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Abstract

The Classical Model (CM) or Cooke’s method for performing Structured Expert Judgment (SEJ)
is the best known method that promotes expert performance evaluation when aggregating experts
assessments of uncertain quantities. Assessing experts’ performance in quantifying uncertainty
involves two scores in CM, the calibration score (or statistical accuracy) and the information score.
The two scores combine into overall scores, which, in turn, yield weights for a performance-based
aggregation of experts’ opinion. The method is fairly demanding, and therefore carrying out a SEJ
elicitation with CM requires careful consideration. This chapter aims to address methodological and
practical aspects of CM into a comprehensive overview of the CM elicitation process. It complements
the chapter “Elicitation in the Classical Model” in the book Elicitation [27]. Nonetheless, we regard
this chapter as a stand-alone material, hence some concepts and definitions will be repeated, for the
sake of completeness.

1 The Classical Model: overview and background

Structured expert elicitation protocols have been deployed in many different areas of applications [e.g.
13, 26, 2, 17] and Part 4 of this book. Even though most are guided by similar methodological rules,
they differ in several aspects, e.g., the way interaction between experts is handled, and the way an
aggregated opinion is obtained from individual experts.

As mentioned in the introductory chapter of this book, the two main ways in which experts’
judgements are aggregated are: behaviourally (by striving for consensus via facilitated discussion), and
mathematically (by using a mathematical rule to combine independent individual expert estimates).
Mathematical rules provide a more transparent and objective approach. A weighted linear combination
of opinions is one example of such a rule. While evidence shows that equal weighting frequently
performs well relative to unequal, performance-based weighting methods for reliably estimating central
tendencies [e.g. 8], when uncertainty quantification is sought, differential weighting provides superior
performance [9].

A widely used version of a differential weighting scheme is the Classical Model (CM) for structured
expert judgement (SEJ) [11]. CM was developed and used in numerous professional applications1

involving the quantification of various uncertainties required to aid rational decision making. These
uncertain quantities usually refer to unknown variables measured on continuous scale. Point/“best”
estimates are not sufficient when the quantification of uncertainty is the main aim, since they do not
give any indication of how much the actual (unknown) values may plausibly differ from such point
estimates. Expert uncertainties are thus quantified as subjective probability distributions. Experts

∗Correspondence to: A.M.Hanea, CEBRA, University of Melbourne, Parkville, VIC 3010, Australia, email:
anca.hanea@unimelb.edu.au

1We call a professional application one for which the problem owner is distinct from the analyst.
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are, however, not asked about full distributions, or parameters of distributions, but rather about a fixed
and finite number of percentiles (usually three) of a distribution. From these percentiles, a minimally
informative non-parametric distribution is constructed. Parametric distributions may be fitted instead,
but these will add extra information to the three percentiles provided by the experts, when compared
to the minimally informative non-parametric distribution. This extra information may or may not be
in accordance to experts’ views.

Experts are elicited individually, and face-to-face interviews were recommended in the CM’s original
formulation. Variants of the CM’s elicitation protocol involve workshops (ranging from half a day to
three days), remote elicitations, or a combination of these. Each method has its advantages and
disadvantages. Having all experts in one (potentially virtual) room may permit facilitated discussion
prior to the actual elicitation with the aim of reducing ambiguity, providing feedback on practice
questions, and better understanding of the heuristics to be avoided in order to reduce biases. However,
these may come to the price of group biases, halo - effects, dominating or recalcitrant personalities,
etc.

Rather than consensus, CM advances the idea of rational consensus, in which the parties (experts
and facilitators) pre-commit to a scientific method for aggregating experts’ assessments. CM opera-
tionalizes four principles which formulate necessary conditions for achieving rational consensus (the
aim of rational decision making). These principles are detailed in the introductory chapter of this
book and repeated here for convenience: scrutability/accountability, empirical control, neutrality and
fairness. Cooke argues that a rational subject could accept these principles, but not necessarily accept
a method implementing them. If this were the case, such a rational subject “incurs a burden of proof
to formulate additional conditions for rational consensus which the method putatively violates.” [10].
Even though part of the expert judgement community does not regard CM as an appropriate method
for expert judgement [6, 7], to the best of our knowledge, no additional conditions for rational con-
sensus, as proposed by Cooke, were formulated or identified as being violated. We note that there are
numerous other sets of axioms proposed within the literature, see, e.g., [14].

The empirical control requirement is essential to the CM and, some would argue, e.g., [23], to any
elicitation protocol which calls itself structured. It is this requirement that justifies the use of seed
(calibration) variables to derive performance-based weights, providing an empirical basis for validating
experts judgements that is absent in other approaches. We note however, that other methods, lacking
empirical control, but eliciting expert judgments in a structured manner, following a rigorous protocol,
are also considered SEJ protocols [5].“Seed” (or calibration) variables are variables taken from the
problem domain for which, ideally, true values become known post hoc [2]. However, this is rarely
feasible in practice, hence variables with known realizations (values) are used instead. The questions
about the seed variables that the experts need to answer are called seed questions. Experts are not
expected to know the answers to these questions precisely, but they are expected to be able to capture
them within informative ranges, defined by ascribing suitable values to the chosen percentiles (usually
the 5th, 50th and 95th).

The theoretical background and mathematical motivation for many of the modelling choices which
define the CM are detailed in [11]. However interesting and technically complete this book is, many
CM neophytes find it difficult to decipher or navigate. For excellent short descriptions of the CM,
written for practitioners and less technically inclined audiences, we recommend [27, 1].

CM is implemented in the software Excalibur, freely available from http://www.lighttwist.net/

wp/excalibur. Excalibur is a fully functioning application (if somewhat old) which was originally
developed at Delft University of Technology and it is now maintained by Lighttwist Software.

This chapter aims to complement the existing CM descriptions, draw attention to methodological
and practical aspects which were not covered in the aforementioned descriptions, update recommenda-
tions made when the CM protocol was originally designed, and clarify assumptions and misconceptions.
As we will emphasize throughout the chapter, some issues arise from necessary theoretical requirements,
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while others are reasonable pragmatic assumptions. We stress that theoretical requirements define the
rigorous setting of the Classical Model, and the pragmatic assumptions allow for model flexibility that
can be explored by a more experienced user.

The remainder of this chapter is organised as follows: Section 2 discusses several elements that need
to be organised prior to the elicitation and dwells on aspects which may be problematic or are critical
for a successful elicitation. Section 3 details some steps of the elicitation protocol, from constructing
an expert’s distribution from elicited percentiles to evaluating experts performance using a calibration
score, an information score and a combined score. These performance measures are discussed from a
theoretical, practical and intuitive view point. Section 4 discusses different mathematical aggregations
of experts’ distributions and ways to evaluate them. Section 5 concludes the chapter with a few
remarks.

2 Pre-elicitation for the Classical Model

If decision making is supported by quantitative models and the modelling is associated with uncer-
tainties, then assessing uncertainty over the model inputs is essential. Assume a model is chosen
appropriately (i.e., in accordance to needs and resources) and the sources of uncertainty are identified.
Next, the modelers and analysts should collate and evaluate the available resources (e.g., data, prior
studies, related literature). After completing this step, the data gaps will become apparent and the
requirements for expert input can be formulated. With this we are entering what is often called the
pre-elicitation stage. Many elicitation guidelines cover this stage [e.g. 10, 5], so in this section we will
merely complement the existing guidelines by addressing only a few, less discussed, aspects.

