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Abstract

Making decisions in complex environments is a key challenge in artificial intelligence (AI).
Situations involving multiple decision makers are particularly complex, leading to compu-
tational intractability of principled solution methods. A body of work in AI has tried to
mitigate this problem by trying to distill interaction to its essence: how does the policy of
one agent influence another agent? If we can find more compact representations of such
influence, this can help us deal with the complexity, for instance by searching the space
of influences rather than the space of policies. However, so far these notions of influence
have been restricted in their applicability to special cases of interaction. In this paper we
formalize influence-based abstraction (IBA), which facilitates the elimination of latent state
factors without any loss in value, for a very general class of problems described as factored
partially observable stochastic games (fPOSGs). On the one hand, this generalizes existing
descriptions of influence, and thus can serve as the foundation for improvements in scala-
bility and other insights in decision making in complex multiagent settings. On the other
hand, since the presence of other agents can be seen as a generalization of single agent set-
tings, our formulation of IBA also provides a sufficient statistic for decision making under
abstraction for a single agent. We also give a detailed discussion of the relations to such
previous works, identifying new insights and interpretations of these approaches. In these
ways, this paper deepens our understanding of abstraction in a wide range of sequential
decision making settings, providing the basis for new approaches and algorithms for a large
class of problems.

1. Introduction

One of the important ideas in the development of algorithms for multiagent systems (MASs)
is the identification of compressed representations of the information that is relevant for an
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agent (Becker, Zilberstein, Lesser, & Goldman, 2003; Becker, Zilberstein, & Lesser, 2004;
Varakantham, young Kwak, Taylor, Marecki, Scerri, & Tambe, 2009; Petrik & Zilberstein,
2009; Witwicki & Durfee, 2010a, 2010b, 2011; Velagapudi, Varakantham, Scerri, & Sycara,
2011; Witwicki, 2011; Witwicki, Oliehoek, & Kaelbling, 2012; Oliehoek, Witwicki, & Kael-
bling, 2012; Hernandez-Leal, Kaisers, Baarslag, & Munoz de Cote, 2017; Bazinin & Shani,
2018). For instance, when a cook and a waiter collaborate, the waiter might not need to
know all details of how the cook prepares the food; it may be sufficient if he/she has an
understanding of the time that it will take.

In this paper we investigate abstractions that aim at decomposing structured MASs into
a set of smaller interacting problems (Oliehoek et al., 2012; Witwicki & Durfee, 2010b). In
particular, we describe in detail the concept of influence-based abstraction (IBA), which
facilitates the abstraction of latent state variables without sacrificing task performance. It
constructs a smaller, local model for one of the agents given the policies of the other agents.
IBA consists of two steps: first, we compute a so-called influence point—a more abstract
representation of how an agent’s local problem is affected by other agents and external (i.e.,
non-local) parts of the problem—, second, this influence is used to construct the smaller
influence-augmented local model (IALM). This IALM can subsequently be used to compute
a best response.

IBA does not only give a new perspective on best-response computations themselves,
but this new perspective also has broader implications. For instance, it forms the basis
of influence search (Becker et al., 2003; Witwicki & Durfee, 2010b; Witwicki et al., 2012;
Bazinin & Shani, 2018), which can provide significant speedup for multiagent planning by
searching the space of joint influences rather than the potentially much bigger space of
joint policies. It also can underpin guarantees on the quality of heuristic solutions, by
considering optimistic influences (Oliehoek, Spaan, & Witwicki, 2015a), or approximate
influences (Congeduti, Mey, & Oliehoek, 2020). While in this article, we assume that the
model (which can be seen as a specific type of dynamic Bayesian network) is known in ad-
vance, future work could consider learning such representations. Moreover, IBA can serve
as inspiration, in the context of deep reinforcement learning, for neural network architec-
tures that compute approximate versions of influence, which can improve learning, both in
terms of speed as well as performance (Suau de Castro, Congeduti, Starre, Czechowski, &
Oliehoek, 2019b).

This article gives a formal definition of influence that can be used to perform IBA
for general factored partially observable stochastic games (fPOSGs) (Hansen, Bernstein, &
Zilberstein, 2004; Boutilier, Dean, & Hanks, 1999), and proves that an IALM constructed
using this definition of influence in fact allows computation of an exact best-response. In
other words, it shows that this description of influence is a sufficient statistic of the policy of
the other agents: it is sufficient to predict observations and rewards and to thereby optimize
value. This article extends our previous paper (Oliehoek et al., 2012) in the following ways:

1. it provides a complete proof of the claimed exactness of IBA;

2. it elaborates on a number of technical subtleties, such as dealing with multiple sources
of influence, and specifying initial beliefs in the IALM;

3. it provides an extension of IBA and corresponding proofs to fPOSGs with intra-stage de-
pendencies, which are critical for the expressiveness of the formalism (cf. Section 4.1.1);
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4. it provides additional illustration and explanation, making the concept of IBA more
accessible;

5. it deepens the discussion of the relation to special cases of fPOSGs, and more explicitly
identifies ways in which future work can improve scalability of these sub-classes;

6. it provides a much more extensive discussion of related work, including the more recent
work on deep reinforcement learning (RL). Specifically, by building on the theoretical
results provided in this paper, it generates insights into the nature of the ‘approximate
value factorization’ assumption which has been successfully exploited by a popular class
of deep RL methods.

Additionally, in Section 3 we make a simple (but, in the context of IBA, novel) observation:
the presence of other agents can be seen as a generalization of single agent settings, which
directly implies that our formulation of IBA also provides a sufficient statistic for decision
making under abstraction for a single agent. While there is a multitude of performance
loss bounds available for abstractions, e.g., see Dearden and Boutilier (1997), Dean, Givan,
and Leach (1997), Givan, Dean, and Greig (2003), Iyengar (2005), Li, Walsh, and Littman
(2006), Petrik and Subramanian (2014), Abel, Hershkowitz, and Littman (2016), these are
usually based on assumed quality bounds on the transition probabilities and rewards of the
abstracted model (see Section 8.3 for more details). In contrast, our work here shows how an
abstracted model can preserve exact transition and reward predictions, by ‘remembering’
appropriate elements of the local history. In the words of McCallum (1995), we detail
an approach to perfectly “uncover [...] hidden state” in abstractions for a large class of
structured problems.

As such, the contributions of this paper are of a theoretical nature: they provide a prin-
cipled understanding of lossless abstractions in structured (multiagent) decision problems
by providing a formal framework that gives a unified perspective on previous work, while
at the same time providing new insights and extending the scope of applicability. The
main technical result is the proof of sufficiency given in Section 6: the smaller influence-
augmented local model produced by IBA can be used instead of the original larger model
without any loss in solution quality (i.e., value). The proof is not only a certification of
the theory, it also serves a practical purpose: it isolates the core technical property that
needs to hold for sufficiency, thus providing 1) insight into how abstraction of latent state
factors affects value, 2) a derivation that can be used to obtain a simplification of influence
in simpler cases, and 3) a recipe of how to prove similar results for more complex settings.

This paper is organized as follows: First, Section 2 provides the necessary background
by introducing single and multiagent models for decision making. Section 3 introduces
the concept of computing best responses (using global value functions) to the policies of
other agents and the concept of ‘local form models’ which formalizes a desired abstraction
for an agent. Next, in Section 4, we bring these concepts together: we show how an
agent can locally compute a best-response (compute a local value function) provided it is
given an influence point. Section 5 extends this framework to problems with intra-stage
dependencies. Section 6 then presents the main proof of sufficiency of our influence points,
i.e., it shows that they provide sufficient information to compute optimal policies without
any loss in value. Section 7 discusses reinterpretations of previous work on forms of influence-
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based abstraction in our more general framework, while Section 8 details the relations to
other related work. Finally, Section 9 concludes.

2. Background

Here we concisely provide background on some of the models that we use. The main purpose
is to introduce the notation formally. For an extensive introduction to partially observable
Markov decision processes (POMDPs) we refer to Kaelbling, Littman, and Cassandra (1998)
and Spaan (2012), for an introduction to multiagent variants see Seuken and Zilberstein
(2008), Oliehoek (2012) and Oliehoek and Amato (2016).

Unavoidably, this manuscript contains a fair amount of terminology and mathematical
notations. To aid the reader we have included a list of acronyms (Appendix B) and a list
of recurring notation (Appendix C).

2.1 Single-Agent Models: POMDPs

Partially observable Markov decision processes, or POMDPs, provide a formal framework
for the interaction of an agent with a stochastic, partially observable environment. That is,
they provide an agent with the capabilities to reason about both action uncertainty as well
as state uncertainty.

2.1.1 Model

A POMDP is a discrete time model, in which the agent selects an action at every time
step or stage. It extends the regular Markov decision process (MDP) (Puterman, 1994)
to settings in which the state of the environment cannot be observed. It can be formally
defined as follows.

Definition 1 (POMDP). A partially observable Markov decision process (POMDP) is de-
fined as a tuple MPOMDP =

〈

S,A,T,R,O,O,H,b0
〉

with the following components:

• S is a (finite) set of states s. The state at some stage t is denoted st;

• A is the (finite) set of actions a;

• T is the transition probability function, that specifies T (s′|s,a) = Pr(st+1 = s′ | st =
s, at = a), the probability of a next state s′ given a current state s and action a. This
directly demonstrates the primed shorthand notation we will occasionally use;

• R is the immediate reward function R : S ×A×S → R. With R(s,a,s′) we denote the
reward specified for a particular transition s,a,s′;

• O is the set of observations;

• O is the observation probability function, which specifies O(o|a,s′) = Pr(ot+1 = o |
at = a, st+1 = s′), the probability of a particular observation o after a and resulting
state s′;

• H is the horizon of the problem as mentioned above;

• b0 ∈ ∆(S), is the initial state distribution at time t = 0.1

1. ∆(·) denotes the set of probability distributions over (·).
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In many cases, the set of states is huge, and states can be thought of as composed of
values assigned to different variables:

Definition 2 (Factored POMDP). In a factored POMDP (fPOMDP), the state space S
is spanned by a set F =

{

F 1, . . . ,F |F|
}

of state variables F k (that are also called factors).
Each of these can take values from its domain Fk, such that the set of states is defined as
S = F1 × · · · × F |F|.

The merit of such a factored POMDP is that, by making the structure of the problem
(i.e., how different factors influence each other) explicit, the model can be much more
compact. In particular, the initial state distribution can be compactly represented as a
Bayesian network (Pearl, 1988; Bishop, 2006; Koller & Friedman, 2009), and the transition
and reward model can be specified compactly using a two-stage dynamic Bayesian network
(2DBN) (Boutilier et al., 1999), and a similar approach can be taken for the observation
model (Poupart, 2005). (An example of a 2DBN will be discussed in Figure 2 on page 796.)

The fPOMDP model is closely related to the framework of influence diagrams (Howard
& Matheson, 1984; Tatman, 1990). In fact, by unrolling (over time) the 2DBN we create an
influence diagram. We point out, however, that our notion of influence (i.e., the influence
point and the resulting influence-based abstraction we will detail in Section 4) is novel; it
has not been considered in influence diagrams.

2.1.2 Beliefs

In contrast to regular MDPs, in a POMDP the agent cannot observe the state; it only
observes the observations. However, the observations are not a Markovian signal: i.e., the
last observation ot made by the agent does not provide the same amount of information
(to predict the rewards and the future of the process) as the action-observation history
(AOH), the entire history of actions and observations ~ht =

(

a0,o1, . . . ,at−1,ot
)

. This means

that in general the agent needs to select its actions based on ~ht in order to achieve optimal
performance.

Luckily, for a POMDP this history can be summarized compactly as a belief, which is
defined as the posterior probability distribution over states given the history:

b(s),Pr(s|b0,~ht).

The belief does not only summarize the history, it does so in a lossless way. That is, a belief
is a sufficient statistic for optimal decision making (Bertsekas, 2005); it allows an agent to
reach the same performance as an agent that would act optimally based on the AOH ~ht.

This belief can be recursively computed, which means that an agent can update its belief
as it interacts with its environment. We write b′ = BU(b,a,o), where BU(b,a,o) is the belief
update operator that, given a previous belief b taken action a and received observation o,
produces the next belief:

∀s′ BU(b,a,o)(s′) =
1

Pr(o|b,a)
Pr(o|a,s′)

∑

s

Pr(s′|s,a)b(s). (2.1)

Here, Pr(o|b,a) is a normalization constant:

Pr(o|b,a) = Es∼b,s′∼T (s,a,·)

[

O(a,s′,o)
]

=
∑

s′

Pr(o|a,s′)
∑

s

Pr(s′|s,a)b(s).
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2.1.3 Policies and Value Functions

In a POMDP, the agent employs a policy, π, to interact with its environment. Such a policy
is a (deterministic) mapping from beliefs to actions. Note that, given the initial belief b0,
such a policy will specify an action for each observation history.2

The goal of the decision maker, or agent, in the POMDP is to choose a policy π that
maximizes the expected (discounted) cumulative reward:

E

[

H−1
∑

t=0

γtR(st,at,st+1)|b0,π

]

, (2.2)

here

• H is the horizon, i.e., the number of time steps, or stages, for which we want to plan,

• the expectation is over sequences of states and observations induced by the policy π,

• γ ∈ [0,1] is the discount factor.

In this work, we focus on the finite-horizon case, in which it is typical (but not necessary)
to assume γ = 1.

For a finite-horizon POMDP, the optimal (action-)value function for stage t can be
expressed as

Qt(b,a) =

{

R(b,a), t = H − 1

R(b,a) + γ
∑

o Pr(o|b,a)V
t+1(BU(b,a,o)), otherwise

(2.3)

where V t+1(b′) = maxa′ Q
t+1(b′,a′) is the value of acting optimally in the next time step

and R(b,a) is the expected immediate reward:

R(b,a) = Es∼b,s′∼T (·|s,a)

[

R(s,a,s′)
]

=
∑

s

b(s)
∑

s′

Pr(s′|s,a)R(s,a,s′). (2.4)

2.2 Multiagent Models: POSGs

The POMDP model can be extended to include multiple self-interested agents as follows.

Definition 3 (POSG). A partially observable stochastic game (POSG) is defined as a tuple
MPOSG =

〈

D,S,A,T,R,O,O,H,b0
〉

with the following components:

• D = {1, . . . ,n} is the set of n agents.

• S is a (finite) set of states.

• A = A1× . . .An is the set of joint actions a = 〈a1, . . . ,an〉, with Ai the set of individual
actions for agent i.

• T is the transition probability function, that now depends on joint actions: T (st+1|st,at) =
Pr(st+1|st,at).

2. This can be seen as follows: for b0 the policy specifies an action, a0, then given o1 we can compute b1

which we can use to look up a1, etc.
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11 2

TT

T

Figure 1: A possible instantiation of the House Search problem: 1, 2 represent the
starting locations of the agents, while ‘T’ encodes the possible locations of the target.

• R = 〈R1, . . . Rn〉 is the collection of immediate reward functions (one for each agent).
Each Ri : S×A×S → Rmaps from states, joint actions and next states to an immediate
reward for agent i.

• O = O1 × · · · × On is the set of joint observations o = 〈o1, . . . ,on〉, with Oi the set of
individual observations for agent i,

• O is the observation probability function, which specifies Pr(o|a,s′), the probability of
a particular joint observation o after a and resulting state s′.

• H is the horizon of the problem as mentioned above.

• b0 ∈ ∆(S), is the initial state distribution at time t = 0.

Since in a POSG each agent has its own goal, there no longer is a definition of optimality.
Instead it is customary to focus on game-theoretic solution concepts (Hansen et al., 2004).
Such solutions, e.g., Nash equilibria, typically specify a tuple of policies π = 〈π1, . . . ,πn〉,
one for each agent, that are in equilibrium. In general, we will refer to a tuple of policies π
as a joint policy.

Of course, it is also possible to consider cooperative teams of agents. In this case, we
align the goals of the agents by giving them the same reward function:

Definition 4 (Dec-POMDP). A decentralized partially observable Markov decision process
(Dec-POMDP) is a POSG where all agents share the same reward function: ∀i,j Ri = Rj .

Since interests are aligned, in a Dec-POMDP we can speak about optimality. Moreover,
there is guaranteed to be at least one deterministic joint policy that is optimal (Oliehoek,
Spaan, & Vlassis, 2008a). As was the case for POMDPs, we can also consider variants of
the multiagent models with factored state spaces. We will refer to these as factored POSGs
(fPOSGs) and factored Dec-POMDPs (fDec-POMDPs) (Oliehoek, Spaan, Whiteson, &
Vlassis, 2008b).3

As an example, we consider the House Search problem (Oliehoek, Witwicki, & Kael-
bling, 2011), in which a team of robots must find a target (say a remote control) in a house

3. More recently, researchers have also investigated deterministic and non-deterministic versions, called
(factored) qualitative Dec-POMDP (Brafman, Shani, & Zilberstein, 2013). We will not particularly
target this special case in this paper, but note that ideas of influence search can be exploited in this
context too (Bazinin & Shani, 2018).
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with multiple rooms. This task is representative of an important class of problems in which
a team of agents needs to locate objects or targets. In House Search the assumption is
that a prior probability distribution over the location of the target is available and that the
target is stationary or moves in a manner that does not depend on the strategy used by the
searching agents.

Example. The House Search environment can be represented by a graph, as illustrated
in Figure 1 for the case of two agents. At every time step each agent can stay in the current
room or move to a next one. The location of an agent i at time step t is denoted lti and that of
the target is denoted lttgt. In general, the target could move with probabilities p(l

′

tgt|ltgt). The
actions (movements) of each agent have a specific cost ci(li,ai) (e.g., the energy consumed
by navigating to a next room) and can fail; we allow for stochastic transitions p(l′i|li,ai).
Also, each robot might receive a penalty ctime for every time step that the target is not
found yet. When a robot is in (or near) the same node as the target, there is a probability
of detecting the target p(detecti|ltgt,li), which will be modeled by a Boolean state variable
‘target found’ f t, which both agents can observe (thus modeling a communication channel
which the agents can only use to inform each other of detection). When the target is
detected, the agents also receive a reward rdetect. Given the prior distribution and model
of target behavior, the goal is to optimize the sum (over time) of rewards, thus trading off
movement cost and probability of detecting the target as soon as possible. In this paper,
we focus on the local perspective of a protagonist agent and therefore will assume that each
agent has its individual rewards (so the POSG setting).4

Figure 2a demonstrates how a two-stage dynamic Bayesian network (2DBN) can be
used to compactly represent the transition, observation, and reward model (Boutilier et al.,
1999).5 For instance, for each state variable at a state t+ 1, the 2DBN shows which other
entities (state factors and actions) influence it. The figure illustrates that most dependencies
are across-stage (e.g., lt2 influences lt+1

2 ) but that it is also possible to have intra-stage
dependencies (ISDs). For instance, whether the target will be detected at stage t + 1
depends on lt+1

2 not on lt2. The representation of the transition model is compact since it
can be represented as a product of conditional probability tables (CPTs), each of which are
exponential only in the number of incoming dependencies. So as long as the number of
incoming connections is limited, the transition probabilities can be represented compactly.
Figure 2a also shows that this type of representation can also be employed for observation
probabilities, as well as rewards.

Since ISDs complicate the notation and definition of influence, we also consider a ver-
sion of the problem that has no intra-stage connections, shown in Figure 2b. For rewards
and observations, intra-stage connections are still allowed. (In fact, since the observation
probabilities in the standard POMDP definition depend on the next state s′, there is no way
of representing them without intra-stage connections). Note that this is a slightly different
problem than the problem represented in Figure 2a: in the problem without ISDs the agents
have a chance of detecting the target at stage t+1 if they are co-located with the target at

4. In previous work, the house search problem was treated as a Dec-POMDP by defining the team reward
as the sum of the individual rewards (Oliehoek et al., 2011).

5. More formally, since we include actions (decisions) and rewards (utilities), diagrams like this are a type
of influence diagram or decision network. However, not to introduce further terminology, we will refer
to them simply as 2DBN.
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at1

at2

ot+1
1

ot+1
2

Rt
1

Rt
2

lt1

lt2

lt+1
1

lt+1
2

lttgt lt+1
tgt

f t f t+1

(a) With intra-stage connections.

at1

at2

ot+1
1

ot+1
2

Rt
1

Rt
2

lt1

lt2

lt+1
1

lt+1
2

lttgt lt+1
tgt

f t f t+1

(b) Without intra-stage connections.

Figure 2: Factored representation of the House Search problem. Actions, observations
and rewards of the first agent are in light blue, while those of agent 2 are in dark red.
State variables are in black. We use standard shapes for influence diagrams: rectangles for
actions, circles for random variables, and diamonds for rewards (e.g., Russell & Norvig,
2009) .

stage t, which means that there is a one-step delay incurred before they receive the reward.
This illustrates the fact the ISDs do allow for a more expressive model, and that therefore
developing theory that support such connections is an important goal.

To facilitate easier exposition, in Section 4 we will first introduce the concept of influence-
based abstraction without ISDs. These will be considered in Section 5. Before we can
jump to the topic of influence-based abstraction, however, we will need to discuss decision
problems from a local perspective, in Section 3, which covers problems with ISDs.

3. Best Responses and Local-Form Models

In contrast to the typical solutions to POSGs and Dec-POMDPs, which try and identify a
joint policy as the solution, this paper focuses on the local perspective of an individual agent.
From this perspective, the agent’s goal is to compute a best-response to the policies used by
other agents. That is, given a multiagent model with state uncertainty (either a POSG or
Dec-POMDP) and given some policy for the other agents π−i = 〈π1, . . . ,πi−1,πi+1, . . . ,πn〉,
we want to compute the best response πBR

i for agent i. Such best-response computation
is obviously important for self-interested agents (i.e., in POSGs), but is also an important
component in many Dec-POMDP solution methods (Nair, Tambe, Yokoo, Pynadath, &
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fPOSG GFBRM

IALMLFM

multiagent

models

best-response

models

(for one agent)
fix policies of

other agents

specify

local 

state

fix policies of

other agents,

compute incoming 

influence

specify 

local 

state

compute

incoming

influence

Figure 3: Overview of various models used.

