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Actuating Eigenmanifolds of Conservative
Mechanical Systems via Bounded or Impulsive

Control Actions
Cosimo Della Santina , Davide Calzolari , Alessandro Massimo Giordano , and Alin Albu-Schäffer

Abstract—Eigenmanifolds are two-dimensional submanifolds of
the state space, which generalize linear eigenspaces to nonlin-
ear mechanical systems. Initializing a robot on an Eigenmanifold
(or driving it there by control) yields hyper-efficient and regular
oscillatory behaviors, called modal oscillations. This letter inves-
tigates the possibility of transitioning between two modal oscilla-
tions without ever leaving the Eigenmanifold. This is essential to
generate control inputs that decrease or increase the amplitude
of the nonlinear oscillations. First, we prove that this goal can
be achieved using bounded inputs only for Eigenmanifolds with
unidimensional projection in configuration space. Then, we show
that by allowing for impulsive control actions, the problem can be
solved for all Eigenmanifolds which self-intersect when projected
in configuration space.

Index Terms—Compliant joints and mechanisms, motion
control, natural machine motion.

I. INTRODUCTION

IN (ARTICULATED) soft robots, the rigid structure of classic
systems is enhanced by introducing purposefully designed

elastic elements [1]–[3]. This should give to soft robots the
capability of performing regular oscillations with unmatched
efficiency. Possible applications range from locomotion to in-
dustrial robotics. Indeed, a well-known (and well-understood in
the unidimensional or linear cases [4, Secs. II,III]) connection
exists between potential fields and oscillations.

Yet, articulated soft robots are not at all simple to control,
especially when the desired behavior goes beyond posture reg-
ulation [3, Sec. 4.3]. Several general strategies for realizing
oscillations in mechanical systems have been recently proposed.
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Fig. 1. The orbits of nonlinear modal oscillations of a robot are identified by
the intersection of an EigenmanifoldM and one level set ofE(x, ẋ). We discuss
here control strategies for transitioning from one nonlinear mode to another -
i.e. from energy E0 to energy Ē - without ever leaving the eigenmanifold M.
We prove that this transition can be achieved smoothly (red solid line) only in
presence of strong symmetries in the system. We then show that discontinuous
jumps (blue dashed arrow) can be achieved for a larger class of systems by using
impulsive control actions.

Examples are virtual holonomic constraints in [5], [6], Immer-
sion and Invariance control in [7], and energy shaping in [8].
However, these techniques do not explicitly take into account the
benefits of elastic couplings, and may end up with a cancellation
by control of the potential forces. Optimal control [9], [10] has
been used to explicitly take advantage of elasticity in performing
oscillatory tasks, but it is necessarily tailored on low dimensional
robots and specific tasks. Finally, several works combined model
matching, bio-mechanical inspiration, and engineering intuition,
yielding very promising results within specific tasks and hard-
ware platforms [11]–[14]. Nevertheless, these strategies only
partially exploit the intrinsic dynamics of the robot, since they
are still based on (partial) dynamics cancellation.

An alternative solution can be found in nonlinear modal
theory. This is a thriving research area [4], [15] aiming at
extending linear modal analysis to the nonlinear domain. Within
this context, Eigenmanifolds are defined as a curved counterpart
of linear eigenspaces. An Eigenmanifold describes a family of
periodic orbits (modal oscillations) that the robot can perform
as open loop evolutions. Each trajectory is characterized by a
distinct energy level. The concept is used for control purposes
in [16], where it is shown that making an Eigenmanifold a local
attractor by means of feedback control is a simple way of exciting
hyper-efficient nonlinear oscillations in robotic systems.

Yet, assuring that the system state converges to the Eigen-
manifold is not enough, because there are infinite modal os-
cillations in an Eigenmanifold. An additional problem which

2377-3766 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Fig. 2. Whenever an Eigenmanifold is projected in configuration space (i.e.
the velocity part is not considered) one of three things can happen. We provide
here illustrative examples, by singling three modes out of the whole manifold
projection. If the system is equipped with strong symmetries, then all the
trajectories can be part of a one dimensional manifold, as shown in Panel (a).
More commonly, the trajectories may stay close and intersect with each others,
as in Panel (b). Finally, the trajectories may spread out, and do not intersect each
other, as in Panel (c).

needs to be addressed is the regulation of a specific mode,
which corresponds to a desired behavior. This problem was not
addressed in previous work1 and it is the subject of the present
paper (Fig. 1). We analyze in which extent we can act upon a
system that is evolving on an Eigenmanifold, without having it
exiting this relevant region of the state space. First, we prove
that Eigenmanifolds that can be actuated with bounded control
actions must be equipped with strong symmetries (see Fig. 2(a)).
We then extend our range of investigation to impulsive actions,
i.e. unbounded inputs with bounded energy. Impulsive control
theory finds application in many fields, including financial trad-
ing [17], epidemics [18], and astronautical science [19]. The
use of impulsive controllers to stabilize periodic motions in
linear systems is summarized in [20, Chs. 9,10]. We show that
by allowing for impulses, Eigenmanifolds with a more general
structure can be actuated (see Fig. 2(b)). For both cases, we
provide control algorithms bringing the system to the desired
energy level without ever exiting the Eigenmanifold.

