
 
 

Delft University of Technology

A rainfall threshold-based approach to early warnings in urban data-scarce regions
A case study of pluvial flooding in Alexandria, Egypt
Young, Adele; Bhattacharya, Biswa; Zevenbergen, Chris

DOI
10.1111/jfr3.12702
Publication date
2021
Document Version
Final published version
Published in
Journal of Flood Risk Management

Citation (APA)
Young, A., Bhattacharya, B., & Zevenbergen, C. (2021). A rainfall threshold-based approach to early
warnings in urban data-scarce regions: A case study of pluvial flooding in Alexandria, Egypt. Journal of
Flood Risk Management, 14(2), 1-16. Article e12702. https://doi.org/10.1111/jfr3.12702

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1111/jfr3.12702
https://doi.org/10.1111/jfr3.12702


OR I G I N A L AR T I C L E

A rainfall threshold-based approach to early warnings in
urban data-scarce regions: A case study of pluvial flooding
in Alexandria, Egypt

Adele Young1,2 | Biswa Bhattacharya1 | Chris Zevenbergen1,2

1IHE Delft Institute for Water Education,
Delft, The Netherlands
2Faculty of Civil Engineering and
Geosciences, Delft University of
Technology, Delft, The Netherlands

Correspondence
Adele Young, IHE Delft Institute for
Water Education, P.O. Box 3015, 2601 DA
Delft, The Netherlands.
Email: a.young@un-ihe.org

Funding information
Sustainable Water Fund, a programme
from the Netherlands Enterprise Agency
(RVO); Anticipatory Flood Risk
Management Alexandria, Egypt, Grant/
Award Number: FDW16121EG

Abstract

Rapidly expanding cities in the Middle Eastern and North African (MENA)

region are at risk of flooding due to heavy rainfall, insufficient drainage capac-

ity, a lack of preparedness and insufficient data to conduct required studies. A

low regret Early Warning Systems (EWS) using rainfall thresholds is proposed

as a cost-effective short-term solution. This study aims to utilise a probabilistic

approach to characterise and predict urban floods by assessing critical rainfall

thresholds likely to cause flooding combined with ensemble precipitation fore-

cast in Alexandria, Egypt. Rainfall thresholds were inferred by associating

observed rainfall and historical flood information sourced from social media

and newspapers. Floods were classified in a colour-coded hazard matrix as no

flood (green), minor flood (yellow), significant flood (orange), and severe flood

(red). Probability of occurrence of hazard classes was derived by incorporating

ensemble rainfall into the hazard matrix to jointly evaluate likelihood and haz-

ard severity. Results from this study showed that three of four severe events

analysed could have been predicted with a high likelihood up to 24 hr before.

The presented approach supports decision making to issue warnings and flood

control actions with limited data and is a model for other data scare regions.
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1 | INTRODUCTION

Damages and the number of persons affected by floods
have increased over the last century (EM-DAT, 2016).
Although global hazards are on the rise, flood risk
emerges from the combination of extreme weather
events, exposure, and vulnerability attributed to human
interaction with the environment. In cities, rapid urbani-
sation and exposed assets increase impacts from flooding

(Abhas, Bloch, & Lamond, 2012). The Middle East and
North Africa (MENA), have experienced significant
increases in damage due to floods (Banerjee et al., 2014).
Once considered rare, these areas are now subjected to
more extremes and frequent floods as observed in 2018
(Floodlist, 2018).

In the wake of increased flood risk, there is an
emphasis on the implementation of resilient adaptation
strategies focusing on extreme events, long-term changes,
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and trends in slow-changing drivers (Ashley, Pathirana,
Gersonius, & Zevenbergen, 2012; Balica, Wright, & van
der Meulen, 2012; Carter et al., 2015; De Bruijn, 2005;
Gersonius, 2012; Mens, Klijn, Bruijn, & van Beek, 2011;
Zevenbergen et al., 2016). In Flood Risk Management
(FRM), Early Warning Systems (EWS), and flood fore-
casting allow the timely generation and dissemination of
warnings and are among the most widely used tools to
increase preparedness and reduce impacts (Alfieri, Sal-
amon, Pappenberger, Wetterhall, & Thielen, 2012;
Carsell, Pingel, Asce, & Ford, 2004; Cools et al., 2012;
UNISDR, 2009). In addition to its potential to reduce
impacts, EWSs are considered a “low regret” measure
against future uncertainties with a high benefit-to-cost
ratio (Hallegatte, 2012).

