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1. Introduction
Coastal flooding poses a serious threat to many people living in coastal zones world-wide. For example, 
Jongman et al. (2012) estimated that in 2010, 217 million people were living below the 1/100-year exposure 
line worldwide. This number is expected to grow by about 25% by 2050. Muis et al. (2017) estimated the 
present day 1/100 year exposure at 158–218 million people. The differences in these last two estimates is 
caused by two different estimates of the extreme sea levels used in their computations, showing that sea 
level estimates have a significant impact on the exposure estimates. However, flood defenses can substan-
tially reduce the risks (Hallegatte et al., 2013). Global tide and storm-surge models are very useful tools 
for estimating flood-risks, including the possible effects of climate change. In addition, these models have 
many other applications, ranging from providing boundary conditions for coastal models (Zijl et al., 2013) 
or in the processing of satellite gravity data (Dahle et al., 2019).

Abstract In this study, a computation-efficient parameter estimation scheme for high-resolution 
global tide models is developed. The method is applied to Global Tide and Surge Model with an 
unstructured grid with a resolution of about 2.5 km in the coastal area and about 4.9 million cells. The 
estimation algorithm uses an iterative least squares method, known as DUD. We use time-series derived 
from the FES2014 tidal database in deep water as observations to estimate corrections to the bathymetry. 
Although the model and estimation algorithm run in parallel, directly applying of DUD would not be 
affordable computationally. To reduce the computational demand, a coarse-to-fine strategy is proposed by 
using output from a coarser model to replace the fine model. There are two approaches; One is completely 
replacing the fine model with a coarser model during calibration (Coarse Calibration) and the second is 
Coarse Incremental Calibration, that replaces the output increments between the initial model and model 
with modified parameters by coarser grid model simulations. To further reduce the computation time, the 
parameter dimension is reduced from O(106) to O(102) based on sensitivity analysis, which greatly reduces 
the required number of model simulations and storage. In combination, these methods form an efficient 
optimization strategy. Experiments show that the accuracy of the tidal representation can be improved 
significantly at affordable cost. Validation for other time-periods and using coastal tide-gauges shows that 
the accuracy is improved significantly. However, the calibration period of two weeks is short and leads to 
some over-fitting of the model.

Plain Language Summary The accuracy of global tide models is currently significantly 
affected by the gaps in the available bathymetric data, i.e. depth of the ocean, in many regions around 
the world. At the same time, tides can be measured accurately by satellite radar altimetry. Here, we 
correct the bathymetry by reducing the disagreement between the model output and observations using 
mathematical methods. Computational demand for this optimization is large because a single high-
resolution model simulation costs much computational time and to optimize the parameters, the model 
has to be run hundreds of times. We propose two ways to reduce the computational cost. First, we replace 
the high-resolution model with a lower resolution model being faster but less accurate. This significantly 
reduces the total computation time. Second, we decrease the number of parameters to an affordable 
number, by combining the less sensitive parameters into larger areas. Together these two methods form a 
complete optimization scheme for the estimation of bathymetry and significantly improve the accuracy of 
the tides computed by the model.
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Global tide models can be classified as (1) purely hydrodynamic forward models, (2) hydrodynamic tide 
models with data assimilation (Stammer et al., 2014) and (3) empirical tide models. Empirical tide models 
such as GOT4.8 (Ray, 1999), OSU12 (Fok, 2012), DTU10 (Cheng & Andersen, 2011), and EOT11a (Savcenko 
& Bosch, 2012) provide tide constituents based on the analysis of data records from satellite altimetry, tide 
gauges and/or adopted prior models. They can simulate historical tides accurately but most cannot be used 
for scenario studies. Purely hydrodynamic forward tide models simulate tides based on forcing with the 
tidal potential without data constraints which can be utilized to study e.g. climate impacts. Hydrodynamic 
tide models with data constraints are the combination of tidal dynamic equations and data assimilation to 
improve the model forecast. HAMTIDE (Taguchi et al., 2013), FES2012 (Carrere et al., 2013), and TPXO8 
(Egbert & Erofeeva, 2002) are of this type.

Regional storm-surge models are well developed and widespread. Kodaira et al. (2016) developed a global 
three-dimensional (3D) storm-surge model based on NEMO and showed the potential benefit of including 
baroclinic processes in the simulation. Arbic et al. (2010) extended a global 3D HYCOM model with tides. 
These 3D models are computationally quite demanding. Carrère and Lyard (Carrre & Lyard, 2003) devel-
oped a two-dimensional (2D) model MOG2D that is used extensively for satellite altimetry. Global Tide 
and Surge Model (GTSM) (Verlaan et al., 2015) is a 2D combined global tide and surge model developed 
by Deltares. Although the behavior of tides and surges is quite linear for the deep ocean and steep coasts, 
there may be significant non-linear interaction between tides and surges on the coastal shelf. Both MOG2D 
and GTSM use an unstructured grid to apply a higher resolution near the coast where the spatial scales are 
smaller.

Stammer et  al.  (2014) compared the accuracy of several assimilative and non-assimilative models and 
concluded that the assimilative models are clearly more accurate. To be able to apply the model also for 
different climate scenarios, we will attempt to assimilate observations by estimating several uncertain pa-
rameters. Three types of parameters, bathymetry, the bottom friction coefficient, and the internal tides drag 
coefficient, are considered here. Bathymetry can be measured directly, but until now large parts of the 
world's oceans remain unsurveyed (Tozer et al., 2019; Weatherall et al., 2015), which creates large uncer-
tainties. Bottom friction and internal tidal friction together determine where the tidal energy is dissipated 
and are hard to quantify through measurements, though global and regional estimates do exist (Egbert & 
Ray, 2000).

The research focus in this study is calibration of GTSM for deep ocean because generally tidal propagation 
scale in deep ocean is larger than it in shallow waters and we assume that once the large scales for deep 
ocean are properly calibrated the finer details for coastal regions can be refined in later studies. Bathym-
etry is selected as the first type of parameter to calibrate based on the sensitivity analysis results shown 
later. A derivative-free calibration algorithm Does not use derivative (DUD), proposed by Ralston and Jenn-
rich (1978) is available in OpenDA software (OpenDA User Documentation, 2016). It is applied to minimize 
the cost function by comparing the model predictions with data from the FES2014 data set and iteratively 
computing increasingly accurate estimations of the parameters. Tide gauge data from the University of 
Hawaii Sea Level Centre (UHSLC) data set is used for the model validation.

Parameter estimation has been applied widely for regional ocean models (Edwards et al., 2015). Das and 
Lardner (1991) showed the feasibility of estimating parameters for a hydraulic model with periodic tidal 
observation. Many scientists such as Ten Brummelhuis et al. (1993) and Heemink et al. (2002) investigated 
the parameter estimation and model validation for the northwest European shelf. Zijl et al. (2013) devel-
oped and estimated bathymetry and bottom friction for a tide-surge model (DCSMv6) in this region. Mayo 
et al. (2014) proposed the use of the Singular Evaluative Interpolated Kalman filter (SEIK) for estimation 
of Manning's coefficients for an Advanced Circulation (ADCIRC) model. Altaf et al. (2012) applied a Prop-
er Orthogonal Decomposition (POD) based calibration approach to calibrate a large-scale shallow water 
flow model. Barth et al.  (2010) assimilate HF-RADAR current observations with an ensemble smoother 
to optimize boundary values in the General Estuarine Ocean Model. The sensitivity of barotropic tides 
to bottom topography and frictional parameters is examined and identified by variational inverse meth-
ods(Zaron, 2017). Zaron (2019) further assimilated CryoSat-2 data into a barotropic tide model with a var-
iational approach. Parameter estimation is a promising approach to improve regional tide model accuracy. 
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However, so far no work on parameter estimation for a global tide and surge model has been reported in the 
literature. In this study, we developed a parameter estimation scheme for the high-resolution global GTSM.

