
 
 

Delft University of Technology

A central limit theorem for the Hellinger loss of Grenander-type estimators

Lopuhaä, Hendrik P.; Musta, Eni

DOI
10.1111/stan.12153
Publication date
2018
Document Version
Final published version
Published in
Statistica Neerlandica

Citation (APA)
Lopuhaä, H. P., & Musta, E. (2018). A central limit theorem for the Hellinger loss of Grenander-type
estimators. Statistica Neerlandica, 73 (2019)(2), 180-196. https://doi.org/10.1111/stan.12153

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1111/stan.12153
https://doi.org/10.1111/stan.12153


Received: 22 December 2016 Revised: 6 November 2017 Accepted: 10 July 2018

DOI: 10.1111/stan.12153

O R I G I N A L A R T I C L E

A central limit theorem for the Hellinger loss of
Grenander-type estimators

Hendrik P. Lopuhaä Eni Musta

Delft Institute of Applied
Mathematics, Delft University of
Technology, Delft, The Netherlands

Correspondence
Eni Musta, Delft Institute of Applied
Mathematics, Delft University of
Technology, 2628 XE Delft, The
Netherlands.
Email: E.Musta@tudelft.nl

We consider Grenander-type estimators for a monotone
function 𝜆 ∶ [0, 1] → R+, obtained as the slope of a concave
(convex) estimate of the primitive of 𝜆. Our main result is a
central limit theorem for the Hellinger loss, which applies
to estimation of a probability density, a regression func-
tion or a failure rate. In the case of density estimation,
the limiting variance of the Hellinger loss turns out to be
independent of 𝜆.
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1 INTRODUCTION

One of the problems in shape-constrained nonparametric statistics is to estimate a real-valued
function under monotonicity constraints. Early references for this type of problem can be
found in Grenander (1956), Brunk (1958), and Marshall and Proschan (1965), concern-
ing the estimation of a probability density, a regression function, and a failure rate under
monotonicity constraints. The asymptotic distribution of these types of estimators was first
obtained by Prakasa Rao (1969, 1970) and reproved by Groeneboom (1985), who introduced
a more accessible approach based on inverses. The latter approach initiated a stream of
research on isotonic estimators, for example, see Groeneboom and Wellner (1992), Huang and
Zhang (1994), Huang and Wellner (1995), and Lopuhaä and Nane (2013). Typically, the pointwise
asymptotic behavior of isotonic estimators is characterized by a cube-root n rate of convergence
and a nonnormal limit distribution.

The situation is different for global distances. In Groeneboom (1985), a central limit theorem
was obtained for the L1-error of the Grenander estimator of a monotone density (Groeneboom,
Hooghiemstra, & Lopuhaä, 1999), and a similar result was established in Durot (2002) for the
regression context. Extensions to general Lp-errors can be found in Kulikov and Lopuhaä (2005)
and Durot (2007), where the latter provides a unified approach that applies to a variety of statistical
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models. For the same general setup, an extremal limit theorem for the supremum distance was
obtained in Durot, Kulikov, and Lopuhaä (2012).

Another widely used global measure of departure from the true parameter of inter-
est is the Hellinger distance. It is a convenient metric in maximum likelihood problems,
which goes back to the works of LeCam (1970, 1973), and it has nice connections with
Bernstein norms and empirical process theory methods to obtain rates of convergence, due
fundamentally to the works of Birgé and Massart (1993), Wong and Shen (1995), and oth-
ers; see section 3.4 of van der Vaart and Wellner (1996) or chapter 4 in van de Geer (2000)
for a more detailed overview. Consistency in Hellinger distance of shape-constrained maxi-
mum likelihood estimators was investigated by Pal, Woodroofe, and Meyer (2007), Seregin and
Wellner (2010), and Doss and Wellner (2016), whereas rates on Hellinger risk measures were
obtained in Seregin and Wellner (2010), Kim and Samworth (2016), and Kim, Guntuboyina, and
Samworth (2016).

In contrast with Lp-distances or the supremum distance, there is no distribution theory avail-
able for the Hellinger loss of shape-constrained nonparametric estimators. In this paper, we
present a first result in this direction, that is, a central limit theorem for the Hellinger loss of
Grenander-type estimators for a monotone function 𝜆. This type of isotonic estimator was also
considered by Durot (2007) and is defined as the left-hand slope of a concave (or convex) estimate
of the primitive of 𝜆, based on n observations. We will establish our results under the same general
setup of Durot (2007), which includes estimation of a probability density, a regression function, or
a failure rate under monotonicity constraints. In fact, after approximating the squared Hellinger
distance by a weighted L2-distance, a central limit theorem can be obtained by mimicking the
approach introduced in the work of Durot (2007). An interesting feature of our main result is that,
in the monotone density model, the variance of the limiting normal distribution for the Hellinger
distance does not depend on the underlying density. This phenomena was also encountered for
the L1-distance in Groeneboom (1985) and Groeneboom et al. (1999).

In Section 2, we define the setup and approximate the squared Hellinger loss by a weighted
L2-distance. A central limit theorem for the Hellinger distance is established in Section 3. We
end this paper by a short discussion on the consequences for particular statistical models and a
simulation study on testing exponentiality against a nonincreasing density.

2 DEFINITIONS AND PREPARATORY RESULTS

Consider the problem of estimating a nonincreasing (or nondecreasing) function 𝜆 ∶ [0, 1] → R+

on the basis of n observations. Suppose that we have at hand a cadlag step estimator Λn for

Λ(t) = ∫
t

0
𝜆(u)du, t ∈ [0, 1].