Forecasting for early warnings and subsequent
actions requires reliable knowledge of hazard forecast at
appropriate spatial and temporal scales and sufficient
lead-times; the time between threat notification and a
flood event and is considered the minimum time required
to implement effective actions. Recently, technological
advancements in rainfall forecasting techniques such as
radar now-casting, Numerical Weather Predictions
(NWP), and the availability of high-resolution satellite
data combined with improved communication methods,
have cemented the way for more efficient and effective
EWS. Numerical Weather Prediction models, allow fore-
casters to extend lead-times and the use of probabilistic
ensembles rather than a single deterministic forecast can
better quantify reliability and confidence in decision
making (Alfieri et al., 2012; Cloke & Pappenberger, 2009;
Dale et al., 2012; Kok, Schreur, & Vogelezang, 2011;
Ramos, Van Andel, & Pappenberger, 2013). Despite these
advancements, many countries in the MENA region and
global South are still challenged with poor data quality
and availability (data-scarce) for model development and
calibration leading to the emergence of nontraditional
data sources. This is compounded by the challenges of
forecasting on a smaller urban pluvial scale, a need for
high temporal and spatial resolution data, and short
response times associated with high-intensity events.

In data-scarce catchments, the EWS must strike a bal-
ance between technical feasibility and the need to reduce
flood impacts. Real-time simulation forecast with real-time
hydrodynamic and inundation models attempt to forecast
the flood extent, locations, and impact. These models
demand high-resolution spatial data and copious input
parameters into complex models associated with uncer-
tainty and long computational times (Ochoa-Rodríguez
et al., 2015). Presimulated scenario-based systems, utilise a
catalogue of hydrodynamic simulations and the accuracy
depends on both model complexity and input data
(Henonin, Russo, Mark, & Gourbesville, 2013). In

catchments of short response times and insufficient data,
empirical methods offer a simplified approach to issue
warnings and predict rainfall depths likely to cause
flooding by directly comparing precipitation forecast with
critical rainfall thresholds derived from examining rainfall
accumulations from previous flood events (Falconer
et al., 2009; Georgakakos, 2006; Martina, Todini, &
Libralon, 2006; Parker, Priest, & Mccarthy, 2011; Wu, Hsu,
Lien, & Chang, 2015). Comparing critical rainfall thresh-
olds with ensemble rainfall forecast sourced from NWPs
has the additional benefit of providing timely forecast
while allowing decision-makers to incorporate uncertainty
in the forecast. This simplified EWS approach provides an
immediate short-term solution for data-scarce regions,
which lack the technical capacity and resources to imple-
ment complex methods.

Few studies have demonstrated how rainfall thresh-
olds have been used to predict pluvial floods in urban
areas (Bouwens, Ten Veldhuis, Schleiss, Tian, &
Schepers, 2018; Candela & Aronica, 2016; Jang, 2015),
and fewer show how critical thresholds can be compared
with probabilistic rainfall forecast (Hurford, Parker,
Priest, & Lumbroso, 2012; Yang, Do Hwang, Tsai, &
Ho, 2016). This article presents a practical approach of
incorporating critical rainfall thresholds, historical
flood data (crowdsourced) and ensemble precipitation
forecast for forecasting extreme rainfall and flooding.
This has the potential to improve decision-making espe-
cially in data-scarce regions or cities in the genesis of
developing EWS.

Alexandria city in Egypt was selected as the case study
for this research. Like many other cities in the MENA
region, they suffer from occasional flooding from runoff
accumulation and sewer surcharge but lack an enabled
EWS and are least prepared to the rising threats of floods.
With emerging risk, Anticipatory Flood Management
(AFMA) has been proposed as a viable solution to increase
preparedness and reduce damage (Bhattacharya,
Zevenbergen, Young, & Radhakrishnan, 2018; Zevenbergen
et al., 2016). The research objectives will be achieved by
addressing the following research questions:

• Can rainfall thresholds characterise and predict urban
floods in Alexandria, using limited data such as
crowdsourced flood images?

• Can derived rainfall thresholds and currently available
ensemble prediction systems be used to improve
decision-making?

