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During the last decades, the optimization of the maintenance plan in process plants has lured the attention of many researchers
due to its vital role in assuring the safety of operations. Within the process of scheduling maintenance activities, one of the most
significant challenges is estimating the reliability of the involved systems, especially in case of data scarcity. Overestimating the
average time between two consecutive failures of an individual component could compromise safety, while an underestimate leads
to an increase of operational costs. +us, a reliable tool able to determine the parameters of failure modelling with high accuracy
when few data are available would be welcome. For this purpose, this paper aims at comparing the implementation of three
practical estimation frameworks in case of sparse data to point out the most efficient approach. Hierarchical Bayesian modelling
(HBM), maximum likelihood estimation (MLE), and least square estimation (LSE) are applied on data generated by a simulated
stochastic process of a natural gas regulating and metering station (NGRMS), which was adopted as a case of study. +e results
identify the Bayesian methodology as the most accurate for predicting the failure rate of the considered devices, especially for the
equipment characterized by less data available. +e outcomes of this research will assist maintenance engineers and asset
managers in choosing the optimal approach to conduct reliability analysis either when sufficient data or limited data are observed.

1. Introduction

Several hazardous substances are handled inside process plants;
therefore, unforeseen events could produce fires, explosions,
and chemical releases that could generate enormous financial
loss and injuries or deaths of nearby employees and civilians
[1]. Among the potential causes, asset failure is often regarded
as the primary source of the aforementioned dangerous
phenomena [2]; hence, the equipment involved in process
industries should be adequately maintained to guarantee ap-
propriate standards of safety and reliability, while generating a
profit from the operations.

Over the past decades, safety and reliability requirements
have progressively increased [3], leading to significant de-
ployment of resources in maintenance activities [4]. +is
fundamental vision has resulted in the development of many
maintenance policies such as reliability-centered mainte-
nance (RCM) [5–11], risk-based maintenance (RBM)
[12–16], and condition-based maintenance (CBM) [8–11].
Within the development of a CBM plan, failure prognosis is
of prominent importance; thus, there is an ongoing effort on
condition monitoring and calculation of the remaining
useful life [17–19]. Zeng and Zio [18] developed a dynamic
risk assessment framework based on a Bayesian model to
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update the reliability of safety barriers as soon as new data
are collected. After updating the reliabilities, the risk indexes
are determined through an event-tree (ET). Another rele-
vant work by Chen et al. [19] proposes an integration be-
tween neuro-fuzzy systems (NFSs) and Bayesian algorithm
to predict the evolution of the operating condition of a given
system. +e approach is tested on two case studies, and the
results reveal a greater accuracy than other conventional
predictors (e.g., recurrent neural networks, NFSs, and re-
current NFSs).

To implement a proper maintenance plan based on
preventive actions, a crucial task is represented by the es-
timation of the probabilities of failure. During this phase, the
accuracy of the prediction is essential since overestimating
the failure rates could lead to greater resource consumption.
By contrast, an underestimation may delay the maintenance
actions, resulting in a riskier state of the operations. Con-
sequently, a great deal of research studies has been made to
provide accurate estimation procedures adopting different
tools such as fault tree analysis (FTA) [20], probability graph
paper [21], support vector machines [22], FORM (first-order
reliability method) [23], SORM (second-order reliability
method) [24], and Bayesian network (BN) [25]. To prove the
advantages and limitations of the estimation methodologies,
many researchers have also focused their efforts on com-
paring the results arising from the application of distinct
approaches [26–28]. Musleh and Helu [27] applied Bayesian
inference, MLE, and LSE to censored data samples. +e
results of this study pointed out the Bayesian estimator as the
best in terms of bias, mean squared error, and Pitman
nearness probability. A more recent work by BahooToroody
et al. [28] presented the comparison between the MLE and
the HBM in case of perfect repair and minimal repair. +e
authors tested the two approaches on an NGRMS, proving
that the Bayesian inference provides more precision in
failure modelling than the MLE. +e proposed frameworks
operate under condition of availability of sufficient data,
while the challenges arising from sparse and limited data
have not been addressed.

