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Exploration of Hybrid Electric Propulsion in
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Technology advancement

Technology demonstrators to validate basic assumptions and to drive technology
maturations

Hybrid NRA

Hybrid H/C

Hybrid UAV

%

Hybrid Ground
Demonstrator 2.0

. Hybrid Ground

. Demonstrator1.0
' source: Airbus
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S1: Analysis & design of a hybrid electric regional aircraft

Objective

JAssess the potential fuel consumption reduction of hybrid-electric
regional aircraft, compared to a reference aircraft by 2035

JFuel is replaced partly by batteries as energy source

JExplore design space
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S1: Reterence Aircraft

Comparison between reference aircraft design and ATR-72-600:
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S1: Reterence Aircraft

Reference aircraft design

Comparison between reference aircraft design and ATR-72-600:

Parameter ATR-72-600 Reference aircraft Difference
MTOM [kg] 22800 22340 -2.0%
Mission fuel mass [kg] 2000 2050 + 2.5 %
Empty mass [kg] 13010 12780 -1.8%
Wing span [m] 27.05 26.5 -2.0%
Wing area [m?] 61 58.54 -4.2 %
Fuselage length [m] 27.17 27 - 0.6 %
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S1: Aircraft hybrid electric propulsion integration

""" | Gas turbine
Electric .
motor d Traditional HEPS based AC layout
—— A Electrical motors coupled in
atteries
parallel
= 1 0 All additional systems and wiring
Inverter | Wiring taken into account
<2
TU Delft Challenge the future 7




S1: Parallel hybrid electric propulsion system architecture

Propellers
Fuel
+
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T]gas
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br,electric
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S1: New Brequet Range Equation

Instead of traditional Brequet range equation:

T]pro]o " CL «In (mstart)
SFC " C, m

Range =

end

Adapted version for hybrid electric propulsion:

1 CL 1 €combined * Lstart + mempty
Range = S * — * Nppop * ————— * In
77_ + (1 — S) x SFC * €fuel CD €combined Mempty
el
Where:
n., = total electrical efficiency from battery to electric motor output
Eombined = COMbined specific energy of battery and fuel:
o o Hg * epyer + (1 — Hg) * epqy
combined efuel ¥ €pat
S = power split
H, = degree of hybridization of energy:
_ Ebat _ S
Hp = =
Etor S+ (1—S5)*SFC €ruel * Nel
%
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S1: Feasible design space hybrid electric regional aircraft

Range [km]
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S1: AC comparison

Comparison reference and hybrid-electric aircraft design

Parameter Reference aircraft  Hybrid-electric aircraft  Difference
MTOM [kg] 22340 25470 + 14 %
Mission fuel mass [kg] 2050 1470 -28%
Battery mass [kg] 0 2948 n/a
Battery energy density [Wh/kg] n/a 1000 n/a
Empty mass [kg] 12780 13552 +6 %
Total energy stored in batteries 26.19 21.73 -17%
and fuel [MWh]
Wing span [m] 26.5 28.8 +8.7%
Wing area [m?] 58.54 69.1 +18 %
Fuselage length 27 27 0 %

%
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S1: Conclusion

e Significant fuel saving can be achieved (up to 30 %)

* Analysis only for regional aircraft
e Results depend heavily on technological progress
» Chosen operating mode has influence on final design

e Promising results, future research recommended
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S2: Integrated performance analysis applied on short-range
aircraft

gearbox

series HEPS

electric
motor

rectifier generator

gearbox

electric
motor

parallel HEPS \

battery

Advantages:

« Operates at optimal RPM

« Higher effective BPR

» Design freedom in positioning of
engine and fan

Disadvantages:
 Heavy
« Less efficient

Advantages:

« Independent operation between
engine and electrical system

« Independent design of power
share between both subsystems

Disadvantages:

« See advantages series
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S2: Simulation model: A320 with integrated HEPS

aircraft model

engine model

power management
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S2: Impact of range on fuel burn

1000km 2000km 3000km
4000 ‘ 8000 ‘ 10000 : ‘
—Airbus A320 —Airbus A320 —Airbus A320
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HEPS is beneficial for short ranges
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S2: Technology development of electric components
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S2: Effect of technology development on fuel burn

2014
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£
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Based on 2030+ technology maturity level HEPS become beneficial

<2
TU Delft Challenge the future 17




S2:Effect of hybridisation on fuel burn
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S2: Energy consumption

2014

N
o

2023

A320 without HEPS

N
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2030+

relative
energy consumption in [%]
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climb powersplit in [%]

From an energy consumption perspective, HEPS are only slightly
beneficial with technology development predicted by 2030+
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S2: Fuel burn vs. Energy consumption
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S2: Effect of engine sizing on performance
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S2: Optimised HEPS overall efficiency
-t
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100%
taxi-in