Ibrahim and Afandi (2014) previously evaluated the use
of a Weather Research Forecast (WRF) model to predict
extreme rainfall in Egypt but did not evaluate the use of
ensemble forecast. The success of such an approach will
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allow an immediate short-term solution to emerging
flood risk in cities in the MENA region. In the interim,
cities can acquire more comprehensive data that will con-
tribute towards the development of more sophisticated
flood forecasting systems which are otherwise very
demanding and time-consuming in data-scarce regions.

2 | THRESHOLD-BASED EARLY
WARNING SYSTEMS

The complexity of the detection and forecast methods
depends on factors related to data availability, severity,
frequency, and vulnerability to flooding and the lead-
times required to issue warnings (WMO, 2011). A simple
forecasting system can be developed from rainfall fore-
cast and a historical account of past flood events with no
hydrological/hydraulic modelling (Henonin et al., 2013)
and can be implemented at regional, national, catch-
ment, and city scales.

The Flash Flood Guidance System (FFGS), an empiri-
cal approach, initially developed by the US National
Weather Service (NWS), uses forecast rainfall depths that
are likely to result in discharges associated with floods.
Georgakakos (2006), studied FFG based systems and
found they produce a high probability of detection to flash
floods. Such alerts are issued based on different rainfall
thresholds considering the prevalent soil moisture condi-
tion. This system has been implemented in many regions
including the new Black Sea and Middle East FFGS and
the Central American FFGS (WMO, 2019).

The “FLOODsite” project assessed the advantage of
using rainfall threshold as an alternative to traditional
EWS (Borga, Anagnostou, Blöschl, & Creutin, 2011) and
proved successful in identifying several flash floods across
Europe (Alfieri et al., 2012). Meteo-alarm is another rain-
fall threshold-based EWS, implemented in approximately
30 European countries and alerts are issued based on a
comparison between precipitation and local thresholds.
Also at a regional scale Alfieri and Thielen (2015) success-
fully proposed a European Precipitation Index based on
simulated Climatology (EPIC), which is calculated using
COSMO-LEPS ensemble weather forecasts.

On a national scale, England and Wales initially
adopted Extreme Rainfall Alerts (ERA) and Flood Guid-
ance Statement (FGS) providing warnings of extreme
rainfall based on intensities (depth/duration) likely to
cause severe surface water flooding (SWF) in urban areas
based on a 1 in 30 return period (Hurford, Parker,
et al., 2012). The Second-Generation Surface Water Flood
Risk Assessment (SWFRA) programme has replaced this
system. It empirically estimates surface water flooding
risk based on a weighted score of rainfall probability,

spatial extent, soil moisture deficit, and proxies for urban-
isation (Ochoa-Rodríguez et al., 2015).

Although the application of thresholds is similar, the
methodology of how rainfall threshold methods are
applied in urban and fluvial areas varies when consider-
ing precision and parameters required (Jang, 2015). For
example, FFGS thresholds are adjusted based on anteced-
ent moisture conditions (AMC). However, urban areas
tend to adopt static thresholds (Figure 1) without consid-
ering AMC; soil moisture becomes less significant as
urbanisation increases (Bouwens et al., 2018; Falconer
et al., 2009; Hurford, Priest, Parker, & Lumbroso, 2012).
The maintenance state of sewers and canals also then
become more important.

It is acknowledged there are limitations to using this
approach such as: rainfall events of the same return
period can produce floods of different extent and water
depths and non-linearity between rainfall and floods
(Stephens, Day, Pappenberger, & Cloke, 2015) due to spa-
tial and temporal variability of rainfall, the characteristics
of the sewer system, topography, storage, and runoff
characteristics of the catchment (Simões et al., 2015).
Current research is aimed at methods for improving criti-
cal thresholds, accuracy, and reliability of forecast and
incorporating catchment characteristics. In gauged
basins, calibrated rainfall-runoff models and rainfall
hyetographs are iteratively used to search for critical rain-
fall or discharge values (Candela & Aronica, 2016;
Jang, 2015; Wu et al., 2015). Montesarchio et al. (2015)
compared methodologies for flood rainfall threshold esti-
mations including (Martina et al., 2006) which adopted a
probabilistic approach by analysing the joint probability
of a given duration of rainfall depths and corresponding
peak discharge values combined with a Bayesian utility
function. In smaller, semi-gauged basins, empirical
methods use of historical data to determine rainfall
thresholds and assume rainfall is distributed uniformly in
time and space. Bouwens et al., (2018) correlated

FIGURE 1 Example of rainfall threshold-based approach for

the issuance of flood alerts. Modified from Martina et al. (2006) to

include static rainfall thresholds
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sub-daily rainfall with citizen incident flood reports and
overflow pumping values to determine critical rainfall
thresholds. Yang et al. (2016), successfully used a rainfall
threshold approach and quantitative precipitation fore-
casts (QPFs) to evaluate urban inundation risk in Tai-
wan. This article capitalises on the simplicity of this
methodology in data scare regions and on a local scale.

