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ABSTRACT   

Establishing adequate resection margins during colorectal cancer surgery is challenging. Currently, in up to 30% of the 

cases the tumor is not completely removed, which emphasizes the lack of a real-time tissue discrimination tool that can 

assess resection margins up to multiple millimeters in depth. Therefore, we propose to combine spectral data from diffuse 

reflectance spectroscopy (DRS) with spatial information from ultrasound (US) imaging to evaluate multi-layered tissue 

structures. First, measurements with animal tissue were performed to evaluate the feasibility of the concept. The phantoms 

consisted of muscle and fat layers, with a varying top layer thickness of 0-10 mm. DRS spectra of 250 locations were 

obtained and corresponding US images were acquired. DRS features were extracted using the wavelet transform. US 

features were extracted based on the graph theory and first-order gradient. Using a regression analysis and combined DRS 

and US features, the top layer thickness was estimated with an error of up to 0.48 mm. The tissue types of the first and 

second layers were classified with accuracies of 0.95 and 0.99 respectively, using a support vector machine model.  

 

Keywords: Multimodal imaging, diffuse reflectance spectroscopy, ultrasound imaging, multi-layer tissue, surgical 

guidance, margin assessment, tissue classification, colorectal cancer 

 

1. INTRODUCTION  

In oncological surgery, the aim is to remove the entire tumor together with a margin of healthy tissue, while other 

surrounding healthy structures are spared as much as possible. However, identifying the tumor during surgery can be 

challenging. Inadequate tumor resection results in increased risks of local tumor recurrence and decreased survival rates, 

making the resection margin status an important prognostic factor for patients [1]. This emphasizes the demand for a real-

time tissue discrimination technique to provide intra-operative guidance. 

In recent years, techniques based on diffuse reflectance spectroscopy (DRS) demonstrated great potential for real-time 

tissue assessment during surgery [2]-[5]. In diffuse reflectance spectroscopy (DRS), broadband light in the visual and/or 

near-infrared range is sent into tissue using optical fibers. The detected diffuse reflectance contains information about the 

tissue composition. However, two main limitations arise regarding the evaluation of complete resection margins up to 5 

mm in depth. Firstly, it is essential to distinguish different tissue layers and detect tumor even when it is below a layer of 

healthy tissue. Secondly, currently used analytical models for DRS spectra analysis are expected to fail for more complex 

multi-layered situations that will be encountered in clinical practice. To solve these problems, information about the tissue 

architecture is needed in addition to the spectral data. Ultrasound (US) imaging can provide images of this tissue 

architecture with a resolution smaller than 1 mm and more than sufficient sampling depth. However, US imaging alone is 

not representative enough for precise tissue classification. Therefore, given the strengths and weaknesses of both 
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techniques, we propose to combine spectral data of DRS with spatial information of US to obtain features that surpass the 

capacity of each technique separately. This enables analysis of more complex structures and extraction of information from 

larger sampling depths. 

The aim of this study is to develop algorithms in which spectral information and ultrasound information will be combined 

for the assessment of multi-layered tissue structures. The performance of the algorithms in predicting the top layer 

thickness and classifying the tissue types of the layers will be examined on animal tissue as a proof of concept. 

 

2. MATERIALS AND METHODS 

2.1 Data acquisition and preprocessing 

Eight pieces of bovine and porcine meat were used in this study. The animal tissue phantoms consisted of two different 

homogeneous layers; a bottom layer of at least 20 mm thick and a top layer with a thickness varying between 0 and 10 

mm. Two types of phantoms were examined; muscle tissue with a top layer of fat and fat with a top layer of muscle tissue. 

The measurements were performed in a grid-pattern. At every location, first a DRS measurement was performed. The DRS 

system consisted of a Tungsten halogen broadband light source and two spectrometers; one for the visible range of 400 to 

1100 nm (Andor Technology, DU420ABRDD) and one for the near-infrared range of 800 to 1700 nm (Andor Technology, 

DU492A-1.7) [6]. Source-detector fiber distances of 2 and 6 mm were used to derive information about the tissue 

composition from different sampling depths. Subsequently, an US image was acquired in such a way that the location of 

the DRS measurement corresponded to the center of the US image. Two US devices have been used (Philips, CX50 and 

Philips, EPIQ 7) with two different transducers (Philips, L15-7io and Philips, eL18-4 respectively), to avoid dependence 

on a particular system.  