Marsella, 2003; Nair, Varakantham, Tambe, & Yokoo, 2005; Kim, Nair, Varakantham,
Tambe, & Yokoo, 2006; Pajarinen & Peltonen, 2011; Lauri, Pajarinen, & Peters, 2020).
Also, let us point out that we make no restrictions on the policies employed by the other
agents: they are general mappings from the action-observation histories ~htj to probability
distributions over actions. For instance, their policies could be learning algorithms such as
Q-learning. As such, the setting we consider is very general.

As illustrated in Figure 3, we will consider a number of different types of models in
this paper. The starting point is given by the fPOSG or a special case thereof (e.g., a
Dec-POMDP). We refer those models as global-form models. For such models, it is possible
to directly compute a best-response by fixing the policies of the other agents. We refer
to the resulting POMDP as a global-form best-response model (GFBRM); these models
will be introduced next. Subsequently, we will introduce local-form models (LFMs), which
restrict the state factors that each agent primarily cares about. That is, an agent in an
LFM only reasons about a subset of factors. This will then form the basis for computing
best-responses in such a local model, called influence-augmented local model (IALM), which
will be enabled by influence-based abstraction introduced in Section 4.

3.1 Global-Form Best-Response Model

In this section we define a Global-Form Best-Response Model (GFBRM) that an agent can
use in order to compute a best-response in a general POSG. We first define this model and
then talk about value functions for this model.6

Specification of the Model The basic idea of defining a best-response model is shown
in Figure 4. By fixing π−i, the policies of the other agents, all the choice nodes are turned

6. Our formulation here is closely related to the way best-responses are computed in DP-JESP (Nair et al.,
2003): essentially our representation here is a reformulation that makes explicit the fact that fixing the
policies of other agents leads to a single-agent POMDP model.
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Figure 4: A hypothetical global-form best-response model for agent 2, unrolled over time.
This model has a number of state factors F k. In addition, the action-observation history
~ht1 (or, more general, internal state) of agent 1 can be interpreted as a state factor in this
model.

into random variables that now depend on the AOHs that those agents observed (Nair et al.,
2003). So the key construct here is that the AOH of the other agent(s) is made part of the
hidden state (often termed latent state factors) of the best-response model. This can be
formalized as follows.

Definition 5 (Global-Form Best-Response Model). Let MPOSG =
〈

D,S,A,T,R,O,O,H,b0
〉

be a (f)POSG and let π−i be a profile of policies for all agents but i. We say that the POMDP
MGFBR

i (MPOSG,π−i) =
〈

S̄i,Ai,T̄i,R̄i,Oi,Ōi,H,b̄i
0
〉

is a Global-Form Best-Response Model
(GFBRM) for agent i, where

• S̄i is the set of augmented states s̄ti = 〈s,~ht−i〉 that specify an underlying state of the
POSG as well as an AOH history for all the other agents.

• Ai,Oi are the (unmodified) sets of actions and observations for agent i.

799



Oliehoek, Witwicki, & Kaelbling

• The transitions

T̄i(s̄
t+1
i |s̄ti,a

t
i) = T̄i(〈s

t+1,~ht+1
−i 〉|〈s

t,~ht−i〉,a
t
i)

= T̄i(〈s
t+1,

(

~ht−i,a
t
−i,o

t+1
−i

)

〉|〈st,~ht−i〉,a
t
i)

= Pr(ot+1
−i ,s

t+1,at−i|s
t,ati,

~ht−i)

= Pr(ot+1
−i |a

t
i,a

t
−i,s

t+1) Pr(st+1|st,ati,a
t
−i) Pr(a

t
−i|~h

t
−i)

=





∑

ot+1
i

O(ot+1|at,st+1)



T (st+1|st,at)π−i(a
t
−i|~h

t
−i) (3.1)

with π−i(a
t
−i|

~ht−i) =
∏

j 6=i πj(a
t
j |
~htj) the probability of at−i given

~ht−i according to π−i.

• The observations

Ōi(o
t+1
i |ati,s̄

t+1
i ) = Ōi(o

t+1
i |ati,〈s

t+1,
(

~ht−i,a
t
−i,o

t+1
−i

)

〉)

= Pr(ot+1
i |ati,a

t
−i,s

t+1,ot+1
−i )

=
Pr(ot+1

i ,ot+1
−i |a

t
i,a

t
−i,s

t+1)

Pr(ot+1
−i |a

t
i,a

t
−i,s

t+1)

=
O(ot+1|at,st+1)

∑

ot+1
i

O(ot+1|at,st+1)
(3.2)

(Note that ot+1 =
〈

ot+1
i ,ot+1

−i

〉

, such that the summation is over the component of ot+1

corresponding to agent i).

• R̄i is the augmented reward model

R̄i(s̄
t
i,a

t
i,s̄

t+1
i ) = R̄i(〈s

t,~ht−i〉,a
t
i,〈s

t+1,~ht+1
−i =

(

~ht−i,a
t
−i,o

t+1
−i

)

〉)

= Ri(s
t,ati,a

t
−i,s

t+1) (3.3)

Note that at−i is specified by s̄t+1
i .

• H is the (unmodified) horizon.

• b̄i
0 is the initial belief.

A GFBRM is a POMDP, which means that an agent can track a belief, which is now
a distribution over augmented states s̄i = 〈st,~ht−i〉, as usual. We will refer to such beliefs
as global-form beliefs, denoted b

g
i . The initial global-form belief follows directly from the

initial belief of the POSG. Since at the first stage, the history of the other agents is the
empty history (), it is trivially constructed from b0:

∀s b
g,0
i (〈s,()〉), b0(s).

Note that the description of the GFBRM depends rather crucially on the fact that we
choose AOHs for the representation of the internal state of the other agent(s). That is, we
assume that the policies of the other agent(s) are based on their AOHs. While this is a
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very general model, other models of other agents with a more limited description of internal
state (e.g., finite state controllers) can be useful too. For such more compact descriptions,
however, it is not always possible to construct a POMDP model with an independent
transition and observation model. Instead, one may need to replace T̄ ,Ō by a combined
‘dynamics function’ D̄ that specifies D̄(s̄t+1

i ,ot+1
i |s̄ti,a

t
i). For more details see Oliehoek and

Amato (2014).7

Value Function Since a GFBRM is just a POMDP, all POMDP theory and solution
methods apply. E.g., the optimal (action-)value function is given by:

Qt
i(b

g
i ,a

t
i) = Ri(b

g
i ,a

t
i) + γ

∑

ot+1
i

Pr(ot+1
i |bgi ,a

t
i)V

t+1
i (BU(bgi ,a

t
i,o

t+1
i )) (3.4)

where

Ri(b
g
i ,a

t
i) = Es̄ti∼bgi ,s̄

t+1
i ∼T̄i(s̄ti,a

t
i,·)

[

R̄i(s̄
t
i,a

t
i,s̄

t+1
i )

]

=
∑

st

∑

st+1

∑

a−i

Pr(st+1|st,a)Ri(s
t,a,st+1)

∑

~ht
−i

Pr(a−i|~h
t
−i)b

g
i (s

t,~ht−i) (3.5)

(see Appendix A.1.1) and

Pr(ot+1
i |bgi ,a

t
i) = Es̄ti∼bgi ,s̄

t+1
i ∼T̄i(s̄ti,a

t
i,·)

[

Ōi(o
t+1
i |ati,s̄

t+1
i )

]

=
∑

st

∑

st+1

∑

a−i

∑

ot+1
−i

Pr(st+1|st,a) Pr(ot+1|a,st+1)
∑

~ht
−i

Pr(a−i|~h
t
−i,π−i)b

g
i (s

t,~ht−i) (3.6)

(see Appendix A.1.2.)
Solution of the GFBRM gives the best-response value for agent i:

Vi(π−i),V 0
i (b

g,0
i ). (3.7)

3.2 Local-Form Model

GFBRMs allow an agent i to compute a best-response policy against the fixed policies π−i

of the other agents. A difficulty here is that agent i needs to reason about many state factors
as well as the internal state (the action-observation history) of the other agents. That is,
drawing an analogy to human interactions, it is like in a simple collaborative task (e.g.,
carrying a table), we would need to reason over the inner working of our collaborator’s

7. Essentially in such a setting we have that augmented states are tuples of nominal states and internal
states of other agents s̄ti = 〈st,It−i〉. The internal states of the other agent are updated based upon the
taken actions and observations, but do not store those actions and observations. This means that, in
general, D̄ is specified as a marginal:

D̄(s̄t+1
i ,o

t+1
i |s̄ti,a

t
i) = Pr(〈st+1

,I
t+1
−i 〉,ot+1

i |〈st,It−i〉,a
t
i)

=
∑

at

−i
,o

t+1

−i

Pr(It+1
−i |It−i,a

t
−i,o

t+1
−i )O(ot+1|at

,s
t+1)T (st+1|st,at)π−i(a

t
−i|I

t
−i)

and it is not possible to decompose it into a separate transition and observation function.
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brain, as well as over the sequence of images that he or she perceives. Clearly, such an
approach is infeasible in general. To make a step in the direction to overcome this problem,
here we introduce local-form models (LFMs) which restrict the set of state factors that each
agent primarily cares about, and eliminates the dependence on the AOH of other agents.

Local States An LFM augments an fPOSG with a function that provides a description of
each agent’s local state, i.e., the set of variables that each agent will model as part of its local
problem.8 Local state descriptions comprise potentially overlapping subsets of state factors
that will allow us to decompose an agent’s best-response computation from the global state.
We start with some definitions.

Definition 6 (Local state function). The local state function S : D → 2F maps from agents
to subsets of state factors S(i) ⊆ F .

The local state function defines the local state space of each agent. In particular, we
say that a state factor F ∈ F is modeled by an agent i if it is part of its local state space:
F ∈ S(i).

Definition 7 (Local state space). The local state space of agent i is defined as the Cartesian
product of the values that its modeled state factors can take:

Xi ,
∏

k s.t.Fk∈S(i)

Fk (3.8)

(remember that F is the set of state factors, while Fk is the set of values that the k-th state
factor F k can take).

Definition 8 (Observation-relevant factor). We say that a state factor F is observation-
relevant for an agent i, denoted OReli(F ), if it affects the probability of the agent’s ob-
servation. That is, when in the 2DBN there is a link from F t to oti (i.e., F is a parent of
oti).

Definition 9 (Reward-relevant factor). Similarly, a state factor F is reward-relevant for
an agent i, RReli(F ) if it affects the agent’s rewards, i.e., if F t or F t+1 is a parent of Rt

i.

We can now define the local-form model.

Definition 10 (Local-form model). A local-form POSG, also referred to as local-form model
(LFM), is a pair MLFM = 〈M,S〉, where M is an fPOSG and S is a local state function
such that, for all agents:

1. All observation-relevant factors are in the local state: ∀i∀F OReli(F ) =⇒ F ∈ S(i).

2. All reward-relevant factors are in the local state: ∀i∀F RReli(F ) =⇒ F ∈ S(i).

8. Note that the word ‘local’ does not need to imply any form of spatial proximity. For instance, in House

Search the agent might model its own location (which is spatial), and whether the target has been
found (not spatial).
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Modeled and Non-modeled Factors The basic idea behind the definition of the local-
form model is to avoid reasoning over the subset of variables from the global-form model
that are superfluous when it comes to computing the best response. Therefore, these non-
modeled factors can be abstracted away. The requirements on observation- and reward-
relevant factors make certain that the observation probabilities and rewards are still specified
in this abstracted model. Note also that this means that we will only be able to abstract
away (latent) state variables, not observation variables themselves. We will show that
such latent factor abstraction can, in principle, be performed without loss in value. This
certainly would not be the case for abstracting away observation variables: in general this
would lead to a loss of information and a corresponding drop in achievable value (Oliehoek
et al., 2008a).

The focus in this text is on the best-response perspective for one agent i. This allows
us to divide the set of state factors in ones modeled by agent i’s local problem (indicated
with x) and ones that are not modeled (indicated with y).9 To reduce the notational load,
we will no longer distinguish between a factor (F k above) and its values (Fk above). In
particular, we will simply write

• xk (an instantiation of) a modeled factor (with index k),

• xi (an instantiation of) all modeled factors of agent i,

• yk (an instantiation of) a non-modeled factor (with index k),

• yi (an instantiation of) all non-modeled factors of agent i,

such that st = 〈xti,y
t
i〉. We stress that ‘modeled’ is different from ‘observed’. In particular,

our aim is to construct a smaller POMDP with fewer (modeled) factors, but those factors
may not be observable. In fact, all state factors xk (and of course also yk) are expressed
as latent variables. When an agent can somehow (noisily) perceive information about xk,
this should be modeled by the observation function: there should be an arrow from such
factors to the observation oi of the agent and the CPT of oi should appropriately express the
observability of factor. Note that by construction of the LFM (cf. Definition 10), no such
dependencies may exist from a yk to oi. In general, the observation oi may itself consists
of multiple observation factors, but we will not consider this in this paper.

Transition Probabilities In an LFM, the probability of the next local state is the
marginal of the entire state:

Pr(xt+1
i |st,ai,a−i) =

∑

yt+1
i

Pr(xt+1
i ,yt+1

i |st,ai,a−i) (3.9)

In an LFM, just as in a normal fPOSG, the flat transition probabilities on the right
hand side of this equation are given by the product of the CPTs. However, from the
perspective of an agent i we can now group these CPTs in three different categories: 1)
those corresponding to modeled factors that are only affected by other factors and actions

9. More generally, from the perspective of agent i, S partitions the modeled factors S(i) in two sets: a
set of private factors that it models but other agents do not, and a set of mutually-modeled factors

(MMFs) that are modeled by agent i as well as some other agent j. This distinction plays a crucial role
in influence search for TD-POMDPs (Witwicki & Durfee, 2010a), but is less important for computing
best-responses as considered in this document.
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that are modeled, 2) those corresponding to modeled factors that are affected by at least
one factor or action of the external problem, and 3) those corresponding to non-modeled
factors. We will refer to the state factors corresponding to these as:

1. Only-locally-affected factors (OLAFs) x̊k. These can have incoming arrows from all
modeled factors xti at the previous stage, and from all modeled factors xt+1

i intra-stage
(but, obviously, excluding x̊k,t+1 itself, and respecting a non-cyclic structure as any
2DBN).

2. Non-locally-affected factors (NLAFs) x̃k. These are affected by at least one non-modeled
(intra-stage or previous-stage) factor or action of another agent.

3. Non-modeled factors (NMFs) yk.

(Note that the oversets on x were chosen to resemble ‘o’ and ‘n’ for OLAF and NLAF
respectively). These three types of factors are illustrated in Figure 5a, which shows a
hypothetical local-form model. Using the introduced notation, we can write the transition
probabilities as:

Pr(st+1|st,ai,a−i) =
[

Pr(̊xt+1
i | . . . ) Pr(x̃t+1

i | . . . ) Pr(yt+1
i | . . . )

]

= Pr(̊xt+1
i |xti,x̃

t+1
i ,ai) Pr(x̃

t+1
i |xti ,̊x

t+1
i ,yti ,y

t+1
i ,ai,a−i) Pr(y

t+1
i |xti,x

t+1
i ,yti ,ai,a−i) (3.10)

with

• Pr(̊xt+1
i |xti,x̃

t+1
i ,ai) representing a product of CPTs of OLAFs x̊k:

Pr(̊xt+1
i |xti,x̃

t+1
i ,ai) =

∏

k∈OLAF (i)

Pr(̊xk,t+1|xti,x
t+1
i ,ai) (3.11)

Note that although such individual factors x̊k,t+1 can have intra-stage dependencies on
other OLAFs x̊l,t+1 (i.e., x̊k,t+1 can depend on xt+1

i which can include other OLAFs
x̊l,t+1), the product term Pr(̊xt+1

i |xti,x̃
t+1
i ,ai) itself can only have intra-stage dependen-

cies on x̃t+1
i . 10

• Pr(x̃t+1
i |xti ,̊x

t+1
i ,yti ,y

t+1
i ,ai,a−i) the product of NLAF probabilities:

Pr(x̃t+1
i |xti ,̊x

t+1
i ,yti ,y

t+1
i ,ai,a−i) =

∏

k∈NLAF (i)

Pr(x̃k,t+1|xti,x
t+1
i ,yti ,y

t+1
i ,ai,a−i) (3.12)

• Pr(yt+1
i |xti,x

t+1
i ,yti ,ai,a−i) the product of probabilities of the NMFs yk:

Pr(yt+1
i |xti,x

t+1
i ,yti ,ai,a−i) =

∏

k∈NMF (i)

Pr(yk,t+1|xti,x
t+1
i ,yti ,y

t+1
i ,ai,a−i) (3.13)

10. Note that the intra-stage OLAFs x̊t+1
i will not appear in the conditioning set (‘behind the pipe’) as they

have all been multiplied in (they are ‘before the pipe’). Since the 2DBN is non-cyclical per definition,
this does not present any problems. A more explicit way of writing this is as follows. In general the
OLAFs can now depend on some NLAFs x̃ISD,t+1

i that act as intra-stage dependencies:

Pr(̊xt+1
i |xt

i,x̃
ISD,t+1
i ,a

t
i),

∏

k∈OLAF (i)

Pr(̊xk,t+1|xt
i,a

t
i,x

ISD(k),t+1)

with xISD(k),t+1 denoting the intra-stage parents of x̊k,t+1. To reduce the notational burden, however,
we will use the shorthands from (3.11).
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AT

(a) Illustration of an abstract local-form model for
agent 2. Factors can be divided into non-modeled fac-
tors (F 1), non-locally-affected factors (F 2, F 3, shaded
in this figure), and locally-affected factors (F 4). Also
note that F 4 is reward-relevant, while F 2 and F 3 are
observation-relevant factors.

at1
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(b) Local-form model for agent 2 in the house
search problem without intra-stage depen-
dencies. The ‘found’ variable f is the only
NLAF since it is affected by NMF lt1.

Figure 5: Local-form models.
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Value Function An LFM contains an fPOSG and as such best-response values for an
agent i can be defined using the techniques discussed above in Section 3.1. In particular,
we can just ignore the local state function and apply the definition of Q-value (3.4) with
the previously stated definitions of Ri(b

g
i ,ai) (3.5) and Pr(ot+1

i |bgi ,ai) (3.6).
Clearly, however, we would like to now rewrite the value function in a way that represents

the local structure imposed by the LFM requirements and exploits this for computational
benefits. The former is possible: for an LFM, we can indeed derive a expression for Ri(b

g
i ,ai)

that is more local (see Appendix A.2.1).

Ri(b
g
i ,a

t
i) =

∑

xt
i

∑

xt+1
i

Ri(x
t
i,a

t
i,x

t+1
i ) Pr(xti,x

t+1
i |bgi ,a

t
i,π−i), (3.14)

where (remember st = 〈xti,y
t
i〉)

Pr(xti,x
t+1
i |bgi ,a

t
i,π−i),

∑

yti

∑

at−i

Pr(xt+1
i |st,ati,a

t
−i)

∑

~ht
−i

Pr(at−i|
~ht−i,π−i)b

g
i (s

t,~ht−i). (3.15)

And, similarly, we can find a new, local, expression for the observation probability (Ap-
pendix A.2.2):

Pr(ot+1
i |bgi ,a

t
i) =

∑

xt+1
i

Pr(ot+1
i |ati,x

t+1
i ) Pr(xt+1

i |bgi ,a
t
i,π−i) (3.16)

where

Pr(xt+1
i |bgi ,a

t
i),

∑

st

∑

at−i

Pr(xt+1
i |st,ati,a

t
−i)

∑

~ht
−i

Pr(at−i|~h
t
−iπ−i)b

g
i (s

t,~ht−i). (3.17)

These new definitions of Ri(b
g
i ,ai), Pr(o

t+1
i |bgi ,ai) can be used directly in conjunction with

the definition of Q-value (3.4).
However, even though these definitions (3.14) and (3.16) are local, they still depend on

the global-form belief and this must perform summations over full states st and histories
of other agents ~ht−i via (3.15) and (3.17), rendering them intractable for larger problems.
In the next section, we will investigate formulations that are based on more local beliefs
to try and overcome this computational hurdle. Before jumping to this, we first state an
observation:

Observation. The presented definition of an LFM with multiple agents is a strict general-
ization of a single agent problem.

While this is a simple observation, the upshot of this is that the theory of influence-
based abstraction that we will introduce in the remainder of this paper also directly applies
to single-agent settings.11 Specifically, the formulas and results we will derive have more
specific forms for the single-agent case. We discuss relations to abstraction methods for
single-agent settings in Section 8.3.

11. We acknowledge Craig Boutilier, for pointing this out.
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4. Influence-Based Abstraction

In the previous section we introduced the GFBRM, which could be used to compute a best
response against a fixed policy of other agents. This model gives a straightforward way of
formulating the problem of computing a best-response. However, it is specified over the
global state and internal state of other agents (i.e., their AOHs), which means that solving
this model is computationally intractable.

To provide a more localized perspective, the local-form POSG defines for each agent a
subset of factors that it should be concerned with. However, even if the policies of the other
agents are fixed, it is not clear how an agent i can restrict its reasoning to its local state
xi: the non-modeled factors will still affect the local state transitions. Intuitively, we need
to capture the influence that the non-modeled part of the problem exerts on the modeled
part.

In this section, we formalize this intuition. In particular, we treat an LFM from the
perspective of one agent and consider how that agent is affected by the other agents and
can compute a best response against that ‘incoming’ influence.12

In an attempt to avoid notation overload, we first present a formulation without consid-
ering intra-stage connections. The general formulation that can deal with such connections
is given in Section 5.

4.1 Definition of Influence

As discussed in Section 3.1, when the other agents are following a fixed policy, they can be
regarded as part of the environment. The resulting decision problem can be represented
by the complete unrolled DBN, as we saw in Figure 4 on page 799. In this figure, a node
F t is a different node than F t+1 and an edge at (emerging from) stage t is a different from
the edge at t+1 that corresponds to the same edge in the 2DBN. Given this uniqueness of
nodes and edges, we can define the ‘influence’ as follows.

