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ABSTRACT

Lithium-ion batteries are ubiquitous in modern day applications ranging from portable electronics to
electric vehicles. Irrespective of the application, reliable real-time estimation of battery state of health
(SOH) by on-board computers is crucial to the safe operation of the battery, ultimately safeguarding
asset integrity. In this paper, we design and evaluate a machine learning pipeline for estimation of
battery capacity fade — a metric of battery health — on 179 cells cycled under various conditions.
The pipeline estimates battery SOH with an associated confidence interval by using two parametric
and two non-parametric algorithms. Using segments of charge voltage and current curves, the pipeline
engineers 30 features, performs automatic feature selection and calibrates the algorithms. When
deployed on cells operated under the fast-charging protocol, the best model achieves a root mean
squared percent error of 0.45%. This work provides insights into the design of scalable data-driven
models for battery SOH estimation, emphasising the value of confidence bounds around the prediction.
The pipeline methodology combines experimental data with machine learning modelling and can be
generalized to other critical components that require real-time estimation of SOH.

1 Introduction
Rechargeable Li-ion batteries play a crucial role in many modern-day applications ranging from portable electronics
and medical devices, to renewable energy integration in power grids and electric vehicles. The steep decrease in the
price of lithium-ion based battery storage by 73% from 2010 to 2016, to an all-time low of $273/kWh in 2017 [1]
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opened up a significant energy storage market evaluated at $65 billion in 2017 [2]. Irrespective of the application,
Li-ion batteries degrade with time. With ageing, cells exhibit a loss of capacity and an increase in impedance. The rate
of degradation is influenced by the dynamic operating conditions, including varying charge/discharge rates, different
voltage operation limits and temperature fluctuations. The ability to estimate degradation in real-time irrespective of the
various failure mechanisms and their degradation paths is crucial for safe and effective battery management systems
[3]. Battery state of health can be used to predict battery’s expected lifetime, however, the feasibility of online state of
health estimation via direct measurement of chemical reaction parameters inside batteries remains limited [4].

State of health (SOH) is a parameter that quantifies the general condition of a battery and its ability to deliver the
specified performance, measured as capacity or impedance, when compared to its unused state. This work focuses on
the battery capacity as the health indicator due to its correlation to the energy storage capability of batteries and its
direct impact on the remaining run time and life of the batteries. Capacity fade estimation has received considerable
research interest from industry and academia [4], [5], [6], [7] and a number of methods have been proposed. The
current approaches to capacity fade estimation involves parameter estimation using either of the following modelling
types, equivalent circuit models (ECMs) [8], [9], [10], electrochemical models [11], [12], [13], or data-driven models
[14], [15], [16], [17], [18], [19]. Electrochemical models approximate the chemical processes that take place inside a
battery cell during operation. This type of modeling requires detailed cell specifications, such as electrode materials
and electrolyte chemistry. The method typically deploys complex partial differential equations, leading to significant
requirements of both memory and computational power. ECMs, on the other hand, employ circuit components with
empirical nonlinear parameters [9]. Compared to electrochemical models, ECMs use fewer inputs, considerably
reducing the number of parameters required to be learnt over time, however, they have limited accuracy and robustness
due to assumptions in battery behavior [8]. Furthermore, in order to determine ECM model parameters, such as the
ohmic resistance and the parallel resistor-capacitor impedance, at different state of charge values, pulse discharging
[20] and electrochemical impedance spectroscopy is typically necessary [10], [21], [22], however such measurements
are not a viable solution for online applications.

Conversely, the data-driven approach displays a series of advantages such as a chemistry-agnostic modelling capability
and an ability to analyse a wide range of degradation mechanisms and operating conditions, including rare loading
events often overlooked by simplified models or physics-based simulations. To date, numerous studies have employed
machine learning tools for the analysis of battery SOH estimation. Several studies [23], [24], [25], [26], [27] showed
that incremental capacity (IC) and differential voltage (DV) curves, a method developed for use in cell aging mechanism
analysis [23], can also be used for offline and online capacity fade estimation. However, the approach has several
drawbacks linked to obtaining the IC and DV curves that substantially reduce its practicality. The differentiation of
the capacity-voltage curve to obtain the IC curve amplifies noise and propagates it into the algorithm. Additionally,
both curves must cover a sufficient voltage range for the method to work and, for obtaining a high curve fidelity, it
is restricted to low charge current rates(1/5 to 1/25 C-rate) [28], [29], [30]. Unless a low current value is used during
charging protocol and the key part of the capacity-voltage curve is recorded, such that specific peak points in the IC
curve are captured, the method is impractical for online deployment.

An alternative is to train an algorithm on the raw voltage-time data curve, eliminating the need for differentiation [31],
[32]. Notably, Richardson et al. [32] operated on sections of the voltage-time data itself by first smoothing the curve
using a Savitsky-Golay filter and then used equispaced voltage values as the input to a Gaussian process regression
(GPR) algorithm. However, GPR is considerably slow to train due to its computational cost of learning governed
by the kernel function [33], making it unsuitable for online deployment. The high computational complexity, also
severely limits its scalability to incorporate bigger datasets. Additionally, the algorithm is sensitive to the section of the
voltage-time curve used as input to the GPR. Other Bayesian-based methods, such as the relevance vector machine
(RVM) [34], have also been used to estimate battery capacity fade. Unfortunately, RVM also suffers from slow training,
particularly when compared to frequentist-based algorithms [35]. Shen et al. [33] presented options for accelerating
GPR, however, they compromise accuracy. In contrast to [32] where the constant current part of the charging profile was
used, Wang et al. [36] used the constant voltage section to estimate capacity fade using support vector regression (SVR).
Although SVR is faster than GPR, it lacks the ability to estimate uncertainty. This inability to estimate uncertainty
stemmed from various sources is a major limiting factor when discussing complex dynamic systems, such as Li-ion
batteries. SOH assessment without corresponding measures of uncertainty associated with the estimation does not
provide sufficient information to form a decision or corrective action plan [37].

Previous work [8]-[36] includes limited assessments of SOH uncertainty or none at all. The proposed machine learning
pipeline is capable of real-time estimation of battery SOH and associated algorithm uncertainty referred to as battery
health and uncertainty management pipeline (BHUMP). BHUMP operates by passing incoming data streams through a
hierarchical sequence of processing steps by first engineering features based on segments of raw charge curves. It then
performs offline automatic feature selection, augments the dataset with adversarial examples, and estimates battery
health and associated uncertainty with the aid of four machine learning algorithms. Uncertainty is quantified based on
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calibration error and an adapted accuracy measure, the α-β accuracy zone. There are numerous battery designs [38]
and chemistries available [39], therefore the pipeline is deployed on a total of 179 cells, three designs (prismatic, pouch,
and cylindrical), two chemistries (LiFePO4, and LiCoO2), three charge protocols (constant current, constant current -
constant voltage, and 2-step fast-charge), and various discharge rates.

This paper refines and extensively tests new and improved machine learning algorithms for the capacity fade estimation
problem, but also defines metrics for estimating and accurately quantifying uncertainty in ML models used in battery
research. BHUMP provides battery researchers with a scalable SOH estimation solution that is adaptable to any cell
chemistry and operating condition. BHUMP is more accurate than conventional methods as the battery is ageing, uses a
set of engineered features capable of capturing battery intrinsic degradation, and is capable of estimating cell SOH
in under 15 minutes at any point in its life-cycle. An accurate SOH method combined with a quantifiable metric for
uncertainty propagation that feeds into SOC and run time calculations improves battery performance and ultimately
extends cell lifetime.

2 Machine learning pipeline approach

2.1 Pipeline overview
From a machine learning perspective, determining battery capacity fade can be considered a multivariate supervised
regression problem. We use a pipeline-based approach, where features are engineered from charge/discharge curves, on
which a Bayesian or frequentist model is trained. Additionally, uncertainty is quantified by predicting a distribution
mean and an associated standard deviation. Our learning method is divided into two stages, namely, Stage 1: Offline
pipeline creation and training and Stage 2: Online SOH estimation. The offline stage ensures feature engineering,
training data augmentation, automatic feature selection, algorithm training, and uncertainty calibration. The online
stage diagnoses the cell using the trained pipeline under the assumptions that it is given a battery cell of unknown
capacity. Supplementary Figure 1 provides a summary of the two stages via a flowchart of the method.