Q Climb powersplit of 14%

Q Turboshaft engine down scaled to
80%

Q Significant efficiency increment during

taxi-out, take-off and climb and

efficiency also increases during cruise
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S2: Fuel burn and energy consumption of optimised HEPS
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S2: Emissions

fuel burn dependent emissions engine dependent emissions
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S2: Conclusions

A Investigation on HEPS as ‘retro-fit" in A320
 Applied HEPS is beneficial for short ranges

A The application of HEPS in mid/long-term is heavily dependent on
the technology maturity level of electric components (specific
energy/power)

A Fuel burn can be reduced, but total energy consumption increases

O The parallel HEPS architecture allows a better sized engine, which
is more efficient

'Optimal’ power management control strategy (with power split of
14%) including 80% scaled engine yields in fuel burn reduction of
11% and total energy saving of 6% for a 1000km flight mission

0 CO, and NO, emissions can be reduced with 11% and 1%
respectively (during taxi-phase zero CO, emission).
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S3: Well (source) to propeller efficiency
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S3: Series Hybrid Electric Aircraft

REF 4.
Electric Electric
Batter »| Cabl > —> Propulsi
arery apies Inverter Motor opuision
T
Fuel »  Engine » Generator

<2
TU Delft Challenge the future 27




Results

NwTp

Well-to-propeller Efficiency R> Lower Value |Mean Value | Upper Value

MW TPpaseline 0.75 12.5 14.3 16.1
NWTP,opatteries 0.70 9.2 10.8 12.4
NWTPeurrent,naturalgas 0.70 11.2 13.2 15.2
MW TPeurrent,renewable 0.70 11.3 13.3 15.3
MW TPineoretical,naturalgas 0.70 12.2 14.4 16.6
NWTPiheoretical,renewable 0.70 13.1 15.5 17.9
<2
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S3: Conclusions

From an environmental perspective it is not a good idea to develop
a Series Hybrid Electric Aircraft (SHEA)

 The well-to-propeller efficiency of a conventional aircraft is 14.3 with
R2=10.75

1 The well-to-propeller efficiency of a SHEA is 14.4 with R2 = 0.7
(natural gas)

1 The well-to-propeller efficiency of a SHEA is 15.4 with R2 = 0.7
(renewables)
' From literature study it is known:
+ Design cost will go up
« Maintenance cost will go up
« Sustainability battery technology uncertain

1 Parameters that maximise the viability of Hybrid Electric Aircraft are:
* Increasing the bus-voltage
* Renewable energy as source
* Not using distributed propulsion as the benefits are not proven
*  New technologies

29
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Call For Core Partners

Start: December 2016

Partners:

* NLR
* TU Delft

CS2 project: NOVAIR
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Advanced engine integration
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Similarity and representativity
of scaled testing

LPA WP1.3.2
Requirements for test
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Validation of dynamically
scaled flight testing

LPA WP1.4
Hybrid laminar flow control
large scale demonstration

LPA WP1.5

Innovative flight operations
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Demonstration of radical
aircraftconfigurations
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Test aircraft preparation and
qualification

LPA WP1.3.4
Test instrumentation

LPA WP1.3.5
Aircraft guidance and control

LPA WP1.3.6
Demonstration of new
technologies

LPA WP1.3.7
Aircraft guidance and control

LPA WP1.3.8
Demonstration of new
technologies

I LPA WP 1.6.1 H
1 . .

T | Alternative energy propulsion |l
l. architecture & components :

LPA WP1.6.2
Hybrid power bench
development & testing

LPA WP1.6.3
— Development of
demonstrator vehicle

LPA WP1.6.4
] Flight testing of radical
aircraft concepts
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— Evaluation of overall
architecture/configuration
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CleanSky 2 project: NOVAIR (start December 2016) <povaIR
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CS2 project: NOVAIR <nov ﬂL'L/R/
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Delft University Unconventional CDUUE 7/7
Concept (DUUC)

O Towards Scaled Flight Testing
of Unconventional AC

d Propulsive empennage concept

v Increased propulsive
efficiency

v’ Safe propeller operation
v' Enhanced upset recovery
v Noise shielding
v" Increased cabin comfort
v Hybrid Electric Vehicle?

TUD: Pioneering Innovations Project

DUUC-0.1 flight from Woensdrecht AFB

O Preliminary design and
analysis ongoing

O First data set expected by
end 2016

Model ATR72-600 Model DUUC
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DUUC_promo_short.mp4

Concluding remarks

O Results on overall benefits of a hybrid electric propulsion system (HEPS) in
regional aircraft seem inconclusive

O Next step in power density of subsystem and their efficiency is crucial before
application can be considered

O Benefits of HEPS is mostly associated with opportunities for distributed
propulsion

0 NOVAIR and the Delft University DUUC project will contribute to this analysis in
the coming years
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