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ABSTRACT: Anthropogenic macrolitter (>0.5 cm) in rivers is of increasing
concern. It has been found to have an adverse effect on riverine ecosystem health,
and the livelihoods of the communities depending on and living next to these
ecosystems. Yet, little is known on how macrolitter reaches and propagates through
these ecosystems. A better understanding of macrolitter transport dynamics is key
in developing effective reduction, preventive, and cleanup measures. In this study,
we analyzed a novel dataset of citizen science riverbank macrolitter observations in
the Dutch Rhine−Meuse delta, spanning two years of observations on over 200
unique locations, with the litter categorized into 111 item categories according to
the river-OSPAR protocol. With the use of regression models, we analyzed how
much of the variation in the observations can be explained by hydrometeorology,
observer bias, and location, and how much can instead be explained by temporal
trends and seasonality. The results show that observation bias is very low, with only
a few exceptions, in contrast with the total variance in the observations. Additionally, the models show that precipitation, wind speed,
and river flow are all important explanatory variables in litter abundance variability. However, the total number of items that can
significantly be explained by the regression models is 19% and only six item categories display an R2 above 0.4. This suggests that a
very substantial part of the variability in macrolitter abundance is a product of chance, caused by unaccounted (and often
fundamentally unknowable) stochastic processes, rather than being driven by the deterministic processes studied in our analyses.
The implications of these findings are that for modeling macrolitter movement through rivers effectively, a probabilistic approach
and a strong uncertainty analysis are fundamental. In turn, point observations of macrolitter need to be planned to capture short-
term variability.

KEYWORDS: river-OSPAR protocol

■ INTRODUCTION

Anthropogenic macrolitter (>0.5 cm) in rivers is of increasing
global concern. Depending on the material type and size,
macrolitter negatively affects environmental health and human
livelihood within and close to riverine ecosystems.1 Direct
impacts of plastics include economic losses through damage to
vessels,1,2 increased (urban) flood risk by blocking hydraulic
infrastructure,3 and (fatal) damage to aquatic flora and fauna.1

With the predicted increase in the quantity of litter reaching
the river systems,4,5 it becomes increasingly important to
understand the source, mobilization, transport, and fate of the
litter items.
Macrolitter arrives in the river network from a variety of

sources ranging from industry, sewage overflows, and items
that are directly disposed close to or in the river. Global data
show that most of this litter is made of plastic but other
materials such as wood, metal, glass, and paper are also found
(e.g., Castro-Jimeńez et al., 2019; van Emmerik et al., 2020). In
the river system, the litter is distributed over several
compartments.1 Inside the water itself, items can be separated
into floating elements and items in suspension. From here,
litter can be (temporarily) deposited on the riverbed, within

the sediment, on riverbanks, in vegetation along and within the
river, and sometimes even within the riverine biota,8 leading to
a large variation in retention times.9−13 The natural trans-
portation toward and through the river system is traditionally
attributed to three hydrometeorological processes: transport
by precipitation-driven surface runoff, wind, and river flow
dynamics (as well as tidal dynamics). These processes are
assumed to be key factors in explaining both spatial and
temporal variability in riverine litter abundance14−16 although
true quantification is still missing.
Many strategies have been proposed to study the presence

and movement of macrolitter in the river systems. Most of the
studies mainly focus on litter floating on the river surface or
deposited on the riverbanks. Both methods yield inherently
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different information and can only be used as proxies to study
the actual riverine litter transport. Floating litter observations
are instantaneous measurements and only contain the buoyant
fraction of the litter, while riverbank litter observations
represent longer periods and contain a certain bias, as some
items do not come from and will likely never reach the river
(e.g., very heavy items that are abandoned on the riverbanks).
Floating litter monitoring is often done by visual counting of
the objects,17,18 both limiting the spatial distribution of the
observations (observations are often done from bridges) and
preventing detailed item descriptions and classifications to be
made. Alternatively, the sampling can be performed through
net sampling, after which the items can be weighed and
classified.19 Although this method provides a more detailed
description of the litter, it only provides a small snapshot in
both space and time and is labor-intensive. Riverbank litter
sampling provides the opportunity of obtaining a detailed
description of the litter with high spatial resolution.20 Yet, few
studies have explored the use of high detailed riverbank litter
data to study the spatial and temporal variability of riverine
litter.18,21