If 𝜆 is nonincreasing, then the Grenander-type estimator �̂�n for 𝜆 is defined as the left-hand slope
of the least concave majorant of Λn, with �̂�n(0) = limt↓0�̂�n(t). If 𝜆 is nondecreasing, then the
Grenander-type estimator �̂�n for 𝜆 is defined as the left-hand slope of the greatest convex minorant
of Λn, with �̂�n(0) = limt↓0�̂�n(t). We aim at proving the asymptotic normality of the Hellinger
distance between �̂�n and 𝜆 defined by

H(�̂�n, 𝜆) =

(
1
2 ∫

1

0

(√
�̂�n(t) −

√
𝜆(t)

)2

dt

)1∕2

. (1)



182 LOPUHAÄ AND MUSTA

We will consider the same general setup as in the work of Durot (2007), that is, we will assume
the following conditions:

(A1) 𝜆 is monotone and differentiable on [0, 1] with 0 < inf t|𝜆′(t)| ≤ supt|𝜆′(t)| < ∞.
(A2') Let Mn = Λn − Λ. There exist C > 0 such that, for all x > 0 and t = 0, 1,

E

[
sup

u∈[0,1],x∕2≤|t−u|≤x
(Mn(u) − Mn(t))2

]
≤ C x

n
. (2)

Durot (2007) also considered an additional condition (A2) in order to obtain bounds on pth
moments; see theorem 1 and corollary 1 in Durot (2007). However, we only need condition (A2')
for our purposes.

(A3) �̂�n(0) and �̂�n(1) are stochastically bounded.
(A4) Let Bn be either a Brownian bridge or a Brownian motion. There exists q > 12, Cq > 0,

L ∶ [0, 1] → R, and versions of Mn = Λn − Λ and Bn, such that

P
(

n1−1∕q sup
t∈[0,1]

|||Mn(t) − n−1∕2Bn◦ L(t)||| > x
)

≤ Cqx−q

for x ∈ (0,n]. Moreover, L is increasing and twice differentiable on [0, 1] with supt|L′′(t)| <
∞ and inf tL′(t) > 0.

In Durot (2007), a variety of statistical models are discussed for which the above assump-
tions are satisfied, such as estimation of a monotone probability density, a monotone regression
function, and a monotone failure rate under right censoring. In Section 4, we briefly discuss the
consequence of our main result for these models. We restrict ourselves to the case of a nonin-
creasing function 𝜆. The case of nondecreasing 𝜆 can be treated similarly. Note that, even if this
may not be a natural assumption, for example, in the regression setting, we need to assume that
𝜆 is positive for the Hellinger distance to be well defined.

The reason that one can expect a central limit theorem for the Hellinger distance is the fact
that the squared Hellinger distance can be approximated by a weighted squared L2-distance. This
can be seen as follows:

∫
1

0

(√
�̂�n(t) −

√
𝜆(t)

)2

dt = ∫
1

0

(
�̂�n(t) − 𝜆(t)

)2
(√

�̂�n(t) +
√
𝜆(t)

)−2

dt

≈ ∫
1

0

(
�̂�n(t) − 𝜆(t)

)2(4𝜆(t))−1 dt. (3)

Because L2-distances for Grenander-type estimators obey a central limit theorem (e.g.,
Durot, 2007; Kulikov & Lopuhaä, 2005), similar behavior might be expected for the squared
Hellinger distance. An application of the delta method will then do the rest.

The next lemma makes the approximation in (3) precise.

Lemma 1. Assume (A1), (A2'), (A3), and (A4). Moreover, suppose that there are C′ > 0 and
s > 3∕4 with ||𝜆′(t) − 𝜆′(x)|| ≤ C′|t − x|s, for all t, x ∈ [0, 1]. (4)

If 𝜆 is strictly positive, we have that

∫
1

0

(√
�̂�n(t) −

√
𝜆(t)

)2

dt = ∫
1

0

(
�̂�n(t) − 𝜆(t)

)2 (4𝜆(t))−1 dt + op(n−5∕6).
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In order to prove Lemma 1, we need the preparatory lemma below. To this end, we introduce
the inverse of �̂�n, defined by

Ûn(a) = argmax
u∈[0,1]

{
Λ+

n (u) − au
}
, for all a ∈ R, (5)

where

Λ+
n (t) = max

{
Λn(t), limu↑t

Λn(u)
}

.

Note that
�̂�n(t) ≥ a ⇒ Ûn(a) ≥ t. (6)

Furthermore, let g denote the inverse of 𝜆. We then have the following result.

Lemma 2. Under the conditions of Lemma 1, it holds

∫
1

0

|||�̂�n(t) − 𝜆(t)|||3
dt = oP

(
n−5∕6) .

Proof. We follow the line of reasoning in the first step of the proof of theorem 2 in Durot
(2007) with p = 3. For completeness, we briefly sketch the main steps. We will first show that

∫
1

0

|||�̂�n(t) − 𝜆(t)|||3
dt = ∫

𝜆(1)

𝜆(0)

|||Ûn(b) − g(b)|||3
𝜆′(g(b))2 db + oP

(
n−5∕6) .

To this end, consider

I1 = ∫
1

0

(
�̂�n(t) − 𝜆(t)

)3
+ dt, I2 = ∫

1

0

(
𝜆(t) − �̂�n(t)

)3
+ dt,

where x+ = max{x, 0}. We approximate I1 by

J1 = ∫
1

0 ∫
(𝜆(0)−𝜆(t))3

0
1{�̂�n(t)≥𝜆(t)+a1∕3}dadt.

From the reasoning on page 1,092 of Durot (2007), we deduce that

0 ≤ I1 − J1 ≤ ∫
n−1∕3 log n

0

(
�̂�n(t) − 𝜆(t)

)3
+ dt + |||�̂�n(0) − 𝜆(1)|||3

1{n1∕3Ûn(𝜆(0))>log n}.

Because the �̂�n(0) is stochastically bounded and 𝜆(1) is bounded, together with lemma 4 in
Durot (2007), the second term is of the order op(n−5/6). Furthermore, for the first term, we can
choose p′ ∈ [1, 2) such that the first term on the right-hand side is bounded by

|||�̂�n(0) − 𝜆(1)|||3−p′

∫
n−1∕3 log n

0

|||�̂�n(t) − 𝜆(t)|||p′

dt.