Feature engineering is split into automatic feature generation or extraction through techniques such as neural network
auto-encoders [40], [41], and manual feature construction based on domain knowledge [42], [43]. We adopt a domain
knowledge-based approach, where we show the algorithm feature choice based on importance to target variable. We
also, provide a hypothesis for the underlying physical degradation quantified by the selected segments of the charge
curves in Supplementary Note 1. Supplementary Table 1 summarize the attributes recorded during life cycle testing.
The pipeline focuses on segments of the charge curves to capture degradation in the electrodes during cycling (Figure 1
illustrates typical extracted segments). The extracted charge-curve segments are further used in the feature engineering
process (see Methods for details).

The pipeline creates a total of 30 features, and selects the most relevant features using a random forest based recursive
feature elimination with cross-validation (RF-RFE-CV) similar to the one introduced in [44]. Recursive feature
elimination generally outperforms other conventional methods [45], [46], hence the adoption here (refer to Methods
section for further details). Before training the algorithms, we perform data augmentation by introducing adversarial
examples as proposed by Goodfellow et al. [47] in combination with the weight decay algorithm (see Methods).
The use of adversarial examples in our datasets was motivated by the need to ameliorate the differences in battery
design/chemistry. In addition, training on adversarial data makes the algorithm robust to outliers, prevents overfitting
and reduces distribution variance around the estimated mean. Synthetic data generation generated from electrochemical
models like the pseudo-two-dimensional model proposed by Doyle et. al. [48] can also be regarded as a data
augmentation policy. Such an approach harnesses the potential of both electrochemical and data based models and we
believe future work must incorporate synthetic data as well.

The augmented dataset then serves as the training input to four algorithms: random forest (RF) and deep neural network
ensemble (dNNe), Bayesian ridge regression (BRR) and Gaussian process regression (GPR). Unlike Bayesian based
algorithms, BRR and GPR, frequentist algorithms are unable to quantify uncertainty naturally due to their formulation.
To overcome such limitations, we consider two modified ensemble based algorithms: RF with Infinitesimal Jackknife
(IJ) based confidence intervals [49] and the ensemble of neural networks as described in [50]. For training of the
algorithms a random search approach is used for hyper-parameter tuning [51], with the exception of the deep ensemble
where the Adam optimiser is used. We have found that drawing random samples from a uniform distribution works
best for BRR and GPR parameters, whereas for RF and dNNe parameters random initialisation gives satisfactory
results. In addition, a batch cross-validation method is used during the hyper-parameter tuning, where each batch is
represented by one cell. This prevents the over-fitting of the models and mimics online deployment. Machine learning
models in engineering require a stringent performance evaluation both from an error and uncertainty quantification
perspective. The models are initially re-calibrated followed by an evaluation based on mean absolute percent error, root
mean squared error and uncertainty estimation metrics (refer to Methods section for further details).
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Figure 1: The CC-CV charge protocol and extracted ageing segment of the curves for a Li-ion pouch cell.
a Voltage during charge protocol. b Current during charge protocol, c Extracted ageing voltage curve segments
corresponding to marked grey area, d Extracted ageing current curve segments corresponding to marked grey area, e
Heatmap of ageing with cycle number. Note: Refer to Methods section for abbreviations.

2.2 Methods
This study developed a pipeline approach for battery SOH estimation, called BHUMP and it incorporates a series of
hierarchical steps, feature engineering, feature selection and data augmentation prior to model fitting and tuning as
follows.

Feature engineering performs mathematical manipulations of extracted parts of the voltage curve during the constant
current charge protocol based on a lower voltage threshold, Vl and an upper voltage threshold, Vh (refer to the grey area
of Figure 1a) for all datasets except for cells charged with a 2-step fast-charge protocol. A characteristic to the 2-step
fast charge protocol is that the cells can be charged from 0% SOC to 80% SOC with high currents ranging from 3.6
C-rate to 6 C-rate. In this work, due to the nature of the charging method in the 2-step fast charge, we only use the
constant-current constant-voltage (CC-CV) charge part of the charging protocol as per the black dotted segments in the
grey area observed in Supplementary Figures 2a, 2b. The values of Vh and Vl can be selected based on the intended
application and the depth of discharge of the cell. In this work we select Vh to be equal to cut-off voltage, Vcut−off .
Refer to Supplementary Note 2 on how we select Vl. Additional features are developed on extracted segments of the
current curve during the constant voltage charge protocol based on two current threshold values, Ih and Il respectively
(see Figure 1b) for all cells except for the 2-step fast charge protocol. We select Ih equal to charge C-rate, while the
lower threshold value, Il, equal to a current drop of 40% from Ih. This allows for sufficient data to be recorded while
keeping the diagnostics time to a minimum. For cells cycled with the 2-step fast charge we select the current curve in
Supplementary Figure 2b. The obtained segments of voltage and current charge curves are further processed to obtain a
plethora of features as described in Supplementary Note 3. Supplementary Table 2 summarises all features generated
from processing the curves.

Feature selection with recursive feature elimination and cross-validation (RFE-CV) performs selection and subset
reduction automatically without requirements of user-based thresholds, such as a maximum number of features to be
selected. To suit battery data, we modify the original formulation by replacing the decision function algorithm with a
random forest (RF) as opposed to the support vector machine (SVM) used in [44]. The replacement is motivated by
RF’s ability to deal with unscaled data. We call the resultant modified algorithm RF-RFE-CV. We use 700 decision tree
estimators for the random forest algorithm and we set the number of cross-validations equal to the number of batteries
in the feature selection dataset (see Supplementary Note 5 for data partition). We perform feature selection for each
battery dataset based on a subset of the training data to avoid introducing optimistically biased performance estimates.
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Battery SOH is quantified as capacity fade with reference to the first cycle as per equation 1, where Ci represents
capacity value at ith cycle and C1 is the capacity at the first cycle measured by a complete charge-discharge operation.

SOH =
Ci
C1

(1)

The role of the algorithm is to map from inputs x to target variable y by means of a function f(x, θ):

y = f(x, θ) + ε (2)

where θ are the model weights vector and ε ∼ N (0,Σ) is a normally distributed noise parameter. Based on the selected
algorithm, the function f(x, θ) may take different forms based on underlying assumptions of each algorithm. The
learned model can then be used to make predictions of capacity given a test vector x∗.

Data augmentation is carried out using the fast gradient sign method (FGSM) in combination with the weight decay
algorithm (ridge regression). We have found that a Ridge regularised model in combination with the FGSM was able
to reduced the confidence interval (CI) around the estimated mean, despite being a simpler model than the original
formulation in [47] which was based on a neural network. Given an input x with a target y and loss l(θ,x, y), FGSM
generates an adversarial example using:

xadv = x + γ · sign(∇xl(θ,x, y)) (3)

where γ is a small value such that the max value of the perturbation is bounded and∇x is the gradient with respect to
x. Because each feature in the dataset has a different range, we set γ to 0.01 or 1% times the range of each feature
vector. The adversarial examples are concatenated with the original training data to create a comprehensive training
dataset. Note, other methods for data augmentations can also be used such as the ones proposed in [50], [52], [53], [54],
however the effect of data augmentation on model performance is beyond the scope of the present work.

The study solves eq. 2 by making use of four algorithms as follows:

Bayesian Ridge regression (BRR) considers a probabilistic model of the regression problem. The algorithm estimates
a spherical Gaussian prior over the model weights given by p(θ|λ) = N (θ|0, λ−1Ip), where λ−1 is the precision. The
priors over α (the regulariser) and λ are chosen to be gamma distributions. All parameters, θ, λ and α, are jointly
estimated during training as per the implementation in [55]. Posterior inference can be performed in a closed-form
because the prior is conjugate. For a complete explanation of the algorithm refer to [56].

Gaussian process regression (GPR) is a nonparametric, Bayesian approach to regression defining a probability
distribution over functions rather than random variables, thus eq. 2 is solved by:

f(x) ∼ GP(m(x), k(x,x′)) (4)

where m(x) is the mean and k(x,x′) is the covariance function. Note, as defined above, GPR does not require learning
the parameters of the regression function f(x, θ), in a traditional sense. The mean and covariance are defined by:

m(x) = E[f(x)] (5)

k(x,x′) = E[(f(x−m(x))(f(x′ −m(x′))] (6)

GPR assigns a prior probability to every possible function, where higher probabilities are given to functions that
the algorithm considers to be more likely, for example, because they are smoother than other functions. For our
implementation, we make use of the standard radial basis kernel (RBF) as detailed in [57], where a mathematical
explanation of the algorithm is also given. Other kernel options exist, however, we do not explore the effect of kernel
choice on algorithm performance.