2.1 Formal documents

Sometimes research which involves collecting subjective data from human participants needs a human
ethics approval. Moreover, some journals require such approval to publish research informed by subjec-
tive data. Although less common in Europe, and the United States2, this is very often a requirement
in New Zealand and Australia.

A project description is another useful document. This will be outlining the purpose of the project,
the relevant time-frames, the required expert input, and potential payments. A consent form sometimes
accompanies the project description, and it is sent to participants to formalise their agreement to take
part in the elicitation and to disclose any conflict of interests.

A briefing document guides participants through the elicitation, including the specific way to answer
questions, the reasons behind asking the questions in a particular format, and the ways in which the
answers are evaluated. An example of such document is [1].

The project description and briefing document are sometimes combined into one single document
as recommended in [5]. As an alternative, the authors of [4] compiled a much larger document and
made it available prior to the elicitation. This document is an extended version of the briefing doc-
ument, augmented with background information and available literature, especially useful to inform
assessments about the target variables. However, the available literature made available should not
contain the answers to the seed variables, as this would invalidate the calibration exercise.

2In some instances it has been ruled that experts in an elicitation are not experimental subjects. If needed, human
ethics only applies if the number of subjects is larger than nine, and only if the elicitation conducted by the Federal
Government (R.M. Cooke, personal communication 2018).
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2.2 Framing the questions

The most common format of asking experts to quantify their uncertainty about a continuous variable
is eliciting three percentiles, normally the 5th, 50th and the 95th percentiles. Eliciting five percentiles
has also been used in practice [e.g., 25], where the 25th and 75th percentiles are elicited additionally to
the three percentiles mentioned beforehand. Eliciting other percentiles or other number of percentiles
(i.e., four percentiles) is nonetheless possible, posing no theoretical or practical problems. Excalibur
supports formats with three, four or five elicited percentiles, which can be specified by the analyst.

However, for certain types of questions this is easier said than done. The difficulties can arise from
several reasons, and we will touch upon three of these: 1) the underlying elicited variables are not
continuous, 2) the questions are not about variables that experts are familiar with, but rather they
address transformation of these variables, and 3) the experts are not statistically trained. The following
discussion applies to both seed and target variables. Specific seed variables issues are discussed in a
dedicated sub-section.

2.2.1 Modelling discrete data with continuous variables

Modelling discrete data with continuous random variables is not an unfamiliar practice in statistics,
i.e., age of patients or months since surgery. Similarly, when eliciting bounded variables measured on
a countable scale, most practitioners assume a continuous approximation of these variables and use
the percentile elicitation procedure. This can be challenging for the experts. For example, assume a
population of 10 healthy coral reefs. The experts are then asked about the number of future diseased
coral reefs. Assume an expert’s best estimate (corresponding to their median, the 50th percentile)
is one. The only value strictly less than one that they can estimate as their 5th percentile is zero.
However, that means that there is a one in 20 chance for the number of diseased coral reefs to be
negative, which is physically impossible.

Situations like the one in the above example may lead experts to assign equal values for two or even
all three percentiles, or to assign physical bounds instead of the extreme percentiles, even though they
understand in theory, that the percentiles of a continuous variable have to be distinct, and different
than the bounds.

2.2.2 Unfamiliar framing

Framing the question in a way that is different to the context experts are familiar with, dramatically
increases the cognitive load, and should be avoided whenever possible.

For example, asking for three percentiles of variable X in relation to something normally expressed
as a ratio, say 1/X, can be awkward. It is even worse if the expert thinks in terms of something which
is naturally expressed as a different ratio, say, X = Y/Z.

2.2.3 Statistical proficiency

The assumption of an underlying continuous distribution comes with very clear theoretical constrains,
among which: the extreme (upper and lower) elicited percentiles should not equal the physical bounds
of the support of the variable, and the three percentile values should be strictly increasing. Above,
we touched upon a situation where these constrains may be violated because the modelled variable is
not in fact continuous (but rather approximated with a continuous variable). We now want to draw
attention to situations were these constrains are violated because of the difficulty of the questions,
coupled with an inadequate probabilistic and statistical training of the experts.

Let us consider the example of eliciting percentages which are though to be extreme. When experts
need to estimate a very small or a very large percentage, they may assess the 5% percentiles to be 0%
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or the 95% percentile to be 100%. It is the analyst’s job to emphasize that the elicited quantity is
uncertain and to try to guide the expert through probabilistic thinking. Advising experts to reason in
terms of relative frequencies may sometimes be a solution. However, if it does not help, the experts
assessments are usually slightly modified (i.e., by adding or subtracting a very small number such as
10−8) to comply with the theoretical restrictions.

In certain situations, experts will assign equal values for two (or all three) percentiles even after a
brief probabilistic training. If time allows, we advice that during training, an example should be used
to emphasize why equal percentiles are problematic and less desirable for modelling distributions of
continuous random variables. To exemplify this, consider expert’s assessments for an unknown variable
X to be 3 for the 5th percentile, 3 for the 50th percentile and 10 for the 95th percentile. Then, the
probability that the true percentage is 3 is 0.45, that is P (X = 3) = 0.45. Nonetheless, X is assumed
to be a continuous random variable and the probability that X attains any specific value is zero, hence
P (X = 3) should be zero. Obviously, the expert does not acknowledge that her assessments do not
correspond to a continuous random variable. And it is the analyst’ job to clarify the setting. Finally,
the requirement of strictly increasing percentiles has also been implemented in Excalibur.

The facilitators and analysts need to be aware of these issues when framing the questions. Some-
times, certain, possibly problematic formats cannot be avoided. Then, the experts need to be made
aware of these difficulties and, if needed, be contacted after the elicitation for re-assessment.

2.3 Seed variables

The seed questions/variables are an essential element, since one of the main assumptions of CM is
that prior performance on seed questions is a good predictor of future performance on the target
variable/questions of interest3. When building the differential weighted aggregated distributions, these
aggregations are basically fitted to seed questions and the entire model is calibrated on them. Their
importance is paramount. A strong recommendation for analysts and facilitators is to consult a couple
of domain experts when looking for and formulating seed variables (see also the dry run section below).
Given their involvement with the seed questions, these experts’ judgements cannot be formally elicited
during the elicitation.

Seed variables and the purposes they serve are also discussed in detail in Section 2.3 of [27].
We reiterate below the main four types of seed variables (domain-prediction, domain-retrodiction,
adjacent-prediction and adjacent-retrodiction), as cathegorised in [12], and qualify their desirability.

Prediction Retrodiction

Domain / Subject matter Most desirable Reasonably desirable

Adjacent / Contingent subject matter Reasonably desirable Last resort

Table 1: Types of seed variables and their desirability. The reasonably desirable options are the ones
usually used in practice.

As mentioned beforehand, the answers to seed questions should not be known by experts during the
elicitation. Table 1 provides general guidance for selecting seed variables. Ideally, the analyst should
have access to ongoing studies or domain data which become available shortly after the elicitation.
These make great sources for formulating domain-prediction variables. Examples can include data
from official reports which will become available shortly after the elicitation takes place. Suppose
experts are asked several questions about the percentage of unvaccinated children in Europe, in the

3From here on we will call questions of interest the questions related to the target variables.
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period 2015-2018. The elicitation takes place in November 2019, and the WHO official report, which
is the only source for these questions is due to appear in December 2019. Since one of the questions
of interest regards the percentage of unvaccinated children in Europe in 2030, we regard the seed
questions to be domain questions.

