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From Control System Security Indices to Attack Identifiability

Henrik Sandberg and André M.H. Teixeira

Abstract— In this paper, we investigate detectability and
identifiability of attacks on linear dynamical systems that are
subjected to external disturbances. We generalize a concept for
a security index, which was previously introduced for static
systems. The index exactly quantifies the resources necessary
for targeted attacks to be undetectable and unidentifiable in the
presence of disturbances. This information is useful for both
risk assessment and for the design of anomaly detectors. Finally,
we show how techniques from the fault detection literature can
be used to decouple disturbances and to identify attacks, under
certain sparsity constraints.

I. INTRODUCTION

As modern control systems increasingly rely on infor-
mation and communication technology (ICT) infrastructures
to exchange real-time measurements and actuator signals,
their exposure to malicious cyber threats also grows: each
measurement and actuator signal may be compromised and
altered by a skillful cyber adversary. Therefore, cyber se-
curity and resilience with respect to attacks are important
properties of modern control systems that are tightly coupled
to ICT infrastructures.

Some of the main challenges in designing cyber-secure
control systems are related to: analyzing the risk of cy-
ber attacks; devising protection mechanisms to prevent and
remove high-risk threats; and also to timely detect and
mitigate on-going attacks. While the first two challenges
relate to conventional ICT cyber security approaches (i.e.,
risk management [1]), the third approach is closely related
to the well-known control field of fault diagnosis. Although
both relate to detecting anomalies, there exist subtle differ-
ences between classical fault diagnosis and attack detection
in cyber security. Classical control-theoretic approaches to
anomaly detection (e.g., fault detection, isolation, and iden-
tification) typically deal with independent disturbances and
faults; thus they typically do not consider possibly colluding
malicious cyber attacks, which may even attempt to hide
the attacks by mimicking physical disturbances and faults.
In fact, this paper addresses the latter scenario, discussing
detectability conditions of sparse attacks that may be masked
by plausible disturbances, and connecting the results to
fundamental limitations well-known in the controls literature,
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in terms of fault detection and identification [2] and input
reconstruction [3].

The topic of cyber-secure control systems has been receiv-
ing increasing attention recently. An overview of existing
cyber threats and vulnerabilities in networked control sys-
tems is presented in [4], [5]. Rational adversary models are
highlighted as one of the key items in security for control
systems, thus making adversaries endowed with intelligence
and intent, as opposed to faults. Therefore, these adversaries
may exploit existing vulnerabilities and limitations in the
traditional anomaly detection mechanisms and remain unde-
tected, or indistinguishable from disturbances and process
noise. In fact, [6] uses such fundamental limitations to
characterize a set of undetectable attack policies for net-
worked systems modeled by differential-algebraic equations.
Related undetectable attack policies were also considered in
[7], [5]. A common thread within these approaches is that
undetectable attacks are constrained to be entirely decoupled
from the anomaly detector’s output.

Detectability conditions of undetectable false-data injec-
tion attacks to control systems are closely examined in [8],
where it is shown that mismatches between the system’s and
the attack policy’s initial conditions may lead to detectable
attacks. Additionally, modifications to the system dynamics,
input, and output matrices that reveal stealthy data attacks
were also characterized.

Other work has analyzed undetectable attacks with respect
to the amount of effort they require, i.e., the number of attack
signals that must be injected by the adversary to remain
undetected. As discussed in [1], such analysis provides
insight into the likelihood of such attacks occurring, which
is a core component of determining the risk (i.e., impact and
likelihood) of such threat scenarios.

For static systems, [9] first proposed a security index for
measurement attacks, which corresponds to the minimum
number of measurements that need to be corrupted as to
ensure undetectability. The computation of the security index
involves solving an NP-hard problem, in general, which
has later been investigated by [10], [11], [12], [13]. Under
certain structures of the problem, this work proposed efficient
algorithms to compute the security index in polynomial time.