A. Notation

This work deals with nonlinear conservative mechanical sys-
tems that can be described by the standard form M(x)ẍ+
C(x, ẋ)ẋ+ ∂V (x)/∂x = τ , where x ∈ Rn are the configura-
tion coordinates of the robot, with time derivatives ẋ, ẍ. The
state is (x, ẋ) ∈ R2n. The configuration dependent inertia matrix
is M(x) ∈ Rn×n, and C(x, ẋ) ∈ Rn×n collects Coriolis and
centrifugal terms. The potential function is V (x) ∈ R, and it
possibly includes gravity and elastic contributions. In this letter
we assumeV to be positive definite and radially unbounded. This
in turn implies that its level curves are closed. The total energy is
E(x, ẋ) = 1

2 ẋ
TM(x)ẋ+ V (x). xeq ∈ Rn is a minimum of V ,

i.e. an equilibrium of the system. Finally, τ ∈ Rn is the control
input. Hence, the system is fully actuated and it is not subject
to non-holonomic constraints. In the following, with bounded
input (or action) we mean that τ <∞ for all ||(x, ẋ)|| <∞.

II. EIGENMANIFOLDS IN A NUTSHELL

This section provides a short and operative introduction to
Eigenmanifolds, without any claims of exhaustiveness. The

1In [16] we stated the challenge, and provided a preliminary heuristic for
proof of concept purposes.

reader interested in knowing more about the mathematically
accurate definition and its properties can find them in [4, Sec.
7]. Moving from the linear to the nonlinear case, the eigenspace
ES (which geometrically is a plane) bends into a curved sur-
face of dimension 2, which we characterize with the following
definition. Consider the system in Sec. I-A with τ = 0. We say
that a 2-dimensional submanifold M of the state space R2n is
an Eigenmanifold if

i) it contains the equilibrium, i.e. (xeq, 0) ∈M,
ii) it is a collection of periodic orbits characterized by a

distinct energy - i.e. eachx(t) such that (x(0), ẋ(0)) ∈M
is periodic, it is fully contained in M, and have a total
energy E distinct from all other trajectories in M,

iii) all these orbits are line-shaped - i.e. they are homeomor-
phic to a segment when projected in configuration space.
Examples are provided in Fig. 2.

Thus, each Eigenmanifold characterizes a family of regular,
oscillatory, and autonomous behaviors, which grows continu-
ously from an equilibrium.

Suppose that ES is an eigenspace of the linearized system at
the equilibrium point xeq, which is also tangent to the Eigen-
manifold. In this case, we say that M is the continuation ofES.
As discussed in [4, Sec. 9], two functions X : ES → Rn and
Ẋ : ES → Rn - called coordinate expression of the Eigenmani-
fold embedding - can always be found so that the Eigenmanifold
can be (locally) defined in coordinates as

M=
{
(x, ẋ)∈R2n, s.t. X(xm, ẋm) = x, Ẋ(xm, ẋm) = ẋ

}
,

where (xm, ẋm) ∈ R2 are the coordinates of the eigenspaceES
defined above. We assume the Jacobian of (X, Ẋ)− (x, ẋ) to
have everywhere the maximum rank possible.

III. PROBLEM STATEMENT

Two complementary control challenges can be identified,
which if simultaneously addressed can lead to an effective
regulation of modal oscillations [16]

c1) Eigenmanifold stabilization, i.e. finding a closed loop
τc1(x, ẋ, t) such that M is asymptotically stable.2

c2) Eigenmanifold actuation, i.e. finding a closed loop
τc2(x, ẋ, t) such that E(x(∞), ẋ(∞)) = Ē, for any
given Ē. This challenge is summarized by Fig. 1.

Regarding (c2), note that there is a unique relation between
modes and energy on the Eigenmanifold - as expressed by (ii)
in Sec. II. Therefore, we can reason in terms of energy instead
of configurations or specific trajectories.