However, this not always possible, and data from recent studies within the subject matter or, less
desirable, in adjacent subject matters are often the only option. Typically, data from official, yet not
public, reports are used do define calibration questions. For example, existing confidential reports that
document outbreaks of Salmonella in different provinces in The Netherlands could be used to define
seed questions. If the questions of interest regard the number of cases of infection with Salmonella in
the same provinces, then the seed questions are seen as being retrodictions and from the same domain.
If, on the other hand, the question of interest regards the number of cases of infection with Salmonella
at the national level, or even at the European Union level, the seed questions can regarded as being
from an adjacent subject matter. Even though the question of interest refers to the same bacteria,
it is defined in a different context than the calibration question and can therefore be seen as from
an adjacent subject matter. Another, more clear, example is the following. Suppose the question
of interest refers to the effects of Bonamia ostreae parasite in Ostrea chilensis oysters. Since this
parasite-host combination is new, data are lacking and domain calibration questions are not possible.
Calibration questions have been chosen to study the effects of different parasite-hosts combinations,
i.e., Bonamia ostreae parasite in Ostrea edulis and Bonamia exitiosa parasite in Ostrea chilensis.

Often, elicitations need to involve two or more sub-disciplines. The set of seed questions should
have then a balanced selection of items from each discipline. However, the boundaries between sub-
disciplines are sometimes blurry and we are yet to learn how well can experts extrapolate their knowl-
edge to answer questions from adjacent domains. This should be carefully dealt with prior to the
elicitation and, if resources allow, consider separate panels of experts to answer different (sub-domain
specific) seed questions.

Not only the domain of the seed variables is important, but also their formulation. We argue that
the seed questions should be asked in exactly the same format as the questions of interest. There
is no reason to believe that good performance on a certain type of task is transferable to different
tasks. On the contrary, a couple of studies [28, 24] comparing the performance of experts when
quantifying one-dimensional distributions using percentiles, with quantifying dependence between these
one-dimensional margins, indicated a negative relationship.

Given that the domain and the formulation of the seed questions are appropriate, the next thing
to consider is what sort of thinking they trigger for the experts. Answering the seed questions should
certainly not be a memory test about factual knowledge alone. To be able to differentiate expert
performance better, the seed questions should also be as diverse as possible. Experts need to be
able to make judgements of appropriate uncertainties, hence the seeds should require experts to think
about composite uncertainties, in the same way they would need to do when answering the questions
of interest.

The seed questions may be asked before the questions of interest and feedback may be presented to
the experts before they start answering the questions of interest. Another format of the questionnaire
may have all questions in random order. Some (retrospective) seed questions will be identified as such
by the experts, however, the predictive ones may not stand out as seeds. An argument for having a
questionnaire where seed questions and questions of interest are randomly intermixed relates to the
level of experts’ fatigue, as increased fatigue affects the ability of experts to concentrate towards the
end of the elicitation exercise.

For continuous quantities, between eight and ten seed questions were recommended [11] independent
of the number of questions of interest. We argue that a minimum of 15 should be used when there are
no more that 35 questions of interest and at least a one day workshop. These are of course guidelines
derived from experience and practice, rather than results of proper studies on experts behaviour and
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fatigue.
Many of the more recent studies using CM published all questions as supplementary material, but

some of the older studies did not necessarily do so. As a future recommendation, aligned with the need
for transparency imposed by Cooke’s principles of rational consensus, we suggest all questions to be
made available. Moreover, identifying and reporting the type of seed variables used, as characterised
in Table 1 is highly recommended.

2.4 Dry-run

A dry run of the elicitation is strongly encouraged. Such an exercise is essential in decreasing the
linguistic uncertainty (ambiguity), which is almost certainly present in the project description and,
most importantly, in the formulation of the questions (of interest and seeds). It is also a good exer-
cise for checking if all relevant information is captured and properly conveyed (in a language which
is familiar to the experts). One or two domain experts should be asked to provide comments on all
available documents, the questions, the additional information given for each question appreciated,
and to estimate a reasonable time required to complete the elicitation.

2.5 Elicitation format

There is no single best way to carry on an expert elicitation using CM. The original setting proposed
in [11] involves a face-to-face individual interaction between the facilitator and the expert. That is, the
facilitator meets separately with each expert, trains them if necessary, discusses practice question(s),
and then proceeds to guide the expert through the elicitation questions. Willy Aspinall (personal
communication) carried out many of his numerous elicitations in a workshop setting. More recently,
a number of elicitations have also been performed remotely, using one-to-one Skype interviews. In
such cases a teleconference with all experts may be held prior to the individual elicitation interviews.
During this teleconference the procedure, scoring and aggregation methods should be explained, and
a couple of a practice questions should be answered [19, 4].

If the elicitation is done remotely and the seed questions are retrospective, the calibration exercise
needs to be done ”face-to-face” and the experts should work with the facilitator (e.g. in individual
Skype sessions). The questions of interest can be then finished on a more relaxed time-frame and
without the facilitator’s virtual presence. However if all the seeds are predictive, individual (remote)
interviews are not a requirement.

Special attention needs to be given to experts’ uncertainty training. Reasoning with uncertainty and
expressing uncertainty prove to be a challenging endeavor. Practice questions are therefore desirable.
Some practitioners choose practice questions from the same domain as the seed variables and questions
of interest. Others choose a different subject matter, e.g., questions regarding weather, in order to
focus primarily on how experts express their uncertainty.

For more details on the elicitation format, we refer to Section 2.4 from [27].

3 Elicitation with the Classical Model

The many details decided upon in the pre-elicitation stage determine the elicitation itself. These
include: the number and type of questions, the number and expertise of experts, the type of feedback
given to, and interaction permitted between experts. Once the required estimates are elicited, they are
scored and the scores are used to form weights. Several weighted combinations are calculated; they form
several so-called decision makers (DM) distributions. It is worth mentioning that a decision maker in
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this context represents a mathematically calculated distribution which corresponds to a virtual expert.
The real decision maker would adopt one of the DMs distribution as their own.

3.1 From assessments to distributions

It is important to stress again that CM, as largely known from the literature, applies to continuous
variables. That is, the elicited seed variables, as well as the variables of interest are modelled as con-
tinuous variables and the questions are formulated in terms of percentiles of continuous distributions.
Moreover, all major CM applications made use of continuous variables. As already emphasized in
places, this chapters provides an in-depth perspective on the Classical Model when using continuous
random variables. Eliciting discrete random variables, in terms of the probabilities of their states, and
scoring the experts’ performance, even though proposed in [11], has scarce applications and it has not
been implemented in Excalibur4. It is also noteworthy that CM should not be used for mixed types of
questions, that is both discrete and continuous. Moreover, the questions (seed and of interest) should
be either all continuous or all discrete.

The rest of this chapter refers solely to eliciting continuous random variables.
It is worthwhile discussing first how expert’s distribution is actually constructed from the expert’s

assessed percentiles within the CM. In order to specify expert’s distribution, we first need to determine
the support of the distribution. Assume N experts provide their assessments. Denote expert’s ei
assessments for a given question as qi5, q

i
50 and qi95 for the 5th, 50th and 95th percentiles, respectively,

and i = 1, 2, . . . , N . The range [L,U ] is given by

L = min
1≤i≤N

{qi5, realization},

U = max
1≤i≤N

{qi95, realization},

for a given seed variable. Note that L denotes the minimum among all experts’ lower bounds and the
realization, whereas L denotes the maximum between all experts’ upper bounds and the realization.
For the questions of interest, the lower and upper bounds are determined exclusively by the experts’
percentiles, i.e., L = min{qi5} and U = max{qi5}, for i = 1, . . . , N . The support of experts’ distributions
is then determined by the so-called intrinsic range

[L∗, U∗] = [L− k · (U − L), U + k · (U − L)],

where k denotes an overshoot and is chosen by the analyst (usually k = 10%, which is also the default
value in Excalibur). The intrinsic range therefore allows for an extension of the interval determined
by the interval [L,U ]. The extension is symmetrical for simplicity. For some questions, the intrinsic
range can be specified a priori by the analyst5. For example, when eliciting percentages, the intrinsic
range can safely be chosen to be [0, 100].

