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a b s t r a c t

We provide a necessary and sufficient graph-theoretical characterization of quotient fixes modes
occurring in parametric decentralized control systems. Specifically, we introduce the notion of struc-
turally quotient fixed modes (SQFMs) that generically captures the quotient fixed modes and only
depends on the system’s structure. Additionally, we provide an efficient polynomial-time algorithm for
the verification of this graph-theoretical condition. We show that this algorithm can be parallelized,
and linear-time computational complexity approximation algorithms can be considered to attain a
sub-optimal solution. Lastly, we discuss the implications of the actuation–sensing–communication
capabilities and the systems’ interconnections on the existence of SQFM.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Autonomy is at the heart of automation of increasingly large-
cale dynamical systems such as chemical processes, smart grid,
mart cities, cyber–physical systems, multi-agent systems, and
he Internet of Things (IoT) [1–5]. To address the inherent prob-
em of restricted communications and spatially distributed sen-
ors and actuators associated with these systems, decentralized
ontrol is often the setting used to perform their design [6]. In this
ork, we consider the term decentralized control as is stated in [7].
he decentralization of the control law involves an independent
mplementation of local control laws for each control subsystem
n interconnected systems. In other words, the set of control
nputs of each subsystem only depend on the set of outputs of
he same subsystem, yet some may not be considered for the
mplementation of a specific control law.

An important property of decentralized control systems is
heir performance. The performance capabilities of a decentral-
zed controller are dictated by the actuation and sensing ca-
abilities, as well as by the information pattern, that describes
hat (sensor) data is available to which actuator. Under certain
onstraints (that depend on the information patterns), the decen-
ralized controllers may not be able to change all the modes of
he overall system. Specifically, the modes of a linear dynamical
ystem may not be changed in closed-loop using time-invariant
ontrollers under a given information pattern — such modes are
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known as fixed modes. Notwithstanding, such characterization
only enables the consideration of time-invariant decentralized
controllers. Indeed, as pointed out in [8,9], if we lift the re-
quirement of linear time invariant controllers, then even for
systems with fixed modes, it may be possible to find periodically
time-varying decentralized controllers or other general nonlin-
ear decentralized controller such that the closed-loop system
does not have fixed modes. In particular, a system with unstable
fixed modes, may become a closed-loop system that is stable.
Alternatively, some fixed modes can be eliminated by vibrational
control [10], or by sampling techniques [11]. However, if those
fixed modes have the property of being also fixed modes of a quo-
tient system, then it is shown in [12] that the closed-loop system
will always have fixed modes, that is, there is no decentralized
controller that can ‘‘remove’’ the fixed modes of the system. These
fixed modes are referred to as quotient fixed modes [12–14].

Fixed and quotient fixed modes often occur due to the can-
celing of terms associated with the accurate representation of
the system’s parameter values. Some of these values are in many
cases unknown, specially in large scale systems, and when it is
not the case, there is always some uncertainty associated to them
that arises for example from the system identification tools that
may produce numerical errors. To cope with the parametric un-
certainty, we propose to leverage structural systems theory [15].
Structural systems theory provides a framework to study systems
properties under the assumption that the system parameters
are either arbitrary independent unknown scalars or fixed ze-
ros due to the non-existence of physical dependency between
variables [15].

In particular, the notion of structurally fixed modes plays a
key role in unveiling vital information when a system (under a

given information pattern) has fixed modes that are solely due

https://doi.org/10.1016/j.sysconle.2021.104914
http://www.elsevier.com/locate/sysconle
http://www.elsevier.com/locate/sysconle
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysconle.2021.104914&domain=pdf
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o its structure [16,17], and subsequently, plays a crucial role
n designing actuation–sensing–communication for decentralized
ontrol [18–21]. In this paper, we introduce the notion of struc-
urally quotient fixed modes that enables us to characterize, from
structural perspective, the quotient fixed modes emerging in

he context of decentralized control. Furthermore, we provide
ecessary and sufficient graph-theoretical conditions for their
on-existence. Additionally, we render a thorough study on the
omputational approaches to verify such conditions and the im-
lications of the actuation–sensing–communication capabilities
nd the systems’ interconnections on the existence of SQFM.
In summary, the main contributions of this paper are as

ollows: (i) we introduce the notion of structurally quotient fixed
odes; (ii) we provide necessary and sufficient graph-theoretical
onditions that guarantee the non-existence of structurally
uotient fixed modes; (iii) we provide computationally efficient
olynomial algorithms to verify the necessary and sufficient con-
itions; (iv) we explain how the proposed algorithms can be
istributed using parallelization schemes, and also approximate
hile attaining linear-time computational complexity; and (v)
e discuss how different actuation–sensing–communication ca-
abilities, as well as interconnections between subsystems (also
nown as control stations [22]), lead to the existence (or non-
xistence) of structurally quotient fixed modes.