Compared to regional models, a global model covers a much larger area and does not have open bounda-
ries. As a result of these differences, a global tide model has quite different challenges from regional tide 
models. One of which is that changes to the bathymetry can have effects very far away from the region of 
the parameter changes. The high computational complexity and storage usage is also a challenge for the 
high-resolution global model calibration. On the one hand, computer memory may be insufficient to con-
tain the relevant model output for a long simulation; the memory required increases rapidly with the num-
ber of parameters and with the number of observations. On the other hand, computing time is very long for 
calibration of a high-resolution global model even though parallel processing can be applied. For the DUD 
optimization algorithm, the computing times are roughly proportional to the number of parameters to be 
estimated. Thus, the reduction in the number of parameters and reduction in the computing time per model 
simulation plays an essential role in effective parameter estimation. Therefore, the parameter estimation 
scheme should be computation-efficient with low computational cost and small memory usage. We im-
prove the computation efficiency of parameter estimation in two key aspects. First, a coarse-to-fine strategy 
is proposed to replace the model with a coarser grid for parameter estimation. Second, a large reduction in 
parameter dimension is achieved via sensitivity tests.

In Section 2, the GTSM is introduced. Section 3 describes the parameter estimation scheme, including a de-
scription of the observations used, as well as the coarse-to-fine parameter estimation approaches. Section 4 
shows the results of the sensitivity analysis for parameter dimension reduction and the parameter estima-
tion results. Validation of the calibrated model is given in Section 5. Finally, the discussion and conclusions 
follow in Section 6.

2. Global Tide and Surge Model
Water level is modeled in GTSM (Irazoqui Apecechea et al., 2017) by using a version of shallow water equa-
tions. Unlike local models that are forced by open boundary conditions, there are no lateral boundaries for 
GTSM and tides are forced by a tide-generating potential. Some additional physical processes such as self-at-
traction and loading and internal tidal wave drag are also parameterized because they become relevant in 
the much larger oceans covered in GTSM than in a regional model. Surge can be simulated by providing 
additional forces such as wind and air pressure conditions (Verlaan et al., 2015). Therefore, a complete rep-
resentation of the water level can be provided by GTSM. Long-term water level forecasts for the research of 
global sea level change becomes possible based on GTSM (Muis et al., 2017).

Although GTSM has been improved continuously over the past few years from version 1.0 to version 3.0, 
the uncertainties of the model output are still significant and further reduction of these uncertainties would 
benefit its applications. The main model errors occur in the simplification and parameterization of physical 
processes, numerical errors and uncertainties of the model parameters. The first two types of errors are 
studied as part of ongoing modeling efforts. Parameter estimation is an approach to optimizing parameters 
that cannot be measured directly but does have a major influence on the accuracy of the model output. 
Parameter estimation is a process, whereby the difference between model results and the measurements is 
reduced through adjustment of parameters. Here, we build upon the grid and parametrizations of GTSM 
version 3.0.

2.1. Governing Equations

GTSM is based upon the Delft3D Flexible-Mesh hydrodynamics code (Kernkamp et al., 2011). It uses a 
version of the vertically integrated or barotropic shallow water equations in two dimensions. The governing 
equations are:
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where h is the total water depth, u represents the depth-averaged horizontal velocity vector, g is the gravi-
tational acceleration, f is the Coriolis force, ρ is the density of water, ν is the horizontal eddy viscosity, ζ is 
the water level relative to a reference plane, ζEQ is the equilibrium tide, and ζSAL refers to the self-attraction 
and loading effect (SAL), which is a phenomenon with a significant impact on the tidal dynamics especially 
at the global scale. It describes the effects of self-gravitation attraction and deformation of the ocean floor 
by the water column on top of it and associated changes on the geo-potential. SAL can change the tide am-
plitudes by ∼10% or more and phases by 30° (Kuhlmann et al., 2011). It can often be excluded in regional 
models but is a requirement in a global model.

The SAL potential is included in the momentum equation similar to the tidal potential. The SAL term is cal-
culated from the modeled water level at every time-step using a spherical harmonics approach. For a more 
detailed explanation, see Irazoqui Apecechea et al. (2017).

The terms τb, τIT, and τs denote parameterizations of the bottom friction stress, internal tide friction stress, 
and wind shear stress, respectively. The Chézy quadratic formulation is implemented for bottom friction τb 
(Egbert & Ray, 2000). The form is:

   2b
g

C
‖ ‖u u (2)

We use a value of C = 77(m1/2s−1). Much of the global energy dissipation occurs through bottom stress in 
relatively localized regions with shallow water, but ∼1 TW, which corresponds to 25%–30% of the total glob-
al dissipation, occurs in the deep ocean through internal wave drag. Therefore, tidal dissipation through 
internal wave drag has a great impact on the model and cannot be neglected for an accurate representation 
of the propagation of waves. In GTSM, it is parameterized as the following equation (Maraldi et al., 2011):

      1 ( )IT C k N h hu (3)

where C is the dimensionless coefficient, k is typical topography horizontal wave number, N is the depth-av-
eraged Brunt-Väisälä frequency, and ∇h represents the bathymetry gradient. It was computed using data 
from the Copernicus marine global reanalysis. In our application, CIT = Ck−1 is applied as the user-defined 
coefficient, with the value of 0.015. It was based on a global estimate of internal tide dissipation and repro-
duction of tides by the model.

Although this study focuses on modeling tides, the model is often applied as a combined model for tides 
and surge. If so, the influence of atmospheric pressure and wind-drag is added to the model forcing (Pugh 
& Woodworth, 2014). Meteorological forcings are then applied as time and space varying wind and air pres-
sure. The wind stress is modeled as the following equation:

  10 10s a dC ‖ ‖u u (4)

where ρa is the density of air, and u10 is the term of the wind speed 10 meters above the free surface. In the 
Charnock formulation (Charnock, 1955), the wind drag coefficient Cd is dependent on the wind speed u10 
and a user-defined Charnock constant to represent the surface roughness, which is 0.041 in our model.

2.2. Bathymetry

One of the most important parameters in tide modeling is bathymetry. In GTSM the bathymetry is derived 
from the global products General Bathymetric Chart of the Oceans data set (GEBCO 2019). GEBCO is con-
tinually developing its bathymetry datasets to improve the accuracy and the coverage of measured ocean 
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depth. In Section 4.2 we compare two versions of bathymetry (GEBCO 2014 and GEBCO 2019 data sets) and 
their impact on model performance. They are projected to the unstructured grid by means of interpolation. 
GEBCO 2019 provides global coverage on 15 arc-second resolution with measured and estimated seafloor 
topography. For Europe, the EMODnet data set with a resolution of about 250 m is used to overwrite the ba-
thymetry in those regions where there are regional samples. GTSM uses Mean Sea level (MSL) as its vertical 
reference. All bathymetric data is assumed to be relative to the Lowest Astronomical Tide (LAT). Therefore, 
a correction is applied for the LAT-MSL difference. However, even though the techniques developed in the 
submarine survey and depth are updated regularly, there is still a lack of data for bathymetry at a global 
scale. This has a significant impact on the tide reproduction, as we will show later.