Related problems have been investigated for dynamical
systems. The work in [14] characterizes the number of
corrupted sensor channels that cannot be detected during a
finite time-interval. For sensor attacks that can be detected,
a resilient state estimation scheme inspired by compressed
sensing is proposed. The work in [15] explored the notion
of strong observability to characterize the conditions for
which the initial state can be recovered under the presence



of sparse unknown input signals. For sensor attack scenarios,
[16] determines the smallest number of sensors needed
for undetectable attacks. The notion of security index for
dynamical system under sensor and actuator attacks was also
extended to dynamical systems at steady-state and for finite-
time intervals in [17].

This work investigates the notion of security index for
dynamical systems under both attacks and disturbances. In
particular, we consider the case where attacks are said to
be undetectable if they can be masked (explained) by a
disturbance signal. The formulation of the security index
is related to well-known limitations in the fault detection
literature, and the complexity of computing these indices
for special cases is discussed and related to the literature.
For detectable attacks, the concept of identifiable attacks is
defined, as well as a weaker notion of identifiability where
only certain entries of the attack signal can be uniquely
determined. Connections between these definitions and the
security index are investigated, based on which attacks with
sufficiently high sparsity are shown to be identifiable. Finally,
for identifiable attacks, an attack reconstruction procedure is
proposed.

The outline of this paper is as follows. The dynamical
system under the influence of disturbances and attacks is de-
scribed in Section II, where undetectable attacks, potentially
masked by disturbances, are defined. Section III formulates
the security index for dynamical systems under the influence
of both disturbances and attacks, and discusses important
special cases and their connection to the literature. The role
of security indices in (possibly partial) attack identification
under disturbances is examined in Section IV, whereas
concluding remarks are given in V.

Notation: For a set I , |I| denotes its cardinality. For a
vector a ∈ Cm, we denote its i-th element by ai. By ai ∈
Cm, we mean a vector whose i-th element is non-zero, i.e.,
ai 6= 0, and the other elements are arbitrary. The support of
a ∈ Cm, supp(a), is the set of indices i where ai 6= 0, and
‖a‖0 := |supp(a)| is the number of non-zero elements in a.
Similar notations are used for discrete-time signals a, where
a(k) ∈ Cm, k = 0, 1, 2, . . . A discrete-time linear system
G ∈ Rp×m

p (z) has a rational proper transfer matrix G(z)
of dimension p×m. We also define normalrank [G(z)] :=
maxz rank [G(z)].

II. PRELIMINARIES

Let us consider the discrete-time system y = Gdd+Gaa,
Gd, Ga ∈ Rp(z), with a realization

x(k + 1) = Ax(k) +Bdd(k) +Baa(k)

y(k) = Cx(k) +Ddd(k) +Daa(k),
(1)

for times k = 0, 1, 2 . . . Here x(k) ∈ Rn is the state
vector, d(k) ∈ Ro are unknown disturbance (or fault) signals,
a(k) ∈ Rm are potential attack signals, and y(k) ∈ Rp are
the measurements available to the operator of the system.
Additionally, we assume to have distinct measurement, at-

tack, and disturbances signals, in the sense that

rank

[
Bd

Dd

]
= o, rank

[
Ba

Da

]
= m, rank [C] = p.

It turns out that the value of the initial state, x(0), is
important in the following, but initially we will let it be a
free variable.

The system model (1) is similar to those studied in the
fault detection and diagnosis literature, see, e.g., [3], [2].
The signals d and a represent different types of anomalies
that can occur in the system, although of different nature. We
next want to determine when we can detect and distinguish
between these anomalies. We could think of d as natural
disturbances, or faults, that are to be expected, and that have
no malicious intent. They could represent measurement and
process noise, for example. One important aspect is that a
malicious attacker could use such disturbances to hide his
or her attack a from being seen in the output y. We will
typically let d be a free variable, where the only available
knowledge about the disturbance signals amounts to their
signature matrices, Bd and Dd. Thus, to ensure robustness
with respect to disturbances, an anomaly detection algorithm
wishing to detect potential attack signals must be designed so
that it is decoupled from Bd and Dd. Under this disturbance
model, we check whether a disturbance exists that will
”mask” the attack. If this is the case, the operator is not able
to distinguish between attacks and disturbances, and cannot
conclude whether an attack is present, or not.

