences are attributed mainly to AN sources illuminating the target 962 

from different angles than the active shots. The key point of our workflow was the comparison 963 

of the performance of SI by multidimensional deconvolution (MDD), crosscoherence (CCh), 964 

and crosscorrelation (CC) on various AN segments: single body-wave event, event-driven 965 

approach using 10 body-wave events, and a noise-volume approach using 1 hour of AN 966 

recordings. The primary general conclusion of the comparison is the necessity to recognize the 967 

spatial and temporal distribution of the AN sources in the recording area. Based on this 968 

information, synthetic tests should be performed and the 2D receiver line for passive acquisition 969 

should be subsequently oriented with respect to the expected dominant AN sources and the 970 

imaging target. After acquisition of 2D passive data, different processing schemes should be 971 

evaluated using the methodology we proposed in this study. We showed that the final outcome 972 

of the 2D ANSI workflow provides initial target delineation, which facilitates the decision about 973 

conducting follow-up 3D surveys (active or passive) or using a network of 2D lines. These 974 

future experiments should be designed with the acquisition parameters, length of recording 975 

time, and SI processing workflow indicated by the initial 2D ANSI assessment.  976 

The application of the full processing workflow on 2D receiver lines extracted from a passive 977 

dataset recorded at the Kylylahti mine led to the following conclusions specific for this case 978 

study. (1) The effectiveness of the AN preprocessing could be evaluated on zero-offset data. 979 

For the Kylylahti dataset, the sequence of trace-energy normalization and high-pass filtering 980 

provided the highest amplitudes in the retrieved body-wave arrivals and minimized the artifact 981 

contribution. (2) The 2D illumination diagnosis applied to AN for the noise-volume approach 982 

increased the signal-to-noise ratio of the reflection events in the retrieved VSGs, and thus we 983 
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recommend it as a routine SI processing step. Illumination diagnosis applied for the event-984 

driven approach provided results bearing similar quality, but obtained using significantly 985 

smaller amount of AN data. For the Kylylahti dataset, using 10 body-wave events, extracted 986 

from one hour of AN, was enough to provide results comparable to the results from the noise-987 

volume approach using the complete one hour. (3) VSGs retrieval using the MDD method 988 

applied using the noise-volume approach and CC using the event-driven approach provided the 989 

highest quality data with reflection events resembling the active-source data the most. (4) 990 

Semblance analysis is an effective tool to aid the visual comparison of the passive and active-991 

source data in selected spatio-temporal windows. (5) For the optimal selection of an SI 992 

technique and AN segment, the subsurface image can be obtained using a simple post-stack 993 

migration scheme, which requires only little knowledge on the velocity model. (6) The 2D 994 

ANSI processing workflow applied to the Kylylahti data provided images of the subsurface 995 

acceptable in terms of the general delineation of the target structures, as verified by comparison 996 

of results along adjacent receiver lines.  997 
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FIGURES 1185 
 1186 

 1187 

Figure 1 (a) Comparison of exemplary collocated shot gathers illustrating performance of 3D 1188 

imaging in the Kylylahti mine area, (top row) synthetic active-shot gather, (middle row) field 1189 

active-shot gather, and (bottom row) field virtual shot gather. Insets show zoomed part of shot 1190 

gathers indicated with black polygons. (b) Influence of using more ambient-noise (AN) data for 1191 

retrieval of virtual shot gathers (VSGs) without accounting for temporal and spatial stationarity 1192 

of noise sources (blind stacking). Each row represents three VSGs obtained for three adjacent 1193 

receiver lines. Each column represent VSGs obtained at the same master-trace position for 1194 

increasing AN volumes. TWT stands for two-way traveltime.   1195 
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 1196 

Figure 2. 2D ANSI processing workflow developed in our study. At the ‘Generic procedure’ 1197 

level, it contains all the important steps (grey-scale coloured) and their ingredients to be 1198 

investigated. Under the ‘Recommended approach’, we list all the tools/procedures that can be 1199 

used at each step. The parameters specific for the case of the Kylylahti data we investigate are 1200 

listed in the ‘Variables specific for Kylylahti’ flowchart. 1201 

  1202 
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 1203 

Figure 3. Layout of the Kylylahti array. Receiver line 7, selected for evaluation of the 2D ANSI 1204 

processing strategy, is shown with yellow dots. Receiver lines used for illumination diagnosis 1205 

and testing of results redundancy are denoted with green dots. Grey transparent stripe denotes 1206 

the horizontal extent of the velocity model used for modelling; white dots indicate the part of 1207 

the selected lines we use for 2D ANSI data processing.  (b) Power Spectral Density averaged 1208 

over one day of recording for the Kylylahti array. The green solid lines denote the receiver lines 1209 

selected for analysis (as in (a)), the yellow arrow shows the spatial extent of receiver line 7, and 1210 

the red dashed lines indicate the receivers located in the operating mine site.  1211 