Within probability and reliability applications, data
scarcity is regarded as one of the main issues. Indeed, lack of
available data increases the uncertainties related to the es-
timation process [29], causing sometimes the inability to
find the probability distributions [30]. Sparse data could be
generated from many sources, such as the rarity of an event,
limited knowledge, missing data, and impropriate data
collection. Moreover, the implementation of maintenance
strategies also contributes reducing available data since
maintenance actions are performed to prevent failures from
happening [31]. Quite recently, a BN-based quantitative risk
assessment methodology was developed by Yang et al. [32].
In this work, a BN along with precursors are adopted to cope
with data scarcity, while the consequences are evaluated
through loss functions. +e classic Bayesian approaches can
partially compensate for limited data by incorporating prior
knowledge and expert judgments. However, under the
primary assumption of the work, they neglected the effect of
source-to-source variability of failure data in the process

model [33]. To overcome this limitation and simultaneously
deal with sparse data, HBM, along with precursor data, has
been extensively exploited by many academics [34–38]. Li
et al. [39] integrated the BN and the HBM for a dynamic risk
assessment of a submerged pipeline. In their study, the
classical BN is used to model the conditional dependencies
among primary events, while the hierarchical approach is
developed for predicting the probabilities associated with
basic events and the safety barriers. +e proposed meth-
odology can be updated as soon as new information becomes
available, by including them into the prior distribution
characterizing the HBM.

During the last years, the adoption of HBM has spread to
a broader audience thanks to the advances in open-source
Markov chain Monte Carlo (MCMC) sampling software
such as OpenBugs [40]. Examples of applications include
RBM planning [41, 42], condition monitoring [43, 44], and
probabilistic risk assessment [45, 46]. Recently, Abaei et al.
[47] presented an HBM-based methodology able to predict
the probability of failure of a tidal energy converter assuming
a homogeneous Poisson process (HPP) for the failure
modelling.

Despite all the ongoing efforts, there is still a need for a
sound tool able to deal with the uncertainties arising from
the lack of data in maintenance applications. Indeed, while
the literature provides many comparison studies among
distinct statistical methodologies when sufficient data are
observed, less interest has been devoted to the comparison of
estimation tools under the assumption of limited data
available. To this end, the main objective of this paper is to
provide a comparison between the Bayesian inference and
two classic estimation approaches (i.e., MLE and LSE) in the
event of data scarcity arising from frequent preventive
maintenance actions. +e methods are evaluated based on
their accuracy in the estimation process for the failure rate of
the components belonging to an NGRMS, which is chosen as
a case study.

1.1. Hierarchical Bayesian Modelling. +e first step required
to conduct a statistical inference is collecting “Data,” which
are defined as the observed values of a given process. Next,
“Information” is obtained by manipulating, evaluating, and
organizing “Data.” +e process of gathering “Information”
leads to acquire “Knowledge,” which is subsequently
exploited to perform “Inference” [48]. As stated by El-
Gheriani et al. [29], the HBM allows to carry out the in-
ference tasks through Bayes’ theorem, shown by

π1(θ|x) �
f(x|θ)π0(θ)

θf(x|θ)π0(θ)dθ
. (1)

Bayes’ theorem relies on the proportionality between the
posterior distribution, denoted by π1(θ|x), and the product
of the likelihood function and the prior distribution, re-
spectively, identified by f(x|θ) and π0(θ). +e prior dis-
tribution is usually named informative when it conceals
relevant information about the unknown parameter of in-
terest (θ), while it is regarded as noninformative when little

2 Mathematical Problems in Engineering



or no information about θ is considered [49]. It is worth
mentioning that the HBM owes its name to the adoption of a
multistage or hierarchical prior distributions [50], given by
[51]

π0(θ) � 
∅
π1(θ|φ)π2(φ)dφ, (2)

where φ is a vector whose components are called hyper-
parameters, while π2(φ) is the hyperprior distributions,
representing the uncertainty of φ. Finally, π1(θ|φ) is referred
as first-stage prior distribution, which considers the vari-
ability of θ given a certain value of φ.

1.2. Maximum Likelihood Estimation. Given a random
sample y � (y1, y2, . . . , yn) arising from a stochastic pro-
cess, the objective of MLE is to determine the probability
distribution from which the sample is most likely to have
been generated. For this purpose, it is required to specify a
proper distribution for the sample data and its character-
izing parameters. Assuming that θ � (θ1, θ2, . . . , θn) is a
vector that lies within the parameter space, the most
probable parameters that define the probability distribution
of the observed data are obtained by maximising the like-
lihood function, illustrated by [28]

f θ1, θ2, . . . , θn|y(  � f1 θ1|y( f2 θ2|y( , . . . , fn θn|y( .