In this study, we aim to make a first step in exploring the
commonly assumed link between hydrometeorological pro-
cesses and riverine litter transport by separating spatial and
temporal variability in riverine macrolitter into observational
bias, mechanistical processes, and a remaining stochastic
component (which can be mainly attributed to human
behavior). To do this, we make use of a dataset comprising
over 150,000 sampled riverbank macrolitter items, obtained
during a monitoring campaign along the Dutch Rhine−Meuse
delta.7 In contrast with other monitoring campaigns (e.g.,
Kiessling et al., 2019; Owens & Kamil, 2020), this covers a
longer time period (2 years), has a high spatial coverage, uses
the most detailed item categorization scheme to date (derived
from the OSPAR categorization used for marine beach litter
observations), and has built-in quality control as reference
observations are performed in combination with citizen science
(which is often solely used for such large-scale data retrieval).20

In previous studies where such data were analyzed, variability
has been accounted for by determining hotspots in either space
or time, which inherently cannot accommodate different
sources of variability and is dependent on custom thresholds.
Here, we use a combination of regression modeling and
uncertainty analysis to determine the hydrometeorological
processes that best explain the data, at item category level,
creating highly targeted hypotheses on how single items reach
and leave the riverbank. With the same approach, we express
the explanatory power of time, seasonality, space, and type of
observer (experts versus citizen scientists) to identify the
additional sources of variability in the observations. Ultimately,
combining these factors together in a single regression model,
the variance in the data is attributed to deterministic processes
accounted for in this study and stochastic events capturing
unaccounted processes.

■ METHODOLOGY
Litter Dataset. The litter observation data used in this

study was obtained via a monitoring campaign conducted by
The North Sea Foundation (Dutch: Stichting De Noordzee),
henceforth referred to as SDN. In this campaign, riverbanks
along the Dutch Meuse and Waal (branch of the Rhine) were
observed between 2017 and 2019. In total, 384 observations
were carried out in four rounds: autumn 2017, spring 2018,

autumn 2018, and spring 2019, with each round lasting four
weeks. In each round, a pair of volunteers were assigned a
specific, predefined location (day of the measurement was
chosen by the volunteer, within the four-week window).
During each observation, all macrolitter (>2.5 cm) was
removed from a 100 m riverbank stretch and categorized
according to the River-OSPAR protocol,7 containing 111
unique item categories (see Figure 2 for a complete list). The
microlitter items (between 0.5 and 2.5 cm) were separately
obtained and classified by randomly selecting a quadrant of 50
cm × 50 cm on the riverbank and extrapolating the number of
items to the whole area (for details, see Van Emmerik et al.
(2020)). Blanks in the dataset can, therefore, be interpreted as
zero items of this category being present on the riverbank. The
width of the sampling area was determined by the character-
istics of the riverbank and is defined as the distance from the
water line to the high water line during the latest peak
discharge, with a maximum distance of 25 meters. Each
location was at most sampled once per measurement round.
The observations, therefore, represent the accumulation that
took place between samples, integrating litter input and output,
including undocumented removal. In total, 152 415 items were
sampled at 212 unique locations. Most locations were observed
at least twice, and some locations were observed during every
measurement round. The target area for each observation was
2500 m2 (100 meters along the river and 25 meters
perpendicular to the river), but not all observations fit this
criterion. In this study, we normalized the data by linearly
extrapolating the observed litter density to the target 2500 m2

(for example, if only 1000 m2 were sampled, the observations
were multiplied by 2.5). To get an estimate of the quality and
accuracy of the data gathered by the volunteers, reference
observations were carried out by SDN staff (a total of 21
observations, spread over the four measurement rounds). Due
to the novelty, no standardized quality control protocol has
been developed to date.