As in Durot (2007), we get

E

[
∫

n−1∕3 log n

0

|||�̂�n(t) − 𝜆(t)|||p′

dt

]
≤ Kn−(1+p′)∕3 log n = o

(
n−5∕6) ,

by choosing p′ ∈ (3∕2, 2). It follows that I1 = J1 + oP(n−5/6). By a change of variable b =
𝜆(t) + a1/3, we find

I1 = ∫
𝜆(0)

𝜆(1) ∫
Ûn(b)

g(b)
3(b − 𝜆(t))21{g(b)<Ûn(b)}dt db + op

(
n−5∕6) .
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Then, by a Taylor expansion, (A1), and (4), there exists a K > 0, such that|||(b − 𝜆(t))2 −
{
(g(b) − t) 𝜆′ (g(b))

}2||| ≤ K(t − g(b))2+s
, (7)

for all b ∈ (𝜆(1), 𝜆(0)) and t ∈ (g(b), 1]. We find

I1 = ∫
𝜆(0)

𝜆(1) ∫
Ûn(b)

g(b)
3(t − g(b))2

𝜆′(g(b))21{g(b)<Ûn(b)}dt db + Rn + op(n−5∕6), (8)

where

|Rn| ≤ ∫
𝜆(0)

𝜆(1) ∫
Ûn(b)

g(b)
3K(t − g(b))2+s1{g(b)<Ûn(b)}dt db

≤ 3K
3 + s ∫

𝜆(0)

𝜆(1)

|||Ûn(b) − g(b)|||3+s
db = Op

(
n−(3+s)∕3) = op

(
n−5∕6) ,

by using (23) in Durot (2007), that is, for every q′ < 3(q − 1), there exists Kq′ > 0 such that

E

[(
n1∕3 |||Ûn(a) − g(a)|||)q′] ≤ Kq′ , for all a ∈ R. (9)

It follows that

I1 = ∫
𝜆(0)

𝜆(1)

(
Ûn(b) − g(b)

)3
𝜆′(g(b))21{g(b)<Ûn(b)}db + op

(
n−5∕6) .

In the same way, one finds

I2 = ∫
𝜆(0)

𝜆(1)

(
g(b) − Ûn(b)

)3
𝜆′(g(b))21{g(b)>Ûn(b)}db + op

(
n−5∕6) ,

and it follows that

∫
1

0

|||�̂�n(t) − 𝜆(t)|||3
dt = I1 + I2 = ∫

𝜆(0)

𝜆(1)

|||Ûn(b) − g(b)|||3
𝜆′(g(b))2 db + op

(
n−5∕6) .

Now, because 𝜆′ is bounded, by Markov's inequality, for each 𝜖 > 0, we can write

P

(
n5∕6 ∫

𝜆(1)

𝜆(0)

|||Ûn(b) − g(b)|||3
𝜆′(g(b))2 db > 𝜖

)
≤ 1

c𝜖n1∕6 ∫
𝜆(1)

𝜆(0)
E

[
n|||Ûn(b) − g(b)|||3]

db ≤ Kn−1∕6 → 0.

For the last inequality, we again used (9) with q′ = 3. It follows that

∫
𝜆(1)

𝜆(0)

|||Ûn(b) − g(b)|||3
𝜆′(g(b))2 db = oP

(
n−5∕6) , (10)

which finishes the proof.

Proof of Lemma 1. Similar to (3), we write

∫
1

0

(√
�̂�n(t) −

√
𝜆(t)

)2

dt = ∫
1

0

(
�̂�n(t) − 𝜆(t)

)2(4𝜆(t))−1 dt + Rn,

where

Rn = ∫
1

0

(
�̂�n(t) − 𝜆(t)

)2
{(√

�̂�n(t) +
√
𝜆(t)

)−2

− (4𝜆(t))−1

}
dt.
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Write

4𝜆(t) −
(√

�̂�n(t) +
√
𝜆(t)

)2

= 𝜆(t) − �̂�n(t) − 2
√
𝜆(t)

(√
�̂�n(t) −

√
𝜆(t)

)

=
(
𝜆(t) − �̂�n(t)

) ⎛⎜⎜⎜⎝1 +
2
√
𝜆(t)√

�̂�n(t) +
√
𝜆(t)

⎞⎟⎟⎟⎠ .
Because 0 < 𝜆(1) ≤ 𝜆(t) ≤ 𝜆(0) < ∞, this implies that

|Rn| ≤ ∫
1

0

(
�̂�n(t) − 𝜆(t)

)2

|||||4𝜆(t) −
(√

�̂�n(t) +
√
𝜆(t)

)2|||||
4𝜆(t)

(√
�̂�n(t) +

√
𝜆(t)

)2 d t ≤ C ∫
1

0

|||�̂�n(t) − 𝜆(t)|||3
dt

for some positive constant C only depending on 𝜆(0) and 𝜆(1). Then, from Lemma 2, it follows
that n5/6Rn = oP(1).

3 MAIN RESULT

In order to formulate the central limit theorem for the Hellinger distance, we introduce the
process X, defined as

X(a) = argmax
u∈R

{
W(u) − (u − a)2} , a ∈ R, (11)

with W being a standard two-sided Brownian motion. This process was introduced and investi-
gated by Groeneboom (1985, 1989) and plays a key role in the asymptotic behavior of isotonic
estimators. The distribution of the random variable X(0) is the pointwise limiting distribution of
several isotonic estimators, and the constant

k2 = ∫
∞

0
cov

(|X(0)|2, |X(a) − a|2) da (12)

appears in the limit variance of the Lp-error of isotonic estimators (e.g., Durot, 2002, 2007;
Groeneboom, 1985; Groeneboom et al., 1999; Kulikov & Lopuhaä, 2005). We then have the
following central limit theorem for the squared Hellinger loss.