 1212 

 1213 
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 1214 

Figure 4. Synthetic active-source data tests. (a) Velocity model used as an input for the forward-1215 

modelling study, green stars denote the source distribution, while the yellow star denotes the 1216 

location of the active shot used to record the shot gather shown in (b). The blue rectangle marks 1217 

the part of data with a reflection arrival from the massive to semi-massive sulphide (S/MS) 1218 

mineralisation; this reflection is also used in the semblance analysis. (c) Post-DMO (post dip 1219 

moveout) migration of the synthetic active-source data. RP1-RP3 are the group of reflectors 1220 

discussed in the text. CDP stands for common depth point.  1221 

 1222 

 1223 

 1224 

 1225 

 1226 

 1227 

 1228 

 1229 

 1230 

 1231 
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 1232 

Figure 5. Synthetic passive data tests. (a) Same velocity as in Figure 3a used as an input for the 1233 

forward-modelling study, green stars denote the regular passive-source distribution, while the 1234 

red star denotes the location of the retrieved virtual shot used to record the VSG shown in (b). 1235 

(c) Post-DMO migration of the synthetic VSGs. 1236 
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 1247 

Figure 6. Post-DMO migration of the synthetic passive data obtained from simulating 1248 

directional illumination with passive sources. Depth images obtained using sources distributed 1249 

along a line (a) to the left of the geological target, (b) underneath the geological target, and (c) 1250 

to the right of the geological target. 1251 
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 1257 

Figure 7. Comparison of Post-DMO stacks of the 2D synthetic passive data (a), and 3D 1258 

synthetic passive data using various approaches of stacking the passive sources (b-f). The 1259 

migrated images for the 3D scenario are obtained using VSGs produced from sources 1260 

illuminating the target area from the left (b), bottom (c), right (d), all 648 modelled sources (e), 1261 

and subset of sources mimicking the event-driven approach (f).  1262 

 1263 
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 1264 

Figure 8. Influence of basic preprocessing procedures on the retrieval of zero-offset virtual 1265 

traces. Synthetic active-shot trace concatenated with its time-reversed version (a) and (b) zero-1266 

offset trace without any preprocessing are show for reference. Virtual zero-offset traces are 1267 

retrieved using: (c) windowing in the time domain, (d) one-bit normalization, (e) auto-1268 

coherence, (f) low-pass filtering, (g) high-pass filtering, (h) time windowing followed by trace 1269 

energy normalization, (i) sliding-window energy normalization, and (j) sequence of time 1270 

windowing, trace energy normalization, and high-pass filtering. The inset in (e) indicates the 1271 

location of the zero-offset trace with respect to the synthetic velocity model and receiver line 1272 

7.  1273 
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 1277 

Figure 9. Illumination diagnosis panel obtained from the TWEED method (Chamarczuk et al. 1278 

2019) showing a distribution of normalized slant-stack values for every noise panel recorded 1279 

by three receiver lines during a whole day of passive acquisition.  1280 
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 1290 

Figure 10. Comparison of (a) an active-shot gather and VSGs retrieved with CC using one hour 1291 

of AN dominated by (b) body-wave events and (c) surface-wave events. Blue rectangles mark 1292 

the part of data selected to compare the reflectivity content and used in the semblance analysis.  1293 
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 1306 

Figure 11. (a) Location of recording line 7 with respect to the velocity-model section used for 1307 

the forward-modelling study. Location of the body-wave events detected during hour A 1308 

indicated in Figure 7 is denoted with white circles, body-wave events selected for the evaluation 1309 

of the event-driven 2D processing and enclosing the target area are shown with black dots. (b) 1310 

Seismograms of body-wave events recorded by receiver line 7, and selected for the evaluation 1311 

of the event-driven 2D processing.  1312 
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 1315 