4.1.1 Influence Links, Sources and Destinations

Intuitively, the influence of other agents is the effect of those edges leading into the agent’s
local problem. We say that every directed edge from outside the local model (e.g., from an
NMF or action of another agent) to inside the local model (e.g., to a modeled state factor,
observation variable, or reward), is an influence link 〈ut,vt〉, where ut is called the influence
source and vt is the influence destination. In this section, we will assume that influence
links traverse a stage of the process (i.e., that the influence source for a destination vt lies
in the stage t− 1), but since we will also consider intra-stage influence links at a later point
in this document, to keep notation consistent, we label an entire influence link with the
stage-index of its destination.

For example, let us consider the House Search problem’s LFM shown in Figure 5b on
page 805. It shows that the link from lt1, the location of agent 1, to the ‘target found’ variable
f t+1 is an influence link, such that we would write the link as

〈

ut+1 = lt1,v
t+1 = f t+1

〉

,
similarly

〈

ut = lt−1
1 ,vt = f t

〉

would denote the influence link in the preceding time step.

12. An agent also exerts ‘outgoing’ influence on other agents, but this is irrelevant for best response compu-
tation.
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Assuming no intra-stage influence links, an influence source ut can be either an action
at−1
j or non-modeled state factor yt−1. We write ut→i = 〈yt−1

u ,at−1
u 〉 for an instantiation of

all influence sources exerting influence on agent i at stage t. That is, in the case of multiple
influence links pointing to modeled factors in stage t, yt−1

u denotes the (value of) influence
sources that are state factors, while at−1

u corresponds to those influence sources that are
actions. For instance, in our House Search example, yt−1

u = {lt−1
1 }, while at−1

u = ∅ since

there are no actions that are influence sources. We write ~ht−1
u for the AOHs of those other

agents whose action is an influence source (i.e., ~ht−1
u and at−1

u involve the same agents) .
In general, an influence destination can be either a (per definition non-locally-affected)

modeled factor x̃t, an observation variable oti, or a local reward node Rt
i. But Definition (10)

requires reward- or observation-relevant factors to be included in the local state; effectively
we restrict ourselves to the setting where the influence destination is an NLAF. This restric-
tion is without loss in generality: because we will introduce (in Section 5) the machinery
to deal with intra-stage influence links, influences on observations and rewards can easily
be dealt with by introducing a ‘dummy’ NLAF that acts as a proxy for the observation
or reward.13 A similar construction can be used to deal with settings where actions of
other agents would directly influence the observations or rewards of the agent under con-
cern. As such, the capability of dealing with such intra-stage dependencies is critical for
the applicability of the theory of influence-based abstraction.

4.1.2 Sufficient Information to Predict Influences: D-Separating Sets

If agent i would in advance know the value of its influence sources at different time steps,
it could easily compute its best response by making use of only this knowledge and its
local model. For instance, if in the House Search example of Figure 5b on page 805, we
would in advance perfectly know the location of agent 1 at each timestep and thus know
the sequence of values for lt1, we could decouple the local problem by just looking at the
appropriate slices of the CPT of f t.

Of course, this is in general not possible, since the influence sources are random variables.
However, the influence exerted on agent i can be captured if we know the probability
distribution over their values. That is, in order to predict the probability of some x̃t+1

i (i.e.,
an influence destination) agent i only cares about the following marginal probability

∑

ut+1
→i

Pr(x̃t+1
i |xti,a

t
i,u

t+1
→i ) Pr(u

t+1
→i | . . .), (4.1)

where the dots (. . .) indicate any information that agent i needs to predict the probability
of the values of the influence sources as accurately as possible. Moreover, since these
probabilities will be used to plan a best response, correlations between influence sources
and local states are important. This unfortunately means that in general, we might need
to condition Pr(ut+1

→i |...) on the entire history of actions, observations and and local states.
Fortunately, it turns out that in many cases we can find substantially more compact

representations of the conditional probability of ut+1
→i , by making use of the concept of d-

separation in graphical models (Bishop, 2006; Koller & Friedman, 2009). In particular,

13. E.g., to deal with an observation destination, we can transform the observation oi to a state factor F o

and introduce a new observation variable that has a deterministic CPT depending only on F o.
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when two nodes A,B in a Bayesian network are d-separated given some of subsets D of
evidence nodes, then A and B are conditionally independent given D, which means that
Pr(A|D,B) = Pr(A|D) and vice versa. Whether nodes are d-separated can be easily checked,
by applying a small set of rules on the graph (Bishop, 2006, chapter 8).

Now, we can define the influence as a conditional probability distribution over ut+1
→i ,

given a d-separating set. Specifically, let Dt+1
i be a subset of variables (possibly including

state factors and actions) in the local problem of agent i at stages 0, . . . ,t,

Definition 11 (D-separating set). Dt+1
i is a d-separating set for agent i’s influence at stage

t+ 1 if and only if it d-separates ytu,
~htu from xti,

~hti. That is, if:

∀
ytu,

~ht
u

Pr(ytu,
~htu|x

t
i,
~hti,D

t+1
i ,b0,π−i) = Pr(ytu,

~htu|D
t+1
i ,b0,π−i). (4.2)

This definition implies that remembering more than Dt+1
i is not useful for predicting

ytu,
~htu and hence for predicting ut+1

→i = 〈ytu,a
t
u〉. Given their policies, the actions of other

agents only depend on their AOHs. We note that when the other agents use simpler (e.g.,
memoryless) policies, one might not need to predict the full action observation history for
agents whose actions are influence sources. Instead we will only need to predict relevant
part, denoted ρ(~htu). Similarly, there might be a sufficient statistic σ that summarizes Dt+1

i

and still is enough to provide the conditional independence. In such case we would only
need

∀
ytu,

~ht
u

Pr(ytu,ρ(
~htu)|x

t
i,
~hti,σ(D

t+1
i ),b0,π−i) = Pr(ytu,ρ(

~htu)|σ(D
t+1
i ),b0,π−i). (4.3)

To avoid a further burden on notation, we will not explicitly consider these special cases,
and in our description assume that we condition on the values of the variables in the d-
separating set. However, we will see examples of such more compact description of the
information needed to predict the influence sources.

Deciding on Dt+1
i needs to be done in advance to compute the influence. When the

d-separating set is compressed, σ(Dt+1
i ), this will typically involve input by the human

designer. However, we note that efficient algorithms are known to compute a minimal d-
separating set (Acid & De Campos, 1996; Tian, Paz, & Pearl, 1998; van der Zander &
Lískiewicz, 2020) in cases where this would be infeasible to do by hand.

Example. Figure 6 illustrates a d-separating set D3
i for agent i = 2 in House Search.

It shows that, in order to accurately compute the probability of influence source l21, agent
2 needs to condition on f0:2, the history of the found variable, as well as the histories of
the location of the target ltgt and its own location l2. This dependence on the history in
general leads to large conditioning sets, but in many cases the history can be represented
more compactly. For instance, in House Search the ‘found’ variable can only switch on
(not off) which means that its history f0:t can be summarized compactly. In cases where
the target is static the same holds for l0:ttgt.

Example. Figure 7 describes a variant of the planetary exploration domain (Witwicki
& Durfee, 2010b). Here agent 2 is a mars rover which is tasked with navigating to some
goal. Agent 1 is a satellite which can aid the rover by planning a path, but this will use up
computational resources and battery power modeled by btt1 (which it may want to use to
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agent 2’s

local states

(direct) 

influence link

D-set 

influence

source

influence

destination

a01 a11 a21

a02 a12 a22

o11 o21

o12 o22

l01 l11 l21 l31

l02 l12 l22 l32

l0tgt l1tgt l2tgt l3tgt

f0 f1 f2 f3

r2 r2 r2

~h01
~h11

~h21

Figure 6: Illustration of the incoming influence on protagonist agent i = 2 inHouse Search

at stage t = 3. f3 is the only influence destination, with influence source y2u = l21 (i.e.,
u3→i =

〈

l21
〉

). The shaded nodes indicate the d-separating set D3
i , which, in accordance with

(4.2), d-separates the influence source l21, from agent 2’s AOH ~hti and possibly remaining
other local variables xti (in this case there are no such variables, but one could imagine
adding a battery life variable for agent 2).
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agent 2’s

local states

(direct) 

influence link

D-set 

influence

source

influence

destination

a01 a11 a21

a02 a12 a22

o11 o21

o12 o22

bt01 bt11 bt21 bt31

l02 l12 l22 l32

pl0 pl1 pl2 pl3

r2 r2 r2

~h01
~h11

~h21

Figure 7: Illustration of the influence experienced by the mars rover (agent i = 2) at stage
t = 3 in the planetary exploration domain. If the satellite (agent 1) computes and
transmits a plan (pl), the rover can more effectively navigate from that point onward.

support other rovers too, for instance). In the figure this is illustrated by the fact that the
action of agent 1 a1 ∈ {NOOP,PLAN} (which now is the influence source) determines if
there is a plan available for agent 2, modeled by a binary variable pl (which is the influence
destination). In this example, the d-separating set only contains this variable pl. Again its
history can be compactly summarized: as having the plan can only turn true, we can just
store the time (if any) at which pl was switched to true.

4.1.3 The Influence Exerted on Agent i

Given the above machinery, we can now state our definition of influence:

Definition 12 (Incoming Influence). The incoming influence at stage t + 1, denoted
It+1
→i (π−i), is a conditional probability distribution over values of the influence sources ut+1

→i :

I(ut+1
→i |D

t+1
i ),

∑

~ht
u

Pr(atu|~h
t
u) Pr(y

t
u,
~htu|D

t+1
i ,b0,π−i). (4.4)

In order to predict atu (the ‘influence source actions’) we need to predict the action-
observation histories of the corresponding agents ~htu, but otherwise these histories are not
needed and can thus be marginalized out. Note that, to reduce notational burden we drop
arguments that can be inferred, such as b0,π−i. That is, I(ut+1

→i |D
t+1
i ) is shorthand for

It+1
→i (u

t+1
→i |D

t+1
i ,b0,π−i). In cases where we want to refer to this distribution as a whole, we

will write It+1
→i (π−i), or use the shorthand It+1

→i .
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We will also say that this is the influence exerted on agent i at stage t or experienced
by agent i at stage t + 1. So far, these notions coincide, but when we consider intra-stage
connections in the next section, we will discriminate between these concepts.

Finally, we are in position to specify the complete influence on agent i:

Definition 13 (incoming influence point). An incoming influence point I→i(π−i) for agent i,
specifies the incoming influences for all stages I→i(π−i) =

(

I1→i(π−i), . . . ,I
H
→i(π−i)

)

.

As we will see in the remainder of this paper, an influence point contains all the in-
formation about the non-modeled part of the problem that agent i needs to compute a
best response ‘locally’, i.e., only using its local model and that influence point. This can
bring computational benefits for instance when there would be changes in the local model
that require repeatedly performing planning, or in cases where the influence point can be
computed easily. This form of influence-based abstraction, however, is not providing a free
lunch (Wolpert & Macready, 1995): in general computing the incoming influences (4.4) for
the different stages comprise a set of challenging inference problems. Fortunately, trac-
tion can still be gained in many special cases of problems identified in past work (Becker
et al., 2003, 2004; Varakantham et al., 2009; Petrik & Zilberstein, 2009; Witwicki & Durfee,
2010a, 2010b, 2011; Velagapudi et al., 2011; Witwicki, 2011; Witwicki et al., 2012; Oliehoek
et al., 2012), and IBA gives a unified perspective on these. Moreover, it can be used as
tool to identify further special cases that allow for efficient solution, such as the class of
ND-POMDPs discussed in Section 7. Given the potential benefits of using influence repre-
sentations (Witwicki et al., 2012), such future search for special cases of problems that allow
for compact influence specifications together with the inference algorithms that efficiently
compute these is an important line of research. Our definition of influence in this section
provides the general framework in which these special cases should be sought.

4.2 The Influence-Augmented Local Model (IALM)

Given the above definition of influence, we can now define a smaller local model for our
protagonist agent i. The main idea is that given an incoming influence point, agent i no
longer needs to reason over the non-modeled part of the problem. Instead, it can use the
influence to compute marginal probabilities as expressed by (4.1), and this will allow it to
compute an exact best-response.

In this section, we will first investigate a single NLAF and how the influence on it can
be incorporated. Then we move to talk about the case where multiple variables in the local
state S(i) are non-locally affected. Then we proceed to the formal definition of the IALM,
and how it can be solved.

4.2.1 Induced CPTs

In the case of a single influence destination, we can interpret (4.1) as constructing a new
‘influence-induced’ CPT:

Definition 14 (Induced CPT). Let x̃t+1 be an influence destination, and ut+1 (the in-
stantiation of) the corresponding influence sources. Given the influence It+1

→i (π−i), and its

812



A Sufficient Statistic for Influence in Structured Multiagent Environments

d-separating set Dt+1
i , we define the induced CPT for x̃t+1 as the CPT that has probabili-

ties:

pIt+1
→i

(x̃t+1|xti,D
t+1
i ,ai) =

∑

ut+1
→i =〈ytu,au〉

Pr(x̃t+1|xti,ai,u
t+1
→i )I(u

t+1
→i |D

t+1
i ) (4.5)

It is important to note that an induced CPT is specified purely in local terms, i.e.,
making use of variables that are modeled by our protagonist agent i. Therefore, the basic
idea is that we can now define a smaller local model—which we will call the Influence-
Augmented Local Model (IALM)—by replacing the CPTs of influence destinations (i.e.,
NLAFs) by induced CPTs.

4.2.2 Dealing With Multiple NLAFs

In case that there are multiple NLAFs, i.e., multiple variables x̃t+1 in the local state space
S(i) that are affected non-locally at the same stage t+1, the story is slightly more involved,
since we need to deal with their correlations.

Ideally, we would want to treat induced CPTs in the same way as normal CPTs; that
is, we would represent the joint probability of NLAFs as a the product of induced CPTs:

Pr(x̃t+1
i |xti,D

t+1
i ,ai,I

t+1
→i ) =

∏

k∈NLAF (i)

pIt+1
→i

(x̃k,t+1|xti,D
t+1
i ,ai). (4.6)

However, in general this is not possible since the different x̃k,t+1 are correlated via any
common influence sources. That is, in general the probability is given by:

Pr(x̃t+1
i |xti,D

t+1
i ,ai,I

t+1
→i ) =

∑

ut+1
→i =〈ytu,au〉

I(ut+1
→i |D

t+1
i )

∏

k∈NLAF (i)

Pr(x̃k,t+1|xti,ai,u
t+1
→i ) (4.7)

Of course, in certain cases a factorization as induced CPTs is possible. The above
equations directly make clear when this is the case.

Proposition 1. If each NLAF x̃k,t+1 has its own influence sources uk,t+1 (and these do
not overlap), and if these sources are conditionally independent given Dt+1

i :

I(ut+1
→i |D

t+1
i ) =

∏

k∈NLAF (i)

I(uk,t+1|Dt+1
i ),

then the joint probability of NLAFs factorizes as the product of induced CPTs as shown in
(4.6).
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Proof. Under stated conditions, we can rewrite as follows:14

(4.7) =
∑

ut+1
→i =〈...,uk,t+1,... 〉

I(ut+1
→i |D

t+1
i )

∏

k∈NLAF (i)

Pr(x̃k,t+1|xti,ai,u
k,t+1)

=
∑

ut+1
→i =〈...,uk,t+1,... 〉





∏

k∈NLAF (i)

I(uk,t+1|Dt+1
i )





∏

k∈NLAF (i)

Pr(x̃k,t+1|xti,ai,u
k,t+1)

=
∑

ut+1
→i =〈...,uk,t+1,... 〉

∏

k∈NLAF (i)

I(uk,t+1|Dt+1
i ) Pr(x̃k,t+1|xti,ai,u

k,t+1)

=
∏

k∈NLAF (i)

∑

uk,t+1

I(uk,t+1|Dt+1
i ) Pr(x̃k,t+1|xti,ai,u

k,t+1) = (4.6)

4.2.3 The IALM: A Formal Model to Incorporate Influence

Here we formally define the IALM, which is a non-stationary POMDP, since at every stage
the influence destinations can be influenced in a different manner.

Definition 15 (IALM). Given an LFM, MLFM , and profile of policies for other agents π−i,
an Influence-Augmented Local Model (IALM) for agent i is a POMDPMIALM

i (MLFM ,π−i) =
〈

S̄,Ai,T̄i,R̄i,Oi,Ōi,H,b
l,0
i

〉

, where

• S̄ is the set of augmented states s̄ti = 〈xti,D
t+1
i 〉 that specify an underlying local state of

the POSG, as well as the d-separating set Dt+1
i for the next-stage influences. Note that

Dt+1
i typically needs to include certain state factors for stage t, such that xti and Dt+1

i

both will specify such variables. This is no problem, as long as they specify consistent
assignments; we define S̄ to be the set of states that are consistent.

• Ai,Oi are the (unmodified) sets of actions and observations for agent i.

• The transition function T̄i(s̄
t+1
i |s̄ti,a

t
i) which we will discuss in detail shortly.

• The observation function Ōi(o
t+1
i |ati,s̄

t+1
i ) = O(ot+1

i |ati,x
t+1
i ), since agent i’s observa-

tions only depend on its local state (cf. Definition 10, property 1).

• The reward function R̄i(s̄
t
i,a

t
i,s̄

t+1
i ) = Ri(x

t
i,a

t
i,x

t+1
i ), since agent i’s rewards only depend

on its local state (cf. Definition 10, property 2).

• H is the unmodified horizon.

• b
l,0
i is the initial state distribution, which is a local-form belief. It is a distribution over
augmented states s̄0i = 〈x0i ,D

1
i 〉. Since for the first stage D1

i can only contain elements
from x0i , it can trivially be constructed from a probability distribution over x0i , and
such a distribution can be constructed from b0, as we discuss in a bit more detail below.

In defining T̄i and b
l,0
i , a few subtleties arise that we now discuss.

14. For the last step of this proof, to see why we can swap summation and product, note that the term on
the third line has the form

∑

〈a1,...ak,...,aK〉

∏K

k=1 akbk. We take K = 2 for the example and get:

∑

〈a1a2〉

a1b1a2b2 =
∑

a1

a1b1
∑

a2

a2b2 =

[

∑

a1

a1b1

][

∑

a2

a2b2

]

=

K
∏

k=1

∑

ak

akbk.
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Transition Probabilities Clearly, the IALM’s transition probabilities should express

T̄i(s̄
t+1
i |s̄ti,a

t
i),Pr(〈xt+1

i ,Dt+2
i 〉|〈xti,D

t+1
i 〉,ati,I

t+1
→i ). (4.8)

For such probabilities to be specified, we need some further requirements on the d-separating
sets. In particular, we require that (the instantiation of) Dt+2

i is fully specified by xti,a
t
i,x

t+1
i

and Dt+1
i .

Definition 16 (d-set update function). The d-set update function is a function d that
takes the previous-stage d-separating set and the latest transition, and that returns the
next d-separating set:

Dt+2
i = d(xti,a

t
i,x

t+1
i ,Dt+1

i ).

In other words: d ‘selects’ the variables from xti,a
t
i,x

t+1
i ,Dt+1

i such that it forms the next
d-separating set.15

Given a d-set update function we can write:

Pr(〈xt+1
i ,Dt+2

i 〉|〈xti,D
t+1
i 〉,ati,I

t+1
→i ) = Pr(xt+1

i |〈xti,D
t+1
i 〉,ati,I

t+1
→i )1{Dt+2

i ,d(xt
i,a

t
i,x

t+1
i ,Dt+1

i )},

where 1{·,·} denotes the Kronecker delta function.

A typical way to fulfill the requirement that Dt+2
i is fully specified by xti,a

t
i,x

t+1
i and

Dt+1
i is to assume that the d-separating sets for all stages are chosen as the history of the

same subset Di ⊆ S(i) of modeled features.

Example. Looking at Figure 6 on page 810, the d-separating set D3
2 for predicting f3 is

given by the history of the ‘found’, ‘location of target’ and ‘location of agent 2’ variables.
So we can write D2 = {f,ltgt,l2}, and define D3

2 to be its history at stage t = 2: D3
2 = ~D2

2.

The probabilities Pr(xt+1
i |〈xti,D

t+1
i 〉,ati) are now factored as the product of the CPTs of

the OLAFs and the induced probabilities for the NLAFs:

T̄i(s̄
t+1
i |s̄ti,a

t
i),Pr(xt+1

i |〈xti,D
t+1
i 〉,ati,I

t+1
→i )1{Dt+2

i ,d(xt
i,a

t
i,x

t+1
i ,Dt+1

i )},

= Pr(x̃t+1
i |〈xti,D

t+1
i 〉,ati,I

t+1
→i ) Pr(̊x

t+1
i |xti,x̃

t+1
i ,ai)1{Dt+2

i ,d(xt
i,a

t
i,x

t+1
i ,Dt+1

i )}. (4.9)

Here the first term is given by (4.7) and the second term is given by (3.11).16

Initial Local State Distribution Here we discuss some of the issues involved in defining
the initial belief in the IALM. Note that in a factored models such as fPOSGs, the initial
state distribution b0 is specified as a Bayesian network G0. Together with the 2DBN, G→

(which in fact is a conditional probability distribution), it can form the unrolled DBN
G = unroll(G0,G→) which specifies the joint distribution over all the state variables, as is

15. Note, that if further compression by means of a statistic σ is employed (cf. the discussion under Defini-
tion 11) than the update function should work on these statistics σ(Dt+2

i ) = d(xt
i,a

t
i,x

t+1
i ,σ(Dt+1

i )).
16. Note that, even though we have not dealt with intra-stage dependencies (ISDs) in the description of

influences in this section, we refer back to the term Pr(̊xt+1
i |xt

i,x̃
t+1
i ,ai) from section 3 which does allow

for ISDs from NLAFs to OLAFs. This will allow us to make only minimal changes to the definition of
T̄i when we do deal with ISDs in Section 5.
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A0

B0

(a) The Bayesian network G0 repre-
senting the initial belief.