2.3. Computational Grid

The amplitudes of the coastal tidal components are normally larger than that in the deep sea while the 
wavelengths are typically smaller. To model this accurately a high resolution is required in coastal areas, 
which may lead to a large computational cost. Here we make use of an unstructured mesh with triangles 
and quadrilaterals, which makes it possible to provide a much higher resolution in coastal areas and lower 
resolution in the deep ocean to maintain an acceptable computational cost (Kernkamp et al., 2011). Com-
pared to the regular latitude-longitude grid, there are two advantages of the unstructured mesh. First, grids 
in high latitudes are thinned to reduce the requirement of computing resources. And second, some areas 
that require high resolution, such as coastal areas and continental shelves where much of the dissipation 
occurs, can be refined.

Two different versions of GTSMv3.0 with two resolutions have been developed (GTSM with the coarse grid 
and GTSM with the fine grid hereinafter). GTSM with the coarse grid has a resolution of ∼50 km in the deep 
ocean and 5 km in the area near the coast. The largest grid cells in the fine version of GTSM are 25 km. In 
the coastal area, the resolution is 1.25 km in Europe and 2.5 km along coasts elsewhere. The number of grid 
cells is ∼4.9 million and the coarse version has about 2 million cells.

As a result of an efficient semi-implicit discretization, the computational cost of the model simulation is 
reduced. However, a model simulation with the GTSM with the fine grid for a period of 45 days still takes 
approximately 10 h on a computer with 20 cores, consisting of 5 Intel E3 processors with four cores each, 
and 3 h for the same simulation for the coarse model. To reduce the single model computational time, we 
moved the computations to the Dutch National Supercomputer Cartesius, where the running time for the 
same simulation on 200 cores reduced to 70 min for the fine model and 25 min for the coarse model. For 
individual runs this computing time is acceptable, but for parameter estimation which requires hundreds 
of simulations, this results in running times of weeks. Therefore, an effective parameter estimation scheme 
should be designed.

3. Parameter Estimation Framework
3.1. Observations Network

The datasets applied for parameter estimation and validation in this study are deep ocean tides from the 
FES2014 data set and the tide gauge data from the UHSLC (Caldwell & Thompson, 2015).

The FES2014 data set was produced by Noveltis, Legos, and CLS and distributed by Aviso+, with support 
from CNES (https://www.aviso.altimetry.fr/). It comes from the FES (Finite Element Solution) tide model 
with the assimilation of satellite altimeter data. The output of some models with and without data assimi-
lation is compared by Stammer et al. (2014), FES2012 showed excellent accuracy when compared with tide 
gauge and satellite altimeter data. FES2014 is the updated version of FES2012. The main advantage of using 
a tidal database such as FES2014 for our deep ocean calibration is that a tide time series can be obtained 
for arbitrary time periods globally. With direct use of satellite altimetry one would have to cover a much 
longer time span, due to the relatively long repeat cycle, e.g. 12 days for Sentinel 1. We generated 1973 time 
series from the FES2014 data set with 32 tide constituents (excluding long-term constituents SA and SSA) 
for the calibration of bathymetry in January 2014 with a 10-min time step. First, 3,000 equally spaced points 
on a sphere were generated using Fibonacci and latitude-longitude lattices (González, 2009), and then we 
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removed the locations on land and in shallow waters, which finally re-
sults in 1973 locations for deep ocean. The details of the observation loca-
tions are shown in Section 4.3.

The UHSLC has a global collection of ∼500 tide gauge time series. The 
availability of data varies over the years, with the amount of locations in-
creasing over time, except for the few most recent years. We retrieved the 
283 tide gauge series that are available from the hourly research quality 
data set in the year 2014. The tide analysis was performed with the tidal 
analysis software TIDEGUI. First, we separate tide and surge from the 
measured water level, since our model calibration is based on the tide 
representation only. Second, because the simulation time window for the 
parameter estimation covers only a short time period, the (solar) annual 
and semiannual constituents SA and SSA were removed after the tide 
analysis. We obtained a set of 93 harmonic constituents. After that, the 
tide and surge representations were visually inspected in comparison to 
the measured series in the tide analysis procedure. The distribution of the 
locations is somewhat irregular and most locations are in coastal areas.

Even though the FES2014 data set has assimilated tide gauge data, the 
UHSLC data set can still be seen as independent from our calibration be-
cause the FES data used for calibration was limited to deep water, while 
almost all tide gauges are at the coast. The purpose of using UHSLC data 
is to study the impact of the calibration in the coastal areas.

3.2. Optimization of Model Parameters

To calibrate GTSM, we attempt to estimate parameters first in global deep 
ocean waters and then later in shallow water areas. The three most un-
certain parameters in a global tide model are bathymetry (shown in Fig-
ure 1a), energy dissipation by bed friction (Figure 1b) and internal tides 
(Figure 1c). The blue boxes show the regions with high levels of tide en-
ergy dissipation. All of the boxes in Figure 1b of bottom friction are in the 
coastal areas, which makes the model very sensitive to resolution in these 
regions. Tide energy dissipation through internal tides friction is globally 
distributed and related to the bathymetry change, especially in the mid-
ocean ridges and trenches, continental shelves, and island chains. There-
fore, we aim to split the calibration into two stages. The first is calibration 
at the large scales in the deep ocean and the second is refine the coastal 
regions with more measurements included locally. In this paper, we focus 
on the first stage deep-ocean calibration.

Selecting only the dominating parameter in the model and ignoring oth-
ers can be an effective way to reduce the parameter dimensions. A simple 
sensitivity experiment is performed to compare the influence of bathym-
etry and internal tides drag coefficient on the GTSM. The global oceans 
are divided into seven regions, GTSM is simulated with 5% perturbation 
for the bathymetry and 20% perturbation for internal tides drag coeffi-
cient in each region. Cost function is defined as the sum of the squares of 

the difference between the model output and the FES2014 data set. The sensitivity is computed as the rela-
tive change of the cost function with respect to each perturbed parameter. The model output with perturbed 
bathymetry shows much larger changes than that with the perturbed internal tide drag coefficient, which 
means that GTSM is more sensitive to bathymetry than to internal tide friction and bed friction. Therefore, 
bathymetry is the only type of parameter we selected to estimate for GTSM in this paper.
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Figure 1. Spatial distribution of uncertain parameters: (a) bathymetry 
distribution in global oceans (unit:m); (b) tide energy dissipation by 
bottom friction (unit: W/m2); (c) tide energy dissipation by internal tide 
friction (unit: W/m2). The areas with large tidal energy dissipation are 
shown in the areas with blue boxes.
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3.3. Parameter Estimation Algorithm

Parameter uncertainty can be reduced via optimization techniques to tune the model output toward the 
data. Here we use an algorithm called DUD, since it is the default algorithm in the generic data-assimi-
lation toolbox OpenDA and there is a lot of experience with this method. DUD is an algorithm similar to 
Gauss-Newton algorithm but with a derivative-free method to solve non-linear least squares problems. The 
algorithm will attempt to minimize a cost function in an iterative manner. In addition to an observation 
term, the cost function also contains a weak-constraint or background term in order to constrain changes 
compared to the initial parameters where the fit to observations does not improve significantly. In the brief 
description of the DUD algorithm below, the cost function is limited to the observation term only, to keep 
the description concise. The observation term Jo(x) in the cost function measures the difference between the 
model output and observations in a time range t ∈ [t1, tk], which is:

  11( ) [ ( )] [ ( )]
2

T
oJ x y H x R y H x (5)

where y is the field observation vector including all times  1[ , ]Ntt t t  and stations (1, …, Ns), and the term x is 
the parameter vector with the number n. H(x) is the model output matching the observation locations and 
times and R is the observation error covariance. The dimension of y and H(x) is O(NsNt). The minimization 
processes are performed with the following steps:

1.  Obtain model output H(xi) with the first guess for all parameters x0 = xb, as well as n runs each with one 
perturbed parameter (x1 = xb + δe1, …, xn = xb + δen).