Additional Data. To be able to study the influence of
hydrometeorology on litter distribution, we combined the
publicly available data on precipitation and wind speed (2017−
2019) from 50 measurement stations of the Royal Netherlands
Meteorological Institute (KNMI) and water level from 87
measurement stations of the Netherlands Ministry of Infra-
structure and Water Management (Rijkswaterstaat) with the
observational litter data. In line with the common assumption
that most litter (with sizes ranging from woody debris to
microplastics) is mobilized and transported during hydro-
meteorological maxima,10,22,23 we calculated the maximum
precipitation, wind speed, and water level over several time
intervals prior to each single litter observation (2 days, 7 days,
14 days, 1 month, 2 months, and 6 months). The values at
each litter observational site were estimated by interpolating
the data (from national hydrometeorological measurement
stations) using inverse distance weighting (one-dimensional
(1D) for water level and two-dimensional (2D) for
precipitation and wind speed).
Besides the trends along the hydrometeorological gradient,

we analyzed the litter data on trends in time and categorically
on seasonality (spring vs autumn, respectively, 285 vs 99
observations) for differences between rivers (Meuse vs Waal,
respectively, 246 and 138 observations) and sampling strategy
(volunteer sampling vs reference sampling by experts,
respectively, 363 and 21 observations). The variables with a
short description and their units are presented in Table 1.
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Statistical Model. To best attribute the effects of these
parameters on the observed litter quantities, we used negative
binomial linear regression models for each parameter and item
category combination. Negative binomial regression is a
generalization of Poisson regression, often used in ecology to
study population count data. It is based on the Poisson-γ
mixture distribution, and used here as litter observations are
count data, often displaying overdispersion (higher variance
than mean) thus ruling out direct Poisson regression.24,25 This
type of model expresses the item count (C) as drawn from a
negative binomial distribution, with parameters r (predefined
number of successes in a Bernoulli trial) and p (probability of a
success of these trials).

∼C NB r p( , )

The model predictions (mean μi, for each item) are defined
such that the natural logarithm of the prediction follows
linearly from a linear combination of the predictor variables.
Here X is the vector describing the predictor variables, βi,j is

the parameter for item i and predictor variable j, and α is the
intercept. M indicates the number of predictor variables.
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Zero-inflated negative binomial (ZINB) regression models
were deemed unsuitable in this scenario, as zero count
observations are part of the same stochastic and mechanistic
processes determining the distribution of the litter.
Hydrometeorological fluxes (precipitation, wind speed, and

river discharge) transport litter only when exceeding a certain
threshold (stemming from physical laws of motion). Therefore,
each item−flux pair has a typical timescale on which the
transport occurs. To assess these timescales, regression models

Table 1. Variables Used in the Regression Models Including Their Units and Description

variable unit categorical description

precipitation [mm d−1] no maximum daily precipitation sum in the optimal time interval preceding the litter observation
wind speed [m s−1] no maximum daily mean wind speed in the optimal time interval preceding the litter observation
water level [m] no maximum water level above the level during the observation in the optimal time interval preceding the litter

observation
time [d] no number of days since January 1, 2017
time after last observation [d] no number of days since the last observation at the same site (if any)
seasonality (spring vs
autumn)

[−] yes number of observed items during a spring measurement in comparison with an autumn measurement

Waal vs Meuse [−] yes number of observed items along the Waal in comparison with the Meuse
volunteer vs reference [−] yes number of observed items by volunteers in comparison with reference observations