A1 A2

B1 B2

o22

(b) The 2DBN (a conditional Bayesian network) G→

representing the transition and observation probabil-
ities.

A0 A1 A2 A3

B0 B1 B2 B3

o12 o22

(c) The unrolled networkG = unroll(G0,G→). To convert it to an IALM, the local-form
initial belief bl,0i (B0) and incoming influences It+1

→i (A
t|B0, . . . ,Bt) need to be computed

via inference. See text for further explanation.

Figure 8: Construction of the IALM.
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A0 A1 A2 A3

B0 B1 B2 B3

C0 C1 C2 C3

o12 o22

Figure 9: Impact of initial belief connectivity on the d-separating set of the IALM.

illustrated in Figure 8. Note that the figure gives a simplified representation not involving
any actions.

Now we will discuss how to specify the initial belief bl,0i (x0i ) of the IALM. The basic idea
is to simply restrict G0 to those variables in the set S(i) of agent i’s local state variables.
However, this can lead to problems when there are arrows in G0 pointing from variables not
included in S(i) to variables included in S(i). For instance, in Figure 8, the initial belief is
factored: b0(s) = Pr(A0) Pr(B0|A0). The initial local-form belief, however, should only be
specified over B0. The solution is to marginalize out the dependencies:

b
l,0
i (B0) =

∑

A0

Pr(A0) Pr(B0|A0).

This is also gives the general recipe for any other problem: construction of bl,0i from
b0 is a marginal inference task. Certainly, for certain complex problems this could be in-
tractable, but the hope is that for many real-world problems the prior b0 is sufficiently
sparsely structured for this not to be an issue. Also, any of the vast number of (exact or
approximate) inference methods developed in the last decades can be used (Koller & Fried-
man, 2009; Boyen & Koller, 1998; Jordan, Ghahramani, Jaakkola, & Saul, 1999; Murphy,
2002; Wainwright, Jordan, et al., 2008).

Impact of Correlations of Initial State Factors on the D-separating Set Note
that the correlation of the initial state distribution can affect d-separation and therefore
what variables need to be included in the d-separating set Dt

i . For instance, if in the above
example there additionally is a state factor C, which is not connected to A or B in the 2DBN
G→, but which is a parent of A in G0, we get the unrolled DBN as shown in Figure 9.

Now, to define the IALM, we will need the induced probability of B3, which according
to (4.7) can be written as

Pr(B3|
〈

B2,D3
i

〉

,I3→i) =
∑

A2

I(A2|D3
i ) Pr(B

3|B2,A2).

Therefore D3
i needs to contain any variables that can be used to better predict A2 (more

formally, any variables that d-separate A2 from ~hti and any remaining variables xti, cf.
Definition 11). However, looking at the figure, we see that this means that C0 needs to be
included in the d-set.
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At the same time, however, we see that we do not need to condition on the entire history
~Ct. This may appear counter intuitive, since observations at later time steps (e.g, o1i and o2i )

certainly provide information about A2, while they also depend on ~Ct. But this is precisely
the point: by including C0 in the d-separating set, it becomes part of the hidden state—e.g.,
for t = 2 we have s̄2i = 〈x2i ,D

3
i 〉 = 〈

〈

C2
〉

,
〈

B0,B1,B2,C0
〉

〉—and those later observations
certainly provide information as to what that hidden state is.

4.3 Planning in an IALM

Here we look at how we can plan using an IALM. It turns out that this is surprisingly
simple, since an IALM is a (special case of) POMDP.

Observation. An influence-augmented local model is a POMDP.

Proof. This can simply be verified by comparing Definition 15 to the definition of a POMDP
(Definition 1).

This means that belief updates and definition of value functions follow as usual. For
completeness and future reference, we write these out in detail below.

4.3.1 Local-form Belief Update

As implied by Definition 15, in an IALM, an agent uses a local-form belief :

Definition 17 (local-form belief). A local-form belief b
l,t
i for an IALM constructed for

agent i is the posterior probability distribution over augmented states s̄ti = 〈xti,D
t+1
i 〉.

The belief update for such a local-form belief is as in a regular POMDP, cf. (2.1):

BU(bli,a
t
i,o

t+1
i )(s̄t+1

i ) =
1

Pr(ot+1
i |bli,a

t
i)
Ōi(o

t+1
i |ati,s̄

t+1
i )

∑

s̄ti

T̄i(s̄
t+1
i |s̄ti,a

t
i)b

l
i(s̄

t
i) =

O(ot+1
i |ati,x

t+1
i )

Pr(ot+1
i |bli,a

t
i)

∑

xt
i,D

t+1
i

Pr(xt+1
i |〈xti,D

t+1
i 〉,ati,I

t+1
→i )1{Dt+2

i ,d(xt
i,a

t
i,x

t+1
i ,Dt+1

i )}b
l
i(x

t
i,D

t+1
i )

(4.10)

The expected observation probability (the normalization factor) in this case can be shown
(see the derivation in Appendix A.3.1) to satisfy

Pr(ot+1
i |bli,a

t
i) = Es̄ti∼bli,s̄

t+1
i ∼T̄ (s̄ti,a

t
i,·)

[

Ō(ot+1
i |ati,s̄

t+1
i )

]

= E〈xt
i,D

t+1
i 〉∼bli,〈x

t+1
i ,Dt+2

i 〉∼T̄ (〈xt
i,D

t+1
i 〉,ati,·)

[

O(ot+1
i |ati,x

t+1
i )

]

=
∑

xt+1
i

O(ot+1
i |ati,x

t+1
i ) Pr(xt+1

i |bli,a
t
i,I

t+1
→i ), (4.11)

with

Pr(xt+1
i |bli,a

t
i,I

t+1
→i ),

∑

xt
i,D

t+1
i

Pr(xt+1
i |〈xti,D

t+1
i 〉,ati,I

t+1
→i )b

l
i(x

t
i,D

t+1
i ). (4.12)
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4.3.2 IALM Value

Putting everything together, we can show that for an IALM, the value function is similar
to the normal POMDP value function:

Proposition 2 (IALM value function). The value function is given by

Qt
i(b

l
i,a

t
i) = Ri(b

l
i,a

t
i) + γ

∑

ot+1
i

Pr(ot+1
i |bli,a

t
i)V

t+1
i (BU(bli,a

t
i,o

t+1
i )), (4.13)

V t+1
i (bli) = max

ai
Qt+1

i (bli,ai), (4.14)

where

Ri(b
l
i,a

t
i) = Es̄ti∼bli,s̄

t+1
i ∼T̄ (s̄ti,a

t
i,·)

[

R̄i(s̄
t
i,a

t
i,s̄

t+1
i )

]

=
∑

xt
i

∑

xt+1
i

Ri(x
t
i,a

t
i,x

t+1
i ) Pr(xti,x

t+1
i |bli,a

t
i,I

t+1
→i ) (4.15)

with

Pr(xti,x
t+1
i |bli,a

t
i,I

t+1
→i ),

∑

Dt+1
i

Pr(xt+1
i |〈xti,D

t+1
i 〉,ati,I

t+1
→i )b

l
i(x

t
i,D

t+1
i ). (4.16)

Proof. This follows from the value function of regular POMDPs together with the deriva-
tions of Ri(b

l
i,a

t
i) and Pr(xti,x

t+1
i |bli,a

t
i,I

t+1
→i ) in Appendix A.3.2.

The solution of the IALM gives the influence-based best-response value, defined as the
value of the initial local-form belief:

Vi(I→i(π−i)),V 0
i (b

l,0
i ). (4.17)

4.4 IBA by Example

To further clarify the process of influence-based abstraction, and provide some intuition of
the potential computational savings and in which cases they could arise, we discuss two
examples in some more detail.

The Planetary Exploration Domain. First, let us consider the planetary rover domain
illustrated in Figure 7. We will give a characterization of this problem in terms of number of
states, for both the global-form best-response model (GFBRM) and IALM, thus providing
an analysis of the computational savings that can arise in this case.

We will use the following notations and assumptions:

• L is the number of locations

• pl ∈ {yes,no} indicates if a plan has been sent to the rover.

• B is the number of private states bt1 of the satellite (e.g., number of battery levels).

• |O1| is the size of the observation set of agent 1. In case that o1 = bt1, i.e., the satellite
can perfectly observe its battery level, we would have |O1| = B.
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• a1 ∈ {NOOP,PLAN} is the action of the satellite.

So now, in the GFBRM model, the augmented state for the rover (who is agent 2) is
s̄t2 = 〈st,~ht1〉 = 〈btt1,pl

t,lt2,
~ht1〉. Given the above assumptions, the number of AOHs for the

satellite at stage t is | ~Ht
1| = (2 |O1|)

t. And therefore the state space of the GFBRM is of
size

∣

∣S̄t
i

∣

∣ = 2LB · (2 |O1|)
t.

In contrast, in an IALM, we have states s̄t2 = 〈xt2,D
t+1
2 〉 =

〈〈

plt,lt2
〉

,pl0:t
〉

=
〈

lt2,pl
0:t
〉

,
meaning that the size of the state space in the IALM is L · 2t+1, which is strictly smaller
than the GFBRM model.

Moreover, we can exploit that fact that pl can only turn on, meaning that pl0:t has only
t+2 possible values: it got turned on on one of the stages 0 . . . t or it has not yet been turned
on (“NotY et”). We refer to this re-coded variable as PlanIssueT imet = σ(pl0:t) such that
we can write s̄ti =

〈

l2,P lanIssueT imet
〉

. This means that the number of IALM states at
stage t in the planetary exploration problem can be further reduced to L (t+ 2). This
suggests that the IALM will be much cheaper to solve for larger horizons: it scales linearly
with t, whereas the GFBRM scales exponentially with t.

However, our discussion so far has excluded the time it takes to construct the IALM.
Specifically, to compute the transition probabilities for every stage t, we will need to compute
the incoming influence:

I(ut+1
→1 |D

t+1
1 ) = Pr(at1|PlanIssueT imet).

In general, we would need to compute this for all possible instantiations of Dt+1
2 . How-

ever, in this case, the action of the satellite agent is only relevant in when PlanIssueT imet =
NotY et, which mean that we only need to compute the probability Pr(at1|PlanIssueT imet =
NotY et). Applying (4.4) yields (we leave b0,π−i implicit):

Pr(at1|PlanIssueT imet) =
∑

~ht
1

π1(a
t
1|
~ht1) Pr(

~ht1|PlanIssueT imet),

which shows that if we have Pr(~ht1|PlanIssueT imet) for each stage t, we can directly derive

Pr(at1|PlanIssueT imet). The main issue therefore is to compute Pr(~ht1|PlanIssueT imet)
for all t = 1 . . . h − 1. This is essentially a belief tracking problem. Specifically, we can
model this as a special type of hidden Markov model where the hidden state is 〈btt1,~h

t
1〉, and

our observations are plt. The number of such states at stage t is B · (2 |O1|)
t and that also

is the dominant term in the complexity.
This shows that in this example, computing a best-response using a GFBRM requires to

solve a POMDP with
∣

∣SGFBR
∣

∣ = 2LB ·(2 |O1|)
t, while doing it using an IALM requires solv-

ing a POMDP with
∣

∣SIALM
∣

∣ = L (t+ 2) states and a construction cost of O
(

B · (2 |O1|)
t).

This means that particularly when also the number L of locations is considerable, we can
tackle much larger problems, since we have isolated the exponential complexity of tracking
~ht1 from the impact of the number of locations L. Similarly, in the case where B (in general
the number of states induced by non-modeled factors) is very large, this cost now only
appears in the IALM construction and is not multiplied with L.17

17. Of course, the reader could wonder in how far these terms are relevant, given the remaining exponential
dependence on the horizon via the cost of tracking ~ht

1. To answer this, let us point out that this
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The House Search Domain Next, we turn to the House Search problem, illustrated
in Figure 6. In contrast to Planetary Exploration, House Search exhibits a more
substantial d-separating set Dt+1

2 and so we expect less computational savings. In fact, as
we will see below, the IALM provides little to no computational benefit except in the face
of additional assumptions on the structure of the problem.

Let us again define the sizes of the relevant quantities:

• L is the number of locations.

• f ∈ {yes,no} indicates if the target has been found. Once a target has been found the
location l1 of agent 1 no longer has any effect.

• |O1| is the size of the observation set of agent 1. In case that o1 = 〈l1,f〉, i.e., the agent
can perfectly observe its location and if the target is found, we would have |O1| = 2L.

• A1 = A2 are the action sets that can allow the agents to move to adjacent rooms.

Repeating the analysis, we see that the GFBRM state is s̄t2 = 〈st,~ht1〉 =
〈

〈

lt1,f
t,lttgt,l

t
2

〉

,~ht1

〉

.

Since | ~Ht
1| = (|A1| |O1|)

t , the state space of the GFBRM is of size
∣

∣S̄t
∣

∣ = 2L3 (|A1| |O1|)
t.

If we assume the agent has 4 movement actions and can perfectly observe it location and if
the target is found, as above, this becomes 2L3 (4 · 2L)t = 2L3 (8L)t = 23t+1Lt+3.

On the other hand, the IALM has states s̄t2 = 〈xt2,D
t+1
2 〉 =

〈

f0:t,l0:ttgt,l
0:t
2

〉

. Therefore,
without further simplifications, the size of the state space at stage t in the IALM is 2t+1 ·
L2(t+1). In other words, even disregarding the construction costs of the IALM, this would
only guaranteed to be smaller for time step t = 1, as illustrated in Table 1.

Simplifications are possible, however: as before, the ‘found’ variable f may only turn
on which reduces the IALM state to s̄t2 =

〈

foundT imet,l0:ttgt,l
0:t
2

〉

and the state space size to

(t+2) ·L2(t+1). When the target is stationary, this reduces to (t+2) ·L ·L(t+1). Also, it may
not be realistic that all sequences of locations are realizable. Given a fixed start position and
4 deterministic movement actions, the number of realizable sequences of locations would
be O(4t),which would lead to a ‘simplified IALM’ with state space of size (t + 2) · L · 4t.
Exploiting the realizable location sequences of agent 1 to similarly reduce the state space of
the GFBRM leads to 2 · L3 · (t+ 2) · 4t states. As such, the IALM representation in terms
of s̄t2 = 〈xt2,D

t+1
2 〉 enables us to capture structure of the problem to significantly reduce its

local state space.

Of course, we did not yet cover the cost of the construction cost of the IALM by com-
puting the influence. Here, we sketch what is involved in the construction of the ‘simplified
IALM’ we constructed. Specifically the influence specification now is:

I(ut+1
→1 |D

t+1
1 ) = Pr(lt1|

〈

FoundT imet,ltgt,l
0:t−1
2

〉

).

exponential dependence is directly the consequence of the fact that in this paper we have not restricted
the class of policies considered for other agents, but assumed these are general mappings from AOHs to
actions. However, this problem is inherently complex. In fact, unless a particular compact description is
available, the size of the policy of the satellite π1, i.e., the size of the input (tabular representations of the
π1) of the best-response problem, is exponential in the horizon. However, in cases where the policy π1

of the other agent has a compact representations (e.g., a finite state controller with K states) it may be

possible to substantially reduce the cost of tracking the other agent’s internal state (e.g., ~ht
1 is replaced

by agent 1’s controller node and tracking can be done in time O(B ·K).
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stage t

model state space size 1 2 3 4

GFBRM 23t+1Lt+3 16L4 128L5 1024L6 8192L7

GFBRM simplified 2 · L3 · (t+ 2) · 4t 24L3 128L3 640L3 3072L3

IALM naive 2t+1 · L2(t+1) 4L4 8L6 16L8 32L10

IALM simplified L · (t+ 2) · 4t 12L 64L 320L 1536L

Table 1: State space sizes for GFBRM and two versions of IALM models for the House

Search problem.

As before, we only care about cases where FoundT imet = NotY et (since otherwise the
location lt1 is irrelevant). However, the different options for ltgt,l

0:t−1
2 should be evaluated,

which means that we need to solve the inference problem for O(L · 4t−1) instantiations of

the d-set. Each of these instantiations requires tracking hidden states of the form
〈

lt1,
~ht1

〉

,

and there are L (|A1| |O1|)
t of them in general. For the simplified setting of deterministic

moves and perfect observations by agent 1 this can be limited to L · t · 4t since in that case
~ht1 =

〈

f0:t,l0:t1

〉

=
〈

FoundT imet,l0:t1

〉

.

In summary, the simplified version of the House Search problem enables us to reduce
the state space of the best-response model substantially, from 23t+1Lt+3 to L · (t + 2) · 4t.
However to construct the IALM state space at stage t still requires time of the order (L ·
4t−1)(L · t · 4t) = L2 · t · 42t−1.

4.5 More General Implications of IBA

In the above, we saw that IBA can lead to more efficient computation of exact best-responses
in settings that have sufficient structure to exploit. However, our motivation for developing
the theory presented in this paper is more general than this. Here we elaborate on the
broader implications that we envision.

Figure 10: Illustration of the ideas of influence-based abstraction and influence search.
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4.5.1 Influence Search

The ideas underlying influence-based abstraction were developed in the research commu-
nity focusing on multiagent sequential decision making by people like Becker et al. (2003),
Varakantham et al. (2009) and Petrik and Zilberstein (2009). The goal that these works
pursued were not the computation of merely a best response, but of the optimal joint pol-
icy. Hence these works performed a type of influence search (Witwicki & Durfee, 2010b).
The idea, illustrated in Figure 10, is that many policies of one agent, say agent 1, may
correspond to the same influence I1→2 on agent 2, which would mean that the set of such
influences could be much smaller than the set of possible policies π2. Therefore, if it is pos-
sible to search through the space of joint influences I = 〈I1→2,I2→1〉, this could be much
more effective than searching the much larger space of joint policies π = 〈π1,π2〉. Specifi-
cally, Witwicki et al. (2012) showed orders of improvement in computational cost over joint
policy-search approaches.

So far, however, these ideas have only been exploited in sub-classes of fDec-POMDPs
(see also Section 7), and generalizing influence search to general fDec-POMDPs or even
fPOSG (i.e., to find Nash equilibria) is still an open problem. Our definition of influence in
Definition 12 can serve as a starting point for such extensions.

4.5.2 Approximate Influence Representations

The discussion in Section 4.4 demonstrated that, in cases with sufficient structure, the rep-
resentation of the influence I(ut+1

→i |D
t+1
i ) can be compact, leading to substantial benefits.

However, at the same time it also showed that in general, without exploiting special prop-
erties of the domain, these representations can become very big and unwieldy due to the
dependence on the history of a subset of variables. Large influence representations can not
be exploited for more efficient best-response computations, and they also suggest that the
number of possible influences will be large, possibly limiting the effectiveness of influence
search.

However, even though exact representations of I(ut+1
→i |D

t+1
i ) may be very large, it might

be the case that approximate representations Î(ut+1
→i |D

t+1
i ) can be compactly represented

while still affording good performance; for the purposes of making good predictions it is
usually not required to remember the full history (Littman, 1994; McCallum, 1995; Kael-
bling et al., 1998; Meuleau, Peshkin, Kim, & Kaelbling, 1999). Moreover, learning such
approximate influence points is a supervised learning problem (a specific type of sequence
prediction problem), which means that we can directly build on recent advancements for
such prediction problems, including work on deep learning (Schmidhuber, 2015; LeCun,
Bengio, & Hinton, 2015). Of course, whether the successes from natural language process-
ing (Vinyals, Toshev, Bengio, & Erhan, 2015; Young, Hazarika, Poria, & Cambria, 2018),
machine translation (Cho, van Merriënboer, Gulcehre, Bahdanau, Bougares, Schwenk, &
Bengio, 2014), speech recognition (Graves, Mohamed, & Hinton, 2013; Weninger, Erdogan,
Watanabe, Vincent, Le Roux, Hershey, & Schuller, 2015) or biological sequence data (Jurtz,
Johansen, Nielsen, Almagro Armenteros, Nielsen, Sønderby, Winther, & Sønderby, 2017)
will transfer to the task of influence prediction remains to be investigated, but there already
are some positive indications.
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Specifically, some studies have shown that approximate representations of influence can
enable further scalability in a variety of respects. For instance, Oliehoek, Whiteson, and
Spaan (2013) introduced the idea of transfer planning, which defines a number of smaller
source tasks, whose solution is transferred to the larger (involving more agents) target task.
The definition of the source tasks ignores the actual influence of the rest of the system, and
hence can be seen as a very naive special case of approximate influence-based abstraction:
it assumes an arbitrary influence point for each sub-problem. Nevertheless, the authors em-
pirically showed that this can lead to good performance in Dec-POMDPs with many agents.
This was corroborated by Oliehoek et al. (2015a) who employed optimistic influences (also
an approximate form of influence) to compute factored upper bounds on the Dec-POMDP
value function. They demonstrated that in some cases the solution found by transfer plan-
ning for Dec-POMDPs with over 50 agents was essentially optimal. Recently, He, Suau,
and Oliehoek (2020) demonstrated that, by using learned (recurrent neural network) repre-
sentations of influence in online planning, it is possible to get better task performance when
the time for action selection is limited. Of course, giving hard performance guarantees for
such approaches is very difficult, but Congeduti et al. (2020) show that it is possible to
derive performance loss bounds for approximate influence representations. Their analysis
also suggests that typical machine learning approaches that minimize the cross-entropy loss
may be well aligned with minimizing the performance loss.

As such, there is substantial evidence that approximate extension of the formal IBA
framework presented in this paper can lead to various benefits. Related to this is the
new perspective these approaches give on the systems they aim to control. For instance,
both Oliehoek et al. (2015a) and He et al. (2020) experimented with forms of “influence
strength” to better understand parametrized domains by looking at the impact on the
resulting solution quality. Further formalization and refinements of such notions could
lead to a better understanding of the application of decision making methods to complex
domains.

4.5.3 Identifying Inductive Biases

Notions like influence strength can enable us to better understand the problems that we are
trying to tackle, and the IBA perspective can generate more of such insights. For instance,
the discussion on the impact of the initial state distribution on page 816 neatly exemplifies
some different types of structure we can expect to encounter when dealing with abstraction
in structured decision making processes.