2.  Calculate the cost function Jo(xi), i = 0, …, n for the n + 1 simulations.
3.  Perform the iterations of the minimization process.

 (1)  Reorder the cost function values from the largest value to the smallest as Jo(x0) ≥ Jo(x1) ≥……≥ Jo(xn).
 (2)  Create an approximate linear model by interpolation between the n + 1 model predictions already 

computed. The linearization equation is:

  ( ) ( ) Δ( )n nH x H x M x x (6)

 with M = FP−1, where the ith column of F and P are Fi = H(xi) − H(xn), Pi = xi − xn

 (3)  Solve the linear problem and update the new parameters by:

  1
* [ ] [ ( )]T T

n nx x M M M y H x (7)

 (4)  If Jo(x*) < Jo(xn), update the parameters and cost function set by using x* to replace x0 which has the 
highest cost function, i.e. we keep the n + 1 best estimates.

 (5)  Otherwise, do a line search until the cost function is improved. Update the parameters in the same way 
as shown in (4).

4.  Check the termination criteria in steps (4) and (5); if the results do not satisfy any one of the criteria, then 
return to step 3 (1), otherwise stop the iterations.

Several constraints are imposed to make the correction factors realistic. One is the weak constraint applied 
as a background term in the cost function which will reduce the parameter adjustments when the fit to the 
observations does not improve significantly. Another is we added a hard constraint to all the parameters 
by limiting changes to 10%. This is because the initial number of simulations in step 1 is n + 1 and the di-
mension of matrix M is NsNt × n. The computational time increases proportionally to the number of model 
simulations and running time for each simulation. The parameter dimension has a major impact on the 
number of simulations and a higher model resolution also increases the computational time for each model 
simulation. It results in the memory required to store the matrix M ultimately turning out to be a limiting 
factor in our application. Therefore, we propose two further approximations to speed up the computations 
and limit the use of memory. First, we propose a coarse-to-fine parameter estimation scheme to reduce the 
computational time for each simulation in Section 3.4. Second, the parameter dimension is reduced to an 
acceptable scale by sensitivity analysis, which will be introduced in Section 4.2.
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3.4. Coarse-to-Fine Parameter Estimation

In this section, two approaches for the coarse-to-fine parameter estimation strategy are proposed that re-
place part of the simulations with the fine grid GTSM by simulations with a coarser grid. The estimated 
parameters for the coarse model are reused for the fine model. Two possible approaches are:

1.  Approach 1: Coarse Calibration, which completely replaces the fine model with a coarser grid model 
during the calibration

2.  Approach 2: Coarse Incremental Calibration, which replaces the increments between the output from 
the initial model and the model with modified bathymetry using a coarser grid. The bias between the 
coarse model and the fine model is corrected for

The cost function for Approach 1 is:

  1
1

1( ) [ ( )] [ ( )]
2

T
c cJ x y H x R y H x (8)

where the term Hf(x) and Hc(x) are the model output of the fine and coarse resolution, respectively. In 
Approach 1, the model simulation runs only on the coarse grid, which results in a large reduction in com-
putational time. However, the minimization of the cost function only involves the coarse model without 
any direct relationship to the fine model. Since a coarser model is in general less accurate this will lead to a 
compensation for these errors in the parameter estimates, which still apply to the fine model.

Therefore, we also propose a second approach (Approach 2: Coarse Incremental Calibration) that only 
replaces the difference between the initial output and the adjusted model output of the fine model 
(δHf = Hf(x) − Hf(xb)) by a coarser grid (δHc = Hc(x) − Hc(xb)). It is similar to the incremental formula to 
reduce the computational cost of 4D-Var, which is widely used in the implementation of data assimilation 
for the ECMWF weather model (Courtier et al., 1994).

Our experiment shows that the difference between increments δHf and δHc is on average small compared 
to the RMS of δHf and and δHc, 0.68 cm compared to 3.26 cm (not shown here). Therefore, the fine grid 
increments in most regions are well represented by the coarse grid. We assume δHf ≈ δHc, and thus the new 
cost function is generated as:

      1
2

1( ) [ ( ) ( ) ( )] [ ( ) ( ) ( )]
2

T
f b c b c f b c b cJ x y H x H x H x R y H x H x H x (9)

The new cost function for initial simulation in Approach 2 represents the disagreement between the ob-
servations and the fine model predictions. Compared to Approach 1, the new cost function gives a better 
description of the initial fine model. The computational times of these two approaches are reduced and are 
almost the same since only one more simulation of the fine model is required in Approach 2. After the es-
timation, the correction factors of bathymetry are interpolated to the fine model's unstructured grid before 
simulations with the fine grid.

4. Numerical Experiments and Results
This section first provides more detail on how the calibration was performed. Next, it explains how we re-
duced the number of parameters to make the computation times and memory usage manageable. Finally, it 
describes the results from the calibration experiments.

4.1. Experiment Set-Up

As discussed in Section 3.1, the accuracy of the model will be expressed relative to time-series computed 
from FES2014. Direct use of altimeter data to calibrate the model would require a simulation covering at 
least several years, which is not feasible computationally in this context. In our experience, time-series from 
tide gauges should cover between a month and a year to obtain accurate tidal estimates. Unfortunately, it 
turned out that this did not fit into the memory (32Gb) on our cluster. One spring-neap cycle, of about half 

WANG ET AL.

10.1029/2020JC016917

8 of 24



Journal of Geophysical Research: Oceans

a month, did fit into the memory and was selected as the best feasible option at this point. The tidal poten-
tial used in the model accounts for the tide components with a Doodson number ranging from 57.565 to 
375.575. The minimum threshold for the amplitude of the tidal spherical harmonic is 0.03 m, which results 
in a set of 58 tidal generating frequencies. Long-period tide constituents SSA and SA are excluded from 
the model output and observations, because long-period tides are affected by non-gravitational influences. 
From the tidal constituents in FES2014 the time-span is not limited to a particular period. Therefore, we 
selected January 2014, when the most tide gauges were available for validation.

The simulation time is chosen from January 1 to 14, 2014 and the spin-up time for the model is from two 
weeks before 1 January to make sure that the initial values (zeros) for the sea level and currents no longer 
have a significant impact on the results. Each time-series, with a time-step of 10 min thus has a length of 
Nt = 2,016. In total Ns = 1,973 locations were selected, resulting in an output of Ns ∗ Nt = 3977568 values 
per simulation.

4.2. Sensitivity Analysis and Parameter Dimension Reduction

In order to obtain a better initial bathymetry input for GTSM, a comparison of model simulations with ba-
thymetry input from GEBCO release 2014 and GEBCO 2019 was performed.

Table 1 shows the Root Mean Square Error (RMSE) bias difference and standard deviation (SD) for the two 
grid resolutions and two bathymetry inputs against the time series from FES2014 for seven regions from 
January 1 to 14, 2014. The bias difference between the model output and observations is very small with the 
maximum value at the millimeter level. It illustrates that the tides computed with the fine grid are more 
accurate than for the coarse grid using the same bathymetry source from both RMSE and SD comparisons. 
Moreover, the model output with GEBCO 2019 bathymetry is more accurate than that with GEBCO 2014. 
This shows that reducing the uncertainty of bathymetry can significantly improve the model performance. 
Based on these experiments, we selected GEBCO 2019 as the source for the initial bathymetry.

In principle the bathymetry can be different in every grid node of the model. However, it would be com-
putationally infeasible to treat the bathymetry at every grid node as a degree of freedom in the estimation. 
Moreover, the content of the information contained in the observations is not enough to estimate so many 
parameters.