Each of the expert’s distribution is constructed then by interpolating between expert’s percentiles
such that mass is assigned uniformly within the inter-percentile ranges. Consequently, by assuming an

4The performance scores are calculated differently for discrete variables. Informativenes is replaced with entropy and
the calibration score, even though still based on a simmilar test statistic, is different as well, and it requires many more
seed variables for reliable estimation. The interest in this topic has been revived recently with a theoretical research on
calibration scores [15].

5This is however not possible in Excalibur. Unrealistic ranges obtained in Excalibur need to be truncated externally.
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Figure 1: Cumulative distribution functions (1a) and probability distribution function (1b) for two
experts whose assessments are (5, 15, 25) (for Expert 1) and (40, 50, 60) (for Expert 2).

uniform background measure, the distribution of expert ei is given by

Fi(x) =



0, for x < L∗

0.05
qi5−L∗

· (x− L∗), for L∗ ≤ x < qi5
0.45
qi50−qi5

· (x− qi5) + 0.05, for qi5 ≤ x < qi50
0.45

qi95−qi50
· (x− qi50) + 0.5, for qi50 ≤ x < qi95

0.05
U∗−qi95

· (x− qi95) + 0.95, for qi95 ≤ x < U∗

1, for x ≥ U∗.

The distribution is piecewise linear on the four intervals determined by the assessed percentiles. Note
that the cumulative distribution Fi is continuous. The cumulative distribution and the corresponding
density function for two experts with assessments (5, 15, 25) (for Expert 1) and (40, 50, 60) (for Expert
2) are depicted in Figure 1. The intrinsic range has been assumed [0, 100], which is appropriate as the
quantities are percentages.

The above construction of distributions is arguably the most popular method of constructing dis-
tributions.

3.2 Measures of performance

CM measures experts’ performance as uncertainty assessors. Performance may be regarded as being
determined by properties of experts’ assessments that we value positively. Three of these properties
are accuracy, calibration and informativeness. Often, in the judgement and decision-making literature,
accuracy is understood as the distance from the “best estimate” to the true, realised value [e.g. 22,
18]. In the CM the best estimate is operationalised as the median (the 50th percentile). To avoid
difficulties related to estimating average accuracy across multiple seed variables, which will unavoidably
be measured on different scales, the CM does not score accuracy as defined above. In turn it scores
calibration and informativeness.

Confusingly, from a terminological point of view (in the context outlined above), the CM calibration
is also called statistical accuracy6. We recall the technical definitions of calibration and informativeness
and provide accompanying intuitive explanation.

6The terminology was changed from calibration to statistical accuracy because of another potential terminological
clash with the engineering interpretation of the term calibration.
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3.2.1 Calibration

Assume there are N experts, e1, e2, . . . , eN and M seed variables/questions SQ1, SQ2, . . . , SQM . De-
note expert’s ei assessments on question j as qi,j5 , qi,j50 and qi,j95 for the 5th, 50th and 95th percentiles,
respectively; the index j is sometimes omitted for convenience to denote the percentiles assessed for
a random question (rather than for a given question j). The notation will then reduce to qi5, q

i
50 and

qi95. For each question, and each expert, the probability range is divided into four inter-percentile
intervals, corresponding to inter-percentile probability vector p = (0.05, 0.45, 0.45, 0.05). Suppose the
realisations of these seed questions are x1 for SQ1, . . . , xM for SQM . We may then form the sample
distribution of expert ei’s inter-percentile intervals by simply counting how many of the M realizations
fall within each inter-percentile interval. Formally, let

s1(ei) =
|{k|xk ≤ qi5}|

M
=

M∑
k=1

1{xk≤qi,k5 }

M
,

s2(ei) =
|{k|qi5 < xk ≤ qi50}|

M
=

M∑
k=1

1{qi5<xk≤qi50}

M
,

s3(ei) =
|{k|qi50 < xk ≤ qi95}|

M
=

M∑
k=1

1{qi50<xk≤qi95}

M
,

s4(ei) =
|{k|qi95 < xk}|

M
=

M∑
k=1

1{qi95<xk}

M
.

where

1{x≤a} =

{
1, when x ≤ a
0, otherwise

is the indicator functions. Then s(ei) = (s1(ei), s2(ei), s3(ei), s4(ei)), i.e., the empirical distribution for
expert i. Note that if the expert assesses the uncertainty effectively, then we expect the distribution of
theM counts to multinomial, with parameters 0.05, 0.45, 0.45 and 0.05. Alternatively, if the realizations
are indeed drawn independently from a distribution with percentiles as stated by the expert, then the
quantity

2MI(s(ei), p) = 2M

4∑
l=1

sl(ei) ln
sl(ei)

pl
, (1)

is asymptotically distributed as a chi-square random variable with 3 degrees of freedom. Hence we can
score expert ei as the statistical likelihood of the hypothesis

Hei : the inter-percentile interval containing the true value for each variable is drawn independently

from probability vector p.

In equation (1), M is the number of seed questions, and I(s(ei), p) is the Kullback-Leibler divergence
[21], which Cooke calls the relative information of one distribution with respect to another [e.g. 13].
The relative information score measures how one distribution, s in this case, diverges from another
distribution, p here. In other words, if the experts would indeed give values which correspond to the
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5th, 50th and 95th percentiles of distributions, on the long run, their sample distribution s should be
equal to p. Then I(s(ei), p) = 0 and this should correspond to the highest possible calibration score. As
s starts diverging from p the value of I(s(ei), p) increases, and the calibration measure should decrease,
penalizing the fact that the experts are not answering corresponding to the stated percentiles. A simple
test for this hypothesis uses the test statistic defined by equation 1.

The p-value of this hypothesis is defined as the calibration (or statistical accuracy) score

Cal(ei) = Prob{2MI(s(ei), p) > r|Hei},

where r is the value of the expression from equation (1) based on the observed values7 x1, . . . , xM . It
is the probability, under hypothesis Hei , that a deviation at least as great as r should be observed on
M realizations if Hei were true.

With a finite, relatively small number of questions, often s cannot equal p. Most of the times,
they differ, because of, for example, M being an odd number. An even number of seed questions does
not guarantee equality either, for example for the most commonly used number of questions, ten, an
expert can achieve a maximum calibration score of 0.83 when s = (0.1, 0.4, 0.4, 0.1)8. This is important
when comparing calibration scores. How different should calibration scores be to conclude that one is
much better than another? The answer to this question is not straightforward. The following example
illustrates an interesting situation which is slightly unrealistic, but not impossible.