Figure 12. VSGs obtained from applying 2D ANSI on different segments of AN recordings 1316 

selected on the basis of illumination diagnosis characteristics. (a) Synthetic active shot; (b, e, 1317 

and h) VSGs obtained using MDD on a single event, 10 body-wave events, and 1 hour of AN, 1318 

respectively; (c, f, and i) VSGs obtained with CCh using a single event, 10 body-wave events 1319 

and 1 hour of AN, respectively; (d, g, and j) VSGs obtained with CC using a single event, 10 1320 

body-wave events, and 1 hour of AN, respectively. Blue rectangles mark the part of the data 1321 

selected to compare the reflectivity content and used in semblance analysis. Green shaded areas 1322 

indicate part of the data, where deeper reflectivity appears on both active-shot gathers and 1323 

VSGs, and are discussed in the text.   1324 
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1325 
Figure 13. Semblance analysis of the virtual shots retrieved using 2D ANSI. The results are 1326 

calculated in the spatio-temporal windows denoted with the blue rectangles shown in Figure 1327 

10. (a) Extracted part of the synthetic active-source data used for comparison with the passive 1328 

data; (b) auto-semblance output calculated for the data shown in (a); (c, f, and i) semblance 1329 

results for the reflection event obtained using MDD on a single event, 10 body-wave events, 1330 

and 1 hour of AN, respectively; (d, g, and j) semblance results for the reflection event obtained 1331 

using CCh on a single event, 10 body-wave events and 1 hour of AN, respectively; (e, h, and 1332 

k) semblance results for the reflection event obtained using CC on a single event, 10 body-wave 1333 

events, and 1 hour of AN, respectively. The black dashed line indicates the separation between 1334 

the direct wave and the reflection event.  1335 
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63 
 

 1337 

Figure 14. Comparison of migrated depth sections obtained from the nine different 2D ANSI 1338 

processing strategies. The sections in a) to j) correspond to the order of the VSGs in Figure 12. 1339 
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 1345 

Figure 15. Images using the MDD results obtained from 1 hour of AN recordings for 3 adjacent 1346 

recording lines denoted with white circles in (a). Depth sections are shown for the following 1347 

receiver lines: (b) line 7, (c) line 8, and (d) line 9. Consistent reflectivity can be observed in 1348 

areas where reflections in the synthetic active (Figure 4c) and synthetic passive (Figure 5c) 1349 

migrated sections are visible.   1350 

 1351 

 1352 

Figure 16. Summary of the 2D ANSI methodology and comparison strategy. The core of the 1353 

comparison is represented by parallel flow diagrams. The optimal SI processing sequences 1354 

selected for the Kylylahti data are denoted with green colour. Parts of the workflow in bold 1355 

denote processing steps implicit for a given processing route.  1356 
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 1357 

 1358 

 1359 

 SULBS OUM OME S/MS 

P-wave velocity (km/s) 5,8 6,2 6,3 6,1 

Density (g/cm3) 2,9 2,9 3,1 3,8 

Impedance (km/s g/cm3) 16,82 17,98 19,53 23,18 

Table 1. Average elastic rock properties of the geological units in the synthetic model 1360 
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LIST OF ACRONYMS 1375 
AC  autocorrelation 1376 

AN  ambient-noise 1377 

ANSI  ambient-noise seismic interferometry 1378 

CC  crosscorrelation 1379 

CCh  crosscoherence 1380 

CDP  common-depth-point 1381 

CWT  continuous wavelet transform 1382 

DMO  dip-moveout 1383 

GPU  graphical processing units 1384 

MDD  multidimensional deconvolution 1385 

OME  Outokumpu altered ultramafic rocks 1386 

OUM  Outokumpu ultramafic rocks 1387 

PSD  power-spectral-density 1388 

PSF  point-spread function 1389 

QC  quality control 1390 

RMS  root-mean-square 1391 

RP  reflection packages 1392 

S/MS  massive to semi-massive sulphide 1393 

SI  seismic interferometry 1394 

SNR  signal-to-noise ratio 1395 

SULBS sulphide-bearing schist 1396 

TWEED two-step wavefield evaluation and event detection  1397 

TWT  two-way traveltime 1398 

VSG  virtual shot gathers 1399 
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