Theorem 1. Assume (A1), (A2'), (A3), (A4), and (4). Moreover, suppose that 𝜆 is strictly positive.
Then, the following holds:

n1∕6

{
n2∕3 ∫

1

0

(√
�̂�n(t) −

√
𝜆(t)

)2

dt − 𝜇2

}
→ N(0, 𝜎2),

where

𝜇2 = E
[|X(0)|2]∫ 1

0

|𝜆′(t)L′(t)|2∕3

22∕3𝜆(t)
dt, 𝜎2 = 21∕3k2 ∫

1

0

|𝜆′(t)L′(t)|2∕3L′(t)
𝜆(t)2 dt,

where k2 is defined in (12).
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Proof. According to Lemma 1, it is sufficient to show that n1∕6(n2∕3In − 𝜇2) → N(0, 𝜎2), with

In = ∫
1

0

(
�̂�n(t) − 𝜆(t)

)2(4𝜆(t))−1 dt.

Again, we follow the same line of reasoning as in the proof of theorem 2 in Durot (2007). We
briefly sketch the main steps of the proof. We first express In in terms of the inverse process
Ûn, defined in (5). To this end, similar to the proof of Lemma 2, consider

Ĩ1 = ∫
1

0

(
�̂�n(t) − 𝜆(t)

)2
+ (4𝜆(t))

−1 dt, Ĩ2 = ∫
1

0

(
𝜆(t) − �̂�n(t)

)2
+ (4𝜆(t))

−1 dt.

For the first integral, we can now write

Ĩ1 = ∫
1

0 ∫
∞

0
1{

�̂�n(t)≥𝜆(t)+√
4a𝜆(t)

} dadt.

Then, if we introduce

J̃1 = ∫
1

0 ∫
(𝜆(0)−𝜆(t))2∕4𝜆(t)

0
1{

�̂�n(t)≥𝜆(t)+√
4a𝜆(t)

} dadt, (13)

we obtain

0 ≤ Ĩ1 − J̃1 ≤ ∫
Ûn(𝜆(0))

0 ∫
∞

(𝜆(0)−𝜆(t))2∕4a𝜆(t)
1{

�̂�n(t)≥𝜆(t)+√
4a𝜆(t)

} dadt

≤ 1
4𝜆(1) ∫

Ûn(𝜆(0))

0

(
�̂�n(t) − 𝜆(t)

)2
+ dt.

Similar to the reasoning in the proof of Lemma 2, we conclude that Ĩ1 = J̃1 + op(n−5∕6).
Next, the change of variable b = 𝜆(t) +

√
4a𝜆(t) yields

J̃1 = ∫
𝜆(0)

𝜆(1) ∫
Ûn(b)

g(b)

b − 𝜆(t)
2𝜆(t)

1{Ûn(b)>g(b)}dt db

= ∫
𝜆(0)

𝜆(1) ∫
Ûn(b)

g(b)

b − 𝜆(t)
2b

1{Ûn(b)>g(b)}dt db

+ ∫
𝜆(0)

𝜆(1) ∫
Ûn(b)

g(b)

(b − 𝜆(t))2

2b𝜆(t)
1{Ûn(b)>g(b)}dt db.

(14)

Let us first consider the second integral on the right-hand side of (14). We then have

∫
𝜆(0)

𝜆(1) ∫
Ûn(b)

g(b)

(b − 𝜆(t))2

2b𝜆(t)
1{Ûn(b)>g(b)}dt db

≤ 1
2𝜆(1)2 ∫

𝜆(0)

𝜆(1) ∫
Ûn(b)

g(b)
(b − 𝜆(t))21{Ûn(b)>g(b)}dt db

≤ 1
2𝜆(1)2 sup

x∈[0,1]
|𝜆′(x)|∫ 𝜆(0)

𝜆(1)
1{Ûn(b)>g(b)} ∫

Ûn(b)

g(b)
(t − g(b))2 dt db

= 1
6𝜆(1)2 sup

x∈[0,1]
|𝜆′(x)|∫ 𝜆(0)

𝜆(1)
1{Ûn(b)>g(b)}

(
Ûn(b) − g(b)

)3 db = oP
(

n−5∕6) ,
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again by using (9) with q′ = 3. Then, consider the first integral on the right-hand side of (14).
Similar to (7), there exists K > 0 such that||(b − 𝜆(t) − (g(b) − t)𝜆′(g(b)))|| ≤ K(t − g(b))1+s,

for all b ∈ (𝜆(1), 𝜆(0)) and t ∈ ( g(b), 1]. Taking into account that 𝜆′( g(b)) < 0, similar to (8),
it follows that

Ĩ1 = ∫
𝜆(0)

𝜆(1) ∫
Ûn(b)

g(b)

|𝜆′(g(b))|
2b

(t − g(b))1{Ûn(b)>g(b)}dt db + R̃n + op
(

n−5∕6) ,
where

|R̃n| ≤ ∫
𝜆(0)

𝜆(1) ∫
Ûn(b)

g(b)

K
2𝜆(1)

(t − g(b))1+s1{g(b)<Ûn(b)}dt db

≤ K
2𝜆(1)(2 + s) ∫

𝜆(0)

𝜆(1)

|||Ûn(b) − g(b)|||2+s
db = Op

(
n−(2+s)∕3) = op

(
n−5∕6) ,

by using (9) once more, and the fact that s > 3∕4. It follows that

Ĩ1 = ∫
𝜆(0)

𝜆(1)

|𝜆′(g(b))|
4b

(
Ûn(b) − g(b)

)2
1{Ûn(b)>g(b)}db + op

(
n−5∕6) .