Figure 1. Flowchart describing the different components of the data analysis. The thick black lines from parameters to the components describe the
input to the models. All parameters are simultaneously included in the multiparameter models, while the single-parameter models are created for
each individual parameter.
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Figure 2. Optimal time interval for each precipitation−, wind speed−, and water height−item pair, calculated by generating a regression model
between each item and all hydrometeorological fluxes over the different time spans. The x-axis of the figure shows the time lags (2 days, 7 days, 14
days, 1 month, 2 months, and 6 months). The colors in the figure correspond to the R2 value of the regression model, and the optimal lag per item
is highlighted with a black box. The significance (90 percent of the random models performing worse than the actual model) is shown with a red
star (note that they are only shown for the optimal time intervals).
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are set up, modeling each item separately as a function of the
maximum hydrometeorological flux over several time spans (as
described above). The time span yielding the best model
performance (highest R2) is used in the analyses described
below.
To assess the individual influence of the hydrometeoro-

logical fluxes, time, seasonality, location, and sampling strategy,
regression models are created for each parameter−item
combination. As the presence of specific litter items in many
cases can be attributed to single events (such as visitors leaving
litter behind at one specific riverbank), we performed a
permutation test for uncertainty analysis. To achieve this, the
parameter−item models were recalculated 1000 times while
randomly shuffling the parameter data. In this study, we used a
90% threshold of the R2 of the true model exceeding the R2 of
the random models to separate the true effect of the parameter

on the litter distribution from the stochasticity in the presence
of specific litter items. In the text, we refer to these models as
the single-parameter models (see Figure 1).
The same regression models including all parameters per

item category were separately set up (here referred to as
multiparameter models). This was done to determine the
coefficients per parameter−item pair (rather than using the
coefficients form the single-parameter models, to compensate
for overlapping effects). Additionally, the Pearson correlation
(R) between the observed and modeled item counts was
calculated to assess how much of the variation in the input data
can be explained by hydrometeorology, trends in time and
space, and by the observation strategy (volunteer vs reference).
Finally, these correlation values are analyzed on uncertainty by
performing a 1000-time bootstrap (correlation value of a
sample, with replacement, of the observed/modeled item

Figure 3. Representation of explanatory power and sign of precipitation, wind speed, and water level as well as time, seasonality, river, and observer
type on the different items. Only combinations presented in blue (positive correlation) or red (negative) were found significant. This figure can be
interpreted as follows: [water height − plastic plates] shows a negative relation. Therefore, if the water level was much higher in the weeks
preceding the riverbank observation (than during the observation), the chance of finding plastic plates is substantially lower.
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count pair). This yields a normal distribution around the true
correlation value. It was assumed that the explanatory power of
the model is significant if the lower 99% confidence boundary
yields a positive correlation value. In other words, if the
correlation value is equal to or higher than 2.3 times the
standard deviation of the correlation value (in a one-tailed
approach) the model is deemed significant. Finally, a
percentage of variance that can be addressed with this
modeling approach is calculated by multiplying the R2 of the
models that significantly explain an item with the number of
observations of the item, summing up these values, and
dividing it by the total number of items included in the
database. More details can be found in the Supporting
Information.

■ RESULTS AND DISCUSSION
Timescale of Transport. The results show that 90 of the

111 item categories are significantly explained by at least one of
the included parameters, while 72 items show a significant
correlation between hydrometeorology and item abundance
(Figures 2 and 3). The optimal time span between the
hydrometeorological flux−item pairs shows that precipitation,
wind speed, and discharge (approximated by water height)
operate on very different timescales. Most significant models
predicting item abundance from wind speed are optimal on the
scale of days, most models from water height on the scale of
weeks, while a majority of the models significantly predicting
item abundance from precipitation show an optimal time lag of
months. The significant relations (and their sign) are shown in
Figure 3 and are subsequently explored in the following
paragraphs, leading to the formulation of several hypotheses on
the modes of transport of litter through the environment.
Variables. Precipitation. Runoff, and with that precip-