Random Forest (RF) is a collection of constructed decision trees who sequentially conduct binary splits of the data to
produce a homogeneous subset. For a comprehensive explanation of the algorithm refer to [58]. We adopt a bagging
approach where the ensemble members are trained on different bootstrap samples of the training set and we set the
number of decision trees in the forest to 1500. The variability of the predictions estimated by the random forest has
been investigated based on the study from [49], where the confidence interval’s variance has been obtained using the
bootstrap replicates used to train the random forest itself.

Deep ensemble of neural networks (dNNe). Ensemble methods combine different regressors into a meta-regressor
and we consider an ensemble of deep neural networks as proposed in [50]. Each network in the ensemble incorporates

5



Pre-print version of the article in Nature Machine Intelligence

2 hidden layers with an output of two layers one for the mean, µ(x) and the other for variance, σ2 with σ2 > 0. We
use the negative log-likelihood as a function of the predicted mean and variance for scoring purposes. We also use a
feed-forward architecture of 2 densely connected hidden layers. Each layer decreases in size by 50% neurons based on
the number of input features. When the input number features is less than 10, we force the network’s hidden layers to 4
neurons in the first layer and 3 in the second layer. For example, when 18 input features are considered, the first hidden
layer consists of 9 neurons, followed by 4 neurons in the second hidden layer. Each network used in this work has the
following parameters: first hidden layer implies a ReLU activation function, followed by a Leaky ReLU for the second
hidden layer and a Sigmoid function for the output layer. Additionally, we make use of Adam optimiser with a learning
rate of 0.001 and a batch size equal to the number of cycles for each cell in the training set.

All models are evaluated based on mean absolute percent error (MAPE) and root mean squared error (RMSPE).

MAPE(y∗i , yi) =
1

N

N∑
i=1

|y∗i − yi|
yi

(7)

RMSPE(y∗i , yi) =

√√√√ 1

N

N∑
i=1

(
y∗i − yi
yi

)2

(8)

where yi is the measured capacity value, y∗i is the estimated capacity value, and n is the total number of samples.

In a regression setting, we obtain probabilistic forecasts using one of the algorithms described above through the
estimation of a Gaussian distribution N (µ, σ2), where µ is the mean estimated capacity and σ2 is the associated
uncertainty quantified as variance. To evaluate the usefulness of predictive uncertainty for decision making, we create
reliability diagnostics curves analogous to the work in [59]. To plot calibration curves, we divide each predicted
confidence interval in m confidence levels that are monotonically increasing on the interval [0, 1] i.e. 0 < p1 < p2 <
... < pm < 1. We then compute the empirical probability for each threshold by counting the frequency of true labels in
each confidence level pm. Mathematically this can be summarised as:

p̂m =
|yn|Fn(yn) ≤ pm, n = 1, ..., N |

N
(9)

Based on the reliability curve assessment, we then perform re-calibration using isotonic regression [60]. A well-
calibrated regressor should lie very close to the ideal diagonal curve, e.g. results Figure 3b. We use the calibration
score(Cscore) as a numerical score to describe the quality of the calibration when referenced to a 90% confidence
interval and sharpness (Sh) to describe average standard deviation.

Cscore =
1

N

N∑
i=1

p̂m=90% (10)

Sharpness is calculated as an average of model output variance for each prediction and is given by:

Sh =
1

n

n∑
i=1

σi (11)

where i is the sample number and n is the the total number of sampels.

We further propose an assessment of uncertainty prediction via prognostics performance metrics from an engineering
point of view, adopted from [61]. First, we introduce the accuracy zone defined by a threshold, α (see Figure 2), which
is calculated as a percentage error from the true capacity value, i.e. y ± α. We select an α of ±1.5% (alpha can be
adjusted based on intended application). Based on the frequency of predicted values residing in the accuracy zone, we
calculate the α-accuracy. Finally, we calculate the average probability mass of the prediction PDF within the α bounds
called β, refer to Figure 2. Ideally, β should be one, suggesting that the predicted confidence interval is small and
encapsulates the entire α-accuracy zone. Since α summarises the notion of desired accuracy, α+ is the upper bound for
estimates above the accuracy zone, and α− represents low estimates or value residing under the desired accuracy zone.
Depending on the application, both or any one of the low or high estimates may be undesirable. We chose to calculate
the percentage of early predictions (estimates residing below the true label, the red line in Figure 2), denoted here by
PEP, as a measure of algorithm uncertainty in a critical application scenario.
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Figure 2: α-accuracy zone and β probability mass illustration.

Group* I I I I I II III
Dataset CALCE CS2 CALCE CX2 CALCE PL NASA 5 NASA11 TRI Oxford

Manufacturer Unknown Unknown Unknown LG Chem LG Chem A123 Systems Kokam

Cathode *** LiCoO2 LiCoO2 LiCoO2 LiCoO2 LiCoO2 LiFePO4
LiCoO2 /

LiNiMnCoO2

Form factor Prismatic Prismatic Pouch 18650
Cylindrical

18650
Cylindrical

18650
Cylindrical Pouch

# cells 6 6 2 8 25 124 8

Charge CC-CV CC-CV CC-CV CC-CV CC-CV Fast-charge CC

Discharge 2 regimes 2 regimes 1 regime 2 regimes 7 regimes 1 regime 1 regime
*Groups based on charge protocol, **Toyota Research Institute, ***Information from manufacturer, not verified

Table 1: Datasets overview. Note: refer to Supplementary Note 4 for data sources.

3 Dataset
We investigate the performance of BHUMP on a total of 179 Li-ion cells as referenced in Table 1. The cells have
been grouped into three categories based on the charging protocol used: constant current - constant voltage (CC-CV)
protocol in Group I (47 cells), 2-step fast charge protocol in Group III (8 cells), and constant current (CC) protocol in
Group II (124 cells). The separation is important for separate model training and feature selection, as well as model
performance assessment on different charge protocols. A detailed explanation of each dataset used can be found in
Supplementary Note 4.

4 Algorithm performance

4.0.1 Group I data
Subject to the previously described pipeline steps the feature selection algorithm, RF-RFE-CV chose 18 of the 30
engineered features as the optimum number of attributes for the cells in Group I (refer to Supplementary Figure 8a and
Supplementary Table 3). From a threshold point of view, we select a Vh of 4.2V for all batteries in this Group with an
associated Vl of 3.9V. Refer to Supplementary Note 5 for train/test partitions.

MAPE RMSPE Cscore Sh α-accuracy β PEP
BRR 1.52 2.49 84.49 0.021 70.00 0.57 68.92
GPR 1.49 2.24 92.23 0.025 65.00 0.48 71.76
RF 0.72 0.91 100 0.046 92.00 0.29 95.29
dNNe 0.65 0.92 88.01 0.0082 93.00 0.93 97.71

Table 2: Results for Group I cell no. 38.
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We illustrate results for BHUMP when dNNe is considered as base algorithm in Figure 3 (results for all other algorithms
are shown in Supplementary Figures 11, 12, 13) for a randomly chosen pouch cell battery, cell no. 38 and summarise
algorithm performance on this cell in Table 2. The cell was cycled in full depth of discharge between 4.2V to 2.7V
at a discharge C-rate of 0.5C (or 0.55 A) with a CC-CV charging protocol at a current value of 0.5 C-rate. Table 3
summarises each algorithms’ performance on cell no. 38. Comparing dNNe in Figure 3a to the other algorithms BRR,
GPR, and RF, we show that the resultant confidence interval is considerably smaller (all figures display a confidence
level equivalent to a 95% quantile i.e. µ± 2 · σ). This indicates that the model is sharper, resulting in a high β score
(refer to Table 2 for results). Where the predictions are less accurate, such as is the prediction in the first few cycles (see
Figure 3a), the error bars capture this variability well. On this battery, dNNe also achieves the best RMSPE and MAPE
together with a high calibration score. As per Table 2, the estimates for this cell vary between RMSPE 0.65% to 1.52%,
showing that all 4 algorithms can achieve high performance. The same conclusion is not valid for calibration, however.
Reliability plots indicate that RF exhibits high variance even after calibration, refer to Supplementary Figure 13.
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Figure 3: Prediction results with dNNe Group I cell no. 38. a dNNe prediction as a function of cycle, b dNNE
calibration results, c dNNe actual vs. predicted capacity, d Histogram of % error. Note: y∗ - true capacity, ŷ∗ - predicted
capacity