. Structurally quotient fixed modes

In this section, we first do a brief overview of key concepts
equired to introduce the notion of structurally quotient fixed
odes (SQFMs). Next, we provide necessary and sufficient graph-

heoretical conditions that are easy to verify. In fact, we show that
hey can be verified in polynomial-time and are suitable to deploy
n the context of large-scale decentralized control systems since
hey admit parallel implementations and approximation algo-
ithms with nearly linear-time computational complexity. Lastly,
e leverage the aforementioned characterizations to unveil new

nsights into how the actuation–sensing–communication (ASC)
apabilities and interconnections between subsystems may lead
o the existence of SQFMs.

In what follows, we represent an element that is different
rom zero by ⋆. Moreover, we refer to the structural pattern (or
tructure) of a matrix A as Ā, where Āij = 0 if Aij = 0 and Āij = ⋆,
otherwise.

Let us start by considering a large-scale continuous-time sys-
tem given by

ẋ(t) = Ax(t) +

N∑
i=1

Biui(t),

yi(t) = Cix(t), i = 1, . . . ,N,

(1)

where N denotes the number of subsystems, x(t) ∈ Rn is the
system’s state vector, ui(t) ∈ Rmi and yi(t) ∈ Rri are the input
and the output vectors of the ith subsystem, respectively.

The sensor measurements available to different actuators, and
used for feedback in the context of closed-loop decentralized con-
trol, are described by the information pattern K̄ ∈ {0, ⋆}m

∗
×r∗ of

the system (A, B, C), with m∗
=

(∑N
i=1 mi

)
and r∗

=

(∑N
i=1 ri

)
,

where B = [B1, . . . , BN ] and C = [C⊺
1 , . . . , C

⊺
N ]

⊺. The information
pattern is a matrix that describes what (sensor) data is available
to which actuator. Specifically, K̄j,k = ⋆ if the data of sensor k is
available to the actuator j, and 0 otherwise.

The capability of changing the system performance, measured
in terms of the closed-loop modes, is dictated by the information
pattern. In particular, the decentralized controller may lack the
2

capability to change some of the systems’ modes referred to fixed
modes, formally described as follows [23]:

σK̄ =

⋂
K∈[K̄ ]

σ (A + BKC), (2)

where [K̄ ] = {K ∈ Rm∗
×r∗

: Kj,k = 0 if K̄j,k = 0} and σ (M) denotes
the spectrum (i.e., the set of eigenvalues) of a square matrix M ∈

Rn×n. Note that from (2) it follows that if a given eigenvalue of
the closed-loop system (which has dynamics A + BKC) is a fixed
mode, then there is no K ∈ [K̄ ] that will make this fixed mode to
disappear.

Fixed modes often occur due to a perfect canceling of the
system numerical parameters. These are not the ones that we
are interested in, but the ones that are intrinsic to the structure
of the system. Therefore, to avoid such scenarios, structural sys-
tems theory considers the systems’ structural patterns (Ā, B̄, C̄) to
assess the possible systems parameters in ([Ā], [B̄], [C̄]), where
we define for a matrix structural D̄ the set [D̄] = {E : Ē = D̄}.
When we consider only the system’s matrices’ structural pattern,
we say that the triple (Ā, B̄, C̄) denotes a structural linear system. A
structural linear system, (Ā, B̄, C̄) is said to have structurally fixed
modes (SFMs) [24] with respect to (w.r.t.) an information pattern
K̄ if, for all A ∈ [Ā], B ∈ [B̄] and C ∈ [C̄], we have that⋂
K∈[K̄ ]

σ (A + BKC) ̸= ∅. (3)

Conversely, (Ā, B̄, C̄) does not have SFMs w.r.t. an information
pattern K if there are instances of A ∈ [Ā], B ∈ [B̄] and C ∈

[C̄] such that⋂
K∈[K̄ ]

σ (A + BKC) = ∅. (4)

Moreover, if (Ā, B̄, C̄) does not have SFMs with respect to K̄ , then
almost all systems with the same sparsity do not have fixed
modes [16].

Nonetheless, fixed modes are inherently associated with the
use of static output feedback (possibly with controllers with
memory). That said, we can eliminate some fixed modes by re-
sorting to nonlinear output feedback, whereas others that are not
possible are referred to as quotient fixed modes [12]. The notion
of quotient fixed modes (QFMs) is associated with the quotient
system, which is built upon a graph created using the systems
transfer function between different inputs and outputs of (1).