3 | EARLY WARNING SYSTEMS
FOR DECISION SUPPORT/
DECISION-BASED APPROACH TO
EARLY WARNING

Lead time considers the minimum period of warning neces-
sary for preparatory action to be effective (Carsell et al., 2004;
Verkade & Werner, 2011). An important part of an EWS is
allowing sufficient lead-times to issue warnings, or take
actions. However, uncertainty exists with predictions at lon-
ger lead-times. Probabilistic forecasts are key to quantifying
uncertainty in forecasting floods and can be useful in
assessing the likelihood of extreme events while providing
more consistent successive forecasts (Alfieri et al., 2012;
Boelee, Lumbroso, Samuels, & Cloke, 2018; Buizza, 2008;
Cloke & Pappenberger, 2009; Dale et al., 2012; Ramos,
Mathevet, Thielen, & Pappenberger, 2010; Todini, 2017).
However, all authors agree there are several challenges
including but not limited to (a) improving forecast with
high-resolution data and assimilation; (b) couplingmodels at
differing scales and real-time operational forecasting; and
(c) how end users can best use this information to improve
decision making for warnings and response. Still, compared
with deterministic forecasts, probability forecasts allow an
optimal balance between uncertainty and lead-time time
(Verkade &Werner, 2011). When issuing warning messages
or taking actions, decision-makers require clear informed
guidance and decision rules to make confident decisions
(Economou, Stephenson, Rougier, Neal, &Mylne, 2016; Van
Andel, 2009).

Traditional yes or no extreme weather warnings are
issued once the forecasted rainfall exceeds a critical
rainfall threshold. However, such binary forecasts do
not indicate the likelihood or severity of an expected
hazard. The use of a colour-coded hazard or risk allows
a visual expression of a priority matrix (WMO, 2015).
When combined with ensemble forecasts, the likelihood
of an expected hazard and its potential severity can be
considered to aid decision making. The United Kingdom
Met Office and several other countries contributing to
the Meteo alarm system (WMO, 2015) are examples
using such systems. The UK Met Office's Flood Guid-
ance Statement (FGS) provides daily flood risk forecast
for the UK to assist in strategic and tactical operational
planning and decision making (Flood Forecasting
Centre, 2017). Assessments are made and presented
in a coloured 4 × 4 risk matrix based on forecast risk
(hazard, vulnerability, and exposure: and likelihood
(Figure 2). When model-based detailed hazard informa-
tion cannot be produced due to data constraints, a haz-
ard matrix based on hazard severity versus rainfall
thresholds derived from historical data is an alternative.
This provides benefits through the selection of suitable
thresholds severities to provide approximate (often nom-
inal) flood forecasts, which serve as the basis for deci-
sion making regarding flood warning and preparedness.
Dale et al. (2012) also proposed using probabilistic flood
forecasting and a benefit–cost inspired decision-support
framework for flood management actions. However,
such an elaborate system is only transferrable and com-
patible with similar flood forecasting systems which
have flood impact and monetary data which is rarely
the case in data-scarce regions.

4 | METHODOLOGY

A threshold-based framework to support early warning
decisions based on ensemble forecasts is being proposed.

IMPACT

Green: No severe 

hydrometeorlogical 

hazard expected 

HIGH

MED

LOW

VERY 
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HIGHMEDLOW
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E
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Orange: Be prepared

Red: Take Action  

Assign a colour to the 
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FIGURE 2 F2Operational application of

warning concept, combining impact with the

likelihood to create a risk matrix, expressing risk

through a simple colour-coded scheme

(WMO, 2015, UK Met Office)
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Critical rainfall thresholds are defined and used to clas-
sify hazards. These are derived by examining rainfall
depths associated with historical flood events and the
associated hazard severity. The framework used to derive
the respective warning classes follows the operational
approach of The UK Met office (Figure 2). However,
exposure and vulnerability data were only sparsely avail-
able and not assessed (neither quantitatively nor qualita-
tively). In lieu, a hazard matrix was developed which
allows the likelihood and severity of hazards to be consid-
ered in tandem.