Measurements were performed at 250 locations in total; 122 fat on top of muscle and 128 muscle on top of fat 

measurements. For each spectrum, the corresponding top layer thickness was determined based on the US image (ground 

truth in this study). Only the measurement locations associated with a top layer thickness smaller than 6 mm (n = 186) 

were included for further analyses, since it is expected that the sampling depth of DRS will be equal to the fiber distance 

of 6 mm and there is also no clinical interest to assess tissue deeper than 6 mm. To compensate for any intensity differences 

due to differences in for instance pressure applied to the tissue, the spectra were normalized with respect to the intensity 

value at 800 nm. 

 

2.2 Spectral feature extraction 

Two types of features were extracted from the DRS spectra; features based on spectral peaks and features based on the 

wavelet transform. For the peak based method, the dip-peak height was calculated for three spectral regions with distinct 

peaks: 935 nm (fat absorption peak), 985 nm (water absorption peak) and 1200 nm (fat absorption peak), see Figure 1. 

These peak heights were calculated by subtracting the minimum intensity value from the maximum intensity value in the 

regions 920-960 nm, 960-1150 nm and 1150-1325 nm, respectively. Extracting the three peak heights for both fiber 

distances resulted in six features.  

The second feature extraction method was based on the wavelet transform, which can be used to analyze spectra at different 

spectral scales. For this study, the dyadic implementation of the transform, as described by Denstedt et al., was used [7]. 

The input spectra were convolved with a Symlet low-pass filter of size 8 to obtain approximation spectra and with a Symlet 

high-pass filter of size 8 to obtain details spectra. Subsequently, the obtained spectra were down-sampled by a factor of 2 

and the procedure was repeated multiple times, each time using the approximation spectrum of the previous iteration. The 

approximation spectra of the 6th iteration, consisting of 25 features, were used for the analyses. Extracting these features 

for both fiber distances resulted in 50 features.  
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Figure 1. Mean diffuse reflectance spectra corresponding to different top layer thicknesses of fat on top of muscle (left image) 

and muscle on top of fat (right image), for a fiber distance of 6 mm. The peak height was determined for the three outlined 

regions. 

 

2.3 Ultrasound feature extraction 

The US images were analyzed based on the graph theory, in which an image is represented as a graph with nodes and 

edges, representing the individual pixels and the connections between two neighboring pixels, respectively. The specific 

method used in this study was based on an automatic segmentation algorithm provided by Chiu et al. [8]. Although the 

algorithm was designed for the segmentation of retinal layers, it is suitable for layered structures in general and some 

modifications were made in order to find the fat to muscle and muscle to fat boundaries. First, the image was smoothed 

using a Gaussian filter (5x5; σ = 1) and the vertical gradient image was obtained. Subsequently, a weight was assigned to 

each of the edges in such a way that the edges of pixel pairs with the highest vertical gradients have the lowest weights. 

Boundaries were selected based on minimal cost, for which Dijkstra's algorithm was used [9]. The boundary corresponding 

to the contact surface between the transducer and the phantom was selected using the first twenty pixel rows only. Beneath 

this boundary, the three best paths were selected since the first best path does not always correspond to the correct 

boundary. Figure 2 shows an example of the three selected paths, within this case the second path found being the correct 

boundary we are looking for.   

The selected boundaries were translated into six features that can be used in the estimation of the top layer thickness. For 

each of the three selected boundaries, the distance from the surface and the vertical gradient value at the location of the 

path were used as feature values.  

 

 

Figure 2. US image of a fat layer on top of muscle measurement. The blue line is the contact surface as selected by the graph 

theory and the red lines show the first, second and third path best paths that were selected. 
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2.4 Top layer thickness prediction and tissue classification  

For the top layer thickness estimation, the data set was divided into two groups. One group consisted of the muscle 

measurements with and without a top layer of fat and one group consisted of the fat measurements with and without a top 

layer of muscle. For each group separately, the thickness estimation analysis was performed using a linear support vector 

machine (SVM) regression model [10]. For the peaks method, the analyses were based on 14 features (6 DRS and 6 US 

features) and for the wavelet method, the analyses were based on 56 features (50 DRS and 6 US features).  

The tissue types of both layers were classified independently of each other using quadratic SVM classification models, 

based on the DRS features only (6 and 50 features for the peaks method and the wavelet method, respectively). For both 

the top layer thickness estimation and the classification, 10-fold cross-validation was performed. 