(3)

1.3. Least Square Estimation. As stated by Myung [52], the
LSE method is exploited primarily for descriptive purposes.
Its main goal is to define the parameters that generate the
most accurate description of the observed data. Let
y � (y1, y2, . . . , yn) be a sample of n observations and θ �

(θ1, θ2, . . . , θm) a vector of parameters. After choosing a
proper distribution for the model, the parameters that best-
fit the data are found byminimizing the sum of squares error
(SSE), shown by

SSE(θ) � 
n

i�1
yi − prdi(θ)( 

2
, (4)

where yi is the ith observation, while prdi(θ) is the pre-
diction of the model associated to the ith observation.

+e remainder of the paper is organized as follows:
Section 2 describes the steps of the proposed study. Section 3
illustrates the implementation of the methodologies to the
NGRMS, while Section 4 provides the discussion of the
results. At last, in Section 5, conclusions are presented.

2. Methodology

Within the reliability analysis process, the exploitation of
different estimation tools could lead to distinct results,
which may affect the adopted maintenance strategy. To this
end, the main goal of this paper is to investigate the ap-
plication of three estimation methodologies in case of few
data available, focusing mainly on the comparison between
the Bayesian approach and the classic approaches (i.e., MLE

and LSE). A brief overview of the framework is represented
in Figure 1.

+e first step (1) of the methodology is to collect failure
data generated by the considered process. Since the majority
of industrial equipment undergoes substantial preventive
maintenance, both Times To Failure (TTFs) and Censored
Times To Failure (CTTFs) are taken into account for the
study (1.1); moreover, the number of failures observed
during a specified time span is also considered (1.2). CTTFs
arise when preventive maintenance is performed or a given
component survives longer than the exposure time.

During the second phase (2), the failure model is
specified. In the present work, the HPP is adopted for
modelling the failure behaviour of the considered devices.
+e HPP describes a scenario where the interarrival times
between failures are independent and identically distributed
according to an exponential distribution. Due to the fre-
quent preventive measures that completely restore the life of
the active components, the assumption of constant failure
rate (i.e., number of failures independent upon a time) is
regarded as appropriate for this study.

Next, the third part (3) consists of selecting the desired
estimation tool, which is used to compute the failure rate of
each apparatus (4). +ree estimation methodologies are
evaluated in this paper: (i) HBM (3.1), (ii) MLE (3.2), and
(iii) LSE (3.3). +e results arising from the different methods
are then compared (5) to point out the most accurate and
precise estimator. A special focus on the comparison be-
tween the more recent Bayesian inference and the classic
approaches is presented.

2.1. Hierarchical Bayesian Modelling. Assuming an HPP for
the failure events of a given system, the number of failures x,
experienced during a timeframe equal to t, can be obtained
via

f(x|λ) �
(λt)

x
e

− λt

x!
, x � 0, 1, . . . , (5)

where λ is the intensity characterizing the Poisson distri-
bution, i.e., the unknown parameter of interest. As suggested
by Siu and Kelly [49], the first-stage prior representing the
variability of λ among different sources should be a beta
distribution, given by

π1(λ|α, β) �
βαλα− 1

e
− βλ

Γ(α)
, (6)

where α and β are the hyperparameters, which are con-
sidered as independent before including any observations
into the analysis [48]. After choosing the likelihood and the
prior distributions, theMCMC simulations are performed to
determine the posterior distributions of the hyper-
parameters. As a result, the posterior distribution of λ is also
obtained through the sampling procedure.

2.2. Maximum Likelihood Estimation. Under the hypothesis
of HPP, the probability distribution of failure interarrival
times, denoted by T, is given by the following equations:
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F(t) � 1 − e
− λt

, (7)

f(t) � λe
− λt

, (8)

where λ represents the rate of arrival. As previously dis-
cussed, the MLE determines the parameters of the consid-
ered distribution by maximising the likelihood function,
which in case of exponential distribution is expressed by

L(λ) � 
n

i�1
λe

− λTi � λn
e

− λ
n

i�1 Ti( 
� λn

e
(− λnT)