As such, let us recall that a digraph D = ⟨V, E⟩ is described by
a set of vertices (or nodes) V = {1, . . . , n} and edges E ⊂ V×V . A
path p of size k ∈ N starting in v1 and ending in vk is a sequence
of edges p = {(v1, v2), (v2, v3), . . . , (vk−1, vk)}, such that vi ̸= vj
for any i ̸= j, and if v1 = vk, then p is a cycle. A path p passes in
vertex v if p has an edge of the form (u, v) and/or (v, u).

Subsequently, we can create a quotient system digraph whose
vertices are the number of subsystems, and there is an edge
from subsystem k to j if and only if the transfer function Cj(sI −

A)−1Bk ̸= 0 [12]. If for two distinct subsystems k, j ∈ {1, . . . ,N∗
}

we have that Cj(sI − A)−1Bk ̸= 0 and Ck(sI − A)−1Bj ̸= 0,
then the subsystems are called strongly connected. A maximal
set of strongly connected subsystems form a strongly connected
subsystem (SCS).

If we decompose the system (1) into N∗ SCS, the overall
dynamics of the quotient system can be represented as:

ẋ(t) = Ax(t) +

N∗∑
i=1

B∗

i u
∗

i (t),

y∗

i (t) = C∗

i x(t), i = 1, . . . ,N∗,

(5)

where x(t) ∈ Rn is the system’s state vector, u∗

i (t) ∈ Rm∗
i and

y∗(t) ∈ Rr∗i are the input and the output vectors of the systems’
i
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artition ith, respectively. Simply speaking, the input and output
vectors of each partition corresponds to those in the subsystems
belonging to the same SCS in the quotient digraph.

Subsequently, a quotient fixed mode is a fixed mode of the
uotient system. In other words, the system described in (1) has
uotient fixed modes if and only if

∗

K̄1,...,K̄N∗
=

⋂
K1∈[K̄1],...,KN∗∈[K̄N∗ ]

σ

(
A +

N∗∑
i=1

B∗

i KiC∗

i

)
̸= ∅. (6)

In what follows, we seek to introduce the notion of SQFMs, in
the same spirit that the notion of SFMs. Towards this goal, we first
need to introduce the structural version of the quotient system
digraph.

Definition 1 (Structural Quotient System Digraph). Let (Ā, B̄, C̄),
ith B̄ = [B̄1, . . . , B̄N ] and C̄ = [C̄⊺

1 , . . . , C̄
⊺
N ]

⊺
, denote the

tructural pattern of the system matrices associated with (1). The
tructural quotient system digraph is a digraph composed by:

(1) as many nodes as the number of subsystems labeled by their
indices;

(2) the set of edges defined are such that there is an edge from
subsystem k to j if and only if Cj(sI − A)−1Bk ̸= 0 for some
Cj ∈ [C̄j], Bk ∈ [B̄k], and A ∈ [Ā]. ◦

Remarkably, we will be able to create the structural quotient
system digraph by just considering the digraph representation
of the system presented in (1). Specifically, the system digraph
D(Ā, B̄, C̄), given by D(Ā, B̄, C̄) = ⟨X ∪U ∪Y, EX ,X ∪EX ,Y ∪EU,X ⟩,
where X is the set of state variables, U is the set of input variables,
and Y is the set of output variables, and the set of edges between
these are described as EX ,X = {(j, i) : Āij ̸= 0}, EX ,Y = {(j, i) :

C̄ij ̸= 0}, and EU,X = {(j, i) : B̄ij ̸= 0}. Henceforth, the following
olds.

emma 1. Let (Ā, B̄, C̄), with B̄ = [B̄1, . . . , B̄N ] and C̄ =

C̄⊺
1 , . . . , C̄

⊺
N ]

⊺, denote the structural pattern of the system matrices
associated with (1). Then, the structural quotient system digraph is
constructed as follows: (1) the nodes’ set is composed by as many
nodes as the number of subsystems, labeled by their indices, (2) the
set of edges are such that there is an edge from subsystem k to j if and
only if there is a path from an input to an output in D(Ā, B̄k, C̄j). ◦

To illustrate the simplicity of invoking Lemma 1, we provide a
pedagogical example next.