itation, has been hypothesized to be an important driver in
litter transport. For example, the first global modeling efforts
on predicting plastic transport toward the sea heavily rely on
runoff estimates to derive riverine plastic loads.14 In contrast,
we find that only a third of the items (see Figures 2 and 3) is
significantly explained by precipitation. Even items that are
predominantly present on riverbanks because they are left
behind (such as cigarette packaging and paper cups) do not
show negative relation between abundance and precipitation,
which could be expected from the hypothesis that runoff is a
major driver in litter transport. Runoff in built-up areas and
extreme precipitation events do, however, likely play a
significant role in litter transport (as reflected by the long
optimal time lags of precipitation on item abundance in
combination with the resulting negative coefficients). Addi-
tionally, it needs to be noted that a similar study in a country
with a steeper terrain than the Netherlands might have resulted
in stronger precipitation and item−abundance relationships.
Nevertheless, the fact that a majority of the items in this data
analysis are not significantly explained by precipitation-driven
transport calls for caution in attributing litter transport to
runoff (without differentiating in item characteristics).
An interesting hypothesis that can be drawn from the

negative relationships between precipitation and litter
abundance in combination with the long optimal time intervals
is that during periods with even moderate precipitation less
visitors to the riverbanks can be expected (e.g., winter season,
to which we will come back later). An additional potential
pathway of precipitation driving litter abundance are sewage
overflows. During extreme precipitation events, sewers can

overflow, potentially dumping litter items in the open water
from where it can be deposited on the riverbanks. A possible
example from this data analysis might be toilet f reshener,
showing a positive correlation with precipitation (with an
optimal time interval of 6 months), as well as a positive relation
with season (higher values found in spring in comparison to
autumn, which hints at sewage overflow transport occurring
during the winter months). These processes together describe
a starkly nonlinear precipitation−litter relation, with the
highest litter abundance being expected under either heavy
rainfall or no rainfall at all. To resolve these transport
mechanisms, data during extreme events and on riverbank
residence times are needed.10,11

Wind Speed. Wind is shown here to be a more important
mode of transport of litter items to the riverbanks than either
runoff (precipitation) or river deposition (water level).
Especially, plastic items show a substantial number of
significant relations between wind speed and item count.
This corresponds to the intuitive understanding that,
especially, small and lightweight items are easily transported
with high wind speeds. The nonplastic items that show a
significant relation with wind speed are also relatively
lightweight, such as aluminum foil and plastic cotton buds. An
interesting exception on this is the item category tires, but as
only relatively few have been observed, this relation can be
seen as the product of chance. Other, more often observed
heavy items such as disposable barbecues do not show a
significant link with wind speed. Interestingly, paper items do
also not show significant links, although they can likely be
transported by wind. This might be explained by the fact that
these items fall apart relatively quickly and might therefore not
arrive on the riverbanks as recognizable items (reflected by the
positive coefficient of the wind speed−other paper relation-
ship). Alternatively (or additionally), the amount of paper
moving away from and toward the riverbanks could be equal,
resulting in the absence of a significant link between wind
speed and paper items. Additionally, under high wind speeds,
items within the river can potentially be deposited on the
riverbanks, which might explain the fact that the smallest
plastic items (e.g., sof t meso plastic) are found to be positively
related to wind speed (see Figure 3).