, (9)

where n indicates the total number of failures, while T is
addressed as the mean of the interarrival times. +e esti-
mator of λ is then found via [28, 53]

λ �
1
T

�
n


n
i�1 Ti

. (10)

2.3. Least Square Estimation. Let the interarrival time of
failures follow a negative exponential distribution, described
by equations (7) and (8). +e LSE estimates the unknown
parameters by defining a straight line that minimizes the
sum of squared distances between the observed data and the
line itself. +erefore, the exponential distribution should be
rewritten in the form shown by

y � ax + b. (11)

After applying the logarithm to both sides of equation (7)
and some simplification, the following equation is obtained:

t �
−ln[1 − F(t)]

λ
, (12)

which represents a straight line with a � −1/λ and b � 0,
while y � t and x � ln[F(t)]. Let t � (t1, t2, . . . , tn) be a
sample of TTFs, and the estimation of λ is found by min-
imizing the SSE reported by

SSE(λ) � 
n

i�1
ti −

−ln 1 − F ti(  

λ
 

2

, (13)

where ti stands for the ith observed TTF, while F(ti) is
replaced by the median rank, expressed by [54]

F ti(  �
i − 0.3
n + 0.4

, ti, i � 1, 2, . . . , n t1 < t2 · · · < tn( . (14)

3. Application of the Methodology to NGRMS

To show a practical application of the three approaches and
compare their results, an NGRMS (Figure 2) is chosen as a
case study. A generic NGRMS is divided into four groups
and twelve main components, listed in Table 1.

+e natural gas distribution network is a complex in-
frastructure formed by pipes and apparatuses able to
withstand high-pressure values.+us, before distributing the
methane to the final users, the gas pressure must be reduced
to be suitable for the various utilities. To fulfill this task,
NGRMSs are usually installed along with additional sub-
sequent pressure reduction units. +e core of the plant is the
reduction group, in which the pressure regulator and the
pilot are tasked with reducing the pressure. During standard

1. Data collection

2. Develop a failure 
model

3. Selection of 
estimation tool

3.2. Maximum likelihood 
estimation

3.3. Least square 
estimation

3.1. Hierarchical 
bayesian modelling

1.1. Collect times to 
failure

1.2. Collect number of 
failures

4. Estimate unknown 
parameters of interest

5. Result comparison

Figure 1: Flowchart representing the steps of the presented study.
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conditions, the pressure is decreased by varying the cross-
sectional flow area of the pressure regulator, while the
downstream pilot is activated just in case a faster or more
accurate pressure reduction is required. +e solid and liquid
impurities that could be present in the gas flow are removed
by the filter, which is located upstream of the pressure
regulator. Since decreasing the pressure is always accom-
panied by a temperature reduction, the gas must be heated
before entering the pressure regulator to avoid the formation
of ice. To this end, a water flow is preheated by a boiler, and
subsequently, it is sent to an exchanger in which flows the
methane gas. At last, the measuring group evaluates the
natural gas’s most relevant parameters (e.g., pressure,
temperature, and mass flow), while the odorization group is
required to add a precise quantity of odorizer, usually tet-
rahydrothiophene (THT), to the gas flow.

3.1. Data Collection. To implement the approaches, the
operations of a real-life NGRMS were reproduced through
the AnyLogic simulation software (developed by +e

AnyLogic Company, http://www.xjtek.com), focusing on the
stochastic failure generation process. +e developed model
has an NGRMS located in Tuscany near Arezzo Town and a
maintenance centre in Prato Town (Figure 3), served by two
maintenance teams available 24/7. +e first maintenance
squad is tasked with preventive actions, while the second one
is in charge of the corrective actions. Agent-based modelling
and fifteen simulation run were adopted for this study. From
each run, the TTFs, the CTTFs, and the number of failures
were extracted to conduct the subsequent analysis (step 1 of
Figure 1). It is worthwhile mentioning that the failure rates
adopted for the simulation are chosen based on real expe-
rience; therefore, from now on, they are considered as “real”
parameters. As a result, such failure rates are also exploited
as reference values to compare the precision of the three
estimation approaches.

For the sake of conciseness, the estimation methods will
be presented in detail for the pressure regulator; however, a
summary reporting the obtained results for all the consid-
ered components will be discussed later through this study.
Table 2 shows the observed number of failures and the

Table 1: NGRMS’ main groups and components.