We consider the goals (c1) and (c2) to be implemented by
separate loops acting in parallel, i.e. τ = τc1 + τc2. In the gen-
eral case, the two loops may interact with each other, making
quite hard to formally asses any convergence property. Also,
this may not be efficient, since one can counteract the other. We
therefore introduce the following decoupling conditions, aimed
at assuring that the two controllers do not act simultaneously.
The conditions are

τc1(x, ẋ, t) = 0, ∀t ∈ R, ∀(x, ẋ) ∈M, (1)

and

(x(0), ẋ(0)) ∈M ⇒ (x(t), ẋ(t)) ∈M, ∀ t > 0. (2)

2See [21] for the definition of asymptotically stable sets.
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Note that if (1) holds, then (2) is a condition on τc2 only. If
τ verifies this condition, we say that it preserves M. If this is
the case, then the closed loop system still has a manifold M
which verifies (i) and (ii). We do not care about avoiding self
intersections during actuation - i.e. condition (iii). If additionally
τc1 converges in finite time then the asymptotic stability of the
whole closed loop is trivially implied. Otherwise, it requires
arguments as in [21].

This letter investigates the design of τc2. Therefore, we as-
sume that (x(0), ẋ(0)) ∈M, and that τc1 is such that (1) holds
(see for example [16, Sec. III]). In this case τ = τc2, and as
such we omit the subscript. The aim is therefore to find a τc2
such that (c2) is achieved, and (2) is verified. First we consider
the bounded case. This is the standard kind of actuation that is
typically of robotics, but it proves to be quite limited to solve the
problem at hand. We discuss it in Sec. IV. Then, we deal with
Eigenmanifold actuation through impulsive actions in Sec. V.

A. Impulsive Inputs

We define an impulsive input as [20]

u∗δ(t− t∗) (3)

where δ(t− t∗) is the Dirac’s delta centered in t∗ and of uni-
tary integral, and u∗ ∈ Rn is a constant vector distributing the
impulse in the n directions. Note that a perfect δ cannot be
implement in the practice. Instead, (3) has proven to be a good
model of an high amplitude action delivered in a very short
time [19], [20], [22]. Discussing robustness issues which may be
associated to this abstraction is beyond the scope of the present
paper. Thanks to the delta’s sampling property, the effect of
taking τ equal to (3) is the following abrupt change of state
(jump hereinafter)

(x, ẋ) �→ (x, ẋ+M−1(x)u∗). (4)

This corresponds to a change of energy equal to ||ẋ+
M−1(x)u∗||M − ||ẋ||M, where || · ||M is the norm induced by
the metric tensor M(x). We refer to modal coordinates prior to
the jump as (x−m, ẋ

−
m) ∈ R2 such that

lim
t→(t∗)−

(x(t), ẋ(t)) =
(
X(x−m, ẋ

−
m), Ẋ(x−m, ẋ

−
m)
)
. (5)

Similarly, ẋ+m is the right limit of ẋm in t∗.

IV. BOUNDED CONTROL ACTION

In this section we assume that the modal coordinates are one of
the robot’s configurations and its derivative - that is (xm, ẋm) =
(xi, ẋi) for some i ∈ {1 . . . n}. This is done for the sake of clarity
of notation, and wlog.

Theorem 1: If X ∈ C∞, τ <∞ for all ||(x, ẋ)|| <∞, and
||τ || 	= 0, then τ preserves M if and only if ∂X/∂ẋi ≡ 0.

Proof: Condition (ii) in Sec. II can be reformulated in terms
of the embedding as d((x, ẋ)− (X, Ẋ))/dt|(x,ẋ)∈M = 0. This
in turn is equivalent (see [16, Sec. III-C]) of asking that (X, Ẋ)
verifies the PDEs ∀j ∈ {1 . . . n}

Ẋj − ∂Xj

∂xi
ẋi − ∂Xj

∂ẋi
fi(X, Ẋ) = 0, (6)

fj(X, Ẋ)− ∂Ẋj

∂xi
ẋi − ∂Ẋj

∂ẋi
fi(X, Ẋ) = 0, (7)

where f(x, ẋ) = −M−1(x)(C(x, ẋ)ẋ+ ∂V (x)
∂x ), and the index

j identifies j−th component of the vector. The case i = j is
trivially verified. Thus we assume i 	= j hereinafter.

If τ(x, ẋ, t) <∞ is such that it does not push the system out
of the manifold, it must verify (6) and (7) with f(x, ẋ) replaced
by f(x, ẋ) +M−1(x)τ(x, ẋ, t), and still (x, ẋ) = (X, Ẋ). Sub-
tracting the PDEs with and without actuation yields the orthog-
onality constraints ∀j 	= i(

∂Xj

∂ẋi
M−1

i

)
τ = 0,

(
M−1

j −
∂Ẋj

∂ẋi
M−1

i

)
τ = 0, (8)

where M−1
i and M−1

j are the i−th and j−th rows of M−1
respectively. We assume now ad absurdum that it exists at least
a j such that ∂Xj/∂ẋi 	= 0 for which (8) is verified with τ 	= 0.
If this is the case, we can multiply the constraints on the left
hand side of (8) by (∂Ẋj/∂ẋi)/(∂Xj/∂ẋi). Then, we can add
the result to the constraints on the right hand side of (8). This
yields the following equivalent condition