When discussing average results across all cells in Group I (Table 3), RF achieves on average a low calibration error of
54.70% possibly due to the method used for estimating the variance, Infinitesimal Jackknife. In practice we prefer a
more conservative system, particularly in safety-critical applications. This implies that the number of capacity estimates
lower than the true label residing in the α-accuracy zone (Figure 2) should exceed the number of capacity values
estimated above it i.e. PEP should be close to 100%. At the same time, too low of a capacity estimate would result in a
far too conservative algorithm. However, such behaviour is captured by an increase in RMSPE and thus mitigated for
naturally. With reference to Figure 3d together with Table 2 one can conclude that dNNe is conservative, achieving the
highest PEP.
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MAPE RMSPE Cscore Sh α-accuracy β PEP
BRR 4.65 5.54 89.16 0.104 25.76 0.25 36.57
GPR 3.70 4.51 83.62 0.089 32.04 0.29 60.07
RF 2.17 2.70 54.70 0.093 35.94 0.36 65.47
dNNe 3.30 4.26 86.28 0.043 32.14 0.58 63.26

Table 3: Average results over Group I dataset.

Overall, despite RF achieving the lowest average RMSPE and MAPE (Table 3) it does not output well-calibrated
predictions, nor it displays a high sharpness value. At the expense of 1.13% in MAPE and 1.56% in RMSPE, the dNNe
outputs a well-calibrated model, on average being less than 4% under the ideal calibration score.

4.0.2 Group II data
Group II dataset is the largest dataset incorporating a total of 124 cells. While the dataset exhibits a high variance
in charge profiles, it does not have any variation in discharge conditions (all cells in the dataset are discharged at 4
C-rate). This, in turn, showcases the effect of the charge profile on the estimation accuracy of the 4 algorithms. Training
is performed on features engineered based on the CC-CV curve obtained after the cell reaches 80% SOC (refer to
Supplementary Figures 2a and 2b). Refer to Supplementary Note 5 for train/test partitions. RF-RFE-CV selects a total
of 5 features (Supplementary Figure 8b and Supplementary Table 4) out of a total of 30 engineered features. We believe
this is caused by the fact that the dataset only incorporates one discharge profile as well as just a single battery type.

MAPE RMSPE Cscore Sh α-accuracy β PEP
BRR 0.72 0.90 65.49 0.005 89.00 98.00 20.70
GPR 1.23 1.63 69.94 0.011 65.00 85.00 22.16
RF 0.23 0.43 87.42 0.002 98.00 100 42.81
dNNe 0.34 0.48 71.31 0.002 98.00 100 31.50

Table 4: Results for Group II cell no. 1.

Figure 4 illustrate BHUMP performance with a dNNe as base algorithm for cell no. 1, whilst Suplementary Figures 14,
15, 16 summarise results for all other algorithms. The cell has undergone fast charge profile of 3.6 C-rate to 80% SOC,
beyond which the cell is charged with CC of 1C followed by the CV charging. The reason cell 1 was selected in this
case was to illustrate the performance of the algorithms when there is a high number of outliers in capacity data (Figure
4a). With reference to Table 4, RF achieves lowest error and highest scores as well as a good calibration compared to all
other algorithms. On this particular cell, dNNe achieves the second best performance, however it does not output a well
calibrated model, despite showing a good average calibration score as per Table 5.

Average results of the 4 algorithms are concisely summarised in Table 5. All models are able to estimate the SOH with
less than 2% RMPSE; this underlines the fact that the models are not affected by the fast-charge section of the charging
protocol. RF achieves the highest accuracy with a low sharpness value and high percentages for all other metrics except
for calibration where it exhibits over-confidence. In terms of calibration error, dNNe achieves the closest score to a 90%
confidence interval with 91.02%. dNNe is also the second-best performing algorithm achieving good scores across all
metrics as summarised in Table 4. In comparison, the two Bayesian-based algorithms exhibit a higher percentage error
as well as higher sharpness values. However, they tend to be more conservative, averaging a PEP over 60%.

MAPE RMSPE Cscore Sh α-accuracy β PEP
BRR 0.45 0.76 91.72 0.005 97.31 99.19 62.86
GPR 1.00 1.91 93.14 0.012 90.43 83.74 63.21
RF 0.11 0.14 79.72 0.001 99.84 99.96 58.77
dNNe 0.23 0.45 91.02 0.002 99.53 99.50 53.41

Table 5: Average results over Group II dataset

In conclusion, from an accuracy and sharpness perspective, the best performing algorithm on dataset Group II is RF,
whilst the poorest performance is achieved by GPR. When it comes to uncertainty metrics, and in particular calibration,
RF exhibits over-confidence with a Cscore of 79.72%. Such behaviour is also identified in Group I dataset where RF
was, in fact, difficult to calibrate despite the rich dataset. A more reliable calibration score is achieved by dNNe at the
expense of a loss of 0.12% in MAPE and 0.31% in RMSPE (refer to Table 5).

4.0.3 Group III data
On Group III we emphasise on the suitability of BHUMP to battery state of health estimation for automotive applications.
Group III includes 8 Kokham 740 mAh batteries that have been dynamically cycled under the ARTEMIS [62] dynamic
driving profile, followed by characterisation cycles. Each characterisation cycle consists of low rate CC charge and
discharge cycles, repeated every 100 cycles. We use the characterisation cycles for diagnostics purposes to derive
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Figure 4: Prediction results with dNNe Group II cell no. 1. a dNNe prediction as a function of cycle, b dNNE
calibration results, c dNNe actual vs. predicted capacity, d Histogram of % error. Note: y∗ - true capacity, ŷ∗ - predicted
capacity

features and estimate battery health. This dataset incorporates the lowest variability both in terms of input feature values
and capacity degradation values due to the identical charge-discharge conditions. This, in turn, affects feature selection
as BHUMP only selects 5 out of the 18 engineered features (note charge protocol does not include CV part of the
charge, hence 12 features are missing) as shown in Supplementary Figure 8c and Supplementary Table 5. We keep the
same threshold values as in Group I cells for the CC part of the curves, namely a Vh of 4.2V and a Vl of 3.9V on which
feature are engineered. Refer to Supplementary Note 5 for train/test partitions.

MAPE RMSPE Cscore Sh α-accuracy β PEP
BRR 0.11 0.15 95.55 0.89 100 100 31.11
GPR 0.16 0.19 71.11 1.21 100 100 15.55
RF 0.17 0.21 97.77 2.01 100 100 24.44
dNNe 0.20 0.25 100.00 2.93 100 100 6.67

Table 6: Results for Group III cell no. 5.

For visualisation purposes, we illustrate results for the randomly selected cell no. 5 for dNNe in Figure 5 and
Supplementary Figures 17, 18, 19 for all other algorithms. It is clear, from Table 6 that performance on cell 5 is
dominated by BRR based on all measures of accuracy and uncertainty quantification. However, all algorithms deployed
on cell no. 5 (Table 6) achieve a MAPE and RMSPE smaller than the proposed accuracy zone threshold α of ±1.5%.

Average results are summarised in Table 7. In terms of accuracy measures, on average, BRR outperforms all other
methods, including the dNNe. As argued in [63] linear regression outperforms considerably more complex algorithms,
including NNs when dealing with small sample size that exhibits little variance. Despite the low error, BRR does
not achieve a good calibration score as opposed to dNNE. dNNe is the second-best performing algorithm in terms of
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Figure 5: Prediction results with dNNe Group III cell no. 5. a dNNe prediction as a function of cycle, b dNNE
calibration results, c dNNe actual vs. predicted capacity, d Histogram of % error. Note: y∗ - true capacity, ŷ∗ - predicted
capacity

accuracy (MAPE and RMSPE). It also exhibits adequate results for all other metrics, including PEP where it scores
the highest.