Thus, we attempt to reduce the number of parameters and use a single value to adjust the bathymetry with 
one correction factor per spatial region Si, i = 1, …, n. For every grid node j in the spatial region we adjust the 
parameter from Dj to *

jD  according to:
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Model GTSM with the coarse grid GTSM with the fine grid

Bathymetry GEBCO 2014 GEBCO 2019 GEBCO 2014 GEBCO 2019

Region RMSE Bias SD RMSE Bias SD RMSE Bias SD RMSE Bias SD

Arctic Ocean 7.03 0.37 7.02 7.06 0.44 7.04 5.25 0.41 5.22 5.24 0.65 5.18

Indian Ocean 7.94 −0.06 7.94 6.70 −0.11 6.70 6.51 −0.05 6.51 5.57 −0.10 5.57

North Atlantic 8.9 −0.02 8.96 6.89 0.01 6.87 7.89 0.03 7.89 5.41 0.07 5.41

North Pacific 7.41 −0.13 7.41 6.97 −0.12 6.96 6.03 −0.09 6.02 5.69 −0.07 5.69

South Atlantic 5.45 −0.22 5.45 4.76 −0.22 4.76 4.68 −0.20 4.67 4.15 −0.23 4.14

South Pacific 7.59 −0.20 7.58 7.03 −0.21 7.03 5.81 −0.19 5.80 5.57 −0.25 5.56

Southern Ocean 5.86 0.01 5.86 5.35 −0.02 5.34 4.47 −0.09 4.47 4.28 −0.13 4.27

Total 7.28 −0.09 7.27 6.47 −0.10 6.46 5.88 −0.09 5.88 5.23 −0.11 5.22

GTSM, Global Tide and Surge Model; RMSE, root mean square error; SD, standard deviation.

Table 1 
Regional RMSE, Bias, and SD Between Model Predictions With Different Bathymetry for Two Resolutions and the 
FES2014 Data in (cm) From January 1 to 14, 2014
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  * (1 [ ] )j i j iD x D for j S (10)

where [x]i is the ith element of the reduced parameter vector x and we use the initial estimate xb = 0 (a vector 
with n zeroes). For instance, if [x]1 = 0.10, the depth in region S1 will be increased by 10%. In GTSM the 
number of grid nodes is O(106), while the feasible number of independent parameters during the estimation 
is O(102). Thus, we would like to design O(102) regions or sub-domains where the response of the model is 
expected to be similar and the sum of the sensitivities between the regions is of similar magnitude.

Let us first define the sensitivity si with respect to region Si as

 


( ) ( )
( )

b i b
i

b

J x e J xs
J x (11)

which is the relative change in cost function when changing the parameter (here bathymetry) only in the ith 
region by multiplication with a factor 1 + δ.

4.2.1. Spatial Scale

Before the final selection of sub-domains for calibration, we first attempt to create a rough estimate of the 
spatial length-scale at which one can estimate the bathymetry from the available tidal data. Consider for 
example the constituent M2, which is dominot in many places around the world. Figure 2a gives an im-
pression of the amplitude of M2 around our planet. The largest amplitudes are often in coastal areas. The 
color scale is limited to 1.4 m, but there are a few regions where the amplitude is larger. Now consider the 
following thought experiment. When the tide propagates from one location to another, a perturbation of the 
bathymetry between these positions could lead to a water level difference. The water level that arrives by 
propagation with speed c from a position at distance l to it can be described as:


  

      
( ) cos lH t A t

c
 (12)

where l is the propagation length, A and ω denote the amplitude and the frequency of M2 constituent respec-
tively. H(t) is the water level at time t. If the bathymetry is perturbed between these points, this will affect 
the propagation speed c gD  and the difference of M2 tide will be:
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Figure 2. (a) Amplitude and cophase lines of M2 constituent (m); (b) propagation length based on perturbed bathymetry with M2 constituent (km).
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2
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To really observe this difference, the change in tide should be larger than the noise in the measurements. 
Thus for observations with noise σ (standard derivation) one can give a minimum length scale over which 
changes in bathymetry ΔD = αD may become visible in the observations:


  

 
3 22

Δc
gDcl

A g D A
 (14)

The propagation length-scale lc is inversely proportional to the M2 amplitude and proportional to the square-
root of the depth. It is expected that a small M2 amplitude and a large value of bathymetry lead to a long 
propagation length and weak sensitivity. Figure 2b provides an overview of propagation length at the global 
scale with σ = 0.05 m and 10% perturbation of bathymetry. Small values of propagation length illustrate 
the larger sensitivity of bathymetry corresponding to M2 constituents. From this figure, one can conclude 
that it is probably difficult to estimate the bathymetry corrections for the Arctic and parts of the interior of 
many oceans, while conditions are much more favorable along the coasts and in shallow areas. The values 
of lc should not be taken too literally, since the underlying formulas are only a rough approximation of the 
dynamics and the estimates for measurement noise and bathymetric uncertainty can be debated. Still, the 
method nicely illustrates the large differences in potential spatial resolution for estimating bathymetry from 
tides.

4.2.2. Sensitivity Experiment

We generate 285 10° × 10° sub-domains based on the estimates of propagation length being larger than 10° 
in most of the oceans. Figure 3a shows the sensitivity results in these sub-domains according to Equation 11 
with FES2014 tide data. Many sensitive sub-domains are in the coastal areas or regions with a large M2 am-
plitude. The sensitivity in all regions is smaller than 2%. Some regions such as the Arctic Ocean have very 
small sensitivity values. The number of 285 sub-domains is too large for our computational resources, so we 
merged some neighboring sub-domains to reduce the parameter dimension and CPU times. Neighboring 
sub-domains are aggregated if they satisfy both criteria: (1) they have the same sensitivity directions (both 
negative or both positive) and (2) their propagation lengths are large and the sensitivity is small. Correction 
factor of bathymetry in each sub-domain is applied for every grid cell. A two-degree transition area is ap-
plied between neighboring regions. The correction factors in the cell of the transition areas is interpolated 
by the model, using linear interpolation on a triangulated discretization with the samples defined in the 
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Figure 3. Bathymetry sensitivity test in GTSM with the coarse grid: (a) bathymetry perturbation is applied in 285 sub-domains; (b) bathymetry perturbation is 
applied in 110 sub-domains. GTSM, Global Tide and Surge Model.
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calibration as nodes. The sensitivity analysis results for these 110 aggregated sub-domains are reported 
in the right-hand panel of Figure 3. The values of sensitivity are between −0.06 and 0.02. As a result, the 
parameter dimension has been reduced from O(106) originally to 110 through the sensitivity analysis. Also, 
the size of the matrix H is 110 × 3977568 which is now small enough to deal with, given the constraint of 
limited computer memory space.

4.3. Parameter Estimation Results

We apply the coarse-to-fine parameter estimation method as described in Section 3.4 with 110 sub-domains. 
Figure 4a illustrates the cost function in each iteration for parameter estimation for the two approaches. It 
is not easy to observe the difference between the estimated and initial bathymetry from the map. So, we 
show the final relative change to the bathymetry in Figures 4b and 4c, which is the correction factor [x] in 
Equation 10. The final bathymetry estimated by the two approaches has a similar distribution.