Rank

{
∂X1

∂ẋi
M−1

i . . . ,
∂Xi−1
∂ẋi

M−1
i ,

∂Xi+1

∂ẋi
M−1

i . . . ,

∂Xn

∂ẋi
M−1

i ,M−1
1 . . . ,M−1

i−1,M
−1
i+1. . .M

−1
n

}
< n

Note that ∂Xj/∂ẋi is a scalar. Therefore, the first n− 1 vectors
are linearly dependent. Thus, their contribution can be described
by a single vector pointing in the same direction

Rank

{
M−1

1 . . . ,M−1
i−1,

∣∣∣∣
∣∣∣∣∂X∂ẋi

∣∣∣∣
∣∣∣∣M−1

i ,M−1
i+1. . .M

−1
n

}
< n.

(9)
Since M−1 is full rank, this condition is fulfilled if and only if
∂X/∂ẋi = 0, which leads to an absurdum. Therefore, τ can be
different from zero only when ∂X/∂ẋi = 0. This is however a
point-wise property. We must now make it global. Since X is
smooth by hypothesis, it can either be zero in a set of isolated
points, or everywhere. The first case is of no use, since a τ <∞
which is different from zero only on a set with null measure does
not modify the state evolution. The latter case yields the only-if
part of the theorem.

The if part is proven by considering that the right hand side
of (8) identifies n− 1 orthogonality constraints in dimension n.
Therefore, there is always at least one direction in which τ can
be exerted without violating the constraints. �

Remark 1: Condition ∂X/∂ẋi ≡ 0 is purely geometric. It re-
quires that the projection ofM in the configuration space (which
in coordinates means to drop the ẋ component of the state)
is a manifold of dimension one. This scenario is portrayed in
Fig. 2(a). In our previous work [23] we have proven that this can
happen only if kinetic energy is constant along the trajectories
of M(x)ẍ+ C(x, ẋ)ẋ = 0 contained in the projection of M.

Lemma 1: If Ẋ ∈ C∞ and ∂X/∂ẋi ≡ 0, then τ =
M(x)(∂X/∂xi)τ

∗ is a manifold preserving action ∀τ ∗ ∈ R.
Proof: Eq. (8) becomes(

M−1
j −

∂Ẋj

∂ẋi
M−1

i

)
M
∂X

∂xi
τ ∗ = 0. (10)

Note now thatM−1
j M is the row vector having all null elements,

except for the j−th that is one. Also, consider that by definition
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Fig. 3. PRR planar manipulator, with parallel elasticity at each joint. For
opportune choice of the stiffness characteristics, one of the Eigenmanifolds of
the robot has one dimensional projection in configuration space - i.e. it is a strict
mode.

(∂Xi/∂xi) = 1. Therefore (10) becomes(
∂Xj

∂xi
− ∂Ẋj

∂ẋi

)
τ ∗ = 0. (11)

This condition is fulfilled for all τ ∗. Indeed, according to (6) if
∂X/∂ẋi ≡ 0 then Ẋj = (∂Xj/∂xi)ẋi. Thus,

∂Ẋj

∂ẋi
=

∂2Xj

∂xi∂ẋi
ẋi+

∂Xj

∂xi
⇒ ∂Ẋj

∂ẋi
=
∂Xj

∂xi
,

where we exploited the holonomicity of X. �
Therefore, if M is strict, we always have the freedom of

imposing a one dimensional feedback action τ ∗, by making it
tangent to the manifold. Note that Lemma 1 is coherent with [23,
Theorem 1]. We use this result to derive a manifold preserving
controller that injects or removes energy from the system.

A. Control Strategy

Consider the following control action for on-manifold energy
regulation

τ = γ(Ē − E)M(x)ẋ (12)

where Ē is the desired level of energy to be reached, and γ > 0
is a control gain.

Corollary 1: Under the hypotheses of Lemma 1, and if
(x(0), ẋ(0)) ∈M, then (12) is such that (x(t), ẋ(t)) ∈M for
all t > 0. Furthermore, if (x(0), ẋ(0)) 	= (xeq, 0) then E → Ē
for t→∞.