MAPE RMSPE Cscore Sh α-accuracy β PEP
BRR 0.26 0.32 68.11 1.20 100 100 23.54
GPR 0.52 0.65 42.42 2.37 90.50 97.25 23.22
RF 0.36 0.44 72.62 2.16 88.5 100 25.44
dNNe 0.30 0.39 91.17 2.01 98.25 99.75 27.95

Table 7: Average results over Group III dataset

In conclusion, when considering average results over all 4 test cells as referenced in Table 7, dNNe achieves second-best
accuracy while attaining the best calibration score of 91.17%.

5 Discussion on practical applicability of BHUMP

BHUMP can complement battery management systems (BMS), for both SOC and SOH estimation, and replace the
traditional ECMs altogether. While conventional approaches rely on measuring the capacity in static conditions such
as full charge-discharge, BHUMP can estimate capacity fade from sections of the charge profile, accommodating for
partial discharge scenarios or various operating conditions such as random or high discharge rates. We succinctly
summarised in the results section, BHUMP can estimate capacity fade under fast charging protocol (Group II data) as
well as random discharge (Group III data cycled under ARTEMIS driving protocol) typical to the operation of an EV
battery pack. Future work could further extend to other charge-discharge protocols and open-source datasets such as the
one in [19].
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Temperature variations during charging could further introduce uncertainty into the measurement of charge curves and
propagate it into the estimation algorithm. Possible mitigation includes the use of temperature as an input when training
BHUMP or considering additionally in-situ or operando sensory information such as optical and digital images or X-ray
[64] such that the algorithm learns the correlation between temperature, generated features and SOH indicator. Due to
such variations, SOH assessment without corresponding measures of algorithm uncertainty does not provide sufficient
information to form a decision or corrective action. In addition to inherent algorithm bias, dataset variability also seems
to affect the prediction error. To accommodate for such variations in the data BHUMP introduces 30 engineered features
and makes use of an unsupervised feature selection algorithm (RF-RFE-CV). Given a training dataset RF-RFE-CV
selects a subset of input features, indicating that features must be selected based on intended application, battery design
and charge protocol. Despite such dataset variations, we think that deep learning has the potential to exceed it in the
future as it requires little tuning from the user and can take advantage of parallelisation and an increasing amount of
computational capabilities by deployment on graphics processing units (GPU) and modern data storage solutions. In
addition, when training data consists of limited samples or training data is not relevant to the intended application,
transfer learning can be used to reduce prediction errors. New hardware, architectures and learning algorithms that
are currently being developed for neural network implementation will only accelerate this process, allowing for active
learning techniques to be used when deployed onboard a vehicle. More concretely, BHMUP with dNNe as the base
algorithm can incorporate transfer learning when trained on a particular cell design and re-trained on a reduced sample
set for a different cell design. Additionally, BHUMP can also incorporate active learning as data becomes available
when deployed online on different cell design, chemistry or operating temperature.

6 Conclusion
The two widely adopted modelling techniques for online battery state of health (SOH) estimation are equivalent
circuit models and electrochemical models. However, when deployed online, the trade-off between accuracy and
computational efficiency is difficult to achieve. This paper introduced an alternative, machine learning-based solution
called battery health and uncertainty management pipeline (BHUMP). The pipeline provides a set of benefits over
conventional methods including adaptability to the charging protocols and the discharge current rates, and prediction
without knowledge of battery design, chemistry, and operating temperature.

The paper explores four algorithms: Bayesian ridge regression (BRR), Gaussian process regression (GPR), random
forest (RF), and a deep ensemble of neural networks (dNNe), as the base algorithm for BHUMP. All algorithms are
assessed on error values and the ability to quantify uncertainty. Results indicate that the lowest error achieved depends
on the charging protocol adopted. The lowest error was achieved by RF for constant current - constant voltage protocol
and fast charge protocol, and BRR for the constant-current protocol. When considering uncertainty assessment metrics,
however, RF is hard to calibrate and is overly optimistic in its predictions. At the expense of an average increase in
MAPE of 0.43% and RMSPE of 0.97%, dNNe, generally achieves a better calibration score, consistently achieving the
second-lowest error irrespective of charge protocol. On the fast-charging protocol, the best dNNe model achieved a
RMSPE of 0.45% with a calibration score of 91.02% when referenced to a 90% confidence interval.

Overall, our work highlights the value of coupling machine learning tools with charge curve segments in capturing
battery degradation in under 15 minutes. Moreover, we argue that despite achieving low errors, any algorithm must
undergo uncertainty quantification checks before deployment in the field. Finally, we show how the use of machine
learning pipelines can achieve a computationally efficient and accurate solution for cell SOH estimation. We envision
machine learning pipelines to be a standard technique used in designing and implementing battery management systems
of the future.

Data availability
The datasets used in this study are available at:

• Group 1:

https://web.calce.umd.edu/batteries/data.htm

https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/

• Group 2:

https://data.matr.io/1/projects/5c48dd2bc625d700019f3204

• Group 3:

https://ora.ox.ac.uk/objects/uuid:03ba4b01-cfed-46d3-9b1a-7d4a7bdf6fac
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Code availability

Code for the data processing is available from the corresponding authors upon request. Code for the modelling work is
available at: http://doi.org/10.5281/zenodo.4390152
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Supplementary Note 1. Domain explanation of features
Features are generated by mathematical manipulation, involving pattern recognition and information theory principles,
of voltage and current charge curves. Any charging protocol finishes with both electrodes materials at their most
extreme potential (and most reactive states) [65], namely the highest for the positive electrode and the lowest for the
negative electrode. The diffusion of lithium ions inside an electrode is a complex process involving both microscopic
and macroscopic processes that can potentially be partially captured by charge curves. During charging two crucial
processes occur at the anode side (graphite-based batteries considered here), namely the intercalation of lithium
ions into the active material and lithium plating [66], [67], [68]. Due to intercalation kinetics at the anode, cathode
deintercalates faster than the anode can intercalate, and thus during charging, the current is the main limiting factor in a
graphite-based lithium-ion battery. [66], [69], [68] Consequently, any charging protocol suffers from such limitations.
The charging protocols typically go through a constant-current (CC) mode, followed by a constant-voltage (CV) mode,
see Supplementary Figure 8 for a typical CC-CV charge protocol.

Zhang et al. [70] investigated the effects of charging protocols in LiCoO2 based batteries by creating a bespoke
three-electrode cell. The authors emphasise that lithium-ion plating coexists with the intercalation process in the anode
and it occurs in the late period of the CC despite the graphite not being fully lithiated. Similarly, Zhou et al. [71]
also mention that kinetically, under high-current charging conditions, the negative electrode can be polarised to such
an extent that it’s potential drops below 0 V, facilitating lithium metal deposition onto the surface of the electrode
particles. It is known that the duration of the CC captures the polarisation phenomenon.[71] Therefore, as the battery
ages, the constant current charge time (CCCT) decreases. Upon the start of the CV charging, as the current decreases,
the negative electrode slowly recovers to a nominal potential value. The CV mode duration is thus crucial to eliminate
the polarisation effect caused during the CC mode allowing for the anode to recover and thus fully charge the battery.
With aging, the constant voltage charge time (CVCT) increases as demonstrated in [70] and [42].

A feasibility study of CCCT and constant voltage charge time (CVCT) as proxies for battery state of health was carried
out in [42]. CVCT has already been considered as input to SOH methods in the additional studies [72], [73]. To reduce
diagnostics time, we only use sections of the charge curves as input to the algorithm. The availability of the entire
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charge curve in real-life applications is limited. Hence it is advantageous to design features that could be extracted
from segments of such curves. The benefits of the approach are a lower diagnostics time (as little as 15 min) and the
possibility of battery SOH estimation even in partial discharge conditions.

During discharge, the process of lithium extraction/insertion happens in reverse from anode to cathode. Since discharge
currents vary with usage, we only extract one feature from the discharge curve, namely the pseudo linear resistance as
introduced by Saxena et al. [74]. This is due to the instant drop in voltage associated with internal battery impedance
on the application of load current. We estimate this resistance as the ratio of the observed voltage drop and the applied
load current. It is understood that as the battery degrades the internal resistance of the battery increases, and hence
an estimate of this internal resistance can be used as a proxy for battery SOH.[74] We used a lagged version of this
feature, i.e. pseudo linear resistance from the previous cycle to estimate the SOH at the end of a charge cycle. For a
mathematical explanation of all engineered features in Supplementary Material Table 9 refer to Supplementary Note 3
Feature engineering.