Identification of such structure is important even for deep learning: even though the
representations are learned automatically, no learning methods are effective without the
appropriate inductive biases (Mitchell, 1980; Wolpert, 1996). For instance, convolutional
neural networks are so successful for image processing because they exploit the fact that
there is local and repeated structure in real-world images. In a similar way, in the discus-
sion on the initial state distribution, we noticed that certain forms of structure, such as
dependence on certain state factors at stage t = 0, might be common in sequential decision
processes involving abstraction.

In fact, recent research provides clear evidence that structure as implied by influence-
based abstraction can be effectively used to bias deep reinforcement learning (Suau de
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Castro, Congeduti, Starre, Czechowski, & Oliehoek, 2019a). Specifically, that work shows
that by equipping a policy and/or value network with a recurrent sub-network that is only
fed with a subset of variables (roughly corresponding to the d-separating set) can lead to
higher performance than feed-forward networks, while learning much faster than a full-sized
recurrent neural network. Further connections to deep RL and multiagent RL approaches
are discussed in Section 8.

5. IBA With Intra-Stage Dependencies

The previous section presented the framework of influence-based abstraction, which enables
us to abstract away hidden state variables in so-called local-form models. We illustrated
how this can lead to speeding up best-response computations and discussed more general
implications of the theory. So far we assumed there are no intra-stage connections: all
influence links span a time step. However, intra-stage dependencies (ISDs) can be useful to
specify a more intuitive model, as we saw for House Search in Figure 2a. Additionally,
there could be problems that only have a correct formulation using intra-stage dependencies:
since intra-stage connections can model additional correlations, the transition functions
T (st+1|st,at) that can be represented without ISDs is a strict subset of those we can represent
with ISDs. Simply removing ISDs from problems that need them is not possible, as it is
not clear what probabilities the CPTs should specify for the remaining parents.

Moreover, intra-stage connections enable us to introduce ‘dummy’ variables, as discussed
in Section 4.1.1. Without this capability, the requirement of including all observation-
relevant and reward-relevant variables in the local state (cf. Definition 10) would limit
the applicability of influence-based abstraction. For instance, imagine the setting where
our agent’s reward is directly affected by how many other agents take the some action a.
Without intra-stage connections, we would be forced to model all the action variables of
the other agents in the local state, making the local model intractable. However, using
intra-stage connections, we can instead introduce a count variable that affects our reward,
while we do not model (abstract away) all the individual actions of other agents. As
such, the ability to use ISDs can allow us to effectively describe scenarios with anonymous
interactions, such as mean-field games and others (Jovanovic & Rosenthal, 1988; Kizilkale &
Caines, 2012; Varakantham, Adulyasak, & Jaillet, 2014; Robbel, Oliehoek, & Kochenderfer,
2016; Nguyen, Kumar, & Lau, 2017; Subramanian &Mahajan, 2019), in the IBA framework.

Therefore, this section extends our definition of influence to also be applicable for models
that have such intra-stage dependencies (ISDs).

5.1 Definition of Influence under ISDs

Here we extend IBA by adapting notions of influence sources, d-separating sets, and incom-
ing influence points to properly take into account ISDs.

5.1.1 Intra-Stage Influence Sources

In settings with intra-stage dependencies, there is at least one non-modeled factor yt+1

that influences an NLAF x̃t+1. If there are multiple such factors, we let yt+1
u denote them.

Therefore, in order to perform IBA in settings with ISDs, we will need to predict influence
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Figure 11: Illustration of the influence experienced by protagonist agent i = 2 in the intra-
stage version of House Search at stage t = 2. f2 is the influence destination, with
direct influence source y2u =

〈

l21
〉

(i.e., u2→i =
〈

l21
〉

). Additionally, the figure highlights

the indirect influence sources y1v =
〈

l11
〉

, atv =
〈

a11
〉

and ~h1v =
〈

~h11

〉

, which determine the

influence that is exerted at stage t = 1. (Note that l11 in fact is also a direct influence source
for the influence experienced at stage t = 1.)

sources ut+1
→i =

〈

ytu,a
t
u,y

t+1
u

〉

. In order to correctly deal with the intra-stage sources yt+1
u ,

we will additionally need to consider those variables that influence them.

Indirect Sources In particular, we use ‘v’ as the symbol to denote such ‘indirect’ or
‘second order’ influences and will write xtv,y

t
v,a

t
i,a

t
v,x

t+1
v and yt+1

v for the possible18 ancestors
in the 2DBN of intra-stage sources yt+1

u .

Example. Figure 11 illustrates the direct and indirect influence sources for House Search.
In order to be able to make accurate predictions of the influence destination f2, at stage
t = 1 we should be able to predict l11 (y

1
v) and a11 (a

t
v) as accurately as possible. Given that

we assume access to the policy of agent 1, we can equivalently predict y1v = l11,
~h1v = ~h11.

Now, in order to define the influence, we will need to consider the probability of such
yt+1
u given variables that we know how to predict at stage t. In general it is given by:

Pr(yt+1
u |xtv,y

t
v,a

t
i,a

t
v,x

t+1
v ) =

∑

yt+1
v

Pr(yt+1
u ,yt+1

v |xtv,y
t
v,a

t
i,a

t
v,x

t+1
v ), (5.1)

18. Of course, in any given problem not all of these types of variables are relevant. For instance, if there is
no action at

j of another agent j that would influence an ISD influence source, then at
v can be removed

from the equations.
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where:

• Pr(yt+1
u ,yt+1

v |xtv,y
t
v,a

t
i,a

t
v,x

t+1
v ) is the product of CPTs of (both direct and indirect) intra-

stage sources—in Figure 11 this is simply Pr(l21|l
1
1,a

1
1),

• xtv are those state factors at stage t (“in the left-hand slice of the 2DBN”) that are
modeled by agent i, and are ancestor to an intra-stage influence source of agent i at
stage t + 1 (“in the right-hand slice of the 2DBN”)—in Figure 11 no such variables
exist,

• ytv are those state factors in the left-hand slice of the 2DBN that are not modeled by
agent i, but are ancestor to an influence destination of agent i—in Figure 11 this is l11,

• xt+1
v , yt+1

v are the modeled, respectively non-modeled state factors at state t + 1 that
are ancestors to an intra-stage influence source—in Figure 11 no such variables exist,

• ati might directly or indirectly affect an an intra-stage influence source, in which case it
needs to be included in (5.1)—in Figure 11 this is not the case, and

• atv are the actions of other agents that are ancestors of an intra-stage influence source—in
Figure 11 this is a11.

We will also write ~htv for the AOHs of the agents v that correspond to atv (i.e., those agents
of which the action is an ancestor in the 2DBN of an influence destination of agent i).

All sources So far we have introduced notation using u for direct sources and using v for
indirect sources. We will also want to consider the union of direct and indirect sources, and
for these purposes we will write w. For example, we will write atw =

〈

atu,a
t
v

〉

for the actions
of agents that either directly or indirectly influence an influence destination.

5.1.2 The D-Separating Set

We now build on this insight to define the d-separating set in problems with intra-stage
dependencies:

Definition 18 (d-separating set). The d-separating set for agent i, Di, is a subset of
variables (state factors and/or actions), such that the history of these variables d-separates
ytw,

~htw from xti,
~hti. I.e., it is defined in such a way that

∀
ytw,~ht

w
Pr(ytw,

~htw|x
t
i,
~hti,D

t+1
i ,b0,π−i) = Pr(ytw,

~htw|D
t+1
i ,b0,π−i). (5.2)

As before this should be interpreted to mean: Dt+1
i d-separates ytw,

~htw from those parts

of xti,
~hti (i.e, of the local model) not contained in Dt+1

i .

Comparing Definition 18 with the earlier Definition 11, we see they are pleasingly similar;
all that changed is that u’s have been replaced with w’s to now take into account the
possibility of indirect sources.

5.1.3 Definition of Influence under ISDs

With this as background, we are now in position to define the concept of influence in all its
generality:
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Definition 19 (Experienced Influence under ISDs). The influence experienced by agent i
at stage t+ 1 is a conditional probability distribution over the direct influence sources:

I(ut+1
→i |D

t+1
i ,xtv,a

t
i,x

t+1
v ),Pr(

〈

ytu,a
t
u,y

t+1
u

〉

|Dt+1
i ,xtv,a

t
i,x

t+1
v ,b0,π−i)

=
∑

〈ytv ,atv ,yt+1
v 〉

Pr(yt+1
u ,yt+1

v |xtv,y
t
v,a

t
i,a

t
v,x

t+1
v )

∑

~ht
w

πw(a
t
w|
~htw) Pr(y

t
w,
~htw|D

t+1
i ,b0,π−i) (5.3)

where

• u denote (direct) influence sources;

• v denote the (indirect) ‘second order’ sources;

• w (as above) denotes the union of u and v;

• Pr(yt+1
u ,yt+1

v |xtv,y
t
v,a

t
i,a

t
v,x

t+1
v ) is the term necessary to predict the intra-stage sources.

It is a term that consists of the product of CPTs;

• πw(a
t
w|~h

t
w) =

∏

i∈w πi(a
t
i|
~hti) = πu(a

t
u|~h

t
u)πv(a

t
v|~h

t
v) is the product of action probabili-

ties according to the policies of the other agents that are relevant directly (the u) or
indirectly for intra-stage sources (the v); and

• Pr(ytw,
~htw|D

t+1
i ,b0,π−i) = Pr(ytu,y

t
v,
~htu,

~htv|D
t+1
i ,b0,π−i) predicts the non-modeled factors

that are relevant directly (the u) or indirectly for intra-stage sources (the v), as well as
the histories for the relevant agents.

Tying back to the example of Figure 11, (5.3) reduces to

I(l21|D
2
2) =

∑

l11,a
1
1

Pr(l21|l
1
1,a

1
1)
∑

~h1
1

π1(a
1
1|~h

1
1) Pr(l

1
1,
~h11|D

2
1,b

0,π1).

We use It+1
→i (π−i) to denote the conditional distribution I(·|Dt+1

i ,xti,a
t
i,x

t+1
i ).

We make a few observations:

• The term Pr(yt+1
u ,yt+1

v |xtv,y
t
v,a

t
i,a

t
v,x

t+1
v ) can be simplified as given by (5.1), but it is

important to keep in mind that this resulting term requires actual inference and is not
the product of CPTs anymore.

• Note that, in many cases, we will consider other agents that use deterministic policies,
however, we chose to give the more general description that also allows for stochastic
policies. In case of deterministic policies, the summation over atv can be omitted, atv/w

can be replaced by πt
v/w(~o

t
v/w), and

~htw becomes ~o t
w (Oliehoek, 2012).

• The dependence of I(ut+1
→i |D

t+1
i ,xtv,a

t
i,x

t+1
v ) on ati is only needed when ati is an indirect

source (i.e., it is an ancestor of yt+1
u or yt+1

v ).

5.1.4 Exerted vs. Experienced Influence

Here we make a reinterpretation of the experienced influence at stage t+ 1 as the result of
the influence exerted at stage t plus the effect of the intra-stage effects. While this does not
fundamentally change anything about the definition of influence per Definition 19, it may
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provide some insight on the nature with which influence manifests itself in settings with
intra-stage connections, and provide guidance for possible implementations.

In particular, it is possible to define a distribution, only in terms of variables at stage
t, which acts as a sufficient statistic to predict the intra-stage source. The intuition is that
the experienced influence, can be thought of as being induced by the exerted influence:

• Exerted Influence (at stage t):

Pr(ytw,a
t
w|D

t+1
i ,b0,π−i) = Pr(ytu,y

t
v,a

t
u,a

t
v|D

t+1
i ,b0,π−i)

=
∑

~ht
w

πw(a
t
w|~h

t
w) Pr(y

t
w,
~htw|D

t+1
i ,b0,π−i). (5.4)

• Experienced Influence (at t+ 1):

I(ut+1
→i |D

t+1
i ,xtv,a

t
i,x

t+1
v ) = Pr(ytu,a

t
u,y

t+1
u |Dt+1

i ,xtv,x
t+1
v ,b0,π−i)

=
∑

〈ytv ,atv ,yt+1
v 〉

Pr(yt+1
u ,yt+1

v |xtv,y
t
v,a

t
i,a

t
v,x

t+1
v ) Pr(ytw,a

t
w|D

t+1
i ,b0,π−i). (5.5)

This last equation (5.5) clearly demonstrates how the experienced influence is induced by
the exerted influence. The notion of exerted influence (5.4) lays a clear link to IBA in
settings without ISDs (cf. Equation 4.4) and is conceptually useful since it isolates which
information needs to be retained for each stage t. As such, we expect that any practical
implementations for computing the influence by means of filtering (belief tracking) (Russell
& Norvig, 2009; Thrun, Burgard, & Fox, 2005) would use this as the primary quantity of
interest.

5.2 Influence-Augmented Local Model (IALM)

Here we define the influence-augmented local model under intra-stage connections. Looking
at Definition 15, we can conclude that the only changes that we need to make involve the
transition function (4.9).

In particular, we need to deal with the fact our definition of influence (5.3) can now be
of the more complex form I(ut+1

→i |D
t+1
i ,xtv,a

t
i,x

t+1
v ), as given by (5.5). This means that the

NLAF probability Pr(x̃t+1
i |〈xti,D

t+1
i 〉,ati,I

t+1
→i ) given by (4.7) must be updated to deal with

this new form, and this in turn implies that the definition of T̄i(s̄
t+1
i |s̄ti,a

t
i) per (4.9) needs

to be updated too.
Let us start with the former. Like (3.12), this can now depend on ISDs from OLAFs

x̊t+1
i

Pr(x̃t+1
i |〈xti,D

t+1
i 〉,̊xt+1

i ,ati,I
t+1
→i ),

∑

ut+1
→i =〈ytu,atu,y

t+1
u 〉

I(ut+1
→i |D

t+1
i ,xtv,a

t
i,x

t+1
v ) Pr(x̃t+1

i |xti ,̊x
t+1
i ,ati,u

t+1
→i ), (5.6)

with Pr(x̃t+1
i |xti ,̊x

t+1
i ,ati,u

t+1
→i ) simply the product of CPTs of the NLAFs, as given by (3.12),

but now restricted to only yti ,y
t+1
i ,at−i that are influence sources.

We are now in the position to define the IALM under intra-stage dependencies:
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Definition 20 (IALM). Given an LFM with intra-stage dependencies, MLFM , and profile
of policies for other agents π−i, an Influence-Augmented Local Model (IALM) for agent i is

a POMDP MIALM
i (MLFM ,π−i) =

〈

S̄,Ai,T̄i,R̄i,Oi,Ōi,H,b
l,0
i

〉

, where

• S̄,Ai,R̄i,Oi,Ōi,H,b
l,0
i are identical to those in Definition 15,

• T̄i is the transition function is defined as:

T̄i(s̄
t+1
i |s̄ti,a

t
i),Pr(xt+1

i |〈xti,D
t+1
i 〉,ati,I

t+1
→i )1{Dt+2

i ,d(xt
i,a

t
i,x

t+1
i ,Dt+1

i )}

= Pr(x̃t+1
i |〈xti,D

t+1
i 〉,̊xt+1

i ,ati,I
t+1
→i ) Pr(̊x

t+1
i |xti,x̃

t+1
i ,ati)1{Dt+2

i ,d(xt
i,a

t
i,x

t+1
i ,Dt+1

i )}, (5.7)

with the first term is given by (5.6) and the second term is given by (3.11).

5.3 Planning in an IALM with ISDs

Since the only modifications that we needed to make to incorporate ISDs were in the
transition function, the conclusions about how to plan in IALM made in Section 4.3 remain
valid. In particular, the IALM is still a POMDP, with a well-defined belief-update function,
and value functions. The solution of the IALM still gives the influence-based best-response
value, defined in (4.17) as the value of the initial local-form belief: Vi(I→i(π−i)),V 0

i (b
l,0
i ).

6. Sufficiency of Influence-Based Abstraction

In this section, we will show that influence-based abstraction is completely lossless. By that
we mean that an IALM constructed according to Definition 20 can be used to accurately
predict rewards and observations, and thus to compute an exact, optimal (best-response)
value.

The latter is our main result, Theorem 1, which shows that the optimal values for the
GFBRM and the IALM are equal, thus establishing that one can use the IALM to plan (or
learn) without any loss in value. In other words, it proves that the definition of influence
constitutes a sufficient statistic for predicting the optimal value, and thus that the resulting
IALM achieves a best-response against the policy π−i that generated the influence I→i(π−i).

Theorem 1. For a finite-horizon POSG, the solution of the IALM for the incoming influ-
ence point I→i(π−i) associated with any π−i achieves the same value Vi(I→i(π−i)), given by
(4.17), as the best-response value Vi(π−i), given by (3.7), computed against π−i directly:

∀π−i
Vi(I→i(π−i)) = Vi(π−i). (6.1)

We note that this results also holds in the presence of intra-stage connections. To prove
the result (in Section 6.4) we will show that the immediate reward terms and observation
probabilities are equal (Section 6.3). In turn, to show this, we will need to show that
transition probabilities are the same given a local-form belief and a global-form belief,
which means that the local-form belief is a sufficient statistic to predict the next local state
(Section 6.2). In order to allow the rewriting to take place, we first show how the global-form
belief can be factorized.
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We believe that this proof by itself is useful: it isolates the core technical property that
needs to hold for sufficiency in Lemma 1 in Section 6.2. In this way it 1) conveys insight into
the nature of how abstraction of latent state factors affects value, 2) provides a derivation
that can be used to obtain simplifications of the definition of influence (Definition 19) in
simpler cases, and 3) provides a recipe of how to prove similar results in problems which
add even more complexities.

6.1 Factorization of the Global-Form Belief

In order to prove the equivalence of the GFBRM and the IALM, we will show that their
value functions are the same. In order to do that, it will be necessary to decompose the
global-form belief bgi in components.

To do that, we make use of the insight that, for any Dt+1
i , the law of total probability

allows us to write

b
g
i (s

t,~ht−i) =
∑

Dt+1
i

bi(
〈

xti,y
t
i

〉

,~ht−i,D
t+1
i ) =

∑

Dt+1
i

bi(x
t
i,D

t+1
i )bi(y

t
i ,
~ht−i|x

t
i,D

t+1
i ). (6.2)

(We drop the superscript ‘g’ because we are rewriting to something that we do not call
global-form belief anymore.)

Also, it is important to remember that the belief is defined as

b
g
i (s

t,~ht−i),Pr(st,~ht−i|~h
t
i,b

0,π−i),

which means that in (6.2), the definitions of the components are

bi(x
t
i,D

t+1
i ) , Pr(xti,D

t+1
i |~hti,b

0,π−i), (6.3)

bi(y
t
i ,
~ht−i|x

t
i,D

t+1
i ) , Pr(yti ,

~ht−i|x
t
i,D

t+1
i ,~hti,b

0,π−i). (6.4)

These equations further clarify how to think about inclusion of actions ai and observa-
tions oi inside the d-separating set Dt+1

i : the belief per definition conditions on the history
of actions and observations, as such these can be included in Dt+1

i without further prob-
lems. In particular, suppose that aki is part of d-separating set Dt+1

i , then this will lead to
Pr(xti,

〈

. . . aki . . .
〉

|
〈

. . . aki . . .
〉

,b0,π−i) in (6.4). However, the interpretation is simply that
this does not influence the probabilities, since P (x|x) = 1. Similarly, it would lead to a
term Pr(yti ,

~ht−i|x
t
i,
〈

. . . aki . . .
〉

,
〈

. . . aki . . .
〉

,b0,π−i) in (6.4). Again, this poses no problem,
since Pr(y|x,x) = Pr(y|x). However, let us repeat that we do need all observation relevant
state factors in the local state: otherwise we cannot define the local observation model Ōi

and track the local-form belief bi(x
t
i,D

t+1
i ) (cf. Definition 10 and Definition 15).

6.2 Sufficiency for Prediction of Local State Transitions

In this section, we show that the influence together with the local-form belief is sufficient to
predict local state transitions. We first prove the following lemma, that shows that pairwise
marginal distributions over states are the same in the IALM and the GFBRM. This will
then be used in other proofs.
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Lemma 1. The joint distribution over current local state and next local state induced by a
local-form belief is identical to that of the global-form belief:

∀~ht
i
∀xt

i,x
t+1
i

Pr(xti,x
t+1
i |bgi ,a

t
i,π−i) = Pr(xti,x

t+1
i |bli,a

t
i,I

t+1
→i ), (6.5)

where bli, b
g
i denote the for the local-form and global-form beliefs induced by ~hti.

Proof. To improve readability we will omit some time indices that do not cause confusion.