Proof: Consider that, if (x(t), ẋ(t)) ∈M and ∂X/∂ẋi ≡ 0,
from (6), then Ẋj = (∂Xj/∂xi)ẋi. Thus, (12) becomes τ =
γ(Ē − E)M(x)(∂X/∂xi)ẋi, which is equivalent to what pre-
scribed by Lemma 1 for τ ∗ = γ(Ē − E)ẋ. This concludes the
innovative part of the proof. The second part follows standard
steps in energy regulation, which we only sketch. First, we
evaluate the variation of energy Ė = γ(Ē − E)||∂X/∂xi||2ẋ2i .
Then, we use Barbalat’s Lemma with Lyapunov candidate
(Ē − E)2/2. This yields that the energy converges either to
Ē, or to E(xeq, 0). The latter is excluded through local linear
analysis. �

B. Simulations

We consider the system depicted in Fig. 3 with poten-
tial energy V (X(xm)) =

1
2kx

2
m, with k > 0, xm = 0.53x1 +

0.66x2 + 0.53x3, and perform simulations on the strict mode

Fig. 4. Plots showing the regulation of the energyE(x, ẋ) to the desired value
Ē = 36 with gain γ = 0.1, and the relative evolution of state along the strict
mode in configuration space.

discussed in [23], using (12) to achieve a desired level of
energy. The starting configuration is on the mode, close to the
equilibrium. The resulting evolutions of the energy and of the
state along the mode are presented in Fig. 4, together with the
system trajectories and input torques. The desired energy level
is reached in few seconds, with bounded control actions, and
without ever exiting M. Also the control action converges to
zero as soon as the energy is close to Ē.

V. IMPULSIVE CONTROL ACTION

The following Lemma aims at completely characterizing the
kind of impulsive actions that can be produced in an Eigenman-
ifold preserving fashion, i.e. without ever leaving the manifold.

Lemma 2: An Eigenmanifold M admits an impulsive action
(3) verifying (2) if and only if for some ẋ+m ∈ R

X(x−m, ẋ
−
m) = X(x−m, ẋ

+
m), (13)

where (x−m, ẋ
−
m) is as in (5). In this case, the state

(X(x−m, ẋ
+
m), Ẋ(x−m, ẋ

+
m)) is reached using the impulse

u∗(x, ẋ) =M(x)(Ẋ(x−m, ẋ
+
m)− Ẋ(x−m, ẋ

−
m)), (14)

which is therefore a manifold preserving control action.
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Algorithm 1: Singlejump(E0, Ē).

1: for all ψ ∈ [−π, π] do
2: v̂ ← (cos(ψ), sin(ψ))

3: d← argminΔ>0(E(X(Δv̂), Ẋ(Δv̂))− E0)2

4: (x−m, ẋ
−
m)← dv̂

5: M− ←M(X(x−m, ẋ
−
m))

6: c← 2(Ē − E0) + ||Ẋ(x−m, ẋ
−
m)||2M−

7: ẋ+m ← argminξ̇∈R(||Ẋ(x−m, ξ̇)||2M− − c)2
8: u∗ ←M−(Ẋ(x−m, ẋ

+
m)− Ẋ(x−m, ẋ

−
m))

9: if ||X(x−m, ẋ
+
m)−X(x−m, ẋ

−
m)|| < ε then

10: return (x−m, ẋ
−
m, ẋ

+
m, u

∗)
11: return Null

Proof: If (2) holds, then the state reached by the system after
the jump is part of the Eigenmanifold. We can therefore ex-
press it in modal coordinates as (X(x+m, ẋ

+
m), Ẋ(x+m, ẋ

+
m)), with

(x+m, ẋ
+
m) ∈ R2. However, according to (4) the state before and

after the jump must share the same configuration. Since the entire
configuration cannot change, also xm must remain the same.
Thus, the jump in modal coordinates is (x−m, ẋ

−
m) �→ (x−m, ẋ

+
m),

which yields the state update(
X(x−m, ẋ

−
m), Ẋ(x−m, ẋ

−
m)
)
�→
(
X(x−m, ẋ

+
m), Ẋ(x−m, ẋ

+
m)
)
.

(15)
Eq. (13) must hold in order for (15) to be compatible with
(4). Note that all these steps hold in both directions, so both
if and only if implications are proved. Finally, in (4), substitute
ẋ with Ẋ(x−m, ẋ

−
m) and ẋ+M−1u∗ with Ẋ(x−m, ẋ

+
m). Making

u∗ explicit directly leads to (14). �
Remark 2: Eq. (13) is purely geometric as well. It indeed

requires that the projection of M in configuration space self-
intersects in xm. In other words, there are at least two modes
passing though xm. This scenario is portrayed in Fig. 2(b). Thus,
(13) directly generalizes the holonomicity condition ∂X/∂ẋi ≡
0 discussed in Sec. IV.

As of now Eigenmanifolds are defined under the assumption
of non-hybrid and conservative dynamics [4].

Yet, we believe that this letter already provides some useful
insights on how to drop these assumptions. We envision that the
controllers proposed in Sec. IV-A and in the next sections can
compensate for energy loss. More importantly, Lemma 2 can be
seen as defining necessary and sufficient conditions under which
a robot maintains its Eigenmanifolds when subject to external
impacts (e.g. locomotion).