Supplementary Note 2. Voltage threshold values
We first define Vh to be equal to charge cut-off voltage, Vcut−off , while Vl is defined using the below formula:

Vl = Vh −∆V (12)

where ∆V is a predefined voltage range. The recorded curve between Vl and Vh with each charge as illustrated in
Figures 7a, 7a is then normalised on the interval [0, 1] by subtracting the minimum value and dividing by the resulted
maximum value. Following the normalisation procedure, we proceed on mathematically deriving the features. This
allows for training different batteries types and designs on the same training dataset provided they underwent the same
charging protocol. To overcome issues resulting from battery terminal voltage increase after previous discharge cycle
and to capture the late period of the CC charging phase (when lithium plating occurs) we make use of a ∆V equal to
0.3V. A high Vl value accommodates for the increase in battery terminal voltage upon removal of load current after
each discharge cycle. A behaviour commonly observed with battery ageing as referenced in Supplementary Figure 14.
Furthermore, a high Vl threshold reduces the time necessary to record the CC charge curve while accommodating for
partial discharge of the battery. Note, ∆V value and corresponding Vl and Vh threshold values could be adjusted based
on battery type, application and user behaviour, end of life threshold, data storage capacity and processing power.

Supplementary Note 3. Feature engineering.
Capacity (Q) is calculated based the charge/discharge current (I) and it is given by:

Q =

∫ tend

t0

Idt (13)

Energy (E) is calculated based on capacity (Q) and voltage (V) given by:

E =

∫ tend

t0

V (t) · Idt (14)

Attribute Target variable
Cycle time

Discharge Capacity

Discharge C-rate
Charge C-rate

Operational time
Voltage vs. Time
Current vs. Time

Charge times
Table 8: Parameters recorded during cycling tests.

From pattern recognition domain, three features are derived, signal mean, kurtosis coefficient and skewness coefficient.
Skewness coefficient and kurtosis coefficient are calculated based on the following formulas:

skewness =

∑n
i=1(x(i)− x̄)3

(n− 1)σ3
x

(15)

kurtosis =

∑n
i=1(x(i)− x̄)4

(n− 1)σ4
x

(16)
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where x̄ and σx represent the mean and standard deviation of feature x.

In addition to pattern recognition based features, distance measurements from a predetermined reference curve to
CVCC - CVCT curve and CCCV - CCCT have also been considered. We choose here as reference a simple line defined
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Feature Target variable

Battery specific data
Nominal Capacity [Ah]

Discharge Capacity [Ah]

Charge Current [A]
Discharge Current [A]

Cumulative (historical) data Cumulated Discharge Capacity [Ah]
Cumulated Discharge Energy [Wh]

1 Cycle Lagged Data Lagged Cycle Time [s]
Lagged Pseudo Resistance [Ω]

Instantaneous charge data*

Terminal Voltage @ Start of charge [V]
Charge time of CC segment of charge curve [s]
Charge time of CV segment of charge curve [s]
Mean current during CC segment of the curve [A]
Mean voltage during CV segment of the curve [A]
Slope of CCCV-CCCT segment of the curve
Slope of CVCC-CVCT segment of the curve
Energy during CCCV-CCCT segment of the curve [Wh]
Energy during CVCC-CVCT segment of the curve [Wh]
Energy ratio CCCV-CCCT / CVCC-CVCT segment of the curve
Energy Difference between the curve segments (CCCV-CCCT) - (CVCC-CVCT)
Entropy of CCCV-CCCT segment of the curve eq 19
Entropy of CCCV-CCCT segment of the curve eq 19
Shannon entropy of CCCV segment of the curve
Shannon entropy of CVCC segment of the curve
Skewness coefficient of CCCV-CCCT segment of the curve eq 15
Skewness coefficient of CVCC-CVCT segment of the curve eq 15
Kurtosis coefficient of CCCV-CCCT segment of the curve eq 16
Kurtosis coefficient of CVCC-CVCT segment of the curve eq 16
Frechet Distance of CCCV-CCCT segment of the curve eq 18
Frechet Distance of CVCC-CVCT segment of the curve eq 18
Hausdorff Distance of CCCV-CCCT segment of the curve eq 17
Hausdorff Distance of CVCC-CVCT segment of the curve eq 17

Table 9: Engineered features based on recorded parameters in Table 8. Note: CC = consatnt current, CV = constant
voltage, CCCV = constant current charge voltage, CVCC = contant voltage charge current, CCCT = constant current
charge time, CVCT = constant voltage charge time

by the equation y = mx + c where y represents current or voltage depending on the curve under scrutiny, and x
represents time. An illustration of the two curves and their reference lines are shown in figures 9 and 10. Instead of
simple Euclidean distance, we employ here two different measurements, namely Directed Hausdorff (DH) and Frechet
(FD) distance. Both methods are well established in various domains and thoroughly explained in [75], [76] and [77].
We only consider here Directed Hausdorff distance from charge curve to reference line and not vice-versa. DH distance
between two point sets A(a1, a2) and B(b1, b2), where a1, a2, b1, b2 are 2D coordinates, is calculated as maximum
distance between each point x ε A to its nearest neighbour y ε B and is given by:

H(A,B) = maxxεA{minyεB{||x, y||}} (17)

where ||x, y|| can be any norm, including the Euclidean distance. Note that H(A,B) 6= H(B,A), in other words, DH
is not symmetric.

The point set A is represented by one of the two charge curves namely, CCCV-CCCT or CVCC-CVCT, whereas B is
represented by a line of 30-40 points as shown in 9 and 10.

Frechet distance of two curves A , B has been generally described as the minimal length of a leash required to connect
a dog to its owner, as they walk along A or B, respectively, without backtracking. In contrast to distance notions such
as the Hausdorff distance, it takes into account the order of the points along the curve, and thus better captures the
similarity as perceived by human observers.[77] In mathematical terms, however, the Frechet distance between two
curves is defined as:

FD(A,B) = min{max||A(α(t)), B(β(t))||} (18)

where α(t) and β(t), range over continuous and increasing functions with α, β, t ε[0, 1]. Again, ||...|| can be any norm,
including Euclidian distance. A more elaborate mathematical explanation is beyond the scope of the present material,
however, a thorough mathematical explanation can be found in [78]

The entropy of CVCC-CVCT and CCCV-CCCT curves is also considered as a feature. In information theory, entropy is
the average rate at which information is produced by a stochastic source of data [79], whereas in statistical mechanics,
entropy is an extensive property of a thermodynamic system. Thermodynamic property of curves has been thoroughly
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Figure 9: Typical constant current (CC) charge curve with associated reference line of equation y = mx+ c
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Figure 10: Typical constant voltage (CV) charge curve with associated reference line of equation y = mx+ c

analysed in [80], [81], [82]. Authors in [82] provide an algorithmic procedure to compute curve entropy, and it has
been adopted here with slight modification as follows. Curve entropy (EC) is defined by:

EC =
log2 ( 2L

D )

log2 (N − 1)
(19)

where L is the length of the plane curve, D is the diameter of the smallest hypersphere covering the curve, and N − 1 is
the number of segments approximating the line. For a thorough mathematical explanation on how all variables have
been calculated refer to reference [82].
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Figure 11: Example visualisation of derived features for Group I datasets cell no. 11.
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Figure 12: Example visualisation of derived features for Group 2 datasets cell no. 1.
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Figure 13: Automatic feature selection with RF-RFE-CV - Note: black triangle indicates selected no. of features.
a 18 features selected for Group I. b 5 features selected for Group 2, c 5 features selected for Group 3.

Data type Feature Feature no.