We assume arbitrary ~hti,x
t
i,x

t+1
i , and start with the left-hand side, which is given by (3.15):

∑

yt

i

∑

a−i

Pr(xt+1
i |st,ai,a−i)

∑

~ht

−i

Pr(a−i|~h
t
−i,π−i)b

g
i (s

t,~ht
−i)

={via (6.2)}

∑

yt

i

∑

a−i

Pr(xt+1
i |st,ai,a−i)

∑

~ht

−i

Pr(a−i|~h
t
−i,π−i)







∑

D
t+1

i

bi(x
t
i,D

t+1
i )bi(y

t
i ,
~ht
−i|x

t
i,D

t+1
i )






(6.6)

={via (3.9)}

∑

yt

i

∑

a−i







∑

y
t+1

i

Pr(yt+1
i ,xt+1

i |st,ai,a−i)







∑

~ht

−i

Pr(a−i|~h
t
−i,π−i)

∑

D
t+1

i

bi(x
t
i,D

t+1
i )bi(y

t
i ,
~ht
−i|x

t
i,D

t+1
i ) (6.7)

={via (3.10)}
∑

yt

i

∑

a−i

∑

y
t+1

i

Pr(̊xt+1
i |xt

i,ai,x̃
t+1
i ) Pr(x̃t+1

i |xt
i ,̊x

t+1
i ,ai,y

t
u,y

t+1
u ,au) Pr(y

t+1
i |xt

i,y
t
i ,ai,a−i,x

t+1
i )

∑

~ht

−i

Pr(a−i|~h
t
−i,π−i)

∑

D
t+1

i

bi(x
t
i,D

t+1
i )bi(y

t
i ,
~ht
−i|x

t
i,D

t+1
i ) (6.8)

={reordering terms}
∑

D
t+1

i

Pr(̊xt+1
i |xt

i,ai,x̃
t+1
i )bi(x

t
i,D

t+1
i )







∑

a−i

∑

~ht

−i

∑

yt

i

∑

y
t+1

i

Pr(x̃t+1
i |xt

i ,̊x
t+1
i ,ai,y

t
u,y

t+1
u ,au) Pr(y

t+1
i |xt

i,y
t
i ,ai,a−i,x

t+1
i ) Pr(a−i|~h

t
−i,π−i)bi(y

t
i ,
~ht
−i|x

t
i,D

t+1
i )







(6.9)

This equation has grouped together all the probabilities that are affected by the non-
local part of the problem in between the brackets. The terms before do not depend on the
external part at all. We will now further investigate the externally influenced (bracketed)
part:

∑

a−i

∑

~ht

−i

∑

yt

i

∑

y
t+1

i

Pr(x̃t+1
i |xt

i ,̊x
t+1
i ,ai,u

t+1
→i ) Pr(y

t+1
i |xt

i,y
t
i ,ai,a−i,x

t+1
i )π−i(a−i|~h

t
−i)bi(y

t
i ,
~ht
−i|x

t
i,D

t+1
i ) (6.10)

=
∑

a−i

∑

yt

i

∑

y
t+1

i

Pr(x̃t+1
i |xt

i ,̊x
t+1
i ,ai,u

t+1
→i ) Pr(y

t+1
i |xt

i,y
t
i ,ai,a−i,x

t+1
i )

∑

~ht

−i

π−i(a−i|~h
t
−i)bi(y

t
i ,
~ht
−i|x

t
i,D

t+1
i ) (6.11)

In this equation, not all non-modeled factors yt+1
i are relevant: we can restrict to the intra-

stage sources yt+1
u and their intra-stage ancestors yt+1

v , other factor’s probabilities just sum
to 1. This yields:
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∑

a−i

∑

yt

i

∑

y
t+1
u

Pr(x̃t+1
i |xt

i ,̊x
t+1
i ,ai,u

t+1
→i )

∑

y
t+1
v

Pr(yt+1
u ,yt+1

v |xt
i,y

t
i ,ai,a−i,x

t+1
i )

∑

~ht

−i

π−i(a−i|~h
t
−i)bi(y

t
i ,
~ht
−i|x

t
i,D

t+1
i )

(6.12)

={restricting to av ,x
t+1
v that actually influence yt+1

u . I.e., v denotes other ‘second order’ sources}
∑

a−i

∑

yt

i

∑

y
t+1
u

Pr(x̃t+1
i |xt

i ,̊x
t+1
i ,ai,u

t+1
→i )

∑

y
t+1
v

Pr(yt+1
u ,yt+1

v |xt
v ,y

t
v ,ai,av ,x

t+1
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={marginalize out non-relevant terms}
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={let w = u ∪ v denote the union of direct and indirect sources}
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(6.16)

We can now apply the definition of influence (Definition 19 on page 826) to (6.16), which
yields

=
∑
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i |xti ,̊x

t+1
i ,ai,y

t
u,au,y

t+1
u )I(ut+1

→i |D
t+1
i ,xtv,ai,x

t+1
v ), (6.17)

which is the definition (5.6) of Pr(x̃t+1
i |〈xti,D

t+1
i 〉,̊xt+1

i ,ai,I
t+1
→i ).

Substituting (6.17) back in (6.9) we get
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i |bli,a

t
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which concludes the proof.
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Lemma 2. A local-form belief is a sufficient statistic for predicting the next local state.
That is, when bli, b

g
i denote the for the local-form and global-form beliefs induced by the

same action-observation history ~hti, we have that:

∀~ht
i
∀xt+1

i
Pr(xt+1

i |bgi ,a
t
i,π−i) = Pr(xt+1

i |bli,a
t
i,I

t+1
→i ). (6.19)

Proof. This follows directly from Lemma (1):
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t
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→i ) =
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i |bli,a

t
i,I
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→i )

=
∑

xt
i

Pr(xti,x
t+1
i |bgi ,a

t
i,π−i) = Pr(xt+1

i |bgi ,a
t
i,π−i).

6.3 Sufficiency for Predicting Rewards and Observations

Given that we established that local-form beliefs in an IALM are sufficient to predict local-
state transitions, we can now also establish their sufficiency for predicting rewards and
observations.

Lemma 3. The local-form belief is a sufficient statistic to predict the immediate reward.
That is

∀~hi
∀ati Ri(b

g
i ,a

t
i) = Ri(b

l
i,a

t
i) (6.20)

where bli, b
g
i denote the for the local-form and global-form beliefs induced by ~hi.

Proof. When we compare equations (3.14) and (4.15), we see that this holds if
Pr(xti,x

t+1
i |bgi ,a

t
i,π−i) = Pr(xti,x

t+1
i |bli,a

t
i,I

t+1
→i ). This is precisely what Lemma 1 shows.

Lemma 4. The local-form belief is a sufficient statistic for predicting the observation. That
is:

∀~hi
∀ati,o

t+1
i

Pr(ot+1
i |bgi ,a

t
i) = Pr(ot+1

i |bli,a
t
i), (6.21)

where bli, b
g
i denote the for the local-form and global-form beliefs induced by ~hi.

Proof. Comparing equations (3.16) and (4.11), we see that equality holds if
Pr(xt+1

i |bgi ,ai,π−i) = Pr(xt+1
i |bli,ai,I

t+1
→i ); this is exactly what Lemma 2 shows.

6.4 Proof of Theorem 1: Sufficiency for Predicting Optimal Value

Finally, we can prove that our definition of influence is sufficient to predicting the optimal
best-response value. The values in (6.1) are defined as the value of the initial beliefs, cf.
equations (4.17) and (3.7). Putting this all together, we need to show that

∀π−i
Vi(I→i(π−i)),V 0

i (b
l,0
i ) = V 0

i (b
g,0
i ),Vi(π−i). (6.22)

The proof is by induction over the horizon, where the base case is given by the last stage.

834



A Sufficient Statistic for Influence in Structured Multiagent Environments

Base Case. Assume an arbitrary last-stage AOH, ~hH−1
i , and let bli, b

g
i denote the for the

local-form and global-form beliefs induced by it. Their respective values are given by

V t
i (b

g
i ) = max

ai
Ri(b

g
i ,ai),

V t
i (b

l
i) = max

ai
Ri(b

l
i,ai).

So we need to show that the predicted immediate rewards are equal. This, however, is
exactly what Lemma 3 shows.

Induction Step. The induction hypothesis is that, for stage t+ 1,

∀~ht+1
i

V t+1
i (bl,t+1

i ) = V t+1
i (bg,t+1

i ), (6.23)

where we write b
l,t+1
i , b

g,t+1
i are the local-form and global-form beliefs induced by ~ht+1

i .

Now we need to prove that V t
i(b

l
i) = V t

i(b
g
i ), for all

~hti. Since, per definition,
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i (b

l
i) = max

ai
Qt

i(b
l
i,ai),

V t
i (b

g
i ) = max

ai
Qt

i(b
g
i ,ai),

we will show this by proving that the Q-values are equal. Assume an arbitrary ~hti. Its
Q-values, for all ai, are given by (3.4):

Qt
i(b

g
i ,ai) = Ri(b

g
i ,ai) + γ

∑

oi

Pr(oi|b
g
i ,ai)V

t+1
i (BU(bgi ,ai,oi)) (6.24)

By the induction hypothesis, we get

Qt
i(b

g
i ,ai) = Ri(b

g
i ,ai) +

∑

oi

Pr(oi|b
g
i ,ai)V

t+1
i (BU(bli,ai,oi)). (6.25)

Note that BU(bgi ,ai,oi) and BU(bli,ai,oi) are the local-form and global-form beliefs induced

by the same next-stage history ~ht+1
i = (~hti,ai,oi), and hence the induction hypothesis applies:

V t+1
i (BU(bgi ,ai,oi)) = V t+1

i (BU(bli,ai,oi)).

So, in order to show that (6.25) is equal to

Qt
i(b

l
i,ai) = Ri(b

l
i,ai) +

∑

oi

Pr(oi|b
l
i,ai)V

t+1
i (BU(bli,ai,oi)) (6.26)

we need to show equality for both the immediate rewards, Ri(b
g
i ,ai) = Ri(b

l
i,ai), and the

observation probabilities, Pr(oi|b
g
i ,ai) = Pr(oi|b

l
i,ai). The former was shown in Lemma 3

and the latter was shown in Lemma 4. Hence, the Q-values are the same, hence the values
are the same, which concludes the induction step.
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7. Tractable Influence Representations

There are a number of important problem classes and associated models developed in pre-
vious work that emphasize weakly coupled problem structure in more restrictive settings.
We now reformulate these classes in the context of IBA, thus demonstrating how the theory
presented in this paper unifies such previous work in a coherent graphical framework. All
of the models that we review below are specialized instances of the factored Dec-POMDP
(fDec-POMDP) model and since an fDec-POMDP is an fPOSG, our definition of influence
is applicable to all of these models.

However, as we illuminate below, some sub-classes allow for particularly compact influ-
ence specifications that can be computed efficiently. Similar to the examples in Section 4.4,
this makes clear how it is possible to compute best responses more effectively, and pro-
vides some intuition about how influence search approaches can enable speed-ups in these
sub-classes.

We will also see how our unified perspective allows us to make novel observations about
these previously defined classes that can lead to improvements and extensions. For instance,
we will see that we can derive more compact forms of influence for the so-called EDI-
Dec-MDP framework. In general we expect that the more compact the representation,
the more efficiently these sub-classes can be solved. However, we note that, unlike (most
of) the papers that introduced these sub-classes, in this paper we are not proposing an
influence–search technique to solve the optimization for all agents. This is left for future
work.

7.1 TD-POMDP

An earlier embodiment of influence abstraction (Witwicki & Durfee, 2010b; Witwicki, 2011;
Witwicki et al., 2012) sought to exploit cooperative agents’ weak coupling, showing that
searching in the space of joint influences can provide significant speed-ups over searching the
space of joint policies for a restrictive sub-class of fDec-POMDPs. The so-called Transition-
Decoupled POMDP (TD-POMDP) (Witwicki, 2011) describes a local state for each agent
that resembles our local form models. However, it also distinguishes so-called mutually-
modeled factors (MMFs) common to more than one agent’s local state. These MMFs have
the same role as our non-locally affected factors (NLAFs), but impose additional restrictions
(Witwicki, 2011, Section 3.4.3). Specifically, there are two important differences that make
the TD-POMDP more restrictive than our local-form model:

1. The TD-POMDP does not allow intra-stage dependencies between private state vari-
ables and MMFs.

2. In a TD-POMDP each state factor can only be directly affected by (have an incoming
edge from) the action (or private state variable) of just one agent.

These constraints effectively limit the representational power of the TD-POMDP to non-
concurrent interactions. As an example, the planetary exploration domain from Fig-
ure 7 can be directly modeled as a TD-POMDP by making pl the single MMF in the model.
In contrast, the House Search problem from Figure 2 cannot be modeled in the same way:
the TD-POMDP version of this problem requires separating the ‘found’ variable into two
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MMF variables: ‘found by agent 1’ and ‘found by agent 2’ thus increasing the size of the
local problems (Witwicki et al., 2012).

Observation. The TD-POMDP model is a special case of the LFM, imposing restrictions
that limit its modeling capabilities to a subset of those interactions representable as local-
form POSGs: TD-POMDP ⊂ LFM.

The TD-POMDP’s formalization is less flexible than that proposed in this paper. In
particular, it seems difficult to extend the TD-POMDP to deal with intra-stage connections,
which we have argued in Sections 4.1.1 and 5 is important for expressiveness.

However, the authors derive that this representational restriction affords the TD-POMDP
a particular form of influence, since the history of mutually-modeled factors is guaranteed
to d-separate an agent’s observations from all external factors (i.e., those outside of its local
state). The form of influence that Witwicki and Durfee propose for TD-POMDPs actually
corresponds to our notion of ‘induced CPT’ (cf. Section 4.2.1) or the marginal of their prod-
uct (4.7). In many cases this allows for compact representations of the influence. Compact
influence representations in turn appear to provide traction when it comes to computing
solutions, as evidenced by the efficiency and scalability gains of influence-space search for
TD-POMDPs (Witwicki, 2011; Witwicki et al., 2012).

7.2 TI-Dec-MDP

Another model, the Transition-Independent Dec-MDP (Becker et al., 2003), imposes other
more stringent restrictions on the dependencies between agents’ local models. In particular,
an agent fully observes its private factors and there are no paths of dependence in the DBN
connecting one agent’s private factors, actions, and observation to those of another. This
implies that the agents are transition and observation independent. Agents’ local models
are instead coupled through their rewards, which can depend on the events ei = 〈sti,a

t
i,s

t+1
i 〉

that occur (at most once) within another agents’ state space.

This class of problems includes, for instance, missions executed by Mars rovers during
which they need to collect samples at various sites. In such settings, it is reasonable to
assume that the rovers have their own routes and therefore will not affect each other’s
transitions. However, the utility of rover 1 taking a soil sample at a particular site might
depend on what samples are taken by rover 2 at nearby sites.

For instance, imagine that the rovers pass at different sides of a canyon, taking a pic-
ture of this canyon provides some utility, but if both rovers take a picture from their side
of the canyon (corresponding to the individual events ei), this may enable a better 3D
reconstruction, providing more value than just the sum of two individual pictures.

This can be easily captured in a factored representation as shown in Figure 12. It shows
that the combined occurrence of both agents’ events (as represented by Boolean variable E)
leads to a change in the reward (split between the agents as soon as the event occurs). When
the discount factor is 1 (as Becker et al., 2003 assume), the reward may as well be affected
at the last time step as we have indicated. This leads to a very simple form of influence
I→i(e

h−1
j ) corresponding to the probability of eh−1

j being true. This corresponds exactly to
the characterization of ‘parameter space’ presented by Becker et al. in their development of
the coverage set algorithm (CSA).

Our characterization of the TI-Dec-MDP immediately leads to some new insights.
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Figure 12: Local-form representation of TI-Dec-MDP: the LFMs of both agents (indicated
by different color bounding boxes) are tied together by a influence source E that indicates
if the joint event happened. To be able to predict the value of this influence source, the
agent i will need to condition on their ei variable.

Observation. While the TI-Dec-MDP framework is arguably more restrictive than the TD-
POMDP, the graphical structure in Figure 12 makes clear that a TI-Dec-MDP is not a
TD-POMDP: E3 is affected from both sub-problems simultaneously.

Observation. The properties that 1) events cannot occur more than once; and 2) events are
unobserved, allow for history-independent influence encoding in TI-Dec-MDPs.

Observation. CSA and closely-related TI-Dec-MDP algorithms (Petrik & Zilberstein, 2009)
exploit structure that is also present in more general contexts, such as TI-Dec-POMDPs
with partial observability of private factors.

That is, we make the observation that that CSA and its successors can actually be
extended to more general problem whose joint value function is piecewise linear and convex
in the influence parameters, such as settings where agents receive only partial observations
of their local states.

7.3 Event-Driven Interactions

The TI-Dec-MDPs assumes that transitions are independent, but interactions are present
in rewards. However, in many problems it may be the other way around: for instance, the
rewards that a vacuum cleaner robot generates only depends on the amount of dirt it cleans
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Figure 13: Local-form representation of the ED-Dec-MDP. The events e1 act as influence
destination for agent 2 and vice versa. To avoid clutter we do not indicate influence sources.
The history of all ei serves as a d-separating set for both agents.

up, but it cannot enter a dirty room until a general purpose house-hold robot opens the
door.

To deal with such problems Becker et al. (2004) proposed the Dec-MDP with Event-
Driven Interaction (EDI-Dec-MDP), which provides an explicit representation for struc-
tured transition dependencies between two agents. Again, we will interpret this model in
the IBA framework, as illustrated in Figure 13. This figure shows that, agent 1’s transi-
tion probabilities may be affected by the prior occurrence of agent 2’s event e2 (and vice
versa). In this case, the history of these event features are sufficient for d-separation, i.e.,
D1 = {e1,e2}. This leads us to develop a new influence specification for this sub-class of
problems:

Observation. The (induced-CPT form of) influence on EDI-Dec-MDP agent i, It+1
→i (πj) can

be defined as I(stj ,a
t
j ,s

t+1
j |~e t

i ,~e
t
j ). Moreover, similar to what we saw in Section 4.4, the

history ~e t
i ,~e

t
j can be represented compactly since events can only switch to true.

The marginal of product of induced CPTs Pr(et+1
1 ,et+1

2 |~e t
1,~e

t
2) is similar to the parame-

ters used by Becker et al. (in their application of CSA), but is slightly more compact, since
it does not depend on private factors sti, which our theory suggests to be unnecessary.

Having derived a more compact parameter form, we anticipate that this will translate
directly into a more efficient application of CSA. We note that our reformulation of the TI-
Dec-MDP and EDI-Dec-MDP also serve as influence specifications for the EDI-CR model
(Mostafa & Lesser, 2009), developed to include both event-driven interactions and reward
dependencies (as in the TI-Dec-MDP).
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The distributed POMDP with coordination locales (DPCL) model (Varakantham et al.,
2009) can also be reinterpreted using Figure 13. This model assumes all agents’ observations
are conditionally independent given the state, but that in some specific states, agents can
affect each other’s transitions or rewards. Looking at Figure 13, the events ei precisely
can model what Varakantham et al. refer to as future-time coordination locales (“situations
where actions of one agent impact actions of others in the future”). Varakantham et al.
also consider same-time coordination locales, which can model simultaneous effects such
as robots failing to move when both try to move to the same grid cell. In Figure 13 this
would be captured by adding arrows from ~e t

i to st+1
i (or alternatively by introducing joint

events E, as in Figure 12, at every time step). While these same-time coordination locales
overcome the modeling requirements of non-concurrency as observed in TD-POMDPs and
ED-MDPs, the solution method proposed by Varakantham et al. is heuristic. In fact, it is
precisely our definition of influence presented in this paper that explains how to deal with
such concurrent interaction in a principled fashion.

7.4 ND-POMDP

The Network Distributed POMDP (ND-POMDP) introduced by Nair et al. (2005) is another
transition and observation independent model whose structure can easily be represented in
our framework. It was motivated by problems like sensor networks for intrusion detection,
where the sensors need to select actions to scan their local surroundings. Such actions do
not affect the local state of other sensors, but combinations of actions of neighboring sensor
nodes can lead to higher rewards (e.g., if two adjacent sensors scan the same area where an
intruder is, there might be a higher detection probability).

The formalization is depicted in Figure 14. Each agent’s observation can be affected by
an unaffectable, mutually-modeled factor s0 (e.g., the location of an intruder). The reward
dependencies involving joint actions are captured with an unobservable variable z encoding
the local state-action pair that in much the same way as did the TI-Dec-MDP’s events. The
difference is that these joint actions are not constrained to occur only once, and may affect
the rewards at any time.

In general, an ND-POMDP can consist of multiple local neighborhoods, which can be
modeled using a coordination (hyper-)graph (Guestrin, Koller, & Parr, 2002a; Nair et al.,
2005; Kok & Vlassis, 2006). Agents correspond to nodes, while E is a set of (hyper-)edges
corresponding to subsets, e, of agents. To encode the interactions between different subsets
of agents e ∈ E , one can introduce different variables ze. Our reformulation presented
here immediately leads to the first specification of influence that we are aware of for this
problem class. Let us write N(i) to denote the neighbors of agent i excluding agent i itself:
N(i) = {j ∈ D|∃e ∈ E i,j ∈ e ∧ i 6= j}.

Observation. The influence on ND-POMDP agent i, It+1
→i (π−i) can be defined as

It+1
→i (s

t
N(i),a

t
N(i)|~s

t
0 ) =

∏

j∈N(i)

Itj→(stj ,a
t
j |~s

t
0 ), (7.1)

with Itj→(stj ,a
t
j |~s

t
0 ) = Pr(stj ,a

t
j |~s

t
0 ) the outgoing influence of agent j.

Like the other mentioned sub-classes, the ND-POMDP affords a compact influence en-
coding, suggesting that influence-based planning methods could gain traction if applied
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Figure 14: Local-form representation of agent 2 in a two-agent ND-POMDP. Highlighted
are the influence sources for the “neighborhood state-action variable” z3. (Time indices are
omitted in the figure to avoid clutter, but can be inferred from the stages indicated at the
bottom.) Note that because z itself nor any of its descendants are observable (rewards are
not observed in Dec-POMDPs), it does not open a path of influence to s2. Therefore only
the history of s0 needs to be encoded in the d-separating set.

here. Existing forms of influence search exploit the fact that one can enumerate the joint
influences, which describe how agents influence each other (Witwicki & Durfee, 2010b;
Witwicki et al., 2012). Due to the factorization of (7.1), the joint influence space here is a
product space, which is easier to generate and search through. Moreover, it would be possi-
ble to exploit the graph structure of the ND-POMDP, similar to the approach by Witwicki
(2011, Section 6.6): the space of joint influences can be decomposed as a factor graph over
which one can optimize more effectively.

8. Related Work

Apart from the models and approaches reviewed in Section 7, there are important connec-
tions to be drawn with a large body of other work. Given the generality of the intuitive
notion of ‘influence’ this should come as no surprise. Here we describe those relations to
previous work and discuss further insights that our results provide. We sub-divide these
related works in:
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• work on locality of interaction and value factorization in multiagent systems,

• other decomposition-like approaches in multiagent systems, and

• more general forms of abstraction.