Remark 1: Naturally, several other disturbance models
exist, such as assuming known upper bounds on the distur-
bance signal’s energy or instantaneous peak, or constraining
the disturbance to belong to a given class of signals, e.g.,
constant or sinusoidal signals. In particular, the results in
this paper can be straightforwardly extended to disturbances
modeled as the output of an autonomous discrete-time system

xd(k + 1) = Adxd(k)

d(k) = Cdxd(k),

which is parametrized by a free initial condition xd(0).
The attack can potentially occur in m different locations in

the system (a(k) ∈ Rm), and we will be concerned about the
possibility for the operator with access to the above model
and the signal y to detect an attack signal a 6= 0. We make
the following definitions to formalize these ideas.

Definition 1: An attack signal a is persistent when
a(k) 6→ 0 as k →∞.

In this paper, we are mainly concerned with persistent
attacks, since they have non-vanishing impact.

Definition 2: A (persistent) attack signal a is
(i) undetectable if there exists a simultaneous (masking)

disturbance signal d and initial state x(0) such that
y(k) = 0, k ≥ 0;

(ii) asymptotically undetectable if there exists a simultane-
ous (masking) disturbance signal d and initial state x(0)
such that y(k)→ 0, k →∞.

Note that the definition of undetectable attacks is the same
as in [6], if we assume there are no disturbances in the



system (1). The reason for calling the disturbance ”masking”
comes from linearity of the system: If 0 = Gaa+Gdd, then
clearly y = Gaa = −Gdd, and it is impossible to in the
output distinguish between the undetectable attack and the
masking disturbance, if they occur by themselves without the
other.

We will next be interested in quantifying the minimal
resources needed by the attacker to achieve undetectability,
when he or she want to target a specific attack element ai,
i ∈ {1, . . . ,m}. Hence, we will search for sparse signals ai

satisfying the above conditions.

III. THE DYNAMICAL SECURITY INDEX

For an attack signal a to be undetectable, we need to
ensure there exists a masking disturbance d and an initial
state x(0) resulting in zero output. Existence of such a signal
can easily be checked by considering the matrix pencil (the
Rosenbrock system matrix)

P (z) =

[
A− zI Bd Ba

C Dd Da

]
,

see [18]. An attack signal a(k) = zk0a0, a0 ∈ Cm, z0 ∈ C,
is undetectable iff there exists x0 ∈ Cn and d0 ∈ Co such
that

P (z0)

x0

d0

a0

 = 0, (2)

i.e., P (z0) should not have full column rank. The unde-
tectable attack is also persistent iff |z0| ≥ 1.

Remark 2: Note that, if the initial state x(0) 6= x0, the
attack signal a(k) = zk0a0 may actually be detectable.
Following the analysis in [8], if A is Schur (ρ(A) < 1),
the attack signal is only asymptotically undetectable, since
there will be a vanishing transient visible in the output. This
transient can be made arbitrarily small by the attacker choos-
ing a0 small. Hence, the difference between asymptotically
undetectable and undetectable attacks may not be very large
in practice.

If the attacker would like to target the element i, i.e., ai 6=
0, and remain undetected, he or she needs to find a vector
ai0 ∈ Cm satisfying (2). In general, this may require the
attacker to target several elements aj , j 6= i. To measure the
minimal number of elements required to achieve this, we
introduce the following security index αi, which generalizes
a concept first introduced for non-dynamical systems in [9]:

αi := min
|z0|≥1,x0,d0,ai

0

‖ai0‖0

subject to P (z0)

x0

d0

ai0

 = 0.
(3)

Note that for all i it holds αi ≥ 1, and if there is no
feasible solution, we define αi = +∞. Note also that this is
a combinatorial optimization problem, because the objective
function ‖ai0‖0, and in general is hard to solve [11]. However,
in several cases of interest, it has a simple solution, as
discussed below.