Water Level.Water level is defined here as the highest water
level above the water level during the litter observation over
the previously defined optimal time interval (see Figure 2). It,
thus, describes the potential of direct deposition of items on
the riverbanks as well as the potential of river water to clean
the riverbanks. Relatively, few items show a significant
relationship with water level, with most of these items being
either plastic or paper. The explanation of these relationships
depends on the material type. Many plastic items float on
water and are therefore likely to be deposited on riverbanks
during high water events. The presence of plastic items with
higher density that do not float on water − or items that can
contain water and therefore do not float such as jerrycans and
plastic car parts − is not significantly explained by water level.
Also, the smallest plastic items (hard plastic (meso) and sof t
plastic (meso)) are not explained by water level. This lack of
correlation may be explained by two different processes: (1)
either these items are not abundant enough in the river water
with respect to the riverbanks to have a significant net flux
toward the riverbanks, or (2) these small fragments do not
actually deposit during high water events. In contrast, paper
items do not float and are likely not deposited during high
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Figure 4. Illustration of the explanatory power of the multiparameter models on the abundance of the different items. (A) Correlation between
observed and modeled item counts with the black lines representing two standard deviations around this value. The items displayed in brown are
not significantly explained by the models, while the items in green are. (B) Number of these items that were observed. The median number of items
is given by a dashed vertical line.
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water events. The positive relation between, for example, paper
cups and water level is, therefore, more likely to be explained by
the capacity of paper to absorb and store water. During high
water events, paper items on the riverbanks get soaked and
increase dramatically in mass, reducing their transportability by
wind and runoff. As a result, the number of paper items found
after high water events can be substantially higher. Indeed, for
paper cups, the optimal time interval is one week, which reflects
the drying and (re)transportation of such items. Note that the
rational presented here only considers discharges that do not
cause flooding. During flood events, a substantial amount of
additional litter might be transported and, in turn, deposited
on the riverbanks.23

Time. Many items show a significantly positive link between
their abundance and time. Although the parameter values are
relatively low, thus, only showing a slight increase in
abundance, it is a worrying result of the data acquisition
campaign. As the data are obtained in four measuring rounds
spread over a period of two years, the trends in time are still
relatively premature. More definitive analyses can only be
made with longer time series. An interesting observation in this
data is that plastic bags show a negative trend in time, possibly
corresponding to a national ban on free plastic bags that came
into action in 2016. Gradually, the number of plastic bags in
circulation was expected to decline in the years following the
ban. Interestingly, this finding agrees with similar observations
on the North-Sea beaches.26 Additionally, the time after the
last observation shows a significant relationship only for a
handful of items. This can be explained with the idea that most
items have a lower residence time on the riverbanks than the
measurement frequency.
Seasonality. In contrast with the trends of item abundance

over time, this parameter explains seasonal variation. It is
defined categorically between spring and autumn (correspond-
ing to two measurement rounds occurring in spring and two in
autumn); a positive relation means that more items are found
during spring. Most items show such a positive relationship.
Especially, as the Waal (Rhine) has much higher discharges in
winter than in summer, these trends can likely be explained by
item deposition and accumulation in winter and spring, while
in summer, the item abundance decreases as a result of item
removal by visitors and/or wind. Other items, mostly related to
tourisms such as newspapers and metal drinking cans, show a
negative relationship, i.e., less items are found during the spring
measurement round. This corresponds to littering during the
summer by visitors and removal over the course of the winter
by high water events or human waste removal.
Waal vs Meuse. To account for the location of the

observations, the river was included as a categorical parameter.
Most items are more abundant along the Meuse than the Waal.
Although the Waal (Rhine) has a higher yearly discharge and
discharge variability (see, for example, Van Emmerik et al.,7) in
comparison with the Meuse, the data on water level included
here shows only a slight difference between the rivers in
variability of water height over the defined time intervals
before the litter observations (except for the six-month
interval). Differences are, therefore, expected to coincide
instead with the surroundings of the riverbanks; more cities
and industrial areas are located along the Meuse (e.g., van
Emmerik et al., 2020), likely causing this apparent disparity
between the two rivers. Litter can find its way to the river
system through many different pathways such as incorrect
waste disposal by visitors, dumping/accidental loss from ships

and fisheries, and sewage overflows. The different litter
densities in Meuse and Waal might originate from differences
in all of these drivers. Additionally, it needs to be considered
that increased riverbank litter abundance was found in the
border regions with Germany and Belgium, suggesting a
(substantial) contribution from Germany (Waal) and Belgium
(Meuse) to Dutch rivers.7

Volunteer vs Reference. The categorical parameter
Volunteer vs Reference is included to reflect the campaign
strategy to use citizen science to obtain the data and perform
reference samples to check data consistency and accuracy.
Most items do not show any significant bias of volunteers,
showing the value of citizen science. Most of the items showing
a significant link between sampling strategy and item
abundance were not found often, making the case that these
biases are likely driven by chance rather than observational
bias. The items that stand out are sof t plastic (meso) and the
sanitary items. Both were found significantly less by volunteers
than during the reference samples. The observation bias in
small soft plastic fragments may be explained by low
detectability, while the sanitary items, plastic cotton buds (n =
5690), baby wipes (n = 3232), and sanitary pads and packaging
(n = 2011), may instead be related to item aversion by
volunteers. Note, however, that the coefficients in comparison
with the average number found per observation signify that
volunteers find on average 10 percent less of these three item
categories.