Example 1. Consider the structural plant (Ā, B̄, C̄) with two
subsystems (i.e., N = 2), where

Ā =

⎡⎣ 0 0 0 0
⋆ 0 0 0
0 ⋆ 0 ⋆

0 0 ⋆ 0

⎤⎦, B̄ =

[
B̄1

B̄2

]
=

⎡⎢⎣ ⋆ 0
⋆ 0

0 ⋆

0 ⋆

⎤⎥⎦, and

C̄ =
[

C̄1 C̄2
]

=

[
⋆ ⋆ 0 0
0 0 ⋆ ⋆

]
.

In Fig. 1 (a), we depict the digraph representation of the struc-
tural plant D(Ā, B̄, C̄). In Fig. 1 (b), we present the corresponding
structural quotient system digraph, which corresponds to the
structural quotient subsystems Q1 and Q2 circumscribed by the
ashed gray boxes of Fig. 1 (a). We can see that there is an edge
rom Q1 to Q2 in Fig. 1 (b) because there is a path from u1 to y2
n D(Ā, B̄1, C̄2), as per Lemma 1. ⋄

Now, we can introduce the definition of structurally quotient
ixed modes (SQFMs).
3

Fig. 1. In (a), we have a digraph representation of the structural plant (Ā, B̄, C̄),
with four states, two subsystems (one with input u1 and output y1 , and the other
with input u2 and output y2), with quotient subsystems Q1 and Q2 , delimited by
the gray boxes. The obtained quotient system digraph by Lemma 1 is depicted
in (b), where the red edge in (b) corresponds to the red edge in (a) connecting
the subsystem Q1 with the subsystem Q1 . (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

Definition 2 (Structurally Quotient Fixed Modes). Let (Ā, B̄, C̄), be
as in Definition 1 such that B̄∗

= [B̄∗

1, . . . , B̄
∗

N∗ ] and C̄∗
=

[(C̄∗

1 )
⊺
, . . . , (C̄∗

N∗ )
⊺
]
⊺
, denote the structural pattern of the system

matrices associated with (5), and obtained using the structural
quotient system digraph with N∗ partitions associated with the
SCSs, where (K̄ ∗

1 , . . . , K̄ ∗

N∗ ) denote the information patterns of
each partition. We say that the triple (Ā, B̄, C̄) has no SQFMs with
espect to (K̄1, . . . , K̄N ) when (Ā, B̄∗, C̄∗) has no SFMs with respect
o (K̄ ∗

1 , . . . , K̄ ∗

N∗ ). ◦

Subsequently, we have that the following generic property
olds.

emma 2 (Necessary Condition for the Non-existence of QFMs). Let
Ā, B̄, C̄), with B̄ = [B̄1, . . . , B̄N ] and C̄ = [C̄⊺

1 , . . . , C̄
⊺
N ]

⊺, denote
he structural pattern of the system matrices associated with (1). If
Ā, B̄, C̄) has no SQFMs w.r.t. information patterns K̄1, . . . K̄N , then
lmost all (A, B, C), where A ∈ [Ā], B ∈ [B̄], and C ∈ [C̄], have no
FMs w.r.t. to information patterns K̄1, . . . K̄N . □

Subsequently, we provide a graph-theoretical characterization
f systems without SQFMs, which will require the following ad-
itional definitions. A subdigraph D′

≡ ⟨V ′, E ′
⟩ of a digraph D ≡

V, E⟩ is a digraph such that V ′
⊂ V and E ′

⊂ V ′
× V ′

⊂ E . The
strongly connected components (SCCs) of a digraph D ≡ ⟨V, E⟩ are
the set of maximal subgraphs which are strongly connected.

Theorem 1 (Necessary and Sufficient Condition for the Non-
existence of SQFMs). Consider the same setting as in Definition 2. Ad-
ditionally, consider the closed-loop system digraph D(Ā, B̄, C̄, K̄ ) =

⟨X ∪ U ∪ Y, EX ,X ∪ EX ,Y ∪ EU,X ∪ EY,U ⟩, where EY,U = {(j, i) :

K̄ij ̸= 0}. Furthermore, consider the subsystems digraphs associated
with each SCS of the structural quotient system digraph, denoted
by D(Qi) ≡ D(Āi, B̄i, C̄i, K̄i), i = 1, . . . ,N∗, where Āi denotes the
submatrix of Ā corresponding to the coupling between states that
belong to a path starting at one of the inputs associated with B̄i and
ending at one of the sensors associated with C̄i.