In the same way,

Ĩ2 = ∫
𝜆(0)

𝜆(1)

|𝜆′(g(b))|
4b

(
Ûn(b) − g(b)

)2
1{Ûn(b)<g(b)}db + op

(
n−5∕6) ,

so that

In = Ĩ1 + Ĩ2 = ∫
𝜆(0)

𝜆(1)

(
Ûn(b) − g(b)

)2 |𝜆′(g(b))|
4b

db + oP
(

n−5∕6) .
We then mimic step 2 in the proof of theorem 2 in Durot (2007). Consider the representation

Bn(t) = Wn(t) − 𝜉nt,

where Wn is a standard Brownian motion, 𝜉n = 0 if Bn is a Brownian motion, and 𝜉n is a
standard normal random variable independent of Bn if Bn is a Brownian bridge. Then, define

Wt(u) = n1∕6 {
Wn

(
L(t) + n−1∕3u

)
− Wn(L(t))

}
, for t ∈ [0, 1],

which has the same distribution as a standard Brownian motion. Now, for t ∈ [0, 1], let
d(t) = |𝜆′(t)|∕(2L′(t)2) and define

Ṽ(t) = argmax|u|≤log n

{
Wt(u) − d(t)u2} . (15)

Then, similar to (26) in Durot (2007), we will obtain

n2∕3In = ∫
1

0

||||Ṽ(t) − n−1∕6 𝜉n

2d(t)
||||2||||𝜆′(t)L′(t)

||||2 1
4𝜆(t)

dt + oP
(

n−1∕6) . (16)

To prove (16), by using the approximation

Ûn(a) − g(a) ≈
L(Ûn(a)) − L(g(a))

L′(g(a))
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and a change of variable a𝜉 = a − n1/2𝜉nL′( g(a)), we first obtain

n2∕3In = n2∕3 ∫
𝜆(0)−𝛿n

𝜆(1)+𝛿n

|||L(Ûn(a𝜉)) − L(g(a𝜉))|||2 |𝜆′(g(a))|
(L′(g(a)))2

1
4a

da + op
(

n−1∕6) ,
where 𝛿n = n−1∕6∕ log n. Apart from the factor 1∕4a, the integral on the right-hand side is the
same as in the proof of theorem 2 in Durot (2007) for p = 2. This means that we can apply the
same series of succeeding approximations for L(Ûn(a𝜉)) − L(g(a𝜉)) as in Durot (2007), which
yields

n2∕3In = n2∕3 ∫
𝜆(0)−𝛿n

𝜆(1)+𝛿n

||||Ṽ(g(a)) − n−1∕6 𝜉n

2d(g(a))
||||2 |𝜆′(g(a))|
(L′(g(a)))2

1
4a

da + op
(

n−1∕6) .
Finally, because the integrals over [𝜆(1), 𝜆(1)+𝛿n] and [𝜆(0)−𝛿n, 𝜆(0)] are of the order op(n−1/6),
this yields (16) by a change of variables t = g(a).

The next step is to show that the term with 𝜉n can be removed from (16). This can be
done exactly as in Durot (2007), because the only difference with the corresponding integral
in Durot (2007) is the factor 1∕4𝜆(t), which is bounded and does not influence the argument
in Durot (2007). We find that

n2∕3In = ∫
1

0
|Ṽ(t)|2||||𝜆′(t)L′(t)

||||2 1
4𝜆(t)

dt + oP
(

n−1∕6) .
Then, define

Yn(t) =
(|Ṽ(t)|2 − E

[|Ṽ(t)|2]) ||||𝜆′(t)L′(t)
||||2 1

4𝜆(t)
. (17)

By approximating Ṽ(t) by

V(t) = argmax
u∈R

{
Wt(u) − d(t)u2} ,

and using that, by Brownian scaling, d(t)2/3V(t) has the same distribution as X(0) (see Durot,
2007, for details), we have that

∫
1

0
E

[|Ṽ(t)|2] ||||𝜆′(t)L′(t)
||||2 1

4𝜆(t)
dt = E

[|X(0)|2]∫ 1

0
d(t)−4∕3||||𝜆′(t)L′(t)

||||2 1
4𝜆(t)

dt + o
(

n−1∕6)
= 𝜇2 + o

(
n−1∕6) .

It follows that

n1∕6(In − 𝜇2) = n1∕6 ∫
1

0
Yn(t)dt + oP(1).

We then first show that

Var
(

n1∕6 ∫
1

0
Yn(t)dt

)
→ 𝜎2. (18)

Once more, following the proof in Durot (2007), we have

vn = Var
(
∫

1

0
Yn(t)dt

)
= 2∫

1

0 ∫
1

s

||||𝜆′(t)L′(t)
𝜆′(s)
L′(s)

||||2 1
4𝜆(t)

1
4𝜆(s)

cov
(|Ṽ(t)|2, |Ṽ(s)|2) dt ds.
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After the same sort of approximations as in Durot (2007), we get

vn = 2∫
1

0 ∫
min(1,s+cn)

s

||||𝜆′(s)L′(s)
||||4 1
(4𝜆(s))2 cov

(|Vt(s)|2, |Vs(s)|2) dt ds + o
(

n−1∕3) ,
where cn = 2n−1∕3 log n∕inf t L′(t) and where, for all s and t,

Vt(s) = argmax
u∈R

{
Wt(u) − d(s)u2} .

Then, use that d(s)2/3Vt(s) has the same distribution as

X
(

n1∕3d(s)2∕3(L(t) − L(s))
)
− n1∕3d(s)(L(t) − L(s))

so that the change of variable a = n1/3d(s)2/3(L(t) − L(s)) in vn leads to

n1∕3vn → 2∫
1

0 ∫
∞

0

||||𝜆′(s)L′(s)
||||4 1
(4𝜆(s))2

1
d(s)10∕3L′(s)

cov
(|X(a)|2, |X(0)|2) dads

→ 2k2 ∫
1

0

||||𝜆′(s)L′(s)
||||4 1
(4𝜆(s))2

210∕3|L′(s)|17∕3|𝜆′(s)|10∕3 ds = 𝜎2,

which proves (18).
Finally, asymptotic normality of n1∕6 ∫ 1

0 Yn(t)dt follows by Bernstein's method of big
blocks and small blocks in the same way as in step 6 of the proof of theorem 2 in Durot (2007).

Corollary 1. Assume (A1), (A2' ), (A3), (A4), and (4) and let H(�̂�n, 𝜆) be the Hellinger distance
defined in (1). Moreover, suppose that 𝜆 is strictly positive. Then,

n1∕6 {
n1∕3H(�̂�n, 𝜆) − �̃�

}
→ N

(
0, �̃�2) .