We can think of the signals ai(k) = zk0a
i
0 resulting from

(3) as the sparsest possible persistent undetectable attacks
against an element i. These signals should be of interest
to both the operator and the attacker, in the sense that
they show how the attacker can modify the solutions to
the system equations (1), without modifying the measurable
output y. Also, if the number αi is large, it indicates that it
will require significant coordinated resources by the attacker
to accomplish undetectable attacks against ai. An operator
can thus use the index in performing a quantitative risk
assessment, as illustrated in, e.g., [1]. The index αi also has
implications for the possibility of the operator to reconstruct
(”identify”) a detectable attack ai, as will be further explored
in Section IV.

Remark 3: There are some concepts in the literature that
are similar to αi above. In power system observability
analysis, a related concept is that of critical k-tuples, see,
e.g., [10]. For sensor attack scenarios, [16] determines the
smallest number of sensors needed for undetectable attacks.
There are also close connections to the spark of a matrix,
used in compressed sensing, see, e.g., [19]. Also, in [17],
an optimization problem related to (3) was studied. Some
further connections are made in the special cases considered
in the following subsections.

A. Critical Attack Signals (αi = 1)

A particularly serious situation is when αi = 1, since the
attacker then can target element i undetected without the
need to access any other resources. Let us denote

Pi(z) =

[
A− zI Bd Ba,i

C Dd Da,i

]
∈ C(n+p)×(n+o+1),

Pd(z) =

[
A− zI Bd

C Dd

]
∈ C(n+p)×(n+o),

where Ba,i, Da,i are the i-th columns of Ba, Da. If there is
a z0 ∈ C, |z0| ≥ 1, such that

rank [Pd(z0)] = rank [Pi(z0)],

then αi = 1. An even more serious situation occurs when

normalrank [Pd(z)] = normalrank [Pi(z)]. (4)

If this easily checked condition is fulfilled, it is possible to
find an undetectable attack signal ai(k) = zk0a

i
0 of cardinality

one, using any complex frequency z0.
Note that (4) holds when there are many disturbances in

relation to the number of available measurements, i.e., o ≥ p.

B. Transmission Zeros

If the Rosenbrock system matrix P (z) has full column
normal rank and the realization is minimal, the only solutions
to (2) that exist correspond to the system’s finite number of
transmission zeros, see, e.g., [18]. Hence, to find αi we only
need to inspect the corresponding system zero directions.
When the zero directions are all one-dimensional, the com-
putation of αi becomes especially simple. Generically, one
would expect the zero directions to be one-dimension, but
there are several interesting situations where this is not the



case, as we shall see below (although these will be invariant
zeros, and not transmission zeros).

C. Sensor Attacks
The situation where the system is subjected to sensor

attacks have received particular interest in the literature, see,
e.g., [14], [16], [20]. In this case we have Bd = Ba = 0, and
in (2) we only need to consider z0 ∈ {λ1(A), . . . , λn(A)},
i.e., the eigenvalues of A, where x0 are eigenvectors of A.
If the eigenvalues are simple, the eigenspace corresponding
to each eigenvalue is one-dimensional, and again the com-
putation of αi is simple.

As a further special case, suppose all sensors are po-
tentially attackable and there are no disturbances, and so
Da = Ip and Dd = 0. Also suppose that the operator
has high redundancy in the system in the sense that the
realization (1) is observable using any one of the outputs
yi, i ∈ {1, . . . , p}, by itself. Considering the PBH test [18],
this means that any one of the eigenmodes zk0x0 is visible
in all the sensors, and all elements in the vector Cx0 are
non-zero. Thus an undetectable attack (Cx0 + ai0 = 0) must
involve all the signals in a, and for all i the security index
must be αi = m = p (or αi = +∞ if A is Schur). Hence,
one way to make undetectable attacks hard is to install many
redundant sensors, each of which with the individual power
to observe the entire system state with little noise, which is
in agreement with [14].