Then, (Ā, B̄, C̄) has no SQFMs with respect to (K̄1, . . . , K̄N ) if and
only if the following conditions hold:

(i) each state variable x ∈ Xi is a vertex of an SCC of D(Qi), and
the SCC includes an edge of EYi,Ui ; and

(ii) D(Qi) has a finite disjoint union of cycles (say ki), Cki =

(Vki , Eki ) such that Xi ⊂
⋃ki

j=1 Vj. □

Remark 1. From Lemma 2, it follows that the condition holds
generically, and thus, provide us with a necessary condition to
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heorem 1 are easier to verify than the ones previously explored
n [22,25] that depend on the system’s exact parameters, which
onclusions hold almost surely. ⋄

Besides, both conditions presented in Theorem 1 can be ef-
iciently verified, as it requires three main steps: (i) form the
structural quotient system digraph and identify the SCSs; (ii)
determine the SCCs of the different SCSs’ closed-loop system
digraphs and verify if they contain a feedback edge (i.e., to guar-
antee condition Theorem 1-(i)); and (iii) determine if there is a
collection of cycles that contain all the state of the system digraph
(i.e., to guarantee condition Theorem 1-(ii)) — see Algorithm 1.

Algorithm 1 Verification of Theorem 1

1: input: The tuple of structural matrices (Ā, B̄, C̄, K̄ ), where B̄ =

[B̄⊺
1, . . . , B̄

⊺
N ]

⊺, C = [C̄1, . . . , C̄N ] and K̄ = diag(K̄1, . . . , K̄N )
2: output: True if (Ā, B̄, C̄, K̄ ) has no SQFMs and False otherwise

3: build D(Ā, B̄, C̄, K̄ ) = ⟨X ∪U ∪Y, EX ,X ∪EX ,Y ∪EU,X ∪EY,U ⟩

4: compute the quotient system digraph DQ , with quotient
subsystems Q1, . . . ,QN∗

5: for i from 1 to N∗ do
6: build D(Qi) = ⟨Xi ∪ Ui ∪ Yi, EXi,Xi ∪ EXi,Yi ∪ EUi,Xi ∪ EYi,Ui⟩

7: compute the SCCs of Qi using the Tarjan’s SCCs algo-
rithm [26]

8: if D(Qi) does not have an edge of EYi,Ui then
9: return False
0: else
1: compute a decomposition in paths P and cycles C of

D(Qi)
2: if P ̸= ∅ (there are paths) then
3: return False
4: end if
5: end if
6: end for
7: return True

Therefore, Algorithm 1 has the following computational com-
lexity.

heorem 2 (Computational Complexity of Verifying the Conditions
in Theorem 1). The time-complexity of verifying the conditions in
Theorem 1 is of order O

(√
NαMαN∗

)
, with α = argmax

i=1,...,N∗

√
N iMi,

where Ni and Mi are the number of vertices and edges of D(Āi, B̄i, C̄i),
respectively. □

Despite the polynomial computational complexity for the ver-
ification of Theorem 1, it might still be prohibitive to determine
the non-existence of SQFM in the context of large-scale decen-
tralized control systems. Therefore, we now discuss how the
proposed algorithm can be adapted to be computed in paral-
lel or to achieve an approximated almost linear-time solution.
Therefore, we propose two ways of optimizing the algorithm’s
running-time performance.

A parallel computational version of Algorithm 1
Observe that the for-loop starting in step 5 can be executed

in a parallel fashion since each subsystem i can compute D(Qi).
Subsequently, each subsystem can do steps 7–15 independently
in parallel.

Observe that, when the computation is done in parallel by N∗

rocesses, as in the setting described, the computation complex-

ty becomes
O
(√

NαMαN∗
)

N∗ = O
(√

NαMα

)
, where α = argmax
i=1,...,N∗

4

√
N iMi, and Ni and Mi are the number of vertices and edges of

D(Qi), respectively.

Approximated solution with almost linear-time complexity of
Algorithm 1

We can obtain an approximated solution to the verification of
Theorem 1 in almost linear-time (in the number of vertices and
edges of the associated system’s digraph), if we allow obtaining
approximated maximum matching (MM), see more details of
where the MM emerges in Algorithm 1 in the proof of Theorem 2.
For example, we may use [27] which allows us to obtain a (1−ε)-
approximation of the solution (for any specified ε > 0), with
ime complexity that depend on ε of O

(
M 1

ε
log 1

ε

)
(i.e., linear

time), where M is the number of edges of D(Ā, B̄, C̄). Subse-
quently, the total time-complexity cost of Algorithm 1 becomes
O
(
[N + M] +

[
M 1

ε
log 1

ε

])
, where N is the number of vertices

of D(Ā, B̄, C̄) and O(N + M) comes from the computation of
(Qi) with an algorithm similar to the Tarjan’s strongly connected
omponents algorithm [26] (step 7 of Algorithm 1, more detailed
n the proof of Theorem 2).