A. Reachability by Timing and Combining Impulses

We refer to jumping as the process of changing configuration
within an Eigenmanifold under the action of (14). Consider
an initial configuration {(xm(0), ẋm(0))} ∈ P(R2), where the
latter is the power set of the real plane - i.e. the set of all possible
subsets of R2. Based on the results discussed in the previous
subsection, we can define an operator J : P(R2)→ P(R2) that
extracts all points that can be reached through one jump

J : S �→
{
(ξ, ξ̇)∈R2 | ∃(ξ, ξ̇−) ∈ S

s.t. X(ξ, ξ̇−) = X(ξ, ξ̇)
}
. (16)

Yet, J ◦ {(xm(0), ẋm(0))} does not take into account that we
are not compelled to jump right away, i.e. it is forcing t∗ =
0. Moving t∗ towards strictly positive values is equivalent to
include in S all the possible configurations that can be reached
as open loop evolution of the system. This in general could be
represented through forward integration, which however cannot
be evaluated in closed form. Instead, we exploit here the fact
that the system is supposed to evolve on the Eigenmanifold.
Its evolution is therefore a modal oscillation with constant and
distinct energy. This means that timing the impulse corresponds
to selecting (x, ẋ) from a one dimensional manifold. Then, we
define a further operatorW : P(R2)→ P(R2) that extracts all
modal states that can be reached as an open loop evolution

W : S �→
{
(ξ, ξ̇)∈R2 | ∃(ξ0, ξ̇0) ∈ S

s.t. E(ξ0, ξ̇0) = E(ξ, ξ̇)
}
. (17)

Note that J ◦ J = J and W ◦W =W , as expected when
considering the associative nature of the forward integration
operator, and of (3). Instead J ⊆ J ◦W . Along the same line
we can combine multiple sequences of jumps and waitings
yielding to the operator

(J ◦W)k = (J ◦W) ◦ · · · ◦ (J ◦W)︸ ︷︷ ︸ k times, (18)

where (J ◦W)k−1 ⊆ (J ◦W)k. This in terms of inputs corre-
sponds to an impulse train, with each delta opportunely distanced
and scaled. To conclude, the set of reachable modal states from
the initial modal coordinates (x0m, ẋ

0
m) is

Rk = (J ◦W)k ◦ {(x0m, ẋ0m)} , R = lim
k→∞

Rk. (19)

Therefore the Eigenmanifold is fully reachable ifR = R2. Note
that this definition fully exploits the structure of the problem at
hand, and it is therefore different from standard controllability
by impulses [20, Def. 2.3.1]. Among other things, the analysis
is always performed in a space of dimension 2, no matter how
large n is.

B. A Control Strategy ExploringR1

Algorithm 1 evaluates the timing (in the form of the pre-
jumping modal coordinatesx−m, ẋ

−
m) and the amplitude of a jump

u∗, to get from an initial condition (x(0), ẋ(0)) ∈Mwith energy
E0 to a desired energy level Ē. This is done by performing an
exhaustive exploration ofW ◦ {(xm(0), ẋm(0))}, in search for
a good point from where to produce a jump reaching the desired
energy level . This idea is sketched in Fig. 5. The following
Lemma assesses the validity of the proposed strategy.

Lemma 3: If (x−m, ẋ
+
m) ∈ R1 exists such that E(x−m, ẋ

+
m) =

Ē, then Algorithm 1 will find it and produce a correct output.
Proof: Modal orbits are closed and they encompass the origin

(0,0). Therefore, for each unit vector v̂ = (cos(ψ), sin(ψ)) there
can be only one scaling factor d such that dv̂ is contained in
W ◦ {(xm(0), ẋm(0))}. Otherwise this would mean that there
are portions of the orbit such that the change of xm and the
sign of ẋm are not coherent. The value d can be taken as the
one producing the correct energy E0 - as done in line 3. On the
other hand, the closeness of the orbits in R2 yields through basic
topological arguments that each ψ ∈ [−π, π] corresponds to at
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Fig. 5. A visual representation of the key steps performed by Algorithm 1,
with salient quantities highlighted. The light gray solid line is pre-jump mode,
while the dark gray one is the post-jump mode.

Algorithm 2: Multiplejumpsmontecarlo(E0, Ē, k).

1: do
2: i← 1
3: do
4: if i < k then
5: Ēi ← normal(E0)
6: else
7: Ēk ← Ē
8: (xim, ẋ

i
m, ẋ

+
m, u

∗,i)← oneJump(xi−1m , ẋ+m, Ē
i)

9: i← i+ 1
10: while i ≤ k and isNotNull(xim, ẋ

i
m, ẋ

+
m, u

∗,i)
11: while isNotNull(xim, ẋ

i
m, ẋ

+
m, u

∗,i)
12: Return (x1m, ẋ

1
m, u

∗,1) . . . (xmm , ẋ
m
m , u

∗,m)

least one element of the set. Thus, lines 1 to 4 evaluate all and
only the elements ofW ◦ {(xm(0), ẋm(0))} such that ẋ−m ≥ 0.