D. Sensor Attacks for Static Systems
If we assume A = I , Bd = Ba = Dd = 0 (only sensors

attacked), we have essentially recovered the original security
index αi, as defined in [9]. The motivation for the index
there was to quantify the vulnerability of power system state
estimators to false data injection attacks. Note that because
A = I and Bd = Ba = 0, this problem only concerns
systems in steady-state. Perhaps one would think that this
makes the problem (3) easier, but in fact the problem can be
significantly harder in practice. This is because the dimension
of the eigenspace corresponding to the sole eigenvalue is of
dimension n, and not one-dimensional as is frequently the
case in the previous examples. Intuitively, one can understand
this since the attacker here has no constraints in time to fulfill
and thus have many more options for being undetectable.
This fact together with the potentially high dimension n in
a power system has spurred several investigations on the
efficient computation of αi. The problem in general is NP-
hard [11], but in the examples deriving from power systems
the matrix C has a useful structure that can be exploited.
In particular, [11], [12], [13] show how max-flow min-cut
algorithms can be used to solve the problem in polynomial
time. Under slightly different assumptions on the structure
of C, [21] shows how `1-relaxation can also exactly solve
the problem in polynomial time.

IV. ATTACK IDENTIFICATION AND DECOUPLING

In this section, we turn to the related problem of attack
identification, which concerns the possibilities to reconstruct
elements of an attack signal from the measured output.

A. Attack Identification

To formalize the attack identification problem, the follow-
ing definitions are made.

Definition 3: A (persistent) attack signal a is
(i) identifiable if for all attack signals ã 6= a, and all

corresponding disturbances d and d̃ and initial states
x(0) and x̃(0), we have ỹ 6= y;

(ii) asymptotically identifiable if for all attack signals
ã(k) 6→ a(k), and all corresponding disturbances d and
d̃ and initial states x(0) and x̃(0), we have ỹ(k) 6→ y(k),
as k →∞.

Identifiable attack signals a excite the output y in a unique
way that cannot be achieved by any other attack ã. This is
equivalent to the system possessing a certain left inverse, as
will be explored in Section IV-B. Note that identifiability
of a is a much stronger requirement than detectability of a
(which means that the attack a is such that y 6= 0 for all
disturbances d and initial states x(0)). Since identifiability is
such a strong requirement, we will also be interested in the
following weaker notion.

Definition 4: A (persistent) attack signal a is
(i) i-identifiable if for all attack signals ã with ãi 6= ai,

and all corresponding disturbances d and d̃ and initial
states x(0) and x̃(0), we have ỹ 6= y;

(ii) asymptotically i-identifiable if for all attack signals ã
with ãi(k) 6→ ai(k), and all corresponding disturbances
d and d̃ and initial states x(0) and x̃(0), we have ỹ(k) 6→
y(k), as k →∞.

This notion is weaker than identifiability since an attack
a can be i-identifiable even if there exists another attack
ã 6= a, with ai = ãi, such that y = ỹ. Hence, i-identifiability
concerns only the sensitivity of the output y with respect
to the i-th element in a. Identifiability is therefore the
same as i-identifiability for all i. Interestingly, there is a
tight connection between detectability, identifiability, and the
previously introduced security index.