On the right hand side of Figure 2, Expert e2 gave their percentiles for ten seed questions. The left
and right ends of each line correspond to the 5th and the 95th percentiles, respectively. The blue dots
corresponds to the 50th percentiles, and the crosses correspond to the realisations of the seed variable.
The crosses are blue if they are captured within the 90% credible interval, and red is they fall outside
this interval. In this example s(e2) = (0.1, 0.4, 0.4, 0.1) and expert e2 achieves the maximum possible
calibration score of 0.83. Expert e1 gave exactly the same estimates for all the questions with the
exception of four medians, which happened to coincide with the realisations of those variables (see the
left hand side of the same figure). The empirical distribution of expert e1 is s(e1) = (0.1, 0.6, 0.2, 0.1).
Expert e1 is thus penalised as an artefact of the way the empirical distribution is constructed and
achieves what seems to be a much lower calibration score of 0.39.

This sort of examples are useful to understand what these differences in calibration scores can mean.
In this case, both experts are well calibrated and the 0.44 difference between calibration scores should
not be used to say that expert e2 is much better calibrated than expert e1. However, when calibration
scores are low with one of them below 0.05, the former should be considered as an indication of better
performance. For example, if the empirical distribution of an expert is s(e3) = (0.3, 0.2, 0.2, 0.3), their
calibration score is with approximately 0.3 less then expert e1 calibration, making it of order 10−2.
Expert e3 placed most of the mass in the tails of the distribution, which should make one confident in
considering them poorly calibrated.

7if s is equal to p, then r = 0 and Cal = 1.
8The minimum number of questions needed to obtain a calibration score of 1 is 20.
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Figure 2: Two experts assessments on 10 seed questions. The starting and ending points of any line
in this graph correspond to the 5th and the 95th percentiles, the blue dot corresponds to the 50th

percentile and the x corresponds to the true value of the true value of the seed variable. The blue dot
is not visible when it coincides with the realisation.

The discussion above about the significance level aims to stress that any calibration above a certain
threshold (often chosen to be the familiar 0.05 from classical statistical testing) may be considered
a good calibration, and that the calibration score should not be used to differentiate among very
fine levels of calibration, but provide rather indicative levels. This is, again, similar to conducting a
hypothesis testing, where one does not compare different p-values concluding that a higher p-value
produces more evidence to accept the null hypothesis, but one rather compares the p-values with the
significance level of, say, 0.05. Consequently, the conclusion is either enough or not enough evidence
to reject the null hypothesis H0.

Another reason for not taking the actual calibration scores and the differences between them too
seriously is the asymptotic nature of the test. For ten seed variables, the distribution of the test statistic
is quite far from a chi squared distribution. This is illustrated in Figure 3, where the histogram of the
test statistic is calculated empirically and compared with the histogram obtained by sampling from a
chi squared distributed variable. The figure on the left hand side uses ten seed variables and the one on
the right hand side uses 100 which is of course not feasible in practice. The right hand side histograms
in Figure 3 agree not only on a visual level, but also when comparing them using statistical tests.
We repeatedly used the two-sample Kolmogorov-Smirnov and the two-sample Cramer-Von Mises tests,
and the null hypothesis that the data in the two samples came from the same continuous distribution,
was not rejected in 98% of the cases.
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(a) Ten seed variables. (b) 100 seed variables

Figure 3: Histograms of 2MI(s(ei), p) under null hypothesis that the inter-percentile interval containing
the true value for each variable is drawn independently from probability vector p (blue), versus a
random sample from a chi-square variable with 3 degrees of freedom (pink).

Calibration scores are absolute scores and can be compared across studies, if these studies use the same
number of seed questions. In other words, before comparing calibration scores, it is appropriate to
equalize the power of the different hypothesis tests by equalizing the effective number of seed variables.
Because the calibration score uses the asymptotic distribution of the 2MI(s(ei, P ), we adjust the power
by leaving s calculated on M questions but replacing 2M by 2M ′, with M ′ < M , M ′ representing
the smallest number of seed variables. In this way we use all the M seed variables, but pretend that
the relative information is based on M ′ rather than M variables. The ratio M ′

M is called the power of
the calibration test (called calibration power in Excalibur). When the number of the seed questions
increases, the calibration scores decrease, but are still distinguished if the numerical implementation
of the scores are accurate enough. However, Cooke argued in [11] that the degree to which calibration
scores are distinguished should be a model parameter one can optimise for, and that reducing the
power may be important in situations when all experts are very poorly calibrated. When all experts
are poorly calibrated (e.g., with calibration scores of order less than or equal to 10−4, spanning three
or more orders of magnitude) with one being better calibrated than the rest, all the weight may go to
this one (still very) poorly calibrated expert. By reducing the power, several other combinations may
be found optimal and the best of them should be used9. However, the accumulation of evidence since
1991, seems to suggest that in such cases an equally weighted combination of experts’ distributions
will be a much better choice than a combination based on optimising the calibration power.

To close our little parenthesis on the calibration power, we advise reducing the calibration power
only for comparing calibration scores across studies with different number of seed questions.

To give an indication of the range of experts’ calibration scores in professional applications, Figure
4 presents just over 300 of experts’calibration scores extracted from the studies collected in the Delft
dataset, prior to 2006. The horizontal line corresponds to the calibration score of 0.05, and it is quite

9If you do elect to optimize weights using reduced calibration power, you should evaluate performance by introducing
these weights as user weights and compare with other combinations without power reduction.
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clear that the majority (73%) of individual calibration scores are below this level10.

Figure 4: The calibration scores of 322 experts across the pre-2006 studies available in the TU Delft
dataset. The red line denotes the 0.05 significance level.

A completely different picture will emerge when, in a later section (Subsection 4.1) of this chapter, we
will investigate the magnitude and spread of combinations of experts. Figure 9 reveals the improved
performance, in terms of the calibration score, of the combination of experts.

3.2.2 Informativeness

Along with the calibration score, experts’ assessments are evaluated with respect to an information
score. The information score is intrinsically connected with determining experts’ distribution, given
the three percentiles specified by the expert, as was constructed in Subsection 3.1. The information
score reflects how informative the expert’s distribution is with respect to the background measure
used to construct the distribution. If that measure was the uniform distribution, then informativeness
is calculated with respect to the uniform. However, when the intrinsic range spans many orders of
magnitude, the log-uniform measure is used to construct the distributions. The informativeness of
such a constructed distribution is then evaluated with respect to the log-uniform background measure
as well.

Both background measures are available in Excalibur and the analyst should choose between the
two measures. As a rule of thumb, when the range of experts’ assessments for a question spans over
four orders of magnitude, then it is advised to use a log-uniform background measure11.

The background measure is assumed, for now, to be the uniform distribution over the intrinsic
range [L∗, U∗]

U(x) =
x− L∗

U∗ − L∗
, for L∗ ≤ x ≤ U∗.

One can derive the probability that an uniform random variable with distribution U lies within each
of the inter-percentile intervals. Experts assessments with respect to the uniform background measure

10Similar pictures presented in a slightly different format are shown in [9].
11There is no theory behind the choice of the background measure. It is chosen on the basis of experiences and can

later be subjected to sensitivity analysis.
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for each of the four inter-percentile intervals thus yield

r1 =U(qi5)− U(L∗) =
qi5 − L∗

U∗ − L∗
, for x ∈ [L∗, qi5],

r2 =U(qi50)− U(qi5) =
qi50 − qi5
U∗ − L∗

, for x ∈ (qi5, q
i
50],

r3 =U(qi95)− U(qi50) =
qi95 − qi50
U∗ − L∗

, for x ∈ (qi50, q
i
95],

r4 =U(U∗)− U(qi95) =
U∗ − qi95
U∗ − L∗

, for x ∈ (qi95, U
∗].