Hydrometeorology as a Driving Force. The models
used in this study represent the effects of hydrometeorology,
time, location, and observational strategy on the abundance of
the different item categories. By interpreting the correlation
between the modeled and observed item counts, it becomes
possible to separate the items into two categories: predictable
and unpredictable items (see the last paragraph of Method-
ology). They are shown in Figure 4, displayed in green and
brown colors, respectively. The unpredictable category
contains items such as disposable barbecues, f ireworks, and
metal oil drums, which are likely left behind by visitors. This
corresponds to the observation bias of riverbank observations
with respect to riverine litter transport: some items are likely
not transported by the river but are nonetheless present on the
riverbanks. Items that are likely transported by the river such as
sof t plastic (meso), plastic bottles, and EPS parts (medium and
large sizes of the smallest parts are represented as
unpredictable) fall in the predictable category. From our
analysis, we found that the fraction of the total amount of
items that can be predicted through hydrometeorology and
observation metadata is 15 percent. As item mass has not been
observed in the measurement campaign, it is difficult to
represent the fraction of mass that falls within the predictable
category, but by removing the smallest and lightest items
(categories containing the word meso) from the above analysis
yields a fraction of 19 percent that can be classified as
predictable.

■ SYNTHESIS AND OUTLOOK
In this study, we evaluate the data of riverbank macrolitter
observations in the Dutch Meuse−Rhine delta obtained by
SDN between autumn 2017 and spring 2019, using the River-
OSPAR protocol. The monitoring campaign was performed to
quantify litter abundance at the national scale, find hotspots of
litter along the rivers in the Netherlands, and provide item-
based trends for policy and intervention purposes. As the data
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are extensive in both space and time and item categorization,
however, it creates not only the potential of evaluating the
monitoring campaign but also makes it possible to analyze how
environmental factors, such as wind, precipitation, and river
flow affect the number and composition of items found on
riverbanks. The combination of these hydrometeorological
factors together with the understanding of the physical
properties of the different items creates the potential of stating
the first data-driven hypotheses on litter transportation toward
and along river systems. To do this, we used a statistical
approach, linking hydrometeorological data and observation
metadata to item counts with negative binomial regression
models. Although the parameters for these models are far from
exhaustive and many more could potentially be added, it gives
an overview of the main mechanistical processes hypothesized
to transport macrolitter.
The analysis presented here shows that trends in both space

and time are significant for many items, from all parent item
categories and from a large range of sizes. More items are
consistently found along the Meuse than along the Waal,
which is likely linked to a higher number of industrial areas and
cities lying along the river. At the same time, almost all items
significantly explained by time show a positive trend, hinting at
a gradual increase of litter items on Dutch riverbanks over the
observed years. Temporal variance in litter quantities is
explained not only by trends in time. The data shows that a
substantial number of item categories show a significant
seasonal trend. This is linked to changing composition and
source of the different litter items: in summer, riverbanks are
used more intensively for recreational activities, and more
visitor-related items are found during the fall measuring round.
At the same time, the higher discharges in the winter partially
remove these items while depositing mainly lighter and smaller
items on the riverbanks. Moreover, the results suggest that the
average residence items of most item categories is lower than
the measurement frequency (6 months), shown in the lack of a
substantial number of items positively correlated with the time
between litter observations. Additionally, the results validate
the monitoring campaign by comparing reference measure-
ments with observations by volunteers. The results show that
for most items no significant observer bias is present, with the
exception of some very small objects and sanitary items that do
indeed show a significant negative observation bias by
volunteers, which can potentially be linked to item aversion.
Besides between-year and seasonal temporal trends, the