4.1 | Identification of rainfall thresholds

This research adopted an approach using observed rain-
fall accumulation and rainfall intensity for a training
period (using previous floods over a specific duration).
Historical flood data were derived from social media min-
ing, archived newspapers, blogs, and eyewitness
accounts, which have proven useful in assessing evidence
of flood (Chow, Cheong, & Ho, 2016; Herman Assump-
ç~ao, Popescu, Jonoski, & Solomatine, 2017; Paul
et al., 2017). Sewer design rainfall and knowledge of local
drainage conditions were also considered relevant as it is
assumed that floods occur once this rainfall depth is
exceeded.

Hazards are classified as “No to minimal flooding,”
“Minor Flooding,” “Significant flooding,” and “Severe
flooding.” Thresholds were determined using data from a
suitably identified training period and tested with data
from a validation period. The methodology used to iden-
tify thresholds is presented in Figure 3.

4.2 | Hazard matrix

Once the critical thresholds have been determined, an
operational system is proposed. This integrates ensemble
precipitation forecasts and rainfall thresholds into the haz-
ard matrix to assess the possibility of issuing inundation
alerts. The system generates a hazard forecast for various
forecast horizons using rainfall forecast from a NWP
model such as from the European Centre for Medium-
Range Weather Forecasts (ECMWF) or Global Forecast
System (GFS). Rainfall forecast values are then cross-
checked against derived rainfall thresholds. To determine
the warning classification (hazard class), the likelihood of
ensembles is categorised based on probability thresholds
ranges. The concept of probability thresholds has been
used by the UK Met Office and the Rijnland Water Board
(Van Andel, 2009). Higher probability threshold result in
more hits but also result in more false alarms. The method
adapted from Yang et al. (2016) calculates the likelihood
of exceeding a particular threshold, Equation (1). The
higher the number of ensemble members exceeding the
rainfall threshold, the higher the forecasted probability
that the rainfall threshold will be exceeded.

Pr=
1
N

XN
i=1

f i × 100, i=1,2…N andN =50 ð1Þ

f i =
1, if Xj≤Fi <Xj+1, j=1,2,3,4

0, if Fi otherwise

�
ð2Þ

where, Pr is the likelihood of threshold exceedance, Fi is
the forecasted rainfall of the ith ensemble member of
N ensembles and Xj is the rainfall threshold for hazard
class j. If a threshold is exceeded then fi is assigned a
value of 1; 0 otherwise (Equation (2). The Pr for each
lead-time is evaluated to derive the hazard matrix for the
floods occurring. A decision-based rule based on proba-
bility thresholds is used to assign the category as high,
medium, low, and very low. A high likelihood meaning a
high probability of occurrence and very low meaning low
to no probability of occurrence. The probabilistic thresh-
olds (PT)s have been adopted from the UK Met Office.
However, probability thresholds should be specific to a
particular site and updated regularly based on experi-
ence. The operational system approach, including the
PTs used is presented in Figure 4.

4.3 | Performance indices

Categorical scoring was used to evaluate if the warning
class was consistent with the observed event category.

Collect rainfall and flood data

Derive initial thresholds; quantile relationship and exceedance 

probability analysis

Classify thresholds into hazard categories

Identify/ confirm flood events corresponding to derived 

thresholds using historical observed data, social media etc

Revise thresholds based on local drainage design rainfall and local 

knowledge

Analyse sensitivity of rainfall thresholds

Analyse event rainfall intensity (1h, 3h, 6h totals) of 

previous events

Repeat the 

process as new 

data becomes 

available

X1
No to minimal 

flooding 

X4
Severe

flooding 

X2 X3

Significant 

flooding 

Minor 

flooding 

FIGURE 3 Methodology for identifying critical rainfall

thresholds using historical data and hazard categories and social

media. Modified from Wu and Wang (2009) and Yang et al. (2016)
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Categorical descriptions of a hit, miss and or false alarm
are presented in Table 1. The Probability of Detection
(POD), False Alarm Ratio (FAR), and Critical Success
Index (CSI) were used as the performance indices and
are defined as follows:

Hit rate probability of detectionð Þ= Hit
Hit +Miss

ð3Þ

False alarm ratio FARð Þ= False alarm
Hit + false alarm

ð4Þ

Threat score=critical success index CSIð Þ=
Hit

Hit + false alarm+miss

ð5Þ

5 | STUDY AREA

Alexandria, the famed Egyptian coastal city, is located in
the Alexandria Governorate, Nile Delta on the southern
boundary of the Mediterranean Sea (Figure 5a). A
renowned tourist destination, the city is known for its
cultural heritage and landmarks. It is the second largest
city in Egypt spanning over 2,300 km2 with a population
of approximately 4 million (2011). Like many North Afri-
can cities, it has experienced urban expansion over the
years with informal settlements accounting for a third of
Alexandria's total population (AASTMT and Egis
BCEOM International, 2011). Zevenbergen et al. (2016)
reported urban areas have grown almost 40% (from semi-
bare) during the past 15 years suggesting a significant
reduction in open permeable areas.

Alexandria is characterised by the irregular hills in the
southern parts with an elevation from 0 to 40 m above
mean sea level (UNISDR, 2010). As the city progresses
away from the coast, the topography is characterised by
low-lying areas below mean sea level with a significant
portion below 5 m sea level (Figure 5b).

5.1 | Climate

Characterised by an arid Mediterranean climate, the city
experiences brief, mild, rainy winters and storms from
Oct and long warm summer months (May to Sept) with
no rain. There is high variability of annual rainfall
between 368 mm (maximum, observed in 2004) and

FIGURE 4 Operational flow

chart for the proposed urban

inundation early warning system

TABLE 1 Categorical descriptions of a hit, miss, and false

alarm

Category Description

Hit Forecast warning class (green/yellow/orange/red)
matches the observed class (no flooding/minor
flooding/significant flooding/severe flooding)

Miss Forecast warning class is anything lower than the
observed hazard class (e.g., “yellow” for
significant flooding will be treated as a missed
alarm)

False
alarm

Forecast warning class is Observed hazard class is
anything higher than the observed hazard class
(e.g., “red” for minor flooding will be treated as
a false alarm)
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70 mm (minimum, observed in 2014) with an average
195 mm/year. In the winter months, it is associated with
a high temporal rainfall variability which is a dis-
tinguishing characteristic of the Mediterranean climate
(Hasanean, 2004). Winter storms are locally referred to as
“Nawas or Nawats”; a storm accompanied with strong
winds and rains. These migratory cyclones and fronts
approach from the west over water and extreme condi-
tions usually last less than a day.

5.2 | Drainage and sewer infrastructure

The system receives domestic and industrial wastewater
and stormwater. Recent data from the Alexandria Sani-
tary Drainage Company (ASDCO) indicate approxi-
mately 93.4% of the urban area is connected to the sewer
system and the system has a capacity of approximately
1.6 million m3/day (Zevenbergen et al., 2016). During
the summer, the load on the system can double due to
tourists. Due to the city's rapid urbanisation over the
years much of the aged drainage and sanitation infra-
structure has become increasingly overwhelmed. The
drainage capacity of the system is estimated at a 2-year
return period and flooding is experienced during winter
storms.

6 | DATA PREPARATION

6.1 | Historically observed rainfall and
flood data

Daily rainfall data was sourced freely from an online
weather service provider Tutiempo.net for the Nouzha

Airport gauge (Tutiempo, 2018). This data was previ-
ously used in several studies including an extensive
World Bank study (AASTMT and Egis BCEOM
International, 2011). It was further verified by compar-
ing with WMO monthly averages, which are considered
a reliable and verifiable source. The selected dataset
was then tested for outliers and homogeneity. Only one
observed gauge was available, therefore does not repre-
sent rainfall spatial variability. A search was done to
identify floods on days where the observed rainfall
exceeded the 90th percentile of the daily rainfall data
from 2010 to 2012. These rainfall events were used as
historical reference events (calibration period). Evi-
dence of flooding was sourced from online newspaper
archives, blogs, YouTube videos, social media, and
other literature, which provided valuable flood data.
No social media data or evidence of floods was avail-
able before 2010. The rainfall thresholds derived from
this period were then tested on the events for the
2013–2015 period. To verify intensity, 3 hourly data
from TRMM (Tropical Rainfall Measuring Mission)
Multi-satellite Precipitation Analysis 3B42 (version 7)
was disaggregated using observed rainfall
(Equation (6)). This 3 hourly post-real time 3B42
7 dataset (mm/hr) is estimated monthly and makes
indirect use of rain gauges by performing bias monthly
accumulations. A proportional adjustment procedure
was applied to disaggregate daily gauge data to three
hourly data using TRMM data (Koutsoyiannis, 2003;
Pontien & Bhattacharya, 2011). A summary of data
sources used is presented in Table 2.