emark 2. We can further combine the parallel and the ap-
roximation computation versions of Algorithm 1 to improve the
verall computational complexity. ⋄

Structurally quotient fixed modes in interconnected subsys-
tems. Lastly, we discuss under what conditions the intercon-
nections between subsystems impact the existence of SQFMs
based on graphical conditions, in Theorem 1, given that each
subsystem may have or not SFM. Specifically, consider that the
structural plant in (5) has, without loss of generality, two sub-
systems, N∗

= 2. Suppose that Q1 = (Ā1, B̄1, C̄1, K̄1) and Q2 =

(Ā2, B̄2, C̄2, K̄2) are the subsystems associated to each subsystem.
There are, generically, three possible cases: [Case 1] Subsystems
Q1 and Q2 have no SFMs; [Case 2] One subsystem has SFMs
and the other does not have SFMs, for instance Q1 and Q2,
respectively; and [Case 3] Subsystems Q1 and Q2 have SFMs.

[Case 1] Regardless of the interconnections between the sub-
systems, the resultant system has no SQFMs. This yields since
there is one instance, corresponding to assigning the value zero
to all such interconnections, which would lead to a structural
quotient system digraph where each partition yield both con-
ditions (i) and (ii) of Theorem 1 since they match the ones for
the SFMs in this scenario. Furthermore, we can invoke measure
theoretical arguments to guarantee that if there is one such
realization that yields a system without SQFMs, then almost all
possible realizations of the systems’ parameters (including the
interconnections) yield a system without QFM; hence, no SQFM
by definition.

[Case 2] First, notice thatQ1 can only have SFMs if and only if it
is not structurally controllable, not structurally observable, or both.
This happens because at the subsystem-level the information
patterns are full (i.e., all sensors are available to all actuators) [15].
Briefly, the conclusion follows from invoking measure theoretical
arguments in the context of the pole-placement theorem that
ensures that an arbitrary pole-placement is available if a system
is both controllable and observable [28].

A system described by the pair (Ā, B̄) is structurally control-
lable if and only if its digraph representation D(Ā, B̄) has a disjoint
union of cycles and paths, such that: the paths start from an input
vertex; there is (at least) one input assigned to a state variable
of each source SCC (i.e., a digraph can be uniquely decomposed
into SCCs and the source SCCs are those with no incoming edges
into their states originated in the states of other SCCs) [18].
By invoking duality, a system described by (Ā, C̄) is structurally
observable if and only if its digraph representation D(Ā, B̄) has a
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isjoint union of cycles and paths, such that: the paths end in an
utput vertex; there is one output assigned to a state variable of
ach target SCC (i.e., the SCCs without outgoing edges originated
n their states and ending at states of another SCC).

As such, the solutions to yield an interconnected system with-
ut SQFMs are as follows: (i) ensure that the subsystem with
FM becomes structurally controllable and/or structurally observ-
ble. This property can be ensured using minimum actuation
nd sensing capabilities [18,29]; and (ii) by adding connections
etween the state variables within each subsystem or in-between
he states of two subsystems to ensure the overall system is
tructurally controllable and/or observable [30] — see illustra-
ive example in Fig. 2. Remarkably, both solutions involve the
se of a crafted weighed maximum matching problem [26]. This
roblem can be efficiently solved in polynomial time and can be
ccomplished in parallel and using approximation algorithms, as
onsidered in Remark 1.
[Case 3] Similarly to the previous case, it can occur that sub-

system Q1 is not structurally controllable or structurally observ-
able (or both), and Q2 also is not structurally controllable or
structurally observable (or both). We can remove the SQFMs
combining the approaches for [Case 2] in both subsystems Q1
nd Q2.

Remark 3. The discussion above can be easily generalized (by
induction) for the case where we have more than two subsys-
tems. Hence, it provides a constructive analysis of the existence
of SQFMs, as well as methods to mitigate their existence. ⋄

3. Illustrative example

Consider the plant (A, B, C) used in [12], where the matrices
are parameterized as follows:

A =

⎡⎢⎢⎢⎣
0 a12 0 0 0
a21 0 0 0 0
0 a32 0 0 a35
0 0 a43 0 0
0 0 a53 a54 0

⎤⎥⎥⎥⎦ ,

B =

[
| | | | |

B1 B2 B3 B4 B5
| | | | |

]
=

⎡⎢⎢⎢⎣
b11 0 0 0 0
0 b22 0 0 0
0 0 b33 0 0
0 0 0 b44 0
0 0 0 0 b55

⎤⎥⎥⎥⎦ , and

C =

⎡⎢⎢⎢⎣
− C1 −

− C2 −

− C3 −

− C4 −

− C5 −

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
c11 0 0 0 0
0 c22 0 0 0
0 0 c33 0 0
0 0 0 c44 0
0 0 0 0 c55

⎤⎥⎥⎥⎦ .