In Figure 4a, the first 111 iterations are running with perturbed parameters and the result of each of these 
simulations is independent from each other. After the perturbed simulations, new parameters are iterative 
estimates based on the previous model output. Therefore, these first 111 simulations can be computed in 
parallel if enough computing resources are available, after that parallelization has to be sought within a sin-
gle iteration. The computational cost of the two approaches is similar and Approach 2 required seven more 
iterations than Approach 1. This is a relatively small difference and could be different with slightly different 
settings. We compared the values of the cost function of the original GTSM model with two resolutions 
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Figure 4. (a) Cost function for two approaches; Bathymetry differences in Approach 1 (b) and Approach 2 (c) show the value of (x) in Equation 10.
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and FES2014 observations. It is expected that the cost function value of Approach 2 is smaller than that of 
Approach 1. The values of the cost functions are greatly reduced from 4.56 × 106 to 1.48 × 106 in Approach 
1 and from 2.84 × 106 to 1.22 × 106 in Approach 2. The percentage of reduction is approximately 67.5% for 
Approach 1% and 57% for Approach 2. The cost functions of both approaches show similar behavior with 
a sharp reduction in the first few estimation iterations and little improvement after that. It should be noted 
that the lower final cost function value of Approach 2 does not necessarily imply a higher accuracy of the es-
timated model output, since the methods do not use the same cost function. The cost function in Approach 
1, as shown in Equation 8) only includes the coarse grid model results while the cost function in Approach 
2 (Equation 9) also includes the initial output from the coarse and fine grid models. Therefore, the cost func-
tions for these two approaches cannot be compared directly and we use the RMSE for comparison instead.

Figure 5 shows the RMSE for the final model simulation with the estimated bathymetry as input from 1–14 
January 2014. Before the parameter estimation, GTSM with the fine grid (Figure 5d) has better performance 
than the coarse grid model (Figure 5a) almost everywhere. The RMSE difference between the model with 
and without estimation are shown in Figures 5b and 5c (coarse model) and Figures 5e and 5f (fine grid). The 
results in Figures 5b and 5e are for Approach 1, and Figures 5c and 5f are for Approach 2.

It can be observed that compared to FES2014 “observations,” the estimated model output in most areas has 
improved significantly. The two approaches show a similar spatial pattern of RMSE. There are also a few 
areas where the RMSE values are marginally higher than the initial model; see the areas in yellow or red in 
Figures 5b,5c,5e and 5f (negative values in the RMSE difference mean the estimated results are worse than 
the initial results). The most persistent area, with consistently the worst results, between the experiments 
seems to be in the Bay of Bengal. Perhaps, effects other than bathymetry, play a role here, such as a lack of 
resolution around the large river delta in the north. In summary, we conclude that the estimated model has 
improved significantly on the global scale.

A comparison of spatially averaged RMSE over seven regions for two approaches, the coarse model and 
the fine model, are shown in Table 2,4. Compared to the initial model output, the accuracy of output after 
optimization of both the fine and coarse models are improved in every region. For instance, the RMSE has 
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Figure 5. Spatial distribution of RMSE for two approaches from January 1 to 14, 2014. The upper panels depict the results for GTSM with the coarse grid and 
the lower panels are for the fine grid model. (a) and (d) RMSE for initial model; (b) and (e) difference in RMSE between the initial and estimated model in 
Approaches 1; (e) and (f) RMSE difference in approaches 2. The color blue indicates improvement (unit: m). GTSM, Global Tide and Surge Model; RMSE, root 
mean square error.
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a reduction of 42% and 35% for the model with coarse grid in Approaches 1 and 2, respectively, and, in the 
fine model, it is also reduced by 28% and 33%, respectively.

Because the coarse model Approach 1 directly optimizes the mean RMSE, so one would expect an im-
provement. For Approach 2, the cost function used for optimization uses observations that are corrected 
for differences between the fine and coarse models. Still, Approach 2 improves the performance for all re-
gions compared to the initial model. Finally, both approaches improve the accuracy of the fine model, even 
though the fine model is already more accurate than the coarse model initially. On average, the fine model 
with the calibrated bathymetry of Approach 1 has an accuracy similar to the coarse model for Approach 
1. Thus, it does not really benefit from the higher initial accuracy of the fine model. However, Approach 2 
does benefit from the higher initial accuracy of the fine model and results in the best performance of all the 
combinations for the calibration time span. Most regions behave similar to the average, but in the Arctic 
Approach 1 results in a better fit to the data, than Approach 2.

In summary, both calibrations result in an improved fit to the measurements for both the coarse and the fine 
model. For the coarse model Approach 1 seems slightly better and for the fine model Approach 2. This is of 
course comparing to the same data as was used for the estimation. Compared to Approach 1 with only the 
coarse grid estimation, Approach 2 uses both coarse and fine grid models in the cost function. Approach 2 
probably has the advantage to capture some small-scale features independently of the coarser grid. The aim 
is that for Approach 2 the estimation results are more accurate for the fine grid GTSM.

5. Model Validation
In order to validate the model performance more independently from the simulation period and data that 
we used in the estimation stage, the forecast has been compared against the FES2014 data for the whole 
of the year 2014. Also, the main tide component M2 is analyzed with FES2014 data. In addition, the model 
forecast is also compared to a large number of tide gauges for both tide and surge validation.

5.1. Validation with FES2014 Data Set

The whole of the year 2014 is chosen as the validation period with the FES2014 data set to analyze the mod-
el performance. Two-time period are used as examples for detailed model performance explanation. The 
first period is chosen from January 15 to 31, 2014, which are the days in January following the estimation 
stage and this contains the second spring-neap cycle within the first lunar cycle in 2014. The model forecast 
on July 1–31, 2014 is also analyzed here to inspect the model performance in another season.

Figure 6 shows the forecast regional RMSE of the fine resolution GTSM with estimated bathymetry by the 
two approaches in the 12 months of the year 2014. RMSE for all the seven regions has improved significant-
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RMSE

GTSM with coarse grid GTSM with fine grid

Initial Approach 1 Approach 2 Initial Approach 1 Approach 2

Arctic Ocean 7.06 4.55 5.78 5.24 3.98 4.34

Indian Ocean 6.70 3.74 3.89 5.57 4.21 3.62

North Atlantic 6.89 3.90 4.51 5.41 3.47 3.43

South Atlantic 6.97 4.44 4.69 5.69 4.40 3.96

North Pacific 4.76 3.16 3.65 4.15 3.32 3.11

South Pacific 7.03 3.62 4.16 5.57 3.73 3.43

Southern Ocean 5.35 3.16 3.69 4.28 3.04 2.97

Total 6.47 3.76 4.19 5.23 3.78 3.49

GTSM, Global Tide and Surge Model; RMSE, root mean square error

Table 2 
Regional RMSE After Bathymetry Estimation in GTSM With Two Resolutions in (cm) From January 1 to 14, 2014
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ly for every month with both approaches. Contrary to the calibration period, where Approach 2 performed 
slightly better for the fine model, here Approach 1 generally shows marginally better results, except for the 
Indian Ocean.

In Figure 6, the RMSE between the model output and the observed value varies from month to month and 
also within the month. For example, the initial global average of RMSE in the calibration period is 5.23 cm, 
while it is 5.84 cm in the forecast period January 15–31, 2014, as Table 3 shows. One can observe that ac-
curacy in the period January 15–31, 2014 is lower (higher RMSE) than the calibration period, both before 
and after calibration and independent of the approach. It fits our existing experience that the interaction 
between the various tidal constituent changes over time. However, the general conclusion is that the accu-
racy after the estimation has been greatly improved also for other forecast periods.

As examples, Figure 7 shows the spatial distribution of RMSE difference for GTSM with the fine grid in 
January 15–31 (a) and July (b) in Approach 1. Approach 2 shows a similar distribution to Approach 1 (not 
shown here). The spatial distribution of the RMSE difference in Figure 7 is similar to that in the calibration 
period. Most of the regions are improved but output in some regions is marginally worse than that in the 
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Figure 6. Regional RMSE between GTSM with the fine grid in two approaches and FES2014 for the whole of the year 
2014 (cm). GTSM, Global Tide and Surge Model; RMSE, root mean square error.
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initial model, which is even more obvious in the period January 15–31. The similar RMSE distribution in 
July demonstrates the excellent performance of the calibrated model for the long-term forecast.