Xs = ~Xj Z=
X8
j=1

~Xj

 !
ð6Þ

FIGURE 5 (a) Location of Alexandria City. Source: Google Earth (2018), (b) Alexandria City DEM. Resolution 30 m. Source: Japan

Aerospace Exploration Agency (JAXA)
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where, Xs is adjusted 3 hourly TRMM gauge rainfall, ~Xj is
the uncorrected 3 hourly TRMM rainfall at time j, Z is
the daily gauge rainfall, and j is the subperiod.

6.2 | Ensemble rainfall forecast

The Egyptian Meteorological Agency (EMA) forecast
rainfall uses a deterministic limited area, Weather
Research Forecast (WRF) model propagated from GFS
and ECMWF Global models (EMA, 2017). Ensemble
rainfall forecast TIGGE (THORPEX International Grand
Global Ensemble) from the ECMWF is part of the
THORPEX (Observing System Research and Predictabil-
ity Experiment) and provides medium-range forecasting
up to 15 days ahead (ECMWF, 2015). TIGGE precipita-
tion dataset is available as 50 perturbed forecasts and one
control forecast. For the period 2010–2015, 50 ensembles
were retrieved from the ECMWF data portal using the
Meteorological Archival Retrieval System (MARS) for the
corresponding 0.5� × 0.5� (55 km × 55 km) grid for the
Alexandria study area. Each member represents an
equally likely prediction of total precipitation, forecasted
at 6, 12, 24, 48, 72, and 96 hr forecast lead-times with a
starting time of 0:00 UTC. Ensembles for the test period
(2013–2015) were bias-corrected (Equation (8)) using
ratios derived from the linear scaling methods
(Equation (7)) used by (Crochemore, Ramos, &
Pappenberger, 2016; Teutschbein & Seibert, 2013) and
then disaggregated to a daily resolution (Arias-Hidalgo,
Bhattacharya, Mynett, & Van Griensven, 2013)
(Equations (9) and (10)). The monthly mean values of the
2010–2012 data were used as the training set and applied
to the daily 2013–2015 data. Data length used for forecast
post-processing was limited but should be extended for
future studies.

Ki,m =TPm=ENStr,i,m ð7Þ

ENScor,i:m =Ki,m:ENSt,i,m ð8Þ

f d,m =Pd,m=TPd,m ð9Þ

ENScor,i,d = f d,m:ENScor,i,m ð10Þ

where, TPm is the average observed rainfall at month, m;
Ki,m is the ensemble i correction factor for month, m;
ENStr,i,m is the uncorrected ensemble i rainfall for the
month m for training period; ENScor,i. m is the bias-
corrected ensemble i for month, m; ENSt,i,m is the
uncorrected ensemble i rainfall for the month m for test
period; fd,m is the disaggregation factor for day d of
month m; Pd,m is the gauge rainfall at day d of month m;
and ENScor,i, d is the bias-corrected ensemble i for day, d.

7 | RESULTS AND DISCUSSION

7.1 | Rainfall thresholds

The rainfall threshold methodology used a quantile rela-
tionship for rainfall data from 1957 to 2012. Combined
with historical flood evidence, 24 hr accumulated rainfall
depths were associated with flood incidents (Table 3).
Rainfall data were fit using a gamma distribution and the
percentiles for wet days, that is, when precipitation was
more than 0 mm was evaluated. The following thresholds
were found – 75th percentile: 6.1 mm, 90th: 11.94 mm,
95th: 19.04 mm, and 99th: 32.1 mm. For the 2010–2012
training period, all the events above the 75th percentile
are identified as shown in Table 3. Of the 19 rainfall
events identified, evidence of flooding was found for
three events (highlighted blue) in Table 3. In the absence
of subdaily data, corrected TRMM 3 hourly (Figure 6)
data was used to corroborate high intensities on the days
identified in Table 3. Maximum intensities of 9.8 and