In Fig. 3 (a), we depict the digraph associated with the struc-
ural plant (Ā, B̄, C̄), which has two subsystems, Q1 and Q2, as
epicted in the gray boxes of Fig. 3 (a), and with quotient sub-
ystems represented in Fig. 3 (b).
Additionally, consider a full information pattern for each of the

ubsystems, as depicted in Fig. 4. Using Algorithm 1, we obtain
decomposition in paths and cycles for each subsystem that
oes not contain paths. The decomposition in paths and cycles
or the subsystem digraph D(Q1) is depicted by the red edges,
n Fig. 4. Analogously, the decomposition in paths and cycles for
he subsystem digraph D(Q1) is depicted by the blue edges, in
ig. 4. Since for each subsystem digraph the decomposition only
as cycles (P = ∅), the algorithm outputs True, and the system
oes not have SQFMs.
5

Fig. 2. Example of how to add edges between two subsystems’ subsystems
digraph representations to remove SQFMs, illustrating the case where one
subsystem has SFMs and the other subsystems does not. To simplify the
visualization and the analysis, we use meta-nodes that represent an SCC of
the system’s digraph representation given as follows: the source SCCs of the
structural plant digraph representation are denoted by N⊤

1 ,N⊤

2 , and N⊤

3 ; the
arget SCCs are denoted by N⊥

6 N⊥

7 ,N⊥

8 , and N⊥

9 ; and the other SCCs are
denoted by N4 , and N5 . For simplicity, here we consider that both subsystems
are such that all the states belong to a disjoint union of cycles. Thus, the
dashed red edges indicate that there is one edge from and to the state variables
in different SCCS. Notice that after considering these edges, the structurally
quotient system digraph changes into a single partition that is now structurally
controllable and observable, and therefore, the subsystem does not have SFM,
which implies that the original information pattern does lead to the existence
of SQFM. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 3. In (a), we have a digraph representation of the structural plant (Ā, B̄, C̄),
with five states, two subsystems (one with inputs u1, u2 and outputs y1, y2 , and
he other with inputs u3, u4, u5 and output y3, y4, y5), with quotient subsystems
Q1 and Q2 , delimited by the gray boxes. The obtained quotient system digraph
by Lemma 1 is depicted in (b).

4. Conclusions

In this paper, we characterized quotient fixed modes in the
scope of decentralized control of large-scale dynamical systems.
Due to the parameter uncertainty, we introduced the novel con-
cept of structurally quotient fixed modes (SQFMs), which gener-
ically captures the quotient fixed modes that depend on the
system’s structure. If we can ensure that the system does not
have quotient fixed modes, then it is possible to design decen-
tralized controllers (possibly nonlinear) to shape the system’s
performance through the reassignment of its modes. Therefore,
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Fig. 4. Decomposition in paths and cycles of each subsystem’s digraph of the
structural plant (Ā, B̄, C̄, K̄ ), i.e., D(Q1) and D(Q2), obtained with Algorithm 1.
n red, we have this decomposition for D(Q1) with only once cycle. In blue, we
ave this decomposition for D(Q1) with only two cycles. (For interpretation of
he references to color in this figure legend, the reader is referred to the web
ersion of this article.)

e render a graph-theoretical necessary and sufficient condi-
ions for the non-existence of SQFMs. Further, we presented
n efficient polynomial-time algorithm for the verification of
his graph-theoretical condition. Moreover, we described how
parallelized version of the algorithm can be implemented,

nd how we can consider an almost linear-time computational
omplexity approximation algorithm to produce approximated
olutions. These two time-complexity optimizations make the
roposed algorithm suitable for designing large-scale dynamical
ystems. Finally, we discussed the implications of the actuation–
ensing–communication capabilities, as well as the systems’ in-
erconnections, on the existence of SQFM that rely solely on the
raph-theoretical necessary and sufficient conditions.
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ppendix

roof of Lemma 1. When we build the structural quotient
ystem digraph as being composed by all the vertices that corre-
pond to the labels of the different subsystems in (1), and edges
uch that if for each vertex k and j there is a path from the inputs
o the outputs in the digraph D(Ā, B̄k, C̄j). This ensures, by [31],
hat Cj(sI − A)−1Bk ̸= 0 for some Cj ∈ [C̄j], Bk ∈ [B̄k], and
∈ [Ā]. □