In addition, we also evaluate the model performance in the frequency domain. Tidal analysis is based on 
the model output for the year 2014. The root-mean-square (RMS) between the model and the FES2014 data 
set in 1973 locations for major tide constituents are summarized in Table 4. For comparison with Stammer 
et al. (2014), we use the same formula for the RMSE per tidal component:

         
2

( ) ( )m m o oRMS A cos t A cos t (15)

where Am, Ao are the amplitudes from model output and observations. ϕm and ϕo are terms of phases lag. 
ω is the tide frequency. The overbar represents the computation over one full cycle of the constituent 
(e.g., ωt varying from 0 to 2π), as well as all the locations. A striking feature of the table is the lower RMS 
for the main components and the Root-Squared-Sum (RSS) over these components after the estimation 
in both author approaches. The M2 component shows the largest change; it is reduced from 4.50  cm 
in the initial model to 2.25 and 2.54 cm for Approaches 1 and 2, respectively. The significant improve-
ments of tide components for the estimated models demonstrate that they can be used for the long-term 
forecast.

A tidal analysis is also performed for the observation from Deep-Ocean Bottom Pressure Recorder (BPR) 
to compare GTSM with the model described by Stammer et al. (2014). We used model output for the full 
year of 2014 for this comparison. BPR data is available from the Supplement of Ray (2013). As an example, 
Table 5 shows the results from the NSWC (Naval Surface Weapons Center) model, FES2012, initial GTSM 
before calibration and estimated GTSM with Approach 2. The data of NSWC and FES2012 are from Table 3 
in Stammer et al. (2014). In comparison to the seven purely hydrodynamic models in Stammer et al. (2014) 
(their Table 12), GTSM has an RMS for M2 of 5.17 cm which is lower than other models except for the 
NSWC, which has an RMS of 4.27 cm for M2.

GTSM is further improved by the calibration but does not become as accurate as the modern assimilative 
tide models described by Stammer et al. (2014). For instance, the RMS of M2 component and RSS for eight 
major components of the FES2012 model against deep ocean data in Table 5 are 0.66 and 1.12 cm, respec-
tively, while GTSM with estimated bathymetry in Approach 2 are 2.55 and 3.96 cm for the RMS of M2 and 
RSS, respectively. This is one of the reasons why we chose FES2014 data set to be used as observations for 
our deep ocean calibration. The main advantage of our calibration approach for GTSM is that it can also be 
straightforwardly applied for the studies of the effects of sea level rise, since surge can be included in the 
simulation by adding winds and air pressure to the forcing. For example, the first global reanalysis of storm 
surges and extreme sea levels (the GTSR data set) is presented based on the GTSM (Muis et al., 2016). In 
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RMSE

January 1–14 January 15–31

Initial Approach 1 Approach 2 Initial Approach 1 Approach 2

Arctic Ocean 5.24 3.98 4.34 5.93 4.27 4.92

India Ocean 5.57 4.21 3.62 6.04 4.12 4.01

North Atlantic 5.41 3.47 3.43 6.17 4.08 4.78

South Atlantic 5.69 4.40 3.96 6.14 4.45 4.67

North Pacific 4.15 3.32 3.11 5.42 4.40 4.58

South Pacific 5.57 3.73 3.43 6.30 4.17 4.48

Southern Ocean 4.28 3.04 2.97 4.51 2.97 3.34

Total 5.23 3.78 3.49 5.84 4.05 4.33

GTSM, Global Tide and Surge Model; RMSE, root mean square error.

Table 3 
Regional Forecast RMSE After Bathymetry Estimation in GTSM With Fine Grid in (cm) for Two Periods
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Section 5.2, we also applied the one-year sea level forecast to analyze the 
surge representation.

The amplitude and phase difference of M2 component between GTSM 
with the fine grid and FES2014 data set is illustrated in Figure 8. Com-
pared to the FES2014 data set, the differences in amplitudes and phas-
es are substantially smaller in the estimated model for both approaches 
than the initial model. Approach 2 has a slightly better performance in 
amplitude (Figure 8c) than Approach 1 (Figure 8b), which is opposite in 
phases (Figure 8e and 8f).
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Figure 7. Spatial distribution of RMSE difference for GTSM with the fine grid in Approach 1 in the forecast period 
(a) January 15–31, 2014; and (b) July 1–31 2014. The color blue shows improvement (unit: m). GTSM, Global Tide and 
Surge Model; RMSE, root mean square error.

RMS for all locations

RSSComponents Q1 O1 P1 K1 N2 M2 S2 K2

Initial model 0.48 1.12 0.55 1.62 1.01 4.50 2.79 1.76 6.05

Approach 1 0.43 0.89 0.40 1.19 0.69 2.25 1.77 1.18 3.55

Approach 2 0.44 0.96 0.41 1.18 0.66 2.54 1.91 1.46 3.92

Table 4 
RSS and RMS of eight Major Tide Components Against FES2014 Data Set 
in (cm)
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5.2. Validation With UHSLC Tide Gauge Data

The calibrated models were also compared to UHSLC tide gauge data. Contrary to the selected FES data of 
the previous section, most of these locations are along the coast, and have one average large tidal amplitude 
with more pronounced local influences. The time periods used are the same set as above.

Figure 9 shows the spatial distribution of RMSE without estimation (Figure 9a) and RMSE difference for 
the tide output and data from 230 tide gauges for the calibration period from January 1 to 14, 2014 in Ap-
proach 2 (Figure 9b). Approach 1 (not shown here) reports a similar distribution to Approach 2. Most of 
the tide gauges are distributed in the coastal region. The RMSE in these locations (Figure 9a) is much larger 
than it in the deep ocean with the comparison of the FES2014 data set, which is as expected since tide con-
stituents often have larger amplitudes in the coastal regions than in the deep ocean. The RMSE difference 
in Approach 1 is similar to that in Approach 2 and the RMSE difference in the coarse model is similar to 
it in the fine model. The model output from the estimated model is in better agreement with the UHSLC 
observations than the output from the initial model in the majority of the locations.

GTSM with the fine grid is more accurate than with the coarse grid, both 
before and after calibration. For example, RMSE in the initial GTSM be-
fore calibration with the coarse and fine grids are 17.23  and 12.98 cm, 
respectively. These are reduced to 13.49 cm in coarse grid and 11.12 cm 
in the fine grid after the estimation by Approach1. Approach 2 shows 
similar results. In a relative sense the improvements in the calibration 
are quite significant, but less than in deep water. It is possible that resolu-
tion and more local influences play a larger role compared to deep water. 
This can also be seen when one compares the calibrated coarse model 
results to the initial fine model, where the calibration apparently can't 
compensate for the lower resolution. Still, both the coarse model and the 
fine model also benefit at the coast from a calibration that was performed 
using only data on deep water.
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RMS for all locations

RSSComponents Q1 O1 P1 K1 N2 M2 S2 K2

NSWCa 0.29 0.87 0.64 1.29 1.15 4.27 1.78 0.66 5.11

FES2012a 0.22 0.31 0.36 0.47 0.34 0.66 0.41 0.22 1.12

Initial Model 0.56 1.24 0.65 2.10 0.99 5.17 2.36 1.60 6.56

Approach 2 0.48 0.91 0.43 1.49 0.59 2.55 1.82 1.41 3.95

BPR, Bottom Pressure Recorder.
aData of NSWC and FES2012 are from Table 3 in Stammer et al. (2014).