�̃� = 2−1∕2𝜇 and �̃�2 = 𝜎2∕8𝜇2 , where 𝜇2 and 𝜎2 are defined in Theorem 1.

Proof. This follows immediately by applying the delta method with 𝜙(x) = 2−1∕2
√

x to the
result in Theorem 1.

4 EXAMPLES

The type of scaling for the Hellinger distance in Corollary 1 is similar to that in the central
limit theorem for Lp-distances. This could be expected in view of the approximation in terms
of a weighted squared L2-distance (see Lemma 1), and the results, for example, in Kulikov and
Lopuhaä (2005) and Durot (2007). Actually, this is not always the case. The phenomenon of
observing different speeds of convergence for the Hellinger distance from those for the L1 and L2
norms was considered by Birgé (1986). In fact, this is related to the existence of a lower bound for
the function we are estimating. If the function of interest is bounded from below, which is the case
considered in this paper, then the approximation (3) holds; see Birgé (1986) for an explanation.

When we insert the expressions for 𝜇2 and 𝜎2 from Theorem 1, then we get

�̃�2 = k2

4E
[|X(0)|2

] ∫ 1
0 |𝜆′(t)L′(t)|2∕3L′(t)𝜆(t)−2 dt

∫ 1
0 |𝜆′(t)L′(t)|2∕3𝜆(t)−1 dt

,



190 LOPUHAÄ AND MUSTA

where k2 is defined in (12). This means that, in statistical models where L = Λ in condition (A4)
and, hence, L′ = 𝜆, the limiting variance �̃�2 = k2∕(4E[|X(0)|2]) does not depend on 𝜆.

One such a model is estimation of the common monotone density 𝜆 on [0, 1] of independent
random variables X1, … ,Xn. Then, Λn is the empirical distribution function of X1, … ,Xn, and
�̂�n is Grenander's estimator (Grenander, 1956). In that case, if inf t𝜆(t) > 0, the conditions of
Corollary 1 are satisfied with L = Λ (see theorem 6 in Durot, 2007), so that the limiting vari-
ance of the Hellinger loss for the Grenander estimator does not depend on the underlying density.
This behavior was conjectured in Wellner (2015) and coincides with that of the limiting vari-
ance in the central limit theorem for the L1-error for the Grenander estimator, first discovered by
Groeneboom (1985); see also Durot (2002, 2007), Groeneboom et al. (1999), and Kulikov and
Lopuhaä (2005).

Another example is when we observe independent identically distributed inhomogeneous
Poisson processes N1, … ,Nn with common mean functionΛ on [0, 1]with derivative 𝜆, for which
Λ(1) < ∞. Then, Λn is the restriction of (N1 + · · · + Nn)∕n to [0, 1]. Also in that case, the condi-
tions of Corollary 1 are satisfied with L = Λ (see theorem 4 in Durot, 2007), so that the limiting
variance of the Hellinger loss for �̂�n does not depend on the common underlying intensity 𝜆. How-
ever, note that, for this model, the L1-loss for �̂�n is asymptotically normal according to theorem 2
in Durot (2007) but with limiting variance depending on the value Λ(1) − Λ(0).

Consider the monotone regression model yi,n = 𝜆(i∕n) + 𝜖i,n, for i = 1, … ,n, where the 𝜖i,n's
are i.i.d. random variables with mean zero and variance 𝜎2 > 0. Let

Λn(t) =
1
n

∑
i≤nt

𝑦i,n, t ∈ [0, 1]

be the empirical distribution function. Then, �̂�n is (a slight modification of) Brunk's (1958) estima-
tor. Under appropriate moment conditions on the 𝜖i,n, the conditions of Corollary 1 are satisfied
with L(t) = t𝜎2 (see theorem 5 in Durot, 2007). In this case, the limiting variance of the Hellinger
loss for �̂�n depends on both 𝜆 and 𝜎2, whereas the L1-loss for �̂�n is asymptotically normal according
to theorem 2 in Durot (2007) but with limiting variance only depending on 𝜎2.

Suppose we observe a right-censored sample (X1,Δ1), … , (Xn,Δn), where Xi = min(Ti,Yi)
andΔi = 1{Ti≤Yi}, with the Ti's being nonnegative i.i.d. failure times and the Yi's are i.i.d. censoring
times independent of the Ti's. Let F be the distribution function of the Ti's with density f and let
G be the distribution function of the Yi's. The parameter of interest is the monotone failure rate
𝜆 = f∕(1 − F) on [0, 1]. In this case, Λn is the restriction of the Nelson–Aalen estimator to [0, 1].
If we assume (A1) and inf t𝜆(t) > 0, then, under suitable assumptions on F and G, the conditions
of Corollary 1 hold with

L(t) = ∫
t

0

𝜆(u)
(1 − F(u))(1 − G(u))

du, t ∈ [0, 1];

see theorem 3 in Durot (2007). This means that the limiting variance of the Hellinger loss depends
on 𝜆, F, and G, whereas the limiting variance of the L1-loss depends only on their values at 0
and 1. In particular, in the case of nonrandom censoring times, L = (1 − F )−1 − 1, the limiting
variance of the Hellinger loss depends on 𝜆 and F, whereas the limiting variance of the L1-loss
depends only on the value F(1).
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5 TESTING EXPONENTIALITY AGAINST A
NONDECREASING DENSITY

In this section, we investigate a possible application of Theorem 1, that is, testing for an exponen-
tial density against a nonincreasing alternative by means of the Hellinger loss. The exponential
distribution is one of the most used and well-known distributions. It plays a very important
role in reliability, survival analysis, and renewal process theory, when modeling random times
until some event. As a result, a lot of attention has been given in the literature to testing for
exponentiality against a wide variety of alternatives, by making use of different properties and
characterizations of the exponential distribution (Alizadeh Noughabi & Arghami, 2011; Haywood
& Khmaladze, 2008; Jammalamadaka & Taufer, 2003; Meintanis, 2007). In this section, we con-
sider a test for exponentiality, assuming that data come from a decreasing density. The test is based
on the Hellinger distance between the parametric estimator of the exponential density and the
Grenander-type estimator of a general decreasing density. In order to be able to apply the result
of Corollary 1, we first investigate a test whether the data is exponentially distributed with a fixed
parameter 𝜆0 > 0. Because such a test may not be very interesting from a practical point of view,
we also investigate testing exponentiality, leaving the parameter 𝜆 > 0 unspecified.