roof of Lemma 2. Consider the system in (5) such that the
ystem has no SQFMs w.r.t. K̄1, . . . , K̄N . On one hand, we have that
lmost all set of parameters of structural quotient system digraph
6

ead to a quotient system digraph such that the transfer function
s nonzero [31]. On the other hand, at each of the partition
ubsystem of the quotient system digraph it readily follows that it
oes not have structurally fixed modes K̄1, . . . , K̄N∗ . This implies
hat, for almost all parameters, the partition subsystem does not
ave fixed modes w.r.t. K̄1, . . . , K̄N∗ [16]. Hence, the system does
ot have QFM w.r.t. K̄1, . . . , K̄N , for almost all parameters. □

roof of Theorem 1. First, we fix a parameterization of the
ystem’s structure such that the entries of Ā corresponding to
dges between state variables of different subsystems to 0. By
oing this, we can write Ā = diag(Ā1, . . . , Ā2), where Āi contains
he state variables of subsystems i. The system (Āi, B̄i, C̄i) does not
ave SFMs w.r.t. the structural pattern K̄i if and only if (iff) the
ollowing two conditions hold [32]: (i) each state vertex x ∈ Xi (Xi
s the set of state variables of Āi) is in an SCC of D(Āi, B̄i, C̄i, K̄i) that
ncludes an edge of EYi,Ui (Yi and Ui are the set of output and input
ariables of B̄i and C̄i, respectively); and (ii) D(Āi, B̄i, C̄i, K̄i) has a
isjoint union of k cycles {Ck = (Vk, Ek)} such that Xi ⊂

⋃k
j=1 Vj.

o, we notice that we have only to ensure that the subsystem
orresponding to each subsystem does not have SFMs, which are
he conditions (i) and (ii) of the theorem, to ensure that, for that
arameterization of the system’s structure, the system does not
ave SQFMs.
Next, we observe that if the aforementioned conditions hold

or a parameterization of the system’s structure, then the con-
itions hold for almost all parameterizations of the system’s
tructure. Therefore, (Ā, B̄, C̄) has not SQFMs w.r.t. (K̄1, . . . , K̄N )
f and only if conditions (i) and (ii) hold. □

roof of Theorem 2. The time-complexity of verifying the condi-
ion of Theorem 1 is the sum of the time-complexity of verifying
ach condition.
We can build the SCSs, D(Qi), from the input matrices in

(Mi), where Mi is the number of edges of D(Qi) (number of
on zeros in matrices (Āi, B̄i, C̄i, K̄i)) supposing that the system’s
atrices are represented as sparse matrices, and where Āi is

he submatrix of Ā containing the state variables accessible from
nputs of B̄i.

We can compute the SCCs of (i) using the Tarjan’s strongly
onnected components algorithm [26]. This can be done in O(Ni+

i), where Ni is the number of vertices and Mi the number of
dges of D(Āi). Subsequently, we can compute condition (ii) by
uilding N∗ problems of decomposing the state digraph repre-
entation of Qi (only considering the state vertices and respective
dges) into paths and cycles.
This step is less straightforward (i.e., step 11), and it can

e executed by considering maximum matching (MM) (i.e., the
aximum number of edges without common end-points) on a
ipartite graph B ≡ B(V1,V2, EV1,V2 ). B is a graph where the set

of vertices may be split in two, V1 and V2, such that the there
are no edges between vertices in V1 or between vertices in V2.
Specifically, Algorithm 1 relies on the relationship between the
MM on a system bipartite graph B(Ā) ≡ B(V,V, EV,V ) (with some
abuse of notation for the vertices labels) and the decomposition
of the system digraph D into a disjoint union of cycles and paths
— see [18]. In particular, for the case of a perfect matching (i.e., the
number of edges in the maximum matching equals the number
of vertices in V), we obtain a decomposition into a disjoint union
of cycles (having no paths), where all vertices are part of such cy-
cles. These N∗ independent maximum matching problems can be
solved using the Hopcroft–Karp algorithm [26] in time O(

√
N iMi).

Therefore, the total time-complexity is the sum for each sub-
system of the two previous quantities: O

(∑N∗

i=1 [(Ni + Mi)

+
√
NiMi

] )
= O

(∑N∗

i=1
√
NiMi

)
. Let α = argmax

i=1,...,N∗

√
NiMi, then

O
(∑N∗

i=1
√
NiMi

)
= O

(√
NαMαN∗

)
. □
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