Theorem 1: Suppose that the initial state x(0) is unknown
to the operator (and can take any value), and that the attacker
can manipulate at most q attack elements simultaneously
(‖a‖0 ≤ q).
(i) There exists persistent undetectable attacks ai iff q ≥

αi;
(ii) All persistent attacks are i-identifiable iff q < αi/2;

(iii) All persistent attacks are identifiable iff q < mini αi/2.
Proof: (i): Follows directly from the definition of αi,

where we pick x(0) = x0. (ii): Consider first two attacks
a and ã, both of cardinality q < αi/2, such that ai 6= ãi.
Let y = Gdd+Gaa and ỹ = Gdd̃ +Gaã and suppose that
y = ỹ, in contradiction to the theorem. This implies that
0 = Gd(d− d̃) +Ga(a− ã). Since ai 6= ãi, the attack signal
a−ã would constitute an undetectable attack against element
i. Furthermore, the cardinality of this signal is strictly smaller
than αi/2+αi/2, which is a contradiction to the optimality of
security index αi. Hence, we must have ỹ 6= y, and the attack
a is i-identifiable. Conversely, assume that q ≥ αi/2 and let
us construct two attacks a and ã that are not i-identifiable.



Suppose first that αi is even and that q = αi/2. There exists
an undetectable attack a?, targeting element i, with support
in an index set I , |I| = αi. Thus 0 = Gdd

? + Gaa
?. Let

us split I into two disjoint sets, J and K of equal size,
I = J ∪K, |J | = |K| = αi/2. In a corresponding manner
we can make the split a? = a − ã, where a and ã have
support in J and K, respectively. It is now clear that 0 6=
y = Gdd

? + Gaa = Gaã = ỹ, and since ai 6= ãi this is an
example of a non i-identifiable attack a. A similar argument
can be applied when αi is odd, concluding the proof. (iii):
Follows since identifiability is the same as i-identifiability
for all i.

In some cases it may be more realistic to assume that the
operator actually knows the initial state of the system (1). We
can then state the following corollary to the above theorem,
which applies in the asymptotic limit when k →∞.

Corollary 1: Suppose that A is Schur, that the initial
state x(0) is known to the operator, and that the attacker
can manipulate at most q attack elements simultaneously
(‖a‖0 ≤ q).
(i) There exists persistent asymptotically undetectable at-

tacks ai iff q ≥ αi;
(ii) All persistent attacks are asymptotically i-identifiable

iff q < αi/2;
(iii) All persistent attacks are asymptotically identifiable iff

q < mini αi/2.
Proof: The only difference to the proof of Theorem 1 is

that we need to add a transient term ytrans(k) = CAk(x(0)−
x0) to all outputs, see [8]. Here x0 is an initial state
rendering the relevant attack undetectable. Since ρ(A) < 1
by assumption, this term decays to zero exponentially and
the asymptotic results follow.

We note that other papers have previously pointed out
the connection between detectability and identifiability of
attacks, see, e.g., [6]. The main contribution here is to in-
troduce i-identifiability and show the relation to the security
index αi. As an example, assume that α1 = 1, α2 = 3,
and that q = 1. Then there will exist attacks against a1 that
are not visible in y, but all attacks against a2 will not only
be visible but also identifiable through y. How to possibly
conduct the identification is discussed next.

B. Decoupling the Attacks from the Disturbances

To identify attacks a in the output y, there are several
useful results in the fault detection literature, see, e.g., [3],
[2]. In particular, we will use a result on the existence
of decoupling filters, which isolate the influence of the
attack from that of the disturbance. A key result towards
identification is the existence of certain left inverses.

Definition 5: Consider the linear system y = Gu with m
inputs, p outputs, and with realization

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k).

Then G has a left inverse when y(k) = 0, k ≥ 0, implies
that u(k) = 0, k ≥ 0, provided x(0) = 0.

The following condition for existence of a left inverse is
well known, see, e.g., [22], [23].