Group Component
Reduction Pressure regulator (PR)

Pilot
Filter

Measuring Pressure and temperature gauge (PTG)
Calculator
Meter

Remote control system (RCS)
Odorization THT tank

THT pipelines
Preheating Pump

Boiler
Water pipe (WP)

Medium-pressure
gas

High-pressure
gas

F

F

F

4

10

53

2

1

76

M O

# Component
1 Regulation group
2 Measuring group
3 Odorization group
4 Boiler
5 Pump
6 Valve 
7 Filter
8 Exchanger
9 Pressure regulator
10 Pilot

8 9

Figure 2: Schematic representation of an NGRMS.
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number of preventivemaintenance actions arising from each
simulation run for the pressure regulator. Each simulation
run is considered as a different source of the failure rate of
the components for the HBM. After this brief introduction,
step 4 of Figure 1 will be implemented in the next sections.

3.2. Hierarchical Bayesian Modelling. +e BN illustrated by
Figure 4 was adopted to predict the posterior distribution of
λ. +e aforementioned number of failures observed in each
source (Table 2) is denoted by Xi, while λi refers to the failure
rate of the i-th run. +e calculation of posterior distribution
in Bayesian will be carried out by MCMC simulation. +ree
chains, each starting from a distinct point in the parameter
space, were used to assure the convergence. +e sampling
from the likelihood and the prior distribution was conducted
with 105 iterations for each chain, preceded by 1,000 burn-in
iterations. +e estimated posterior distribution of α and β
along with their respective mean values is shown in Figure 5.
Furthermore, the correlation between the two parameters is
represented in Figure 6.

+eMCMC sampling process revealed a mean value of α
equal to 0.3863, with a 95% credible interval of (0.1156,
0.9065), while the mean of the posterior predicted distri-
bution for β is 1.68E+ 4 hours with the following 95%
credible interval: (2.12E+ 3, 4.52E+ 4).

+e caterpillar plot representing the 95% credible in-
terval for the failure rate of each source is illustrated in
Figure 7. As shown in Figure 7, the computed mean value
(red vertical line) of the posterior predictive distribution for
λ is 1.68E− 05 (per hour). Table 3 reports a summary of the
posterior distribution of every λi.

Due to the different number of failures and distinct
exposure time observed in each source, the mean failure
rate varies significantly from source-to-source. For in-
stance, the first source is characterized by the highest mean
failure rate of 5.69E-05 (per hour) since it has experienced
the highest number of failures (3) in the shortest timespan
(44,300 hours). By contrast, the tenth pressure regulator
owns the lowest mean failure rate equal to 3.59E.06 (per
hour), because no failure has been detected for a decade.
+e source-to-source variability is incorporated within the
aforementioned mean value of 1.68E− 05 (per hour).

Considering an exponential distribution for the inter-
arrival time of failures, the MTTF is given by the reciprocal
of the failure rate, as shown in

MTTF �
1
λ
. (15)

Following equation (15), the MTTF of the pressure
regulator is estimated. It emerged that the average time
between two subsequent failure states is 59,524 hours (about
six and a half years).

3.3. Maximum Likelihood Estimation. To perform this step
of the analysis, the statistical software called Minitab was
exploited. Minitab allows considering both the TTFs and the
CTTFs for the estimation of λ. +e MLE application pro-
vides a failure rate of 1.22E− 05 (per hour), which

corresponds to an MTTF equal to 82,060 hours (more than
nine years). +e resulting probability density function is
reported in Figure 8.

3.4. Least Square Estimation. As in the previous step,
Minitab was adopted for the LSE as well. +e intensity of the
Poisson process estimated by the LSE method is slightly
higher than the rate calculated via the MLE. +e calculation
depicted a λ equal to 1.28E− 05(per hour), equivalent to an
MTTF of 78,219 hours (slightly less than nine years). +e
exponential probability density function of failure inter-
arrival time corresponding to the estimated failure rate is
illustrated in Figure 9.

4. Discussion

In this section, step 5 of Figure 1 is presented. As described
by the previous section, applying the three approaches with
the same input data provided three different values for the
failure rate of the pressure regulator. +e HBM yields a
failure rate of λHBM � 1.68E− 05, which results in an MTTF
equal to 59,524 hours. On the other hand, it emerged that the
MTTFs calculated by the MLE and LSE approaches are
much higher than the Bayesian ones. Indeed, the MLE and
the LSE quantified an average time between two subsequent
failures of 82,060 and 78,219 hours, respectively.