8.1 Locality of Interaction and Value Factorization

Past studies of factored Dec-POMDPs with factored value functions (Nair et al., 2005;
Varakantham, Marecki, Yabu, Tambe, & Yokoo, 2007; Kumar, Zilberstein, & Toussaint,
2011; Witwicki & Durfee, 2011) have shown that gains in computational efficiency are pos-
sible when the value function can be expressed as the sum of a number of local components,
each of which is specified over subsets of agents and state factors. In particular, the value
in general Dec-POMDPs can be expressed as a function Vπ(s

t,~o t) (e.g., see Oliehoek &
Amato, 2016, chap. 3) of states and joint observation histories. Such a value function is
said to be a factored value function if there is a set of components e ∈ E such that

Vπ(s
t,~o t) =

∑

e∈E

Vπe(s
t
e,~o

t
e), (8.1)

with πe and ~o t
e the policies respectively observation histories of the agents that participate

in component e, and ste the value of the state factors relevant for e. For such problems, it
is easy to show that they possess locality of interaction (Nair et al., 2005): one can define a
local neighborhood for each agent such that its actions will not impact the value beyond that
neighborhood. This property allows one to reduce the problem to a form of (distributed)
constraint optimization problem (e.g., see Oliehoek & Amato, 2016, chap. 8) .

However, for general factored Dec-POMDPs, the components e involve all agents and
factors. I.e., they are not local (Oliehoek et al., 2008b; Oliehoek, 2010). This paper shows
that even in the most general case, it actually is possible to find local (i.e., restricted scope)
components, although this may be at the cost of introducing a dependence on the history
of a subset of the local state factors (the d-separating set Di). This means that it may
be possible to extend the planning-as-inference method of (Kumar et al., 2011) to exploit
structure in general fDec-POMDPs.19 Researchers in the field of (deep) multiagent rein-
forcement learning, have tried to exploit such factorized structure approximately (Guestrin,
Lagoudakis, & Parr, 2002b; Kok & Vlassis, 2006; Kuyer, Whiteson, Bakker, & Vlassis, 2008;
Van der Pol & Oliehoek, 2016; Sunehag, Lever, Gruslys, Czarnecki, Zambaldi, Jaderberg,
Lanctot, Sonnerat, Leibo, Tuyls, & Graepel, 2018; Rashid, Samvelyan, Schroeder de Witt,
Farquhar, Foerster, & Whiteson, 2018; Castellini, Oliehoek, Savani, & Whiteson, 2019;
Böhmer, Kurin, & Whiteson, 2019; Son, Kim, Kang, Hostallero, & Yi, 2019; Wang, Wang,
Zheng, & Zhang, 2019), and our work brings deeper understanding of those approaches.

For instance, Sunehag et al. (2018) proposed a form of factored value functions (Guestrin
et al., 2002a) making use of neural networks that can be understood better using the
theory developed in this paper. Specifically they propose value-decomposition networks, a
variant of deep Q-networks (DQN) introduced by Mnih, Kavukcuoglu, Silver, Rusu, Veness,

19. Note that, in general, IBA draws close connections to the paradigm of planning as inference (Toussaint,
2009); it performs inference to compute a compact local model; subsequently, inference (among other
choices of solution methods) could be used to solve the IALM.
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Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski, Petersen, Beattie, Sadik, Antonoglou,
King, Kumaran, Wierstra, Legg, and Hassabis (2015), that uses a Q-function

Q̃(~h,a) =
∑

i∈D

Q̃i(~hi,ai), (8.2)

which is implemented in a single neural network with a linear layer at the end that performs
this summation. They state that

“the main assumption we make and exploit is that the joint action-value function
for the system can be additively decomposed into value functions across agents”

and this assumption has been pointed out as a limitation in subsequent work (Rashid et al.,
2018; Böhmer et al., 2019). This paper, however, demonstrates that there is a very large
class of problems for which this assumption (approximately) holds. In particular, we show
that for any factored Dec-POMDP for which we can create a set of local-form models (cf.
Definition 10), we have that:

Vπ(~h) =
∑

i∈D

Vi(b
l
i) =

∑

i∈D

max
ai

Qi(b
l
i,ai), (8.3)

where bli is the local-form belief induced by ~hi and the policies of the other agents π−i. We
also discuss that, by introducing dummy variables as required (cf. the end of Section 4.1.1),
any factored Dec-POMDP can be re-coded as such set of local-from models.20 As such, there
is a very large class of problems for which “the system can be additively decomposed into
value functions across agents”. However, the devil is the details, we write “(approximately)”
since the statement by Sunehag et al. (2018) is about Q not V . In particular, we have that

Qπ(~h,a) 6=
∑

i∈D

Qi(b
l
i,ai) (8.4)

since each term Qi(b
l
i,ai) assumes that the other agents act according to π−i, not according

to a. This can explain the empirical improvements of methods that consider ‘higher order
approximations’ with Q-components that involve subsets of agents (Oliehoek et al., 2013;
Castellini et al., 2019; Böhmer et al., 2019).

We point out that this does not mean that an approximation Qπ(~h,a) ≈
∑

i∈D Qi(b
l
i,ai)

is senseless: in fact, we know that for the modified joint policy π′, which is like π but does a
instead of π(~h), the decomposition of Vπ′ according to (8.3) also holds. As such, the question
“how good of an approximation can we get with the individually factored Q-functions
from (8.2)?” can be reinterpreted as a question of how the prediction of the components
Qi(b

l
i,ai) (which assume the others follow π−i) generalize to “first action modified policies”

π′. In other words, if for all such one-joint-action-modifications π′ and their induced local
form beliefs bl′i we have that Qi(b

l
i,ai) ≈ Qi(b

l′
i ,ai), then we expect this approximation

20. Of course, depending on the problem, these components themselves might be small (need to involve only
few state variables) or large. We cannot claim anything about the size of these components in general
problems. We merely reason that they can in principle be constructed, which is sufficient to support our
argument here.
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to work well. Further formalizing the impact of such first-action-modifications may be a
promising direction of research, and could lead to a novel notion of influence strength (Allen
& Zilberstein, 2009; Oliehoek, Spaan, & Witwicki, 2015b) in multiagent domains.

We also remark that this analysis shows that, at least in cases that do not exhibit
strict locality of interaction, value factorization inherently depends on the current policies
of other agents, and hence implies an ‘on-policy characteristic’: when learning such factored
value components we can only learn about the Qi(b

l
i,ai) that are induced by those π−i that

are currently being followed by the other agents. Of course, agent i itself can still try to
learn its approximation Q̃i(~hi,ai) with off-policy methods, but sudden large changes to the
own policy may affect the ability of other agents to learn their local approximation. We
speculate that in more tightly coupled problems on-policy methods with factorization may
outperform off-policy ones.

8.2 More General Forms of Decomposition in MASs

In multiagent decision-making, there is a rich history of trying to leverage structured inter-
actions. For instance, our approach resembles the distributed approximate planning method
by Guestrin and Gordon (2002) in that both methods decompose an agent’s decision model
into internal and external parts. Our proposed abstraction, in addition to being sufficient
for optimal decision-making, is more general in that it can deal with partial observability.

Allen and Zilberstein (2007, 2009) proposed a different formalization of ‘influence’ by
building upon information-theoretical concepts (mutual information between individual ac-
tions and joint states/observations/rewards). They show how their notion of influence and
influence gap (which measures differences between the influencing power of agents) can pre-
dict the difficulty of solving a problem. While conceptually closely related to our work, their
proposed notion of influence does not seem to support doing abstraction in any non-trivial
manner, and thus should be seen as a very different type of object than our influence point.

The work by Chitnis and Lozano-Pérez (2020) is close in spirit to IBA: they propose
to form a local abstraction of a factored MDP that approximates the original model well.
Their approach is to abstract away a subset of exogenous variables (Boutilier et al., 1999)
and they propose a method to select this subset. However, exogenous variables are defined
as variables that can influence our local model, but that cannot be influenced by the local
model. This stands in stark contrast to the non-modeled variables in IBA which can be
affected by the local model.

Another class of related work is that focusing on anonymous interactions such as mean
field games, D-SPAIT, and Collective Dec-POMDPs (Jovanovic & Rosenthal, 1988; Kizil-
kale & Caines, 2012; Varakantham et al., 2014; Robbel et al., 2016; Nguyen et al., 2017;
Subramanian & Mahajan, 2019). These models assume that the interactions between a
large set of agents are governed by low dimensional statistics that capture how the rest of
the population influences each individual. For instance, in disease propagation, only the
number (not the identity) of people that are infected in one’s neighborhood might mat-
ter (Robbel et al., 2016). As argued in the beginning of Section 5, the ability to include
intra-stage connections into the IBA framework can enable us to model most (if not all)
such problems in the IBA framework. So far, however, we have not yet identified how this
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can lead to compact influence representations (as described in Section 7) or more efficient
approaches to solving these games.

Bazinin and Shani (2018) investigate exploiting a heuristic form of influence in determin-
istic multiagent planning problems, formalized in the qualitative Dec-POMDP (Brafman
et al., 2013) framework. Their approach plans “per agent”: first each agent computes a plan
assuming the other agents execute the actions that are most beneficial for it. This creates
constraints (influences) for the other agents. Then the next agent gets to plan, subject to
these constraints, and the process iterates.

In this work, we show how we can define a local-form model based upon a factored
POSG model and a specification of a local state function S. We have not touched the
question of how to define this local state function. E.g., in a multi-robot cleaning task, each
agent potentially could clean every location, leading to local models as large as the original
problem. To counter this, one can apply organizations (Carley & Gasser, 1999; Ferber,
Gutknecht, & Michel, 2004; Vázquez-Salceda, Dignum, & Dignum, 2005) which effectively
constrain which agents can address what parts of the problems. Sleight and Durfee (2012,
2015) investigate such organizations in a decision-theoretic context, also taking into account
simpler, approximate, forms of influence. Our definition of influence is different as it criti-
cally depends on the d-separating set, which is not considered by Sleight and Durfee. Claes,
Oliehoek, Baier, and Tuyls (2017) use heuristics from multi-robot task allocation (Gerkey
& Mataric, 2003).

Other models (Spaan & Melo, 2008; Varakantham et al., 2009; Melo & Veloso, 2010,
2011) have allowed for approximate decoupled local planning by leveraging a form of context-
specific independence, where agents only influence each other in certain states. An impor-
tant direction of research is to also exploit this type of independence in LFMs. Similar ideas
have been considered in the multiagent RL setting too (Melo & Veloso, 2009; De Hauwere,
Vrancx, & Nowé, 2010). Structured interactions between agents are starting to be used for
examining concepts like understanding by agents (Corona, Alaniz, & Akata, 2019).

Approaches that take the perspective of a protagonist agent, like the recursive model-
ing method (Gmytrasiewicz & Durfee, 1995, 2000), I-POMDPs (Gmytrasiewicz & Doshi,
2005), and work on ad-hoc teams (Stone, Kaminka, Kraus, & Rosenschein, 2010; Albrecht
& Ramamoorthy, 2013) inherently provide a subjective perspective, which can include mod-
eling other agents recursively, that is conceptually related to our notion of the local model.
Although the formal definition of these models is different from the fPOSG, our definition
of influence (and thus IBA) is readily applicable to factored-state versions of these models,
and therefore IBA can be extended to such models. Specifically, influence-based abstraction
is conceptually similar to existing approaches that exploit behavioral equivalence (Pynadath
& Marsella, 2007; Rathnasabapathy, Doshi, & Gmytrasiewicz, 2006), but these approaches
abstract classes of behaviors down to policies, whereas we abstract policies down to even
more abstract influences. These relations are illustrated in Figure 15.

Also in multiagent learning, the idea that abstract representations of influence exist
and can help in learning are starting to be considered (Hernandez-Leal et al., 2017). For
instance, Claes, Robbel, Oliehoek, Hennes, Tuyls, and Van der Hoek (2015) investigated
an approximate form of influence of team mates in collaborative spatial task allocation
problems. Foerster, Nardelli, Farquhar, Afouras, Torr, Kohli, and Whiteson (2017) propose
‘fingerprints’ (episode indices) for when data was collected to capture non-stationary due
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models policies influences best-responses

Figure 15: Many (e.g., I-POMDP) models for agent j may be behaviorally equivalent, i.e.,
map to the same policy πj . In turn, many policies πj can lead to the same influence I→i on
agent i. Finally, many influences may map to the same best-response πi. (Note that only
a small part of the space of πi may be a best-response to some influence/policy/model.)

to the changing opponent strategy. Hong, Su, Shann, Chang, and Lee (2018) propose
to augment DQN (Mnih et al., 2015) with a module to learn ‘policy features’ based on
observations of the actions of other agents. Jaques, Lazaridou, Hughes, Gulcehre, Ortega,
Strouse, Leibo, and De Freitas (2019) propose to use a mutual information-based version
of influence (similar to Allen & Zilberstein, 2007, discussed above) as an auxiliary reward,
and Wang, Wang, Wu, and Zhang (2020) extended this to direct exploration in multiagent
reinforcement learning. To some extent, all forms of agent modeling (e.g. Hernandez-Leal
et al., 2017; Hernandez-Leal, Kartal, & Taylor, 2019; Tacchetti, Song, Mediano, Zambaldi,
Kramár, Rabinowitz, Graepel, Botvinick, & Battaglia, 2019) or tracking (Sunberg, Ho,
& Kochenderfer, 2017) can be seen as a some form of influence prediction, since one can
think of the action of another agent as an influence source. However, few of these approaches
further formalize the structure of this interaction, which means that they have not exploited
the insight that one only may need to remember a subset of variables, even though this can
lead to significant improvements (Suau de Castro et al., 2019a).

8.3 Other Forms of Abstraction

Influence-based abstraction is a form of state abstraction, which has a long tradition in AI
planning and learning (e.g., Sacerdoti, 1974; Knoblock, 1993; McCallum, 1993; Dearden &
Boutilier, 1997; Dean & Givan, 1997; Hoey, St-Aubin, Hu, & Boutilier, 1999; Givan, Leach,
& Dean, 2000; Boutilier, Dearden, & Goldszmidt, 2000; Ravindran & Barto, 2003; Jong &
Stone, 2005; Konidaris & Barto, 2009; Kaelbling & Lozano-Perez, 2012; Hostetler, Fern, &
Dietterich, 2014; Anand, Noothigattu, Mausam, & Singla, 2016; Bai, Srivastava, & Russell,
2016; Abel, Arumugam, Asadi, Jinnai, Littman, & Wong, 2019) . Other types of abstraction
(Mahadevan, 2010) are temporal abstractions, such as options and macro-actions (Sutton,
Precup, & Singh, 1999; Theocharous & Kaelbling, 2004; Amato, Konidaris, Kaelbling, &
How, 2019; Machado, Bellemare, & Bowling, 2017), and functional abstraction, which tries
to identify appropriate basis functions (Keller, Mannor, & Precup, 2006; Parr, Painter-
Wakefield, Li, & Littman, 2007; Mahadevan & Maggioni, 2007; Petrik, 2007), including the
huge body of recent work on deep RL (Schmidhuber, 1991; Mnih et al., 2015; François-
Lavet, Henderson, Islam, Bellemare, & Pineau, 2018). We will focus on related work on
state abstraction.
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Different manners of performing state abstraction in MDPs exist, such as state aggre-
gation methods which cluster similar states together, or starting with one abstract state
and subsequently splitting (Givan et al., 2003), or removing state factors with no impact
on the policy or rewards (Jong & Stone, 2005; Dearden & Boutilier, 1997). At a technical
level these approaches are based on the idea that the original MDP and the abstraction are
bisimilar. MDP homomorphisms (Ravindran & Barto, 2002, 2003) generalize the idea of
bisimilarity to also consider similarity of different actions. These ideas can also be used as
metrics (Ferns, Panangaden, & Precup, 2004; Ferns & Precup, 2014), and many of these
ideas lie at the core of recent model-based (deep) RL approaches (Corneil, Gerstner, &
Brea, 2018; Gelada, Kumar, Buckman, Nachum, & Bellemare, 2019; Biza & Platt, 2019;
Van der Pol, Kipf, Oliehoek, & Welling, 2020).

Other methods implement abstraction as part of the solution method (Hoey et al., 1999;
Boutilier et al., 2000; St-Aubin, Hoey, & Boutilier, 2001). Different notions of which states
to group together exist. Li et al. (2006) present a unifying framework that discriminates
a number of types of exact state abstraction, and some of these were recently extended
to approximate state abstractions (Abel et al., 2016). The introduced notions of model
irrelevance/similarity are particularly relevant: they group together states that behave (ap-
proximately) identical in terms of rewards and transitions, which is also what IBA achieves
in its influence-augmented local model.

However, there is one big difference between all these methods and the influence-based
abstraction: in order to achieve a good approximation, all the previous notions can only
group states together that have very similar (usually measured in L1 norm of) transition
probabilities, which severely limits their applicability. Existing methods can generally not
abstract away an entire state variable that is an influence source and still provide guarantees
of near optimality. In contrast, IBA does enable abstracting away such influence sources,
and thus groups together states that can have very different transition probabilities. IBA
corrects for this by incorporating the influence in the IALM, by means of the dependence
on the d-separating set Di.

Another body of work casts abstracted, non-Markovian, models as models with imprecise
probabilities (Givan et al., 2000; Iyengar, 2005; Sanner, Uther, & Delgado, 2010; Delgado,
Sanner, & de Barros, 2011b; Delgado, de Barros, Cozman, & Sanner, 2011a; Petrik &
Subramanian, 2014; Delgado, de Barros, Dias, & Sanner, 2016). These typically place
intervals on the transition probabilities and compute ‘robust’ policies that give the optimal
worst case (with respect to the realized transition probabilities) payoff. Essentially these
models are equivalent to a two-player zero-sum game where the agent faces an adversarial
environment that chooses the transition probabilities to sabotage the agent (Iyengar, 2005).
A disadvantage of such approaches is that they are only useful if the uncertainty intervals
are sufficiently small and, as above, this is very hard to guarantee when abstracting away
entire state variables. As such, the contribution of IBA is complimentary: it shows that it
is possible to create abstract models which have no uncertainty interval at all.

IBA also bears some similarity to the framework of mixed-observability MDPs (Ong,
Png, Hsu, & Lee, 2009, 2010), which splits the state s = 〈o,l〉 into observable state factors
o and hidden ones l. IBA, however, splits s = 〈xi,yi〉 into modeled xi and non-modeled
factors yi. As such, the frameworks are complimentary: the local state space of an agent
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after performing IBA can have mixed observability21 and the hidden part l of a mixed-
observability MDPs can be abstracted by using IBA.

Finally, abstractions have also been investigated as the basis for robotic decision making
(Konidaris, Kaelbling, & Lozano-Pérez, 2018) and multi-robot decision making (Le & Plaku,
2018; Amato et al., 2019). These methods typically combine temporal and state abstraction.
Specifically, Konidaris et al. (2018) focus on learning abstract state representation that
support open loop planning using a given set of ‘skills’ (also called ‘options’, Sutton et al.,
1999, or ‘macro actions’, Amato et al., 2019) and demonstrate this on a robot. While the
formalization allows for probabilistic effects (they can reason about probability that the plan
is executable), they assume that the skills are such that the effect of a skill σ does not depend
on the previous state, such that Pr(s′|σ) is well defined. In practice, the approach typically
requires small sets of states s′ with positive support, or the probability of executability
drops. As such, the framework is less suited for highly stochastic environments, such as
those affected by other agents or other type of exogenous events (Boutilier et al., 1999).
Thus, again, our work here is complementary, since it shows what parts of history may
need to be retained to decrease this stochasticity. Le and Plaku (2018) focus on multi-robot
motion planning. The difficulty here is to reason both about detailed motions, as well as the
presence of multiple robots. To deal with this they propose to reason about the interaction
(making use of multiagent path planning) in an abstract representation, this high-level plan
is then used as a heuristic for the low-level motion planning. Amato et al. (2019) formalize
hierarchical Dec-POMDPs, called Mac-Dec-POMDP (for ‘macro-action’) where multiple
agents act using options. The focus of this work lies on how to plan with options in the
Dec-POMDP setting, but the abstractions at higher levels are assumed to be given.

9. Conclusion, Discussion and Future Work

This paper makes a theoretical contribution to the field of decision making in factored
multiagent settings by giving a rigorous definition of influence-based abstraction (IBA) in
such settings. It defines a notion of ‘influence’ that enables an agent in a POMDP to
perform a lossless abstraction of the decision making problem it faces. That is, we prove
that, for a given abstraction in terms of a local-form model, an influence point is a sufficient
statistic for the part of the problem that is abstracted away. The local-form model and
influence point together induce what we call an influence-augmented local model (IALM):
a local model that is sufficient to compute an exact best response.

The proof of sufficiency also serves a practical purpose: it isolates the core technical
property (in Section 6.2) that needs to hold for sufficiency. In this way it conveys insight
into the nature of how abstraction of latent state factors affects value, provides a derivation
that can be used to obtain simplifications of the definition of influence in simpler cases, and
provides a recipe of how to prove similar results in more general cases.

At a higher level, IBA is important for the following reasons:

1. The theory presented in this paper presents a new perspective on abstraction in struc-
tured settings: it shows that such abstractions can be seen as special cases of POMDPs,

21. While the non-modeled factors yi are hidden, (some of) the modeled state factors xi can be fully observed:
in our formalism such observability of a factor xk would be modeled by introducing an observation factor
that has xk as its only parent and has the identity function as its conditional probability table.
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where one only needs to remember about a subset of variables. Effectively, this can
create a problem class in between MDPs and POMDPs: In this class, in order to predict
the local dynamics, we will need to use memory, but this memory only needs to store
information about the history of a subset of state variables.

2. It can enable more efficient best-response computation in fPOSGs, as well as providing
a very natural form of approximation via approximate inference.

3. It provides a better understanding of previously identified sub-classes of fPOSGs (Becker
et al., 2003, 2004; Nair et al., 2005; Petrik & Zilberstein, 2009; Oliehoek, 2010; Kumar
et al., 2011) and how they relate to each other. The insightful connections that we have
drawn promote extensions of specialized methods beyond their respective sub-classes as
well as comparisons with one another in more general contexts. For instance, our work
has identified a compact representation of influences in ND-POMDPs (where none was
known) and identified a more compact representation for EDI-Dec-MDPs.