5.1 Testing a simple null hypothesis of exponentiality
Let 𝑓𝜆(x) = 𝜆e−𝜆x1{x≥0} be the exponential density with parameter 𝜆 > 0. Assume we have a
sample of i.i.d. observations X1, … ,Xn from some distribution with density f and for 𝜆0 > 0
fixed, we want to test

H0 ∶ 𝑓 = 𝑓𝜆0 against H1 ∶ 𝑓 is nonincreasing.

Under the alternative hypothesis, we can estimate f on an interval [0, 𝜏] by the Grenander-type
estimator 𝑓n from Section 2. Then, as a test statistic, we take Tn = H(𝑓n, 𝑓𝜆0 ), the Hellinger dis-
tance on [0, 𝜏] between 𝑓n and 𝑓𝜆0 , and at level 𝛼, we reject the null hypothesis if Tn > cn,𝛼,𝜆0 , for
some critical value cn,𝛼,𝜆0 > 0.

According to Corollary 1, it follows that Tn is asymptotically normally distributed, but the
mean and the variance depend on the constant k2 defined in (12). To avoid computation of k2, we
estimate the mean and the variance of Tn empirically. We generate B = 10, 000 samples from 𝑓𝜆0 .
For each of these samples, we compute the Grenander estimator 𝑓n,i and the Hellinger distance
Tn,i = H(𝑓n,i, 𝑓𝜆0 ), for i = 1, 2, … ,B. Finally, we compute the mean T̄ and the variance sT of the
values Tn,1, … ,Tn,B. For the critical value of the test, we take cn,𝛼,𝜆0 = T̄+q1−𝛼sT , where q1− 𝛼 is the
100(1 − 𝛼)% quantile of the standard normal distribution. Note that, even if in the density model
the asymptotic variance is independent of the underlying distribution, the asymptotic mean does
depend on 𝜆0, that is, the test is not distribution free. Another possibility, instead of the normal
approximation, is to take as a critical value c̃n,𝛼,𝜆0 the empirical 100(1 − 𝛼)% quantile of the values
Tn,1, … ,Tn,B.

To investigate the performance of the test, we generate N = 10, 000 samples from 𝑓𝜆0 . For
each sample, we compute the value of the test statistic Tn = H(𝑓n, 𝑓𝜆0 ) and we reject the null
hypothesis if Tn > cn,𝛼,𝜆0 (or if Tn > c̃n,𝛼,𝜆0 ). The percentage of rejections gives an approximation
of the level of the test. Table 1 shows the results of the simulations for different sample sizes n and
two values of 𝜆0 and 𝛼 = 0.01, 0.05, 0.10. Here, we take 𝜏 = 5 because the mass of the exponential
distribution with parameter one or five outside the interval [0, 5] is negligible. We observe that
the percentage of rejections is close to the nominal level if we use c̃n,𝛼,𝜆0 as a critical value for the
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TABLE 1 Simulated levels of Tn using (top) cn,𝛼,𝜆0
and (bottom) c̃n,𝛼,𝜆0

, with
𝛼 = 0.01, 0.05, 0.10, under the null hypothesis varying the sample size n and the
parameter 𝜆0

𝝀0 = 1 𝝀0 = 5
𝜶 = 0.01 𝜶 = 0.05 𝜶 = 0.10 𝜶 = 0.01 𝜶 = 0.05 𝜶 = 0.10

n = 20 0.0229 0.0680 0.1016 0.0310 0.0791 0.1127
0.0118 0.0498 0.0971 0.0117 0.0533 0.1058

n = 50 0.0244 0.0684 0.1123 0.0243 0.0659 0.1086
0.0106 0.0469 0.0923 0.0103 0.0494 0.0964

n = 100 0.0190 0.0589 0.1021 0.0236 0.0673 0.1126
0.0106 0.0531 0.1063 0.0091 0.0453 0.0951

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

FIGURE 1 Simulated powers using (solid) cn,𝛼,𝜆0
and (dashed) c̃n,𝛼,𝜆0

, with 𝛼 = 0.05, of Tn and the power of
(dotted) the likelihood ratio test for 𝜆 = 1, 𝜈 = 0.4, 0.45, … , 1, and n = 100

test, but it is a bit higher if we use cn,𝛼,𝜆0 . This is due to the fact that, for small sample sizes, the
normal approximation of Corollary 1 is not very precise.

Moreover, to investigate the power, we generate a sample from the Weibull distribution with
shape parameter 𝜈 and scale parameter 𝜆−1

0 . Recall that Weibull(1, 𝜆−1
0 ) corresponds to the expo-

nential distribution with parameter 𝜆0 and that a Weibull distribution with 𝜈 < 1 has a decreasing
density. We compute the Hellinger distance Tn = H(𝑓n, 𝑓𝜆0 ) and we reject the null hypothesis if
Tn > cn,𝛼,𝜆0 (or if Tn > c̃n,𝛼,𝜆0 ). After repeating the procedure N = 10, 000 times, we compute the
percentage of times that we reject the null hypothesis, which gives an approximation of the power
of the test.