With respect to expert’s distribution F (·), let

f1 = F (qi5)− F (L∗) = 0.05,

f2 = F (qi50)− F (qi5) = 0.45,

f3 = F (qi95)− F (qi50) = 0.45,

f4 = F (U∗)− F (qi95) = 0.05,

The information score of expert ei for question j is then determined by

Ij(ei) =
4∑

k=1

fk ln
fk
rk
.

Writing the information score in terms of expert’s assessments and the intrinsic range gives

Ij(ei) = 0.05 ln
0.05(U∗ − L∗)

qi5 − L∗
+ 0.45 ln

0.45(U∗ − L∗)
qi50 − qi5

+ 0.45 ln
0.45(U∗ − L∗)
qi95 − qi50

+ 0.05 ln
0.05(U∗ − L∗)
U∗ − qi95

,

which can be re-written somewhat more compactly

Ij(ei) = 0.05 ln
0.05

qi5 − L∗
+ 0.45 ln

0.45

qi50 − qi5
+ 0.45 ln

0.45

qi95 − qi50
+ 0.05 ln

0.05

U∗ − qi95
+ ln(U∗ − L∗), (2)

as in [11]. The information score is a strictly positive function, which can take, in principle, arbitrarily
large values. It can be observed in (2) that the closer expert’s assessments are, the larger Ij(ei) will
be. One would wonder, however, how large can the information score be, in practice, and how does
the distribution of information scores looks like. We have investigated the behaviour of information
scores from simulated data, as well as from expert elicitations data from previous studies.

Firstly, the simulations have been performed assuming an intrinsic range of [0, 100], as for the
elicitation of percentages, and are depicted in Figure 5a. Only integer values have been assumed for
the experts’ assessments, in order to simplify calculations. Furthermore, simulations of information
scores over an intrinsic range of [0, 1000] and the histograms can be found in Figure 5b.
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(a) Intrinsic range of [0, 100].
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(b) Intrinsic range of [0, 1000].

Figure 5: Histograms of information scores over an intrinsic range of [0, 100] (5a) and [0, 1000] (5b).

While for an intrinsic range of [0, 100], information scores obtained are not larger than 3.5, when the
intrinsic range extends to [0, 1000], the maximum observed information score is around 5.8. Repeated
simulations have produced similar results for the information scores. As mentioned beforehand, the
intrinsic range of [0, 100] corresponds to integer percentage assessments, whereas the intrinsic range is
[0, 1000] corresponds to eliciting percentages up to the first decimal.

The information score of an expert over all seed questions is defined as the average of information
scores

I(ei) =
1

M

M∑
j=1

Ij(ei).

Notice that the information score can be computed for the seed questions as well as for the questions
of interest, whereas the calibration score can only be computed for the seed questions. Moreover, note
that, while the calibration score of each expert is computed independently of other experts assessments,
the distribution of experts, and hence the information score depends on all experts assessments, which
makes informativeness a group dependent measure.

Finally, it should be once more emphasized that the information score reflects how informative
expert’s distribution is with respect to the background measure, which is usually assumed to be the
uniform distribution. While the information score could be thought as associated with how spread
the expert’s assessments are, that is, in fact, not quite the case. Consider the following examples of
experts assessments, as depicted in the table below.

5% 50% 95% Information score

Expert 1 5 15 25 1.21

Expert 2 40 50 60 1.14

Expert 3 15 17 75 1.15

Expert 4 30 50 70 0.55

Table 2: Example of four experts percentage assessments.

Even though Expert 3 assessments are quite spread, the percentiles result in a skewed distribution,
which is quite informative with respect to the background measure. The information score is almost
the same as for Expert 2, where the probability mass function is concentrated between 40 and 60.
There is a significant difference in the information score between experts 1, 2, 3 and Expert 4. Whereas
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the highest information score is attained by Expert 1, the difference with Expert 2 and 3 is not that
large. The cumulative distribution function and the probability density function of the 4 experts are
depicted in the Figure 6.
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Figure 6: Cumulative distribution functions (1a) and probability density function (1b) for four experts
whose assessments are included in Table 2.

The information score can now be heuristically tied with expert’s distribution, namely with how
discrepant expert’s distribution is from the uniform distribution. For example, it is quite obvious that
Expert 4 (brown) is the least discrepant from the uniform distribution (black). Similarly, Expert 1
(red) is the most discrepant and has therefore the highest information score among the 4 experts.
Additionally, it is quite hard to evaluate and compare the information scores of experts 2 (blue) and 3
(green). Their cumulative distribution functions are quite distinct, whereas the information scores are
the same.

Obviously, the higher the information score, the more informative the expert is and an expert with
high information score is preferred over an expert with a low information score, assuming they have
the same calibration. One can however wonder when is an information score low, that is, when is an
expert considered uninformative. Of course an expert whose assessments coincide with the percentiles
of the uniform distribution will have an information score of zero. When the assessments differ from the
uniform percentiles, one could think that a test can determine whether the differences are statistically
significant or not. A number of tests can quantify the difference between two distributions. Cramér-von
Mises test, for example, evaluates the integrated quadratic difference between two distributions. The
distributions of all four experts whose assessments are included in Table 2 are statistically significantly
different from the uniform distribution, according to the Cramér-von Mises test, when using 100 or
1000 observations. An inspection of several examples lead to the conclusion that information scores
as low as 0.15 lead to the rejection of the null hypothesis that expert’s assessments come from an
uniform distribution. Furthermore, an assessment of 10, 35 and 90 for the three percentiles leads to an
information score of 0.1, and the p-value of the Cramér-von Mises test is 0.21. However, it should be
born in mind that these results dependent on the intrinsic range, which has been chosen [0, 100].

Another question that might arise is whether information scores are significantly different from
a statistical point of view. This is nicely exemplified with the four experts assessments above, that
is, whether an information score of 1.15 is significantly higher than an information score of 0.55.
Cramér-von Mises test between Expert 2 distribution (blue) and Expert 4 (brown) distribution leads
to a p-value of 0.25, whereas the p-value for the test between Expert 3 and Expert 4 is less than
2.2× 10−16. This shows that determining statisticall significant differences between information scores
is arguably an important question that would need, nonetheless, more refined metrics.
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To get an idea about the possible values and spread of information scores from expert elicitation
data, we plotted information scores obtained by the experts taking part in the studies collected in the
Delft dataset, prior to 2006. All scores are between 0.25 and 3.81 and half of these scores are larger
than 1.47.

Figure 7: The information scores of 322 experts across the pre-2006 studies available in the TU Delft
dataset.

3.3 Combined scores to form global and item weights

Measuring performance serves multiple purposes. Apart from differentiating between experts’ perfor-
mance, scores can be used to form weights which will then be used to construct a differentially weighted
linear combination of distributions over the target variables. These mathematically aggregated distri-
butions are considered to be the rational consensus distributions. They can be thought of as virtual
experts whose “opinions” incorporate all experts’ opinions, weighted according to their validity. An
equally weighted linear combination is another virtual expert. These virtual experts can be treated as
any other expert and their constructed opinions can be scored in the same way as experts’ opinions.
The final aim of this exercise is to find the virtual expert who performs the best. Before discussing
the different virtual experts, let us return to how the scores presented in the previous sections can be
combined and used as weights.