results show that many items are significantly related to flow
velocities, yielding an additional dimension in temporal
variance in litter abundance. Global modeling studies, such
as Lebreton et al. (2017), use precipitation-driven surface
runoff and/or river discharge to explain (plastic) litter
transport. In contrast, we find that items more often
significantly correlate with wind speed than with either
precipitation or river discharge. Furthermore, these transport
mechanisms potentially operate on very different timescales.
From the data, we find that wind speed explains item
abundance best at the scale of days and discharge on the
scale of weeks, while precipitation shows the strongest signals
at the scale of months. Additionally, it is interesting to note
that relatively similar items show quite different behaviors. For
example, undefined pieces of EPS (meso, macro, large) only
show a significant relation with wind speed, while EPS food
packaging also shows a negative relationship with precipitation.
On the other hand, EPS cups correlate positively to discharge,

while not displaying any relation to wind speed or
precipitation. This leads to the notion that studying litter
transport in the environment with a detailed item character-
ization (which is here approximated by a categorization with
the extensive River-OSPAR protocol) can lead to very different
results than when binning on material/functional categories,
which is quite common in macrolitter research.20 Items of
similar material or with a similar function, but with different
shapes and sizes, react quite differently to hydrometeorology.
Additionally, it can be noted that items that can contain water,
such as EPS and paper cups, often show a significant relation
with water level. This can likely be better explained by fixation,
inhibition of movement through increasing mass, rather than
deposition by the river. Although the results show significant
relationships between litter quantities and hydrometeorology,
it needs to be considered that they cannot be interpreted as
causal relationships. Instead, the results provide a base for
more direct experimental studies that can link these processes
to movement. These experimental studies might, for example,
take place in the form of flume experiments to mimic river flow
and wind tunnel tests to determine critical wind speeds for the
transport of different items and materials. It might be an
interesting start to use the abundant items used in this study
(e.g., above the median item count as shown in Figure 4B) that
were best predicted with the multiparameter regression models
as displayed in Figure 4.
Although many items show a significant relation with wind

speed, precipitation, or water level, the multiparameter models
including both hydrometeorology and the monitoring
metadata can only significantly explain the variation of 19
percent of the larger items (>2.5 cm). At the same time, only 6
of the 111 items show a final multiparameter-model R2 value
above 0.4. Note that the list of included variables is exhaustive.
By including more variables (especially on vicinity to cities and
industrial areas or the use of the riverbank for recreational
purposes), some of the unexplained variance might be captured
and the explained fraction might increase. Nevertheless, the
results suggest that much of the variation in item counts is
stochastic, i.e., single events (such as visitors coming to
riverbanks) are an important contributor to riverbank litter.
The observed, nondeterministic nature of both spatial and
temporal variations of riverine litter leads to the consideration
that both monitoring and modeling of the litter need to be
adjusted accordingly. The most thorough, direct observations
campaigns of riverine litter are done by repeatedly observing
floating litter for a relatively short amount of time, which is
subsequently extrapolated to hourly, daily, and even yearly
values.6 This methodology implicitly uses the assumption that
variability would be best explained by covariability with river
flow. Following the logic explained in this work, the
conclusions that are taken from such observations would
need to be constrained by observing short-term variability
(with similar river discharges) and comparing these values to
the variability attributed to hydrometeorology. This can, for
example, be achieved by observing the floating litter flux
several times on a single day on relatively short intervals.
Similarly, for riverine litter modeling, uncertainty due to
nondeterministic variability needs to be considered as an
important constraint, requiring strong uncertainty analysis
and/or probabilistic modeling approaches. In turn, under-
standing the variability of (macro)litter in both space and time
is an important step in designing effective policies, mitigation
strategies, and cleanup actions.
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