The results of the simulations, done with n = 100, 𝜆0 = 1, 𝛼 = 0.05, and alternatives for
which 𝜈 varies between 0.4 and 1 by steps of 0.05, are shown in Figure 1. As a benchmark, we
compute the power of the likelihood ratio (LR) test statistic for each 𝜈. As expected, our test is
less powerful with respect to the LR test, which is designed to test against a particular alternative.
However, as the sample size increases, the performance improves significantly and the difference
of the results when using cn,𝛼,𝜆0 or c̃n,𝛼,𝜆0 becomes smaller.
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TABLE 2 Simulated levels of Rn under the null hypothesis varying the
sample size n and the parameter 𝜆

𝝀 0.05 0.1 0.5 1 2 3 4 5

n = 50 0.051 0.052 0.049 0.049 0.05 0.053 0.051 0.054
n = 100 0.049 0.047 0.050 0.052 0.054 0.047 0.049 0.050
n = 500 0.052 0.049 0.049 0.049 0.053 0.052 0.053 0.048

n = 1, 000 0.053 0.046 0.049 0.051 0.049 0.048 0.048 0.052

5.2 Testing a composite null hypothesis of exponentiality
Assume we have a sample of i.i.d. observations X1, … ,Xn from some distribution with density f
and we want to test

H0 ∶ 𝑓 = 𝑓𝜆, for some 𝜆 > 0 against H1 ∶ 𝑓 is nonincreasing.
Under the null hypothesis, we can construct a parametric estimator of the density that is given by
𝑓�̂�n

, where �̂�n = n∕
∑n

i=1 Xi is the maximum likelihood estimator of 𝜆. On the other hand, under
the alternative hypothesis, we can estimate f on an interval [0, 𝜏] by the Grenander-type estimator
𝑓n from Section 2. Then, as a test statistic, we take Rn = H(𝑓n, 𝑓�̂�n

), the Hellinger distance on
[0, 𝜏] between the two estimators, and at level 𝛼, we reject the null hypothesis if Rn > dn,𝛼 for
some critical value dn,𝛼 > 0. Because the limit distribution of the test statistic is not known,
we use a bootstrap procedure to calibrate the test. We generate B = 1, 000 bootstrap samples of
size n from 𝑓�̂�n

, and for each of them, we compute the estimators 𝑓�̂�∗n,i , 𝑓
∗
n,i and the test statistic

R∗
n,i = H(𝑓�̂�∗n,i , 𝑓

∗
n,i), for i = 1, 2, … ,B. Then, we determine the 100𝛼th upper percentile d∗

n,𝛼 of
the values R∗

n,1, … ,R∗
n,B. Finally, we reject the null hypothesis if Rn > d∗

n,𝛼 .
To investigate the level of the test, for 𝛼 = 0.05 and 𝜆 > 0 fixed, we start with a sample from

an exponential distribution with parameter 𝜆 and repeat the above procedure N = 10, 000 times.
We count the number of times we reject the null hypothesis, that is, the number of times the
value of the test statistics exceeds the corresponding 5th upper percentile. Dividing this number
by N gives an approximation of the level. Table 2 shows the results of the simulations for different
sample sizes n and different values of 𝜆. The rejection probabilities are close to 0.05 for all the
values of𝜆, which shows that the test performs well in the different scenarios (slightly and strongly
decreasing densities).

To investigate the power, for 𝛼 = 0.05 and fixed 0 < 𝜈 < 1 and 𝜆 > 0, we now start
with a sample from a Weibull distribution with shape parameter 𝜈 and scale parameter 𝜆−1 and
compute the value Rn = H(𝑓�̂�n

, 𝑓n). In order to calibrate the test, we treat this sample as if it
were an exponential sample and estimate 𝜆 by �̂�n = n∕

∑n
i=1 Xi. Next, we generate B = 1, 000

bootstrap samples of size n from the exponential density with parameter �̂�n. For each bootstrap
sample, we compute the test statistic R∗

n,i = H(𝑓�̂�∗n,i , 𝑓
∗
n,i), for i = 1, 2, … ,B, and we determine

the 5th upper percentile d∗
n,0.05 of the values R∗

n,1, … ,R∗
n,B. Finally, we reject the null hypothesis

if Rn > d∗
n,0.05. After repeating the above procedure N = 10, 000 times, each time starting with

a Weibull sample, we compute the percentage of times that we reject the null hypothesis, which
gives an approximation of the power of the test.

We compare the Hellinger distance test to some of the tests from Alizadeh Noughabi
and Arghami (2011), which are designed to test exponentiality against all the possible alter-
natives, that is, not only against decreasing densities. These tests are all distribution free,
which means that their critical values can be computed independently of 𝜆. Then, for each
of the Weibull samples generated before, we count the percentage of times that the tests
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FIGURE 2 Simulated powers of (black solid) the Hellinger distance test and some other competitor tests, that
is, (blue) T1, (green) T2, (yellow) 𝜔2

n, (brown) Sn, (red) EPn, (purple) KLmn, and (orange) COn, and the power of
(black dotted) the likelihood ratio test for (left) n = 100, 𝜆 = 1, 0.4 ≤ 𝜈 ≤ 1 and (right) 1 ≤ 𝛽 ≤ 8. (a) Weibull.
(b) Beta

T1,T2, 𝜔
2
n, Sn,EPn,KLmn, and COn (see Alizadeh Noughabi & Arghami, 2011, for a precise

definition) reject the null hypothesis. Finally, we also compare the power of our test with the LR
test for each 𝜈.

The results of the simulations, done with n = 100, 𝜆 = 1, and alternatives for which 𝜈 varies
between 0.4 and 1, are shown in the left panel in Figure 2. Actually, we also investigated the power
for different choices of 𝜆, and we observed similar behavior as for 𝜆 = 1. The figure shows that
the test based on the Hellinger distance performs worse than the other tests. In this case, the
test of Cox and Oakes COn has greater power. However, Alizadeh Noughabi and Arghami (2011)
concluded that none of the tests is uniformly most powerful with respect to the others.

We repeated the experiment taking, instead of the Weibull distribution, the beta distribution
with parameters 𝛼 = 1 and 1 ≤ 𝛽 ≤ 8 as alternative. Note that it has a nonincreasing density
on [0, 1] proportional to (1 − x)𝛽 − 1, and the extreme case 𝛽 = 1 corresponds to the uniform
distribution. Results are shown in the right panel in Figure 2. We observe that, for small values of
𝛽, the Hellinger distance test again behaves worse than the others, and in this case, Rn and EPn
have greater power. However, for larger 𝛽, the Hellinger distance test outperforms all the others.
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