Battery specific data Nominal Capacity [Ah] 1
Charge Current [A] 2

Cumulative (historical) data Cumulated Discharge Capacity [Ah] 3
Cumulated Discharge Energy [Wh] 4

1 Cycle Lagged Data Lagged Cycle Time [s] 5
Terminal Voltage @ Start of charge [V] 6

Instantaneous Charge Data

Charge time of CC segment of charge curve [s] 7
Charge time of CV segment of charge curve [s] 8

Mean current during CC segment of the curve [A] 9
Slope of CCCV-CCCT segment of the curve 10
Slope of CVCC-CVCT segment of the curve 11

Energy during CCCV-CCCT segment of the curve [Wh] 12
Energy during CVCC-CVCT segment of the curve [Wh] 13

Energy ratio CCCV-CCCT / CVCC-CVCT segment of the curve 14
Energy Difference between curve segments (CCCV-CCCT) - (CVCC-CVCT) 15

Entropy of CCCV-CCCT segment of the curve based on \ref{} 16
Shannon entropy of CCCV segment of the curve 17

Frechet Distance of CCCV-CCCT segment of the curve 18
Table 10: Selected features using RF-RFE-CV for Group I. Note: CC = consatnt current, CV = constant voltage, CCCV
= constant current charge voltage, CVCC = contant voltage charge current, CCCT = constant current charge time,
CVCT = constant voltage charge time

Data type Feature Feature no.

Instantaneous charge data

Energy during CCCV-CCCT segment of the curve [Wh] 1
Energy Difference between curve segments (CCCV-CCCT) - (CVCC-CVCT) 2

Hausdorff Distance of CCCV-CCCT segment of the curve 4
Shannon entropy of CCCV segment of the curve 3

Frechet Distance of CCCV-CCCT segment of the curve 5
Table 11: Selected features using RF-RFE-CV for Group 2. Note: CC = consatnt current, CV = constant voltage,
CCCV = constant current charge voltage, CVCC = contant voltage charge current, CCCT = constant current charge
time, CVCT = constant voltage charge time

Supplementary Note 4. Data overview

Irrespective of dataset, input data consistency is ensured by removing outliers in the training data, possibly introduced
due to inherent cell variability and measurement errors. The data preprocessing step involves filtering of the raw
data based on erroneous capacity measurements by utilizing Random Sample Consensus (RANSAC) algorithm [83].
Training data that contains a significant percentage of gross errors in capacity from one cycle to another is removed as
illustrated in the examples of Supplementary Figure 15. Note, test data has not been processed for outliers to simulate a
realistic deployment scenario.
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Data type Feature Feature no.

Cumulative (historical) data Cumulated Discharge Capacity [Ah] 1
Cumulated Discharge Energy [Wh] 2

1 Cycle Lagged Data Lagged Cycle Time [s] 3

Instantaneous Charge Data Capacity during CCCV-CCCT segment of the curve [Ah] 4
Energy during CCCV-CCCT segment of the curve [Wh] 5

Table 12: Selected features using RF-RFE-CV for Group 3. Note: CC = consatnt current, CV = constant voltage,
CCCV = constant current charge voltage, CVCC = contant voltage charge current, CCCT = constant current charge
time, CVCT = constant voltage charge time

0 200 400 600 800 1000 1200 1400
Cycles

3.40

3.50

3.60

3.70

3.80

Vo
lta

ge
 [V

]

Figure 14: Increase in start of charge voltage between test cycles for a LiCoO2 prismatic battery. The cell underwent a
full depth of discharge at a current value of 1 C-rate with constant current - constant voltage charging.

CALCE dataset
Data sourced from CALCE battery group consists of three batteries. For ease of reference, we preserve the original
dataset names as per their website https://web.calce.umd.edu/batteries/data.htm. All cells in the dataset
underwent the same charging profile, the standard CC-CV. The CC phase of charging profile includes a 0.5 C-rate
charging current until the voltage reached the cut-off threshold value of 4.2V. The CV top-up phase sustained the
previously reached 4.2V until the current dropped to a value of 0.05 C-rate, at which point the charging is complete.
Except for batteries in CALCE PL dataset, which were discharged at 1 C-rate, the other two datasets have been
discharged at both 0.5 C-rate and 1 C-rate until the battery voltage reached the pre-defined discharge cut-off voltage of
2.7V. A schematic of the charge profile together with a detailed summary of discharge conditions for each battery can
be found in Figure 8 and in Supplementary Table 13, respectively.

NASA dataset
NASA data can be retrieved from the public NASA Ames Prognostics Centre of Excellence website https://ti.
arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/ and includes two datasets. The first
repository, the battery dataset denoted here by NASA5, includes a mixture of constant discharge current and squared
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Figure 15: Training data outlier removal with RANSAC (red denotes outliers, blue denotes inlier). a Cylindrical
A123 LFP/graphite training cell 11 Group II. b Pouch LCO cell 2 Group I, c Prismatic CS2 LCO training cell 34 Group
I, d Prismatic CX2 LCO training cell 34 Group I.

wave-based discharge current experiments at different temperatures. The second repository, the randomised battery
usage dataset, denoted here by NASA11, includes batteries that are continuously cycled with randomly generated
current profiles. The randomised nature of the load profiles is an ideal representation of practical battery usage. Both
NASA5 and NASA11 dataset follow the traditional CC-CV charge protocol. CC charging mode was carried at 1.5A
until the battery voltage reached 4.2V and then continued in a CV fashion until the charge current dropped to 0.02A,
at which point the battery was deemed fully charged. In terms of discharge, NASA5 discharge was carried out at a
constant current level of 2A or square wave loading profile of 4A until the battery voltage fell to 2.7V, 2.5V or 2.2V.
Whereas, NASA11 undergone a randomised discharge profile of varying duration ranging from 5 minutes to 3 hours as
well as varying discharge current values ranging from 0A to 5A. All cells underwent a periodic characterisation test
whereby a 2A CC and 0.02A CV current cut-off charge protocol and a 2A constant current discharge was applied. The
characterisation test data was used in BHUMP to evaluate battery health as a function of capacity, as opposed to cyclic
data. Details of charging and discharging profiles per battery are found in Supplementary Table 14.

TRI dataset
The work supported by Toyota Research Institute in partnership with MIT and Stanford generated a lifecycle battery
dataset consisting of 124 cells, available at https://data.matr.io/1/projects/5c48dd2bc625d700019f3204.
The dataset was used in [14] where more details on battery type, manufacturer and testing equipment can be found.
All cells in the dataset were cycled with a total of 72 different fast charging-polices but identically discharged with a
current 4 C-rate between 3.6V and 2.0V. The charging protocol included a two-step fast charge between 0% to 80%
SOC. The fast charge section is followed by a CC protocol, i.e. a uniform charge current value of 1 C-rate to 3.6V
until the voltage reaches the cut-off value of 3.6V, immediately followed by a CV top-up phase until current dropped to
0.02 C-rate. The raw data from each cycle is used as input to BHUMP pipeline. Details regarding the charge profile as
well as the cycling regimes for each battery can be found in [14], whilst Figure 7 illustrates the charging protocol and
Supplementary Table 16 indicates which cells have been used for training and testing of the algorithms.

Oxford dataset
The Oxford Battery Degradation Dataset and can be accessed at https://ora.ox.ac.uk/objects/uuid:
03ba4b01-cfed-46d3-9b1a-7d4a7bdf6fac. A comprehensive explanation of the testing method, equipment and
battery specific characteristic is found in [84]. The data consists of ageing experiments by repeatedly cycling the cells
via a CC charge profile coupled with the ARTEMIS urban drive cycle discharge profile. The CC charge protocol uses a
2 C-rate current to a voltage of 4.2V. The discharge profile voltage range is 4.2V to 2.7V. After every 100 cycles of
repeated charge-discharge using the protocol mentioned above, a characterisation test (incorporating a full constant
current charge-discharge at C/18.5 (40 mA), repeated every 100 drive cycles.) is carried out. The characterisation test
data is used in this work for battery health degradation estimation purposes. Supplementary Table 17 indicates which
cells have been used for training/testing the algorithms.

Supplementary Note 5. Data partitioning
Group I
Out of the 47 cells in Group I, we use 23 cells for training (out of this 10 are used for feature selection), 5 cells for
calibration and remaining 19 for evaluating the algorithm performance (the cells used during training-testing can be
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found in Supplementary Tables 13, 14, 15). Note that the calibration dataset is neither used in training nor testing to
prevent overfitting.

Group II
Group II dataset is randomly split into 63 cells for training (out of which 37 cells are used for feature selection), 10 for
calibration and the remainder 51 cells for testing, refer to Supplementary Table 16 for cell partition in each dataset.