+e real failure rate (i.e., the one adopted during the
simulation process) is λREAL � 1.64E− 05, corresponds to a
MTTF of 60,882 hours. Accordingly, the calculation revealed
a much accurate and precise Bayesian estimator with respect
to the other ones. Indeed, the real value is underestimated by
the HBM for 1,300 hours (about 54 days), while the other
estimations are more than 2 years longer compared to
MTTFREAL.

A summary of the Bayesian results and the other ap-
proaches is listed in Tables 4 and 5. +e comparison will be
discussed further for each group in the following sections.

+e estimated MTTFs are transformed into dimen-
sionless values through the average time between two
consecutive failures adopted for the simulation (i.e.,
MTTFREAL). +e results are shown in Table 6 and Figure 10.

4.1. Reduction Group. To illustrate the differences arising
from the three estimation methodologies, the cumulative
distribution functions (CDFs) of each approach were de-
veloped for the reduction devices (Figures 11 and 12). As
depicted by Tables 4–6, the HBM provided the most accurate
estimation for the failure rate of the pilot, while the MLE and
the LSE of the MTTF are, respectively, 129 days longer and
154 days shorter than the real value. Considering the filter,
the difference between MTTFREAL and MTTFHBM is just
17 hours, while both the MLE and the LSE overestimate the
average time between two consecutive failures. +e MLE
yields an MTTF which is 20 days longer compared to
MTTFREAL, whereas the mean time span between two failure
states is estimated by the LSE as 25 days longer than the real
one.
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4.2. Measuring Group. For the calculator, the HBM yields a
posterior mean interarrival time of failure equal to 68,027
hours, while the MLE and the LSE of MTTF are estimated at
88,825 and 80,837 hours, respectively. Given the real value of
73,233 hours, the HBM is the most accurate estimation tool
once again. +e Bayesian approach manifested its advan-
tages over the other methodologies for the PTG as well.
Indeed, the difference between MTTFHBM and MTTFREAL is

128 hours (about five days), while both the MLE and the LSE
overestimate the real mean time between two contiguous
failures by approximately 1,000 hours (41 days). On the
contrary, the application of LSE emerged as the most precise
for both the meter and the RCS. However, the Bayesian
inference demonstrated greater accuracy than the MLE for
these two devices. +eMTTFHBM of the meter is just 14 days
longer than the MTTF estimated by the LSE, while the

α β

λ1 λ2 λn

X1 X2 Xn

Figure 4: Developed HBM for estimating the failure rate of each device.

Figure 3: Map of the location of the simulated case.

Table 2: Number of failures, preventive actions, and exposure time for the pressure regulator in each source (simulation run).

Source Number of failures Number of preventive actions Exposure time (hours)
1 3 0 44,300
2 1 0 44,300
3 2 0 44,300
4 0 1 78,840
5 0 1 78,840
6 0 1 78,840
7 0 0 54,000
8 1 0 54,000
9 0 0 54,000
10 0 1 87,600
11 2 0 87,600
12 2 0 87,600
13 1 0 61,320
14 1 0 61,320
15 0 0 61,320

Mathematical Problems in Engineering 7



discrepancy between the Bayesian prediction and the LSE
estimator for the RCS is equal to 12 days. Both the HBM and
the LSE showed an estimation error of about 5,000 hours

(208 days) and 1,500 hours (62 days) for the meter and the
RCS, respectively. +e CDFs of the measuring components
are represented in Figures 13 and 14.
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Figure 5: +e posterior probability density function for alpha (on the left) and beta (on the right).
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Figure 7: Predicted 95% credible interval for the failure rate of the pressure regulator in each source. +e black dots are the posterior means
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Table 3: Statistical properties of the failure rate for each source of the pressure regulator.