The second part of the for loop (starting from line 5), attempts
to produce a feasible jump starting from the state with phase ψ.
Such a jump should lead to a ẋ+m yielding the right energy level
Ē, and verify condition (13) - i.e. be part of the image ofJ . The
latter is directly verified at line 9. So, for assessing the former
we can assume that this is true.

Thus, the condition can be rewritten as Ē =
E(X(x−m, ẋ

−
m), Ẋ(x−m, ẋ

+
m)). We now subtract the expression

for E0 yielding

Ē − E0 =
1

2

(
||Ẋ(x−m, ẋ

+
m)||M− − Ẋ(x−m, ẋ

−
m)||M−

)
, (20)

where || · ||2M− is the norm weighted onM− =M(X(x−m, ẋ
−
m)).

Lines 5 to 7 are a direct translation of (20). Thus, Algo-
rithm 1 is equivalent to an exhaustive search of J ◦W ◦
{(xm(0), ẋm(0))} = R1. This concludes the proof. �

Algorithm 1 contains two nonlinear optimizations, which
however are convex. The proof of this statement is not provided
here for the sake of space. It is also important to recognize
that Algorithm 1 may seem to require spanning all the possible
values of ψ continuously. Random sampling or gridding can
be considered as solutions. Alternatively, we can consider that
the loop is formally equivalent to finding a ψ which solves
X(x−m(ψ), ẋ

+
m(ψ))−X(x−m(ψ), ẋ

−
m(ψ)) = 0. This value can

be found using a standard bisection algorithm.

Fig. 6. A collection of modal oscillations for system (21) are shown in Panel
(a). As a comparison, Panel (b) shows the trajectory resulting from 60 seconds
of simulations when the initial condition is selected outside the eigenmanifold
(the configuration has zero velocity).

C. Simulations: Single Jump

Consider the nonlinear mechanical system described by

ẍ1+7x1 − 2x32 =τ1,(
10 + 3x42

)
ẍ2+6ẋ22x

3
2+x2

(
3x2

4 − 6x1 x2 + 10
)
=τ2,

(21)

with potential energy V (x) = x22 (x
4
2 + 10)/2− 2x1 x

3
2 +

7x21/2. The equilibrium is in (0,0), and the two eigenspaces
of the linearized system are Span{(1, 0, 0, 0), (0, 0, 1, 0)} and
Span{(0, 1, 0, 0), (0, 0, 0, 1)}. The Eigenmanifold prolonging
the second eigenspace (i.e. xm = x2) is described by the embed-
dings X(x2, ẋ2)=(x2ẋ

2
2, x2), Ẋ(x2, ẋ2)=(ẋ32 − 2x22ẋ2, ẋ2).

We want to show here that Algorithm 1 succeeds in regulating
a desired energy level while verifying (c2) and (2). Indeed,
Fig. 6(a) shows a collection of modal oscillations across several
energy levels. All intersect in the origin - making this an extended
Rosenberg mode [4, Sec. IV]. Therefore, condition (13) is veri-
fied, and we can proceed by using impulses for actuation. This
can be verified analytically by considering that X(0, ẋ2) = 0
for all ẋ2. However, this information is not explicitly inserted
into the controller. This jumping point is autonomously found
by Algorithm 1.

Also, to show the effectiveness of the decoupling between the
two controllers, we consider here an Eigenmanifold stabilization
loop τc1 = 2(ẋ− Ẋ) (see Sec. III and [24]). The system is
initialized outside of the Eigenmanifold, and the jump is exe-
cuted only after that the first loop has reached convergence. The
desired energy level is Ē = 10. The trajectory connected to the
open loop evolution from this out-of-manifold initial condition
is shown in Fig. 6(b), the closed loop trajectory in Fig. 7, and the
corresponding time evolutions in Fig. 8. The system converges
to M in few seconds, and jumps around t∗ = 11.

D. Multiple Jumps: A Preliminary Investigation ofRk

If Algorithm 1 fails, we can safely assume that we cannot get
from the given initial condition to the desired energy level with
a single wait and jump sequence. Yet, we can use Algorithm 1
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Fig. 7. Trajectories in configuration space, as a result of the application of
Algorithm 1 and a transversal damping injection to (21). The system is initialized
in x(0) = (0.25, 0.5) /∈M, and Ē = 10. Note that the initial condition is the
same of Fig. 6(b). The evolution from x(0) to M is shown in grey, the jump
configuration in red, and the steady state modal trajectory in black - so to stress
the transitions from one phase to the other.