Lemma 1: A linear system G ∈ Rp×m
p (z) has a left

inverse iff normalrankG(z) = m.
From fault detection [2], it is known that if Gd, Ga ∈

Rp(z) and

normalrank [Gd(z)] = m′,

normalrank [Gd(z) Ga(z)] = m′ +m′′,
(5)

then there exists a post-filter R ∈ Rm×m
p (z) (of full normal

rank) such that we can decouple the effects of the attacks
and the disturbances in the following way:[

r
y′

]
= R(Gdd+Gaa) =

[
0 ∆
G′d G′a

] [
d
a

]
, (6)

where normalrank [G′d(z)] = normalrank [G′d(z)G′a(z)] =
m′ and normalrank [∆(z)] = m′′. Note that if all attacks
are undetectable in the sense of (4), then m′′ = 0, and ∆
will be the empty matrix. On the other hand, if for some
i, αi > 1, then m′′ > 0 and there is a non-trivial system
∆. The residual signal r is only influenced by the attack a,
and we can use it to detect and potentially identify a. Notice
that for all attacks a there exists a disturbance d such that
0 = y′ = G′dd + G′aa, so that r = ∆a is the only reliable
source of information in regards to a. We have the following
proposition on the relation between the measured output y
and the filtered version r.

Proposition 1: Let the initial state of the decoupling filter
R be chosen to xR(0) = 0. Suppose the initial state x(0)
is unknown to the operator (and can take any value), and
that the attacker can manipulate at most q attack elements
simultaneously (‖a‖0 ≤ q).
(i) There exists persistent undetectable attacks ai in the

signal r iff q ≥ αi;
(ii) All persistent attacks are i-identifiable in the signal r

iff q < αi/2;
(iii) All persistent attacks are identifiable in the signal r iff

q < mini αi/2.
Proof: Recalling that R has full normal rank, we can

use Lemma 1 and Definition 5 to conclude that Ry = 0
is equivalent to y = 0. Since there is always a d such that
y′ = 0 in (6), the undetectability and identifiability properties
of a in y = Gdd + Gaa must carry over to the relation
r = ∆a, to which we can apply Theorem 1.

If we suppose that q < mini αi/2, all persistent attacks
are identifiable. A procedure to identify a could include the
following steps (we leave the details for future work): First
apply the post-filter R to y to obtain the relation r = ∆a.
The initial state x(0) is unknown, and could cause a non-zero
transient in r even in the absence of an attack a. However, the
dynamics of the transients are known, and can be filtered out
from r to obtain a new transient-free residual r′. The signal
r′ is identically zero if r can be completely explained by
a transient ytrans(k) = CAkx(0). Undetectable attacks could
also be also ”hiding” in the transient, and by forming r′

the visible effects of such possible attacks also disappear.



However, since we know that q < mini αi, there are no
such persistent attacks affecting a, and so to identify a we
can equally well use the relation r′ = ∆a, where the initial
state of ∆ is zero, x∆(0) = 0. To find a, we can form the
systems ∆I := [∆i]i∈I out of the columns ∆i of ∆, for
all subsets |I| ≤ q, I ⊆ {1, . . . ,m}. Since all attacks are
identifiable, these ∆I are left invertible, and give each rise
to an attack estimation âI . From identifiability of a it follows
that any estimate âI satisfying r′ = ∆âI is actually equal to
the real persistent attack a, which concludes the procedure.

Note that the real bottleneck here is the number of systems
∆I that need to be formed and inverted. The problem is in
fact essentially the same as in compressed sensing, see, e.g.,
[19]. Finally, we remark that the procedure can be modified
to handle attacks that are only i-identifiable, but the estimates
âI will then only necessarily correctly identify element ai.

V. CONCLUSION

In this paper, we have studied detectability and identi-
fiability of attacks on systems that are also subjected to
disturbances. For this purpose, we generalized the concept
of security index, which was previously introduced for static
systems in [9]. In particular, the index exactly quantifies the
resources necessary for targeted attacks to be undetectable
and unidentifiable in the presence of disturbances. Such
information is relevant for both risk assessment and for the
design of anomaly detectors. We also discussed how these
concepts relate to recent other work on attack detection and
identification. Finally, we showed how techniques from the
fault detection literature can be exploited to identify attacks
under certain sparsity constraints.
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