CM accounts for both calibration score and informativeness and proposes a combined score, which
is the product of the calibration and the information score and it uses a cutoff level α, below which
calibration scores are undesirable. The calibration score is often described as being a fast function,
which means that its value changes quickly with the addition of every seed question and its associated
response. Informativeness, on the other had is said to be a slow function, which means that it is less
sensitive to small change in the number of questions. When multiplied, the calibration will dominate
the value of the combined score, therefore CM values the calibration score more in comparing experts.
This is also intuitively desired, as one would not prefer an informative over a poorly calibrated expert,
which reflects only overconfidence. The combined score for expert i is given by

CS(ei) = Cal(ei) · I(ei) · 1α (Cal(ei)) ,

18



for i = 1, . . . , N and α ≥ 0; the weight of expert i will be proportional to their score

wi =
CS(ei)
N∑
k=1

CS(ek)

, (3)

for i = 1, . . . , N . Experts with calibration scores below α will receive weight zero and their judgements
will not be directly used in the final linear combination of opinions. However, all experts’ assessments
determine the support of all variables, therefore all experts contribute to virtual expert’s distribution.
A value α larger than zero ensures that the weights are asymptotically strictly proper. For detailed
information on scoring rules, see [11].

Note that the information score is actually calculated per question (item), and then averaged across
all questions. This suggests that a combined score can be computed for each expert and seed variable

CSj(ei) = Cal(ei) · Ij(ei) · 1α (Cal(ei)) ,

for j = 1, . . . ,M and i = 1, . . . , N . The information score Ij(ei) denotes how informative expert i is
on question j. This combined score leads to the weights

wji =
CSj(ei)
N∑
k=1

CS(ek)

,

for expert i and question j, where i = 1, . . . , N and j = 1, . . . ,M . The weights are called “item
weights”, and they are calculated per item, per expert. Thus an expert can receive different weights for
each seed variable. It should be born in mind, however, that the calibration score remains the same for
each seed variable, therefore dramatic changes in the item weights should not be expected, especially for
experts with very low calibration scores. Furthermore, these weights are potentially more attractive, as
they allow an expert’s weight to be higher or lower for individual items/questions/variables, according
to their knowledge about each question. Knowing less is usually translated into choosing percentiles
further apart, and by doing that, lowering the information score for that item. The combined score
for expert i is then different for each question j.

In contrast, the weights in (3) are referred to as global weights. For both global and item weights,
calibration dominates over informativeness; the information score serves to modulate between more or
less equally calibrated experts, with one exception, which will be discussed in the next section.

4 Post elicitation

As mentioned in the previous section, the performance-based weights are used in CM to combine ex-
perts’ judgements using a linear pool. The aggregation of expert distributions is usually referred to as
a Decision Maker (DM). We reiterate that a DM in this context is a mathematically calculated distri-
bution which corresponds to a virtual expert. The real decision maker would adopt this distribution
as their own, representing rational consensus.

The performance-based weights distinguish between global and item weights, which lead to two
DMs, the Global Weight Decision Maker (GWDM) and the Item Weight Decision Maker (IWDM).
Moreover, different GWDM and IWDM combinations can be obtained by choosing different values
for the cutoff α parameter. The α values which lead to distinct GWDM and IWDM are, in fact,
the calibration scores of the experts. Using α equal to the smallest calibration score results in the
combination of all experts’ assessments into the DMs. Choosing the next larger calibration value
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translates into forming DMs using all but one expert. Choosing the largest calibration as a cutoff level
translates into DMs which are the same as the best calibrated expert. We distinguish between GWDM
and optimized GWDM; GWDM uses α = 0 (but it is essentially the same as using α equal to the
smallest calibration which is usually larger than zero), therefore accounts for all experts’ assessments,
whereas optimized GWDM uses α such that the combined score of GWDM is maximum. Similarly,
we have IWDM and optimized IWDM.

For the IWDM, the weights are different for each question, hence IWDM uses a set of weights. If
GWDM uses a vector of weights, IWDM uses a matrix of weights, where each row represents the vector
of weights corresponding to each question, of interest or calibration. Concluding, for GWDM, experts’
weights are constructed exclusively based on the calibrations questions. IWDM uses, alternatively,
weights that are constructed both on calibration questions, as well as on questions of interest. More
specifically, the weights for each question of interest is computed using the calibration score and experts’
information score of the question of interest.

The aggregation of expert distributions can also be done by using equal weights, which gives the
equal-weight decision maker, denoted by EWDM.

Finally, it is worth mentioning that even though CM aggregates experts’ distributions, other ap-
proaches are possible, such as aggregating experts’ percentiles. A discussion between emerging dif-
ferences in DM’s distributions as well as DM’s performance when aggregating distributions versus
percentiles has been addressed in [9].

4.1 DMs and their scores

The final, and perhaps most important use of the performance based scores is to evaluate the per-
formance of the many DMs and be able to choose the best one, as measured by performance, which
is expressed in terms of the combined score defined in (3.3). This is arguably the only valid way of
motivating one choice of aggregation over others available.

DM distributions for the questions of interest are used as a final output of the elicitation study. DM
can however be regarded as an expert itself, albeit virtual, and therefore one can derive its assessments
also for the seed questions. These assessments can be evaluated with respect to the calibration and
information score, just as for any other expert. The calibration score and informativeness of DM can
be compared to single experts’ performance. Moreover, both GWDM and IWDM can be optimised by
choosing the value of α which maximizes the combined score of the resulting DM. The combined scores
of GWDM, IWDM and EWDM can be compared; the combined scores are available in Excalibur and
they are a standard output of CM studies.

Excalibur also allows the users to export the DMs percentiles, which can then be used to derive
the DMs distribution and plot it along with the other experts’ distributions. Figure 8 presents the
cumulative distribution functions and the density functions of three experts along with the GWDM.
Expert 1 and 2’s assessments can be found in Table 2, whereas Expert 5’s assessments are 70, 85 and
90. The normalized weights are 0.8, 0.15 and 0.05, for Expert 1, Expert 2 and Expert 5 respectively.
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Figure 8: Cumulative distribution functions (8a) and probability distribution function (8b) of three
experts along with DM.

DMs distributions as the ones above can be evaluated in terms of the performance scores. The
range of DMs’ calibration scores in professional applications can be seen in Figure 9, where the scores
for EWDMs, the optimised GWDM and optimised IWDMs of 74 studies from the Delft dataset are
shown12. The horizontal line corresponds to a calibration score of 0.05 and, contrary to the individual
scores (see Figure 4), the minority (6.7%) of DMs’ calibration scores are below this level.

Figure 9: The calibration scores of 222 DMs (74 EWDM, 74 optimized GWDM and 74 optimized
IWDM) across studies available in the Delft dataset. The red line denotes the 0.05 significance level.

We consider separately the EWDMs and the GWDMs and analyse their performance. This evaluation
of the performance is usually referred to as an in-sample validation. That is, the performance of DMs
is evaluated on the questions that were used to determine the DMs. Figure 10 shows the GWDM
scores on the x-axis and the EWDM scores on the y-axis. The horizontal and vertical lines indicate
the 0.05 significance level, which can be regarded as a threshold for the calibration score. Very rarely
one combination is below this threshold while the other is above. The main diagonal represents equal
performance from the calibration view point, and again the two DMs are equally calibrated in very few

12There are 79 professional studies for which the DMs’ scores were reported in [9] and [13]. We were able to identify,
re-run and reproduce scores for 74 of them.
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cases. Given the discussion in Section 3.2.1 about small differences in the calibration scores, we may
consider a region around the main diagonal, where we cannot distinguish between calibration scores
(see the area bounded by dashed lines in Figure 10). We consider only the studies which used at least
ten seed variables (63 out of the 74 used above). It results that 41.27% of the scores fall within that
region, and in 50.79% of the cases, the GWDM calibration score is clearly better than the EWDM’s
calibration score. In only 7.94% of the studies was the EWDM’s calibration better than the GWDM’s.
Some would consider this as irrefutable evidence that the optimised GWDM combination is either as
good or better than the EWDM.