HBM parameter Mean 2.5 percentile 97.5 percentile
λ1 5.69E− 05 1.29E− 05 1.36E− 04
λ2 2.30E− 05 1.29E− 06 7.53E− 05
λ3 3.98E− 05 6.07E− 06 1.07E− 04
λ4 3.91E− 06 1.57E− 12 2.33E− 05
λ5 3.92E− 06 1.61E− 12 2.30E− 05
λ6 3.95E− 06 1.80E− 12 2.32E− 05
λ7 5.28E− 06 2.06E− 12 3.10E− 05
λ8 1.97E− 05 1.10E− 06 6.40E− 05
λ9 5.27E− 06 2.60E− 12 3.09E− 05
λ10 3.59E− 06 1.56E− 12 2.12E− 05
λ11 2.29E− 05 3.49E− 06 6.05E− 05
λ12 2.30E− 05 3.50E− 06 6.04E− 05
λ13 1.78E− 05 9.91E− 07 5.82E− 05
λ14 1.78E− 05 9.78E− 07 5.82E− 05
λ15 4.77E− 06 2.16E− 12 2.79E− 05
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Figure 8: Interarrival time of failure distribution for the pressure regulator obtained via MLE.
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Figure 9: Interarrival time of failure distribution for the pressure regulator obtained via LSE.

Table 4: Real failure rate and failure rates estimated through the three approaches.

Component Real λ λ HBM λ MLE λ LSE
Pressure regulator 1.64E− 05 1.68E− 05 1.22E− 05 1.28E− 05
Pilot 2.18E− 05 2.18E− 05 2.04E− 05 2.37E− 05
Filter 9.67E− 05 9.69E− 05 9.26E− 05 9.15E− 05
PTG 5.17E− 05 5.20E− 05 4.91E− 05 4.96E− 05
Calculator 1.37E− 05 1.47E− 05 1.12E− 05 1.24E− 05
Meter 2.26E− 05 2.01E− 05 1.84E− 05 2.02E− 05
RCS 2.67E− 05 2.55E− 05 2.54E− 05 2.57E− 05
THT tank 1.08E− 05 1.02E− 05 8.18E− 06 9.42E− 06
THT pipeline 7.55E− 06 7.79E− 06 6.17E− 06 9.76E− 06
Pump 4.80E− 05 4.82E− 05 4.50E− 05 4.31E− 05
Boiler 3.16E− 05 3.24E− 05 3.19E− 05 3.25E− 05
Water pipe 7.40E− 06 5.49E− 06 4.11E− 06 4.48E− 06
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4.3. Odorization Group. +e CDFs built for the THT tank
and THT pipe are illustrated in Figure 15. +e Bayesian
approach proved its higher performance also for the com-
ponents belonging to the odorization group. +e MTTFHBM

of the THT tank is estimated at 98,039 hours, which is about
5,500 hours (about 230 days) shorter than MTTFREAL. +e
MLE model resulted in an average interarrival time of 13,9
years, while the LSE yields anMTTF of 12.1 years. Compared

Table 5: Real MTTF and MTTFs estimated through the three approaches.

Component Real MTTF MTTF HBM MTTF MLE MTTF LSE
Pressure regulator 60,882 59,524 82,060 78,219
Pilot 45,815 45,872 48,909 42,123
Filter 10,337 10,320 10,800 10,934
PTG 19,359 19,231 20,379 20,151
Calculator 73,233 68,027 88,825 80,837
Meter 44,248 49,751 54,343 49,400
RCS 37,492 39,216 39,392 38,928
THT tank 92,593 98,039 122,272 106,137
THT pipeline 132,363 128,370 162,050 102,454
Pump 20,848 20,747 22,231 23,219
Boiler 31,623 30,864 31,362 30,741
Water pipe 135,166 182,149 243,075 223,270

Table 6: Dimensionless mean time to failure (D-MTTF) for each estimation approach.

Component D-MTTF HBM D-MTTF MLE D-MTTF LSE
Pressure regulator 0.978 1.348 1.285
Pilot 1.001 1.068 0.919
Filter 0.998 1.045 1.058
PTG 0.993 1.053 1.041
Calculator 0.929 1.213 1.104
Meter 1.124 1.228 1.116
RCS 1.046 1.051 1.038
THT tank 1.059 1.321 1.146
THT pipeline 0.970 1.224 0.774
Pump 0.995 1.066 1.114
Boiler 0.976 0.992 0.972
Water pipe 1.348 1.798 1.652
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Figure 10: Developed dotplot of the D-MTTFs for each methodology. +e black dashed line represents the real MTTF.
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to the real value, the ML and the LSE estimators showed a
gap of about 30,000 hours (more than three years) and
13,000 hours (about 1.5 years), respectively. For the THT
pipe, a similar scenario is seen. Indeed, both the ML and LS
of MTTFs are about 30,000 hours longer than the real av-
erage time expected before experiencing a failure. By con-
trast, the HBM predicted a posterior mean value of 128,370
hours, which is close to the real mean interarrival time to
failure of 132,363 hours.