 

3. RESULTS 

3.1 Top layer thickness 

After performing a regression analysis using both feature extraction methods, in the case of fat on top of the muscle tissue 

mean top layer thickness prediction errors of 0.75 ± 0.67 mm and 0.72 ± 0.69 mm were found for the peak-based method 

and the wavelet transform based method, respectively. In the case of muscle on top of fat tissue, mean prediction errors of 

0.60 ± 0.93 mm and 0.48 ± 0.39 mm were achieved for the peak based method and the wavelet transform based method, 

respectively (see Table 1).  

 

Table 1: Top layer thickness prediction errors, for both tissue types and feature extraction methods. 

Features Fat on muscle Muscle on fat 

DRS peak heights + US 0.75 ± 0.67 mm 0.60 ± 0.93 mm 

DRS wavelet transform + US 0.72 ± 0.69 mm 0.48 ± 0.39 mm 

 

 

3.2 Tissue classification 

All 186 measurements were used for tissue classification of the first layer; 89 with a top layer of fat and 97 with a top layer 

of muscle. Tissue classification of the second layer was performed using only the two-layer measurements (73 with a 

second layer of fat and 81 with a second layer of muscle). Table 2 shows the results of both layers for the peak heights 

method and for the wavelet method. The classification accuracies for respectively the first layer and the second layer were 

0.95 and 0.95 using the peak heights method and 0.95 and 0.99 using the wavelet method. 

 

Table 2. Tissue classification scores for both the first and second layers, using the two different feature extraction methods. 

 
 First tissue layer Second tissue layer 

 Peak heights Wavelet transform Peak heights Wavelet transform 

Accuracy 0.95 0.95 0.95 0.99 

Sensitivity* 0.92 0.94 0.98 0.98 

Specificity** 0.97 0.96 0.92 1.00 

*Correctly classified fat layers, **Correctly classified muscle layers 
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4. DISCUSSION 

In this study, information from spectral and ultrasound data was combined to assess multi-layered tissue structures. Figure 

1 shows a clear correlation between the top layer thickness and the spectral peak height. This can be explained by the fact 

that the smaller the top layer thickness, a larger part of the light travels through the second layer and the tissue type of the 

second layer becomes more visible in the DRS spectrum.  

By performing a regression analysis, the thickness of the first layer could be predicted with an inaccuracy of less than 1 

mm. These results are promising since the errors are in the same order of magnitude as the US resolution and smaller than 

the resection margin of a few millimeters that is generally used during oncological surgery. The prediction error for the 

animal tissue phantoms with a top layer of muscle is smaller than for a top layer of fat. The results of the boundary selection 

in the US images might play a role in this difference. In 5.2% of the images, the correct boundary was not selected, which 

were all fat on top of muscle images. This might be because the boundary between the first and second layer was more 

clear on the US images with a top layer of muscle. When comparing the two different feature extraction methods used in 

this study, the mean prediction errors using the wavelet-based method (0.72 mm and 0.48 mm) are slightly smaller than 

using the peak based method (0.75 mm and 0.60 mm). However, the question is whether this difference will be clinically 

relevant in the end.  

Previous studies in literature focused primarily on identifying tissue directly at the surface. In this study, good classification 

accuracies were achieved for both the first and second layers by combining the information about the tissue composition 

and architecture. The tissue type of the first layer was identified with an accuracy of 0.95 for both feature extraction 

methods, while the wavelet transform method performed better for the second layer with an accuracy of 0.99. The most 

striking difference lies in the specificity of 100% for the wavelet transform method, which positively influenced the 

accuracy. The main difference between the two feature extraction methods is that the peak-based method focuses on certain 

regions in the spectra, while the wavelet transform uses the entire spectrum. This may explain why the wavelet transform 

method performs better in some situations.  

In this study, two types of animal tissue phantoms were used to examine the algorithm performance. However, it still 

concerned a simple set-up to test the feasibility of the concept. In clinical practice, more tissue types can be encountered. 

Ultimately, the challenge will be to distinguish tumor tissue from multiple types of healthy tissue. A next step would 

therefore be to test the performance of the algorithms in more complex situations with human tissue, as in an ex vivo study. 

  

5. CONCLUSION 

The aim of this study was to evaluate multi-layered animal tissue by combining diffuse reflectance spectroscopy and 

ultrasound imaging. It was shown that the top layer thickness could be predicted with an inaccuracy of less than 1 mm and 

the first and second layer tissue type could be classified with an accuracy of 0.95 and 0.99, respectively. These results 

show the potential ability of the proposed technique in revealing more complex tissue architectures. Therefore, further ex 

vivo studies will be carried out, keeping in mind the ultimate goal of evaluating resection margins up to multiple 

millimeters in depth during oncological surgery. 
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