4. It demonstrates how the value function for essentially any factored Dec-POMDP can
be decomposed into the sum of a number of local value functions. As such, IBA demon-
strates that all such problems satisfy a weak form of locality of interaction (also ‘value
factorization’)—a property that is exploited in several Dec-POMDP solution meth-
ods (Nair et al., 2005; Oliehoek, 2010; Kumar et al., 2011) and multiagent RL papers
(Guestrin et al., 2002b; Kok & Vlassis, 2006; Kuyer et al., 2008; Van der Pol & Oliehoek,
2016; Sunehag et al., 2018; Rashid et al., 2018; Castellini et al., 2019; Böhmer et al.,
2019; Son et al., 2019; Wang et al., 2019).

5. Influences can provide a more compact, yet sufficient statistic for the behavior of other
agents in a MAS. We expect this to be important in multiagent reinforcement learning,
since it is often easier to learn a compact statistic from the same amount of data.

We emphasize that this definition of influence is not a magic bullet: while the influence-
augmented local model is sufficient to compute a best-response locally, the computation of
the required influence point itself is an intractable inference problem in general. However, in
certain cases where this problem is feasible it can enable faster best-response computations
and search for multiagent plans via influence search (Witwicki & Durfee, 2010b; Witwicki
et al., 2012). As such, an important direction of future work would investigate how the
definition of influence presented in this paper can support influence search in more general
settings.

Moreover, even in cases where influences are intractable to compute, the concept forms
the basis for principled approximations. For instance, by being optimistic with respect
to the influence sources, one is able to compute upper bounds on the optimal value of
Dec-POMDPs with hundreds of agents, thus leading to firm guarantees on the quality of
heuristic solutions (Oliehoek et al., 2015a). Furthermore, there is evidence, in the context
of deep reinforcement learning, that such approximate versions of influence may in some
problems improve learning, both in terms of speed as well as performance (Suau de Castro
et al., 2019b). As such, a fruitful direction of research is to better understand such approx-
imate characterization of influence (Congeduti et al., 2020). This article has provided the
foundations for such an exploration.

An important direction of of future research would explore the applications of (approxi-
mate) forms of influence. For instance, it is possible that these can make a huge impact on
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human-robot interactions (Shah, Wiken, Williams, & Breazeal, 2011; Nikolaidis, Ramakr-
ishnan, Gu, & Shah, 2015). We note that even though the discussion in this paper was
based on the more general case of multiagent systems, there is nothing that stops us from
applying IBA in complex systems with just a single agent. As a case in point, Suau de
Castro et al. (2019b) show improvements of learning on a single traffic intersection and on
Atari games.

Finally, in this paper the discussion is limited to settings where structure is known.
If we have structure, this can be exploited to define influence, possibly leading to more
efficient best responses, or other benefits. Certainly, in many cases knowledge of the struc-
ture is not available. Future work could try to build off the advances in structure learning
algorithms (Murphy, 2002; Koller & Friedman, 2009; Doshi-Velez, Wingate, Tenenbaum,
& Roy, 2011; Murphy, 2012) and their integration with decision making problems (Degris,
Sigaud, & Wuillemin, 2006; Strehl, Diuk, & Littman, 2007; Walsh, Goschin, & Littman,
2010; Doshi-Velez, 2009; Littman, 2012; Katt, Oliehoek, & Amato, 2019); as long as it is
possible to learn a model our methods would apply. In particular, even though such an
estimated model might be inaccurate, its reduction to an IALM would add no further esti-
mation error. This observation may open up a new research direction in sequential decision
making that forsakes approximate solution methods (e.g., Monte Carlo tree search, Browne,
Powley, Whitehouse, Lucas, Cowling, Rohlfshagen, Tavener, Perez, Samothrakis, & Colton,
2012, RL techniques like DQN, Mnih et al., 2015, or other forms of approximate dynamic
programming, Bertsekas, 2005, 2007; Powell, 2012) in favor of learning useful approximate
models that give structured representations of interactions. Arguably, such approaches that
make exact use of assumed (but approximate) models lie at the basis of many, if not most,
engineering disciplines and thus served human intelligence well in the past.
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Appendix A. Proofs and Derivations

Here we give proofs and derivations of a number of results. These are referred from the
main text, and will be stated here without further explanation.

A.1 GFBRMs

A.1.1 Expected Reward
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i )

]

=
∑

s̄ti

b
g
i (s̄

t
i)
∑

s̄t+1
i

T̄ (s̄t+1
i |s̄ti,a

t
i)R̄i(s̄

t
i,a

t
i,s̄

t+1
i )

=
∑

〈st,~ht
−i〉

b
g
i (〈s

t,~ht−i〉)
∑

〈st+1,~ht+1
−i 〉

Pr(〈st+1,~ht+1
−i 〉|〈s

t,~ht−i〉,ai)R̄i(〈s
t,~ht−i〉,ai,〈s

t+1,~ht+1
−i 〉)

=
∑

〈st,~ht
−i〉

b
g
i (〈s

t,~ht−i〉)
∑

st+1

∑

a−i

∑

ot+1
−i

Pr(st+1,a−i,o
t+1
−i |〈s

t,~ht−i〉,ai)Ri(s
t,ai,a−i,s

t+1)

=
∑

〈st,~ht
−i〉

b
g
i (〈s

t,~ht−i〉)
∑

st+1

∑

a−i

Pr(st+1,a−i|〈s
t,~ht−i〉,ai)Ri(s

t,ai,a−i,s
t+1)

=
∑

st

∑

st+1

∑

a−i

Pr(st+1|st,a)Ri(s
t,a,st+1)

∑

~ht
−i

Pr(a−i|~h
t
−i)b

g
i (s

t,~ht−i)

A.1.2 Expected Observation Probability

Pr(ot+1
i |bgi ,a

t
i)

= Es̄ti∼bgi ,s̄
t+1
i ∼T̄ (s̄ti,a

t
i,·)

[

Ō(ot+1
i |ati,s̄

t+1
i )

]

=
∑

s̄ti

b
g
i (s̄

t
i)
∑

s̄t+1
i

T̄ (s̄t+1
i |s̄ti,a

t
i)Ō(ot+1

i |ati,s̄
t+1
i )

=
∑

〈st,~ht
−i〉

b
g
i (〈s

t,~ht−i〉)
∑

〈st+1,~ht+1
−i 〉

Pr(〈st+1,~ht+1
−i 〉|〈s

t,~ht−i〉,ai) Pr(oi|ai,〈s
t+1,~ht+1

−i 〉)

=
∑

〈st,~ht
−i〉

b
g
i (〈s

t,~ht−i〉)
∑

st+1

∑

a−i

∑

ot+1
−i

Pr(st+1,a−i,o
t+1
−i |〈s

t,~ht−i〉,ai) Pr(oi|ai,a−i,s
t+1,ot+1

−i )

=
∑

〈st,~ht
−i〉

b
g
i (〈s

t,~ht−i〉)
∑

st+1

∑

a−i

∑

ot+1
−i

Pr(st+1|st,a−i,ai) Pr(a−i|~h
t
−i,π−i) Pr(o

t+1
−i |ai,a−i,s

t+1)

Pr(oi|ai,a−i,s
t+1,ot+1

−i ) (A.1)
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=
∑

〈st,~ht
−i〉

b
g
i (〈s

t,~ht−i〉)
∑

st+1

∑

a−i

∑

ot+1
−i

Pr(st+1|st,a−i,ai) Pr(a−i|~h
t
−i,π−i) Pr(o

t+1
−i |ai,a−i,s

t+1)

Pr(oi,o
t+1
−i |ai,a−i,s

t+1)

Pr(ot+1
−i |ai,a−i,st+1)

=
∑

〈st,~ht
−i〉

b
g
i (〈s

t,~ht−i〉)
∑

st+1

∑

a−i

∑

ot+1
−i

Pr(st+1|st,a) Pr(a−i|~h
t
−i,π−i) Pr(oi,o

t+1
−i |ai,a−i,s

t+1)

=
∑

st

∑

st+1

∑

a−i

∑

ot+1
−i

Pr(st+1|st,a) Pr(ot+1|a,st+1)
∑

~ht
−i

Pr(a−i|~h
t
−i,π−i)b

g
i (s

t,~ht−i) (A.2)

A.2 LFMs

A.2.1 Expected Reward

Starting with (3.5), we have that Ri(b
g
i ,ai)

=
∑

st

∑

st+1

∑

a−i

Pr(st+1|st,a)Ri(s
t,a,st+1)

∑

~ht
−i

Pr(a−i|~h
t
−i,π−i)b

g
i (s

t,~ht−i)

=
∑

st

∑

st+1

∑

a−i

Pr(st+1|st,ai,a−i)Ri(s
t,a,st+1)

∑

~ht
−i

Pr(a−i|~h
t
−i,π−i)b

g
i (s

t,~ht−i)

= {restrict to actual dependencies of Ri}
∑

st

∑

st+1

∑

a−i

Pr(st+1|st,ai,a−i)Ri(x
t
i,ai,x

t+1
i )

∑

~ht
−i

Pr(a−i|~h
t
−i,π−i)b

g
i (s

t,~ht−i)

=
∑

st

∑

a−i

∑

xt+1
i ,yt+1

i

Pr(xt+1
i ,yt+1

i |st,ai,a−i)Ri(x
t
i,ai,x

t+1
i )

∑

~ht
−i

Pr(a−i|~h
t
−i,π−i)b

g
i (s

t,~ht−i)

= {via (3.9)}
∑

xt
i,y

t
i

∑

a−i

∑

xt+1
i

Pr(xt+1
i |st,ai,a−i)Ri(x

t
i,ai,x

t+1
i )

∑

~ht
−i

Pr(a−i|~h
t
−i,π−i)b

g
i (s

t,~ht−i)

=
∑

xt
i

∑

xt+1
i

Ri(x
t
i,ai,x

t+1
i )

∑

yti

∑

a−i

Pr(xt+1
i |st,ai,a−i)

∑

~ht
−i

Pr(a−i|~h
t
−i,π−i)b

g
i (s

t,~ht−i)

=
∑

xt
i

∑

xt+1
i

Ri(x
t
i,ai,x

t+1
i ) Pr(xti,x

t+1
i |bgi ,a

t
i,π−i), (A.3)

where we implicitly defined (remember st = 〈xti,y
t
i〉)

Pr(xti,x
t+1
i |bgi ,a

t
i,π−i),

∑

yti

∑

a−i

Pr(xt+1
i |st,ai,a−i)

∑

~ht
−i

Pr(a−i|~h
t
−i,π−i)b

g
i (s

t,~ht−i) (A.4)
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A.2.2 Expected Observation Probability

In this case, the expected observation probability Pr(ot+1
i |bgi ,ai) equals

=
∑

st

∑

st+1

∑

a−i

∑

ot+1
−i

Pr(st+1|st,a) Pr(ot|a,st+1)
∑

~ht
−i

Pr(a−i|~h
t
−i,π−i)b

g
i (s

t,~ht−i)

=
∑

st+1

∑

st

∑

a−i

∑

ot+1
−i

Pr(ot+1
i ,ot+1

−i |ai,a−i,s
t+1) Pr(st+1|st,ai,a−i)

∑

~ht
−i

Pr(a−i|~h
t
−i,π−i)b

g
i (s

t,~ht−i)

= {marginalize}
∑

st+1

∑

st

∑

a−i

Pr(ot+1
i |ai,a−i,s

t+1) Pr(st+1|st,ai,a−i)
∑

~ht
−i

Pr(a−i|~h
t
−i,π−i)b

g
i (s

t,~ht−i)

= {restrict to actual dependencies}
∑

st+1

∑

st

∑

a−i

Pr(ot+1
i |ai,x

t+1
i ) Pr(st+1|st,ai,a−i)

∑

~ht
−i

Pr(a−i|~h
t
−i,π−i)b

g
i (s

t,~ht−i)

=
∑

xt+1
i ,yt+1

i

∑

st

∑

a−i

Pr(ot+1
i |ai,x

t+1
i ) Pr(xt+1

i ,yt+1
i |st,ai,a−i)

∑

~ht
−i

Pr(a−i|~h
t
−i,π−i)b

g
i (s

t,~ht−i)

=
∑

xt+1
i

Pr(ot+1
i |ai,x

t+1
i )

∑

st

∑

yt+1
i

∑

a−i

Pr(xt+1
i ,yt+1

i |st,ai,a−i)
∑

~ht
−i

Pr(a−i|~h
t
−i,π−i)b

g
i (s

t,~ht−i)

=
∑

xt+1
i

Pr(ot+1
i |ai,x

t+1
i ) Pr(xt+1

i |bgi ,ai,π−i) (A.5)

where we implicitly defined

Pr(xt+1
i |bgi ,ai),

∑

st

∑

a−i

Pr(xt+1
i |st,ai,a−i)

∑

~ht
−i

Pr(a−i|~h
t
−iπ−i)b

g
i (s

t,~ht−i). (A.6)

A.3 IALMs

A.3.1 Expected Observation Probability

Pr(ot+1
i |bli,a

t
i) = Es̄ti∼bli,s̄

t+1
i ∼T̄ (s̄ti,a

t
i,·)

[

Ō(ot+1
i |ati,s̄

t+1
i )

]

=
∑

s̄ti

bli(s̄
t
i)
∑

s̄t+1
i

T̄ (s̄t+1
i |s̄ti,a

t
i)Ō(ot+1

i |ati,s̄
t+1
i )
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=
∑

xt
i,D

t+1
i

bli(x
t
i,D

t+1
i )

∑

xt+1
i ,Dt+2

i

Pr(xt+1
i ,Dt+2

i |xti,D
t+1
i ,ati,I

t+1
→i ) Pr(o

t+1
i |ati,x

t+1
i )

=
∑

xt
i,D

t+1
i

bli(x
t
i,D

t+1
i )

∑

xt+1
i

Pr(xt+1
i |xti,D

t+1
i ,ati,I

t+1
→i ) Pr(o

t+1
i |ati,x

t+1
i )

=
∑

xt+1
i

Pr(ot+1
i |ati,x

t+1
i )





∑

xt
i,D

t+1
i

Pr(xt+1
i |xti,D

t+1
i ,ati,I

t+1
→i )b

l
i(x

t
i,D

t+1
i )





=
∑

xt+1
i

Pr(ot+1
i |ati,x

t+1
i ) Pr(xt+1

i |bli,a
t
i,I

t+1
→i ), (A.7)

where we implicitly defined

Pr(xt+1
i |bli,ai,I

t+1
→i ),

∑

xt
i,D

t+1
i

Pr(xt+1
i |xti,D

t+1
i ,ati,I

t+1
→i )b

l
i(x

t
i,D

t+1
i ). (A.8)

(consistent with equation 4.12).

A.3.2 Expected Reward

Ri(b
l
i,a

t
i) = Es̄ti∼bli,s̄

t+1
i ∼T̄ (s̄ti,a

t
i,·)

[

R̄i(s̄
t
i,a

t
i,s̄

t+1
i )

]

=
∑

s̄ti

bli(s̄
t
i)
∑

s̄t+1
i

T̄ (s̄t+1
i |s̄ti,a

t
i)R̄i(s̄

t
i,a

t
i,s̄

t+1
i )

=
∑

xt
i,D

t+1
i

bli(x
t
i,D

t+1
i )

∑

xt+1
i ,Dt+2

i

Pr(xt+1
i ,Dt+2

i |xti,D
t+1
i ,ati,I

t+1
→i )Ri(x

t
i,a

t
i,x

t+1
i )

=
∑

xt
i,D

t+1
i

bli(x
t
i,D

t+1
i )

∑

xt+1
i

Pr(xt+1
i |xti,D

t+1
i ,ati,I

t+1
→i )Ri(x

t
i,a

t
i,x

t+1
i )

=
∑

xt
i

∑

xt+1
i

Ri(x
t
i,a

t
i,x

t+1
i )





∑

Dt+1
i

Pr(xt+1
i |xti,D

t+1
i ,ati,I

t+1
→i )b

l
i(x

t
i,D

t+1
i )





=
∑

xt
i

∑

xt+1
i

Ri(x
t
i,a

t
i,x

t+1
i ) Pr(xti,x

t+1
i |bli,a

t
i,I

t+1
→i ) (A.9)

where we implicitly defined

Pr(xti,x
t+1
i |bli,a

t
i,I

t+1
→i ),

∑

Dt+1
i

Pr(xt+1
i |xti,D

t+1
i ,ati,I

t+1
→i )b

l
i(x

t
i,D

t+1
i ) (A.10)

(consistent with equation 4.16).
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Appendix B. List of Acronyms

Acronym description

2DBN 2-stage dynamic Bayesian network
AOH action-observation history
CPT conditional probability table
DBN dynamic Bayesian network
Dec-MDP decentralized Markov decision process
Dec-POMDP decentralized partially observable Markov decision process
EDI-Dec-MDP Dec-MDP with event-driven interactions
fDec-POMDP factored Dec-POMDP
fPOSG factored POSG
GFBRMs global-form best-response model
IALM Influence-augmented local model
IBA influence-based abstraction
ISDs intra-stage dependencies
LFM local-form model
MDP Markov decision process
ND-POMDP network-distributed POMDP
NLAF non-locally affected factor
NMF non-modeled factor
OLAF only-locally affected factor
POMDP partially observable Markov decision process
POSG partially observable stochastic game
RL reinforcement learning
TD-POMDP transition-decoupled POMDP
TI-Dec-MDP transition-independent Dec-MDP
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Appendix C. List of Notation

symbol description

General
E [·] expectation
∆(·) set of probability distributions over ·
1{·,·} denotes the Kronecker delta function

(·)i a variable of interest (·) associated with agent i
(·)−i a tuple of variables associated with all agents except i

(·)ti a variable of interest (·) associated with agent i at time step t

(·)k:t partial history of values of (·) (e.g., lk:ttgt is the history of target
locations)

~(·)
t

history of values of (·). I.e., ~(·)
t
= (·)0:t

Models
MPOSG A partially observable stochastic game (POSG)
MLFM A local-form model: includes local state definitions for each agent
MGFBR

i A global-form best-response model (GFBRM) for agent i
MIALM

i An influence-augmented local model can be computed from an LFM
when fixing other policies: MIALM

i (MLFM ,π−i)

Model components
D the set of agents or (d)ecision makers
S set of (global) states
s a global (i.e., Markov) state
A set of (joint) actions A = A1 × . . .An

a a (joint) action a = 〈a1, . . . ,an〉
T transition function specifies Pr(st+1|st,at)
R set of reward functions
Ri reward function of agent i
O set of (joint) observations O = O1 × · · · × On

o a (joint) observation o = 〈o1, . . . ,on〉
O observation function specifies Pr(o|a,s′)
γ the discount factor
H horizon of the problem
b0 initial state distribution: b0 ∈ ∆(S)
S̄i set of augmented states. E.g., in a GFBRM
T̄i,R̄i,etc. transitions, rewards, etc. over augmented states

histories and beliefs
~hti the action-observation history (AOH) of agent i at stage t
~Ht
i the set of AOHs of agent i at stage t

b belief of a single POMDP agent b(s),Pr(s|b0,~ht)
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symbol description

BU() The belief update b′ = BU(b,a,o)
b
g
i global-form belief of agent i
bli local-form belief of agent i
πi policy of agent i

Value functions
V t The optimal value function at stage t with H − t stages-to-go
Qt The optimal action-value function, or ‘Q-function’

Factored States

F the set of state factors F =
{

F 1, . . . ,F |F|
}

in a factored model, we

have that S = F1 × · · · × F |F|

F k the k-th state factor
Fk the set of values fk ∈ Fk that F k can take
fk a value of state factor k
OReli(F ) observation relevant factor of agent i
RReli(F ) reward relevant factor of agent i

Local states of agent i
Si state space of agent i (general term: also outside LFMs)
si state for agent i (general term: also outside LFMs)
S(i) the local state function of an LFM for agent i: partitions F into

modeled state factors xk and non-modeled ones yk

xk k-th modeled factor
x̊k k-th only-locally-affected factor (OLAF): a modeled factor that is not

an influence destination
x̃k k-th a non-locally-affected factor (NLAF): a modeled factor that is an

influence destination
Xi local state space (of modeled factors) in an LFM
xi local state of agent i in an LFM
yk a non-modeled factor
yi instantiation of all non-modeled factors. I.e., s = 〈xi,yi〉
OLAF (i) the set of OLAFs
NLAF (i) the set of NLAFs

Influence notation
ut→i instantiation of all direct influence sources for stage t:

ut→i = 〈yt−1
u ,at−1

u ,ytu〉
yt−1
u the (non-modeled) state factors that are direct influence sources
ytu the (non-modeled) state factors that are direct intra-stage influence

sources
at−1
u the actions (of some subset of agents) that are direct influence sources

~ht−1
u the AOHs of those other agents whose action is an influence source

(i.e., ~ht−1
u involves the same agents as at−1

u )
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symbol description

v indirect sources: yt−1
v , at−1

u , ytv can effect the direct sources ut→i

w union of direct and indirect sources: w = u ∪ v; e.g., πw is the joint
policy of those agents whose action is either a direct or an indirect
influence source

Dt
i a d-separating set for agent i’s influence at stage t

d the d-set update function: Dt+2
i = d(xti,a

t
i,x

t+1
i ,Dt+1

i )

σ the d-set compression function σ(Dt+1
i ) that computes a sufficient

statistic for Dt+1
i

I→i(π−i) I→i(π−i) =
(

I1→i(π−i), . . . ,I
H
→i(π−i)

)

is an incoming influence point
I→i(π−i)

It→i(π−i) The incoming influence at stage t: a conditional probability
distribution over values of the influence sources

I(ut→i|D
t
i) shorthand for It→i(u

t
→i|D

t
i ,b

0,π−i) = It→i(π−i)(u
t
→i|D

t
i ,b

0)

pIt+1
→i

influence-induced CPT that specifies pIt+1
→i

(x̃t+1|xti,D
t+1
i ,ai)
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