Figure 10: Pairs of 63 calibration scores for optimised GWDMs versus EWDMs across the studies from
the Delft dataset using at least 10 seed questions.

The picture changes dramatically when we consider the information scores. These are shown in Figure
11a. The vast majority of the scores are higher for the GWDM, pattern which is repeated when looking
at the combined score (ses Figure 11b).
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(a) Pairs of 63 information scores for optimised
GWDMs versus EWDMs across the studies from
the Delft dataset using at least 10 seed questions.

(b) Pairs of 63 combined scores for optimised
GWDMs versus EWDMs across the studies from the
Delft dataset using at least 10 seed questions.

Figure 11: Optimised GWDMs versus EWDMs information scores (11a) and combined scores (11b)
across the studies from the Delft dataset using at least 10 seed questions.

Item weights sometimes improve over global weights. In the same dataset of 74 professional studies
(that is all studies we initially considered and not just those with more than ten seed questions), the
informativeness of the IWDM is larger than the informativeness of GWDM in 57.1% of the studies,
IWDMs’ calibrations is only 20.6% of the times larger than that of the GWDMs. IWDMs’ combined
scores are larger that the PWDMs score for 41.3% of the studies.

Of course the above analysis only serves as an in-sample validation of our intuition that perfor-
mance based combinations are at least as, or more calibrated than, and certainly more informative
than the equally weighted combinations. Out of sample validation studies confirming the same results
have been published in [9]. Add reference, when available of Tom and Roger’s chapter on random
experts. An ultimate proof that the observed differences in scores are indeed important would be the
possibility to use the different combinations in their respective decision problems and confirm that
such differences in performance result in differences in decisions. Unfortunately this does not seem to
be possible. Maybe future SEJ studies should follow up with such an analysis.

4.2 Optimised DMs

Optimized performance-based DM’s have been considered in the analysis of the professional studies in
the previous sub-section. Even though clarified and discussed with every opportunity, the optimisation
procedure (which ensures that we are using a proper scoring rule, at least asymptotically) seems to
still make analysts and young facilitators nervous, because this procedure is perceived as excluding
experts (by assigning them zero weight) from the final combination of judgements.

Weight zero does not mean value zero. Most of the times this means that those experts’ knowledge
was already contributed by other experts. The value of un-weighted experts is seen in the robustness of
the answers against loss of experts. Excalibur has the option to perform such a robustness analysis and
to recalculate the scores that would have been obtained if experts were completely excluded (rather
than weighted zero) from the analysis. One of the very important contributions experts make is in
determining the support of the variables. All experts contribute to these ranges and, when one expert’s
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assessments are not taken into account both the calibration scores and the information scores of the
remaining experts may change. This sometimes results in a worse calibrated DM. Below is one such
example from the ice sheet application published in Nature Climate Change.

(a) Robustness analysis for experts in the ice sheet
application detailed in [3].

(b) Item Weights Decision Maker Optimised combina-
tion for the ice sheet application detailed in [3].

Figure 12: Weight zero does not mean value zero.

Figure 12a shows a snapshot from Excalibur obtained when clicking on the Robustness (experts)
button. Row i corresponds to the scores that would have been obtained if Expert i were not part of
the expert panel. The last row shows the scores obtained when all experts are involved. Figure 12b
shows the optimal combination of experts when item weights are assigned. Only experts 1 and 7 are
weighted in the optimal combination, however, the robustness analysis shows that if one of them is
removed from the analysis, there is only a slight, irrelevant (given the number of seeds) decrease in
calibration. However, if expert 3, whose weight is zero in the combination, is completely removed from
the panel, the calibration drops from 0.7 to 0.3.

In the example above, the optimised IWDM (and GWDM) uses a combination of the two best
calibrated experts from the panel. In this case, as in many other cases, the optimised combination
affords a higher calibration score than the two experts individually. Even though this seems intuitive
it is not always the case. Hence, there are cases when the optimised DM performs worse than the best
expert. The reason behind this is the following: when the optimised DM is used, the optimisation
is based on the calibrations scores alone. When there are two (or more) experts with the same best
calibration, the optimised DM takes them all in the final combination, independent of the differences
between their information scores. Their respective weights will be differentiated using their information
scores, but this may still result in “optimal” DM whose calibration (or even combined score) is worse
that the best experts’ calibration. An explanation for this behaviour may be what Cooke calls a
“peculiar” sort of correlation, which “has never been observed in practice” (pg 197 from [11]). However,
since the book was written, this phenomenon was observed in practice, even though in a different
context than the one explored in [11]. We conjecture that these situations occur when the experts
answers are correlated in a certain way; however, it is not clear yet what this “certain way” may
mean. In a recent application detailed in [16], there were three experts who received the best possible
calibration (0.928) score to be obtained on 13 seeds (which is the number of seeds used for this
elicitation). Even though it is common for two (or even three) experts to have the same calibration
score, it is rather unusual for three of the experts to have the same best calibration score.
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(a) Optimised Decision Makers for a recent defence ap-
plication detailed in [16].

(b) Robustness analysis for experts in a recent de-
fence application detailed in [16].

Figure 13: The optimised DM is not alway optimum.

The combination of the three best experts (experts 1, 3, and 10) leads to a poorer performance for
both the GWDM, and the IWDM. However, taking one of the best calibrated experts out of the
combination, restores the score of the DMs to equal that of the best calibrated experts. This is true
only when we take expert 1 out of the analysis, as shown in Figure 13b. The dependence structure
between these three experts is depicted in Table 3.

Expert 1 Expert 3 Expert 10

Expert 1 1 -0.07 0.55

Expert 3 -0.07 1 -0.24

Expert 10 0.55 -0.24 1

Table 3: Correlation matrix of the three best calibrated experts.

Expert 1’s assessments seem to be positively correlated with those of expert 10 and uncorrelated
with those of expert 3. The two experts whose combination would be better calibrated seem to be
slightly negatively correlated (even though on 13 samples this correlation is not significantly different
than zero). The correlation values were calculated based on the medians of the experts rather than
all three quantiles, in a similar way to the calculations performed in other studies that investigated
dependence between experts’ assessments (see [20, 29]).

There is an unequivocal need for more research into these issues and more awareness of the possi-
bilities.

5 Closing remarks

This chapter draws attention to some (maybe less discussed) aspects of the theoretical background
of CM. One of these aspects is the misinterpretation of the differences between calibration scores.
Another one regards the intuitive relation between the wideness of the uncertainty bounds and the
information score. It also aims to provide a thorough overview of practical aspects and choices that
practitioners face before and during the elicitation process.
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“The qualifier structured means that expert judgment is treated as scientific data, albeit scientific
data of a new type” [11]. The name of the method itself, the “Classical Model” emphasizes the close
connections with classical statistics. Furthermore, the method has auspiciously laid grounds for further
statistical endeavors, such as goodness of fit and validation. If one regards the DM’s performance as
a goodness of fit measure, then the optimized DM’s distributions are constructed such that they best
fit the expert data. The evaluation of the performance-based DM has also been referred to as an
in-sample validation. Furthermore, notable effort has been undertaken [9] to validate CM. The scores
of performance-based DM’s are hence evaluated on questions that have not been used to construct
DM’s distributions.

Despite the demanding nature of CM, the results from the studies show that the effort of forming
and using performance-based combination of experts distributions is definitely worthwhile.
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