Table 5 
RSS and RMS of eight Major Tide Components Against BPR Data Set in 
(cm)

Figure 8. Spatial distribution of amplitude and phase difference of M2 between the model and FES2014 data set. (a), (b), and (c): Amplitude difference for the 
initial GTSM, model estimated by Approach 1 and Approach 2, respectively (unit: m); (d), (e) and (f): Phases difference for the initial GTSM, model estimated 
by Approach 1 and Approach 2, respectively (unit: degree). GTSM, Global Tide and Surge Model.
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The performance of estimated models with the fine grid is analyzed further with a one-year prediction of 
tide and surge for the full year of 2014. Figure 10a shows the RMSE of the tide has improved significantly 
for both approaches and all months. Approach 1 performed slightly better than Approach 2. The spatial 
patterns of the tide RMSE in every month are very similar to the ones shown in Figure 9 and therefore not 
shown. Additional experiments with wind forcing (Figure 10b and 10c) show that the surge is much less 
sensitive to small adjustments of the bathymetry at large scales. The total water level, being the sum of tides 
and surge, benefits from the improved tides.

As an example, time series of the tide at station Benoa with the coordinate (−8.75, 115.21) from initial sim-
ulation and estimated simulation in January and July 2014 are shown in Figure 11a and 11b. The RMSE is 
decreased by ∼50% in January and 59% in July for Approach 1, which is marginally better than for Approach 
2 (∼44% and 52%, respectively).
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Figure 9. Spatial distribution of RMSE with the UHSLC data from January 1 to 14, 2014: (a) initial RMSE 
in fine GTSM; (b) RMSE difference in fine GTSM by Approach 2. RMSE differences shown in blue indicate 
improvement(unit:m). GTSM, Global Tide and Surge Model; RMSE, root mean square error.
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Similar to the comparison to FES data, also for UHSLC tide gauges, Approach 2 performs best for the cali-
bration period. Also here, the RMSE is higher for other periods than for the calibration period. This con-
firms our perception that the fine model generally improves most using Approach 2 during the calibration 
period, not just for the locations and data set used for the calibration. In other periods, the tidal constituents 
interact differently, leading to estimates that over-fit the data to some extent.

This problem can be solved by using a longer simulation time, such as one month, or even longer. However, 
longer simulation time means higher computational cost and larger storage requirement, which is out of 
reach for the current computing environment and implementation. Future work will attempt to solve this 
problem by modifying the algorithm.

We also note that the calibration changes the model performance significantly. However, in the current im-
plementation the difference between the model output between the fine and the coarse models is only com-
puted at the start. This can potentially be improved further. The algorithm in Approach 2 is similar to the 
inner loop of Incremental 4D-Var (Trémolet, 2007). The cost function in Incremental 4D-var is minimized 
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Figure 10. RMSE between GTSM with the fine grid in two approaches and FES2014 for the whole or the year 2014 
(cm): (a) RMSE for tide; (b) RMSE for surge; (c) RMSE for total waterlevel. GTSM, Global Tide and Surge Model; 
RMSE, root mean square error.
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at a low resolution using an iterative algorithm (inner loop) and the resulting increment is then interpolated 
back to the high resolution and added to the current first guess (outer loop). A similar outer loop can also 
be implemented for Approach 2 in the future. The estimated parameters can be used as the new first guess 
to the inner loop. Because of the large computational cost, we have not performed this experiment yet, but 
we aim to do so in the future, after the algorithm has been optimized further.

6. Conclusions and Further Work
We have presented a complete application of parameter estimation for the high-resolution global tide and 
surge model (GTSM), with measurements from the FES2014 data set. A coarse-to-fine strategy is proposed 
by using output from the coarse model to replace the fine model during (parts of) the estimation, which 
effectively reduces the computational demand. Two variants of this approach were tested. Moreover, the 
computational demand and memory requirements are further reduced by maintaining only the most sensi-
tive parameter dimensions, which were found through sensitivity experiments.
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Figure 11. Tide elevation and difference comparison at station Benoa during (a) January and (b) July, 2014 (unit:m).
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This study focuses on the estimation of bathymetry, which is considered to be the most influential param-
eter. A major challenge for estimation of bathymetry in a global tide model is the large computational cost. 
The optimization algorithm performs a large number of model simulations and even a single model in high 
resolution has an enormous computational cost, even when parallel computing is deployed. In this case, 
the coarse-to-fine strategy is applied to reduce the single model simulation time and make it computation-
ally affordable for parameter estimation. We tested two approaches here: Coarse Calibration (Approach 
1), where all model runs in the calibration are performed with a coarser model, and Coarse Incremental 
Calibration (Approach 2), where the model differences between initial model output and adjusted model 
output are replaced by a coarser model, but the observation model differences are computed with the fine 
model. Coarse Incremental Calibration requires one more fine model simulation than Coarse Calibration 
for the first guess. In our experiments the computational cost is reduced by a factor of approximately three 
based on these two approaches.

In addition to reducing the computing time in a single model, the number of model simulations also 
needs to be reduced, which is done here by reducing the number of parameters, because the initial num-
ber of simulations is proportional to the parameter dimension. To reduce the parameter dimension, a 
sensitivity test is performed by perturbing the bathymetry in a large number of spatial domains. First, the 
number of domains is reduced to 285 domains using an analysis based on the tide propagation length. 
Next a uniform correction factor is applied to the bathymetry for one domain at a time. Finally, using 
the computed sensitivity, we are able to decrease the number of parameters further to 110 domains. This 
number of 110 parameters is just feasible on the available computer infrastructure, with the existing 
implementation.

The optimization procedure leads to a significant reduction of the cost function for both approaches and to 
an improved fit to the FES2014 data for both the coarse and the fine versions of the model. Analysis from 
the frequency domain illustrates significant improvements, especially for the M2 component, after the esti-
mation. The estimation results are evaluated further by comparing model simulations for the whole of the 
year 2014 against the FES2014 data set and the UHSLC data set, which shows that although the calibration 
is performed for 2 weeks, this still results in a more accurate model for other time periods. Comparison to 
the mostly coastal tide gauges shows that the influence of resolution is more important there. The accuracy 
of the coarse model improves through calibration, but cannot exceed the accuracy of even the uncalibrated 
high-resolution model. On the other hand, the fine model benefits from the calibration even at coastal sta-
tions. The surge simulation further demonstrated that the estimated bathymetry is reasonable for not only 
tide prediction but also the long-term total water level prediction.

Experiments show that the parameter estimation scheme efficiently improves the accuracy of the GTSM 
modeled tides. Further work will concentrate on: The calibration algorithms work quite efficiently in 
terms of computation, but the experiments are now limited by the memory requirement for the inversion 
step in the DUD algorithm. At the same time, the results indicate that a longer time span for the calibra-
tion could be beneficial. A modification of the algorithm or parallelization of this step is necessary to test 
this. The increments in Approach 2 are now based on the initial fine model simulation. Somewhat similar 
to the outer loop in the incremental 4D-VAR, one can restart the algorithm with the updated fine model, 
which can potentially further improve the accuracy of the model. Finally, we have focused on calibration 
of the bathymetry throughout this study. Closer to the coast, the uncertainty related to bottom friction 
is probably important. The model performance may be further improved by the calibration of the more 
local bathymetry together with bottom friction, as well as using additional local observations. This will 
also provide an opportunity to verify if the friction can indeed be ignored for the initial calibration at the 
larger scales.

Data Availability Statement
Research Quality Data of UHSLC are available in University of Hawaii Sea Level Centre with the link ftp://
ftp.soest.hawaii.edu/uhslc/rqds. GEBCO bathymetry datasets are provided by General Bathymetric Chart 
of the Oceans (https://www.gebco.net/data_and_products). BPR data are available from the Supplement of 
Ray (2013). FES2014 data set is acquired from https://www.aviso.altimetry.fr/
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