4.4. Preheating Group. +e water pipe is the component
associated with the worst estimations due to extreme data
scarcity (Figures 16 and 17). +e HBM yields a posterior
MTTF of 182,149 hours, which is five years longer than
MTTFREAL. +e MLE and the LSE also overestimated the
real average time between two consecutive failures by 12 and
10 years, respectively. Considering the boiler, the MLE es-
timator is the most accurate, with a discrepancy of just 300
hours (almost 13 days) compared to MTTFREAL. Never-
theless, the application of the HBM is more precise than LSE.
At last, the Bayesian inference emerged as the best estimator

for the pump, presenting a gap of 100 hours (four days) with
respect to the mean interarrival time of failure adopted for
the simulation. On the other side, an overestimation of 58
and 99 days is observed, respectively, for the MLE and the
LSE of the MTTF related to the pump.

4.5. Discussion: Maintenance Application. +e HBM has
proven itself as the most reliable estimator under limited
data, which concerns particularly the pressure regulator, the
calculator, the THT tank, the THTpipe, and the water pipe.
Indeed, these components are characterized by a longer
MTTF than the other apparatuses; therefore, fewer failures
are observed during the same time interval. +e Bayesian
predictions of the failure parameter for the aforementioned
devices show a better precision than the other estimation
methodologies. Moreover, the accuracy showed by the HBM
is also higher than the other approaches for most of the
devices.+e root mean square error (RMSE) is calculated for
eachmethod to demonstrate the last statements, as shown by
equation (18):
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Figure 11: Developed CDFs for the pressure regulator and the filter.
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Figure 14: Developed CDFs for the PTG and the RCS.
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Figure 15: Developed CDFs for the THT tank and the THT pipe.
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Figure 13: Developed CDFs for the calculator and the meter.
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, (16)

where n denotes the number of components, while MTTFi is
the estimated average time between two consecutive failures
for the ith device. At last, MTTFREAL, i is the mean inter-
arrival time between failures adopted for the ith equipment
during the simulation. +e RMSE computed for the HBM
through equation (16) is equal to 13,892 hours, while the
RMSE of the MLE and LSE is estimated, respectively, at
34,420 and 27,761 hours. Accordingly, the exploitation of the
Bayesian method will result in a much safer maintenance
strategy without overlooking economic aspects by avoiding
premature maintenance actions.

5. Conclusions

Any maintenance policy is deeply affected by the previous
failure rate estimation process, which often suffers from
limited data. +us, one of the most significant challenges
associated with the reliability analysis is selecting a proper
estimation approach capable of producing accurate and

precise results in case of limited data. To this end, the ap-
plication of three estimation tools is investigated in this
paper, with a particular focus on the comparison between
the Bayesian inference and two common estimation
methodologies: the MLE and the LSE. +e three analyses
were tested on twelve components of an NGRMS, whose
operations were simulated through a simulation model to
extract failure data (i.e., TTF, CTTF, and the number of
failures). Under the assumption of HPP, the results high-
lighted a greater accuracy of the HBM, which emerged as the
most precise estimator for nine devices out of twelve. +e
advantages of the Bayesian estimator are especially evident
in the event of data shortage, associated with the devices with
greater MTTF. Indeed, the lack of data is partially com-
pensated by the HBM through the consideration of source-
to-source variability, which is disregarded by the MLE and
the LSE. On the other side, the MLE and LSE precision
improves for the equipment characterized by more data
available, up to taking the upper hand over the Bayesian
inference for the meter, the RCS, and the boiler. However,
the discrepancy between the Bayesian predictions and the
other estimations for these components are negligible since
almost no difference can be seen from their respective CDFs.
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Figure 16: Developed CDFs for the water pipe and the boiler.
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Considering all the above, adopting a Bayesian approach for
the reliability analysis will help to deal with sparse data,
resulting in a more efficient and effective maintenance plan.
Further developments can include the application of weakly-
informative kind of prior to the Bayesian model to incor-
porate some prior knowledge into the estimation
framework.
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