Group III
Group III dataset is split into 3 cells for training (cells 1 to 3), one cell for calibration (cell no. 4), and the remainder of
4 cells for testing (see Supplementary Table 17 for details).

Cell name Discharge condition Dataset
CS2 - 33 0.5 C-rate Test
CS2 - 34 0.5 C-rate Train
CS2 - 35 1 C-rate Train & Feature Selection
CS2 - 36 1 C-rate Train & Feature Selection
CS2 - 37 1 C-rate Calibration
CS2 - 38 1 C-rate Test
CX2 - 33 0.5 C-rate Test
CX2 - 34 0.5 C-rate Train
CX2 - 35 0.5 C-rate Train & Feature Selection
CX2 - 36 0.5 C-rate Calibration
CX2 - 37 0.5 C-rate Train & Feature Selection
CX2 - 38 0.5 C-rate Test
PL - 11 0.5 C-rate Train
PL - 13 0.5 C-rate Test

Table 13: Group I: CALCE battery data discharge conditions and train, calibration and test split. For complete details
on test conditions access https://web.calce.umd.edu/batteries/data.htm.

Cell name Discharge condition Dataset
B0005 2A Train & Feature Selection
B0006 2A Test
B0007 2A Train
B0018 2A Test
B0025 Square wave @ 4A Test
B0026 Square wave @ 4A Train & Feature Selection
B0027 Square wave @ 4A Train
B0028 Square wave @ 4A Calibration

Table 14: Group I: NASA 5 battery data discharge conditions and train, calibration and test split. For com-
plete details on test conditions access https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-
repository/.

28

https://web.calce.umd.edu/batteries/data.htm
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/


Cell name Discharge condition Dataset
RW1 Random Sequence Train & Feature Selection
RW2 Random Sequence Train
RW3 Random Sequence Train
RW4 Random Sequence Train
RW5 Random Sequence Test
RW6 Random Sequence Test
RW7 Random Sequence Test
RW8 Random Sequence Test
RW9 Random Sequence Train & Feature Selection
RW10 Random Sequence Train
RW11 Random Sequence Calibration
RW12 Random Sequence Test
RW13 Random Sequence Train
RW14 Random Sequence Train
RW15 Random Sequence Test
RW16 Random Sequence Test
RW20 Random Sequence Train & Feature Selection
RW21 Random Sequence Train & Feature Selection
RW22 Random Sequence Train
RW23 Random Sequence Test
RW24 Random Sequence Test
RW25 Random Sequence Train & Feature Selection
RW26 Random Sequence Train
RW27 Random Sequence Test
RW28 Random Sequence Calibration

Table 15: Group I: NASA 11 battery data discharge conditions and train, calibration and test split. Note: batteries are
discharged to 3.2V using a randomized sequence of discharging loads between 0.5A and 4A. For complete details on test
conditions access https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/.

Dataset Cell number Number of cells

Feature Selection 2, 6, 8, 14, 18, 19, 26, 28, 32, 35, 37, 45, 51, 53, 55, 58, 60, 61, 65, 69, 72,
76, 79, 83, 90, 91, 92, 103, 107, 109, 110, 113, 115, 116, 119, 120, 124 37

Training

2, 3, 6, 8, 9, 13, 14, 16, 18, 19, 20, 21, 23, 25, 26, 28, 32, 35, 37, 42, 45, 46,
50, 51, 53, 55, 56, 58, 60, 61, 63, 64, 65, 66, 69, 72, 73, 76, 79, 83, 84, 86,
88, 90, 91, 92, 94, 95, 98, 100, 103, 105, 106, 107, 109, 110, 113, 115, 116,
118, 119, 120, 124

63

Calibration 7, 12, 22, 48, 54, 59, 68, 77, 82, 108 10

Testing
1, 4, 5, 10, 11, 15, 17, 24, 27, 29, 30, 31, 33, 34, 36, 38, 39, 40, 41, 43, 44,
47, 49, 52, 57, 62, 67, 70, 71, 74, 75, 78, 80, 81, 85, 87, 89, 93, 96, 97, 99,
101, 102, 104, 111, 112, 114, 117, 121, 122, 123

51

Table 16: Group II: TRI dataset splitting for: feature selection, training, calibration and testing. For complete details on
test conditions access https://data.matr.io/1/projects/5c48dd2bc625d700019f3204.

Dataset Cell number Total number of cells
Feature Selection 1, 3 2
Training 1, 2, 3 3
Calibration 4 1
Testing 5, 6, 7, 8 4

Table 17: Group III: Oxford dataset splitting for: feature selection, training, calibration and testing. For complete details
on test conditions access https://ora.ox.ac.uk/objects/uuid:03ba4b01-cfed-46d3-9b1a-7d4a7bdf6fac.

29

https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
https://data.matr.io/1/projects/5c48dd2bc625d700019f3204
https://ora.ox.ac.uk/objects/uuid:03ba4b01-cfed-46d3-9b1a-7d4a7bdf6fac


(a)

0 200 400 600 800 1000 1200 1400
Cycle

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Ca
pa

cit
y 

[A
h]

True capacity
Predicted capacity
±2

(b)

0.70.80.91.01.11.21.3
True Capacity [Ah]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Ca
pa

cit
y 

[A
h]

True Capacity (y * )
Accuracy zone [- , ]
Predicted capacity (y * ) ±2

0.1 0.0 0.1
% error: (y * y * )/y *

0

50

100

150

200

No
. o

f e
nt

rie
s

Histogram of % error wrt y *

(c)

0.0 0.2 0.4 0.6 0.8
Expected Cofidence Level

0.0

0.2

0.4

0.6

0.8

1.0

Ob
se

rv
ed

 C
on

fid
en

ce
 L

ev
el

Ideal calibration
Uncalibrated
Calibrated

Figure 16: Prediction results with BRR Group I cell no. 38. a Prediction as a function of cycle numbers, b Actual
vs. predicted capacity, c Calibration results.
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Figure 17: Prediction results with GPR Group I cell no. 38. a GPR prediction as a function of cycle numbers, b
GPR actual vs. predicted capacity, c GPR calibration results.
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Figure 18: Prediction results with RF Group I cell no. 38. a RF prediction as a function of cycle numbers, b RF
actual vs. predicted capacity, c RF calibration results.

30



(a)

0 250 500 750 1000 1250 1500 1750
Cycle

0.85

0.90

0.95

1.00

1.05

1.10

Ca
pa

cit
y 

[A
h]

True capacity
Predicted capacity
±2

(b)

0.9000.9250.9500.9751.0001.0251.0501.075
True Capacity [Ah]

0.85

0.90

0.95

1.00

1.05

1.10

Ca
pa

cit
y 

[A
h]

True Capacity (y * )
Accuracy zone [- , ]
Predicted capacity (y * ) ±2

0.025 0.000 0.025
% error: (y * y * )/y *

0

50

100

No
. o

f e
nt

rie
s

Histogram of % error wrt y *

(c)

0.0 0.2 0.4 0.6 0.8 1.0
Expected Cofidence Level

0.0

0.2

0.4

0.6

0.8

1.0

Ob
se

rv
ed

 C
on

fid
en

ce
 L

ev
el

Ideal calibration
Uncalibrated
Calibrated

Figure 19: Prediction results with BRR Group II cell no. 1. a BRR prediction as a function of cycle numbers, b
BRR actual vs. predicted capacity, c BRR calibration results.
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Figure 20: Prediction results with GPR Group II cell no. 1. a GPR prediction as a function of cycle numbers, b
GPR actual vs. predicted capacity, c GPR calibration results.
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Figure 21: Prediction results with RF Group II cell no. 1. a RF prediction as a function of cycle numbers, b RF
actual vs. predicted capacity, c RF calibration results.
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Figure 22: Prediction results with BRR Group III cell no. 5. a BRR prediction as a function of cycle numbers, b
BRR actual vs. predicted capacity, c BRR calibration results.
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Figure 23: Prediction results with GPR Group III cell no. 5. a GPR prediction as a function of cycle numbers, b
GPR actual vs. predicted capacity, c GPR calibration results.
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Figure 24: Prediction results with RF Group III cell no. 5. a RF prediction as a function of cycle numbers, b RF
actual vs. predicted capacity, c RF calibration results.
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