Fig. 8. Time evolutions of salient variables obtained as a result of the applica-
tion of Algorithm 1 to system (21), With initial condition x(0) = (0.25, 0.5) /∈
M, and Ē = 10. Note that the initial condition is the same of Fig. 6(b). A single
jump - happening around the eleventh second - is sufficient to reach the desired
energy level.

as a building block of a Monte Carlo exploration, as proposed
in Algorithm 2.

Corollary 2: If a subset of non null measure E ∈ P(Rk−1)
exists such that all elements in E define a feasible sequence of
energy levels towards Ē then Algorithm 2 will converge in finite
time returning an element of E .

Proof: The thesis is proven by considering that if the measure
of E is not null then the multivariate normal distribution gener-
ated by line 5 will eventually sample a sequence of energies from

Fig. 9. A double pendulum with parallel elasticity acting on the second joint is
depicted in Panel (a). Some modal trajectories part of the in-phase Eigenmanifold
are shown in Panel (b). The trajectories do not self-intersect for low energies,
but they do with (and at) higher energy. Also the points of crossing changes in
number and in position depending on the energy level.

that set. Then Lemma 3 can be iteratively invoked to prove that
each execution of oneJump will return the correct impulsive
input. Note that the same Lemma also allows to prove that
oneJump can be used to detect if the sample is inside or outside
E (see lines 10 and 11). �

E. Simulations: Double Pendulum With Parallel Elasticity

Consider the double pendulum in Fig. 9(a). The system is
subject to gravity. Also, it has a linear spring connected in
parallel to the second joint (stiffness k, and pre-load π/2). The
two links have unitary length, and two masses m1 and m2

are connected at each end. The resulting inertia is M1,1(x2) =
m1 + 2m2(1 + cos(x2)), M2,1(x2) = m2(1 + cos(x2)), and
M2,2 = m2. The potential energy is V (x) = V ∗(x)− V ∗(xeq)
with V ∗(x) = k(x2 − π/2)2/2 + (m1 +m2)(1− cos(x1)) +
m2(1− cos(x1 + x2)). We consider k = 10, m1 = 0.4, m2 =
0.4. The equilibrium configuration is xeq = (−0.3930, 1.2655).
We consider the Eigenmanifold M prolonging the in-phase line
mode ES � Span{(0.99, 0.10, 0, 0), (0, 0, 0.99, 0.10)}. Note
that this system has been discussed in detail in [4, Secs. VIII,IX],
where also the Eigenmanifold is evaluated and depicted. We
therefore point to that work for more details. Fig. 9(b) shows a
collection of trajectories of modal oscillations.

Two points should be made here. First, X and Ẋ could not
be obtained in closed form for this system. They are instead
evaluated numerically through cubic local interpolation. This
simulation serves therefore as a test of the theory in non ideal
conditions. Second, at low energies the modal oscillations do not
intersect with each other. Therefore exploringR1 is not enough.
However, at higher energy the trajectories get more curved and
start intersecting multiple low energy evolutions. Therefore,
we use Algorithm 2, to explore R2. The results are shown in
Figs. 10 and 11. The initial state is x(0) � (−0.0626, 1.3249),
ẋ(0) = (0, 0), which has energy 0.6 and modal coordinates
(xm(0), ẋm(0)) � (0.0741, 0). We ask the algorithm to jump
to energy 0.7. The higher energy level 0.86 is identified as
intermediate base between the two jumps, which are happening
for t∗ close to 3 and 7 seconds.
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Fig. 10. Time evolutions of salient variables obtained as a result of the
application of Algorithm 2 to a double pendulum with parallel elasticity, with
E0 = 0.6 and Ē = 0.7 and k = 2. An intermediate mode which is part ofR1

is identified with energy E1 = 0.86. The two jumps happen around 3 and 7
seconds respectively.

Fig. 11. Trajectories in configuration space, as a result of the application of
Algorithm 2 to a double pendulum with parallel elasticity. The three energy
levels are plotted with different styles although resulting from a same evolution,
in order to stress the transitions from one mode to the other.

VI. DISCUSSION AND CONCLUSIONS

We have proposed a classification of eigenmanifolds in three
distinct classes, based on their projection in configuration space
- as shown in Fig. 2. We have proven that to each class cor-
responds a fundamentally different actuation modality that can
be exerted without pushing a system out of the eigenmanifold
- namely bounded (Fig. 2(a)), impulsive (Fig. 2(b)), and no
action (Fig. 2(c)). Based on this result, we have proposed con-
trol algorithms enabling the transitioning between two modal
oscillations. Future work will be devoted to perform

experiments, and extend the theory to non conservative and
hybrid systems.
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