TABLE 2 Summary of rainfall data used

Historical rainfall

Data source Station Period No. of years Resolution

Tutiempo.net Nouzha International Airport 1957–2015 53. years missing 1967–1973 Daily

WMO Nouzha International Airport 1961–1990 Climate normals Monthly

TRMM 3B42 7
(GES DISC 2016)

31.5N, 30E, 31.5N, 30E 2010–2012 Three years (rainfall intensity) Three hourly 0.25� × 0.25� grid

Ensemble forecast data

Data source Location Period No. of ensembles Resolution

ECMWF (2018) 31.5N, 29.5E, 31N, 30E 2010–2015 50 0.5� × 0.5� grid
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6.78 mm/hr were found for the 2011 and 2010 events,
respectively (Figure 6). Evidence of the inundation
observed for the December 2010 event is presented in
Figure 7.

There was significant coverage of the flooding event
in 2010 by news agencies and it was also indicated as a
major event in the study of the World Bank (2011) with
damage to buildings and disruption of traffic. Casualties

were also reported with this event. The observed rain
gauge event was associated with a daily rainfall of
20 mm on December 12. The 2011 event was also
highlighted as a major flood by the ADSCO. Local drain-
age capacity (2 year return period) for Alexandria is
reported as 26 mm/day and considering events last no
longer than 2 hr. Flooding assumed to occur once
exceeded.

TABLE 3 Summary of rainfall events during 2010–2012 which exceed the rainfall amount corresponding to the 75th percentile of the

daily rainfall data for the period 1957–2012 (Some of these days were shown to be clustered events [Events 2, 5, 9, 17, and 18] which took

place over 1–3 days)

No Date mm No Date mm No Date mm No Date mm

1 20/01/10 9.9 5 13/11/11 10.9 9 12/01/12 7.8 17 05/12/12 6.1

2 11/12/10 5.1 14/11/11 11.9 13/01/12 7.8 06/12/12 21.0

12/12/10 6.1 15/11/11 5.08 14/01/12 6.1 18 11/12/12 7.11

13/12/10 20.1 16/11/11 50.0 10 17/01/12 7.8 13/12/12 28.1

3 15/01/11 16 17/11/11 10.9 11 25/01/12 7.1 14/12/12 6.1

16/01/11 7.1 6 21/11/11 8.89 12 18/02/12 9.9 19 21/12/12 7.1

4 19/01/11 7.1 7 24/12/11 6.1 13 29/02/12 9.9

07/02/11 7.8 8 02/01/12 10.9 14 01/03/12 20.0

15 04/03/12 7.1

16 25/11/12 7.8

FIGURE 6 (a) Hyetograph

for November 15 and 16, 2011

and (b) Hyetograph December

12, 2011 showing rainfall

intensity.

Source: GES DISC (2016)

FIGURE 7 Flooding on December,

2010 showing submersion of cars.

Source: Nader (2010)
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On November 16, 2011, the maximum observed rain-
fall was 50 mm, which also caused significant flooding.
Rainfall frequency analysis shows that 26 mm has a
2-year return period and 50 mm/day has a 10-year return
period (Awadallah, Magdy, Helmy, & Rashed, 2017).
Therefore, we assume a 50 mm event would have a
higher severity. From this criterion, we infer a 20 mm
rainfall leads to significant flooding and severe flooding
occurs when the rainfall exceeds the 99th percentile;
exceeding 32 mm. Based on the evidence of flooding
observed in the floods for 2010, 2011, and 2012, the haz-
ard classification was assumed for the following events
(Table 4). Thresholds were classified as either “No to
minimal,” “minor,” “significant,” or “severe.”

7.2 | Application to 2013–2015 storms

The assessment was performed for a total of five storm
events identified during 2013–2015 (Table 5). A visual
representation of the threshold categorisation for event
#1 and #2 in 2015 is shown in Figure 8.

7.3 | Performance indices

A contingency table was developed to evaluate the ability
of this approach in discerning the severity of floods
inferred with respect to lead-time. Results of this analysis
are presented in Table 6 for the validation period
2013–2015. A POD of more than 33% is considered useful

(WMO, 2011). The POD and CSI scores for minor events
suggest all minor events were correctly forecasted at
12 hr and half at 6 hr. At 24 hr lead-time, severe events
received a CSI of 0.75 which suggest at these lead-times
three-fourth of all severe forecasted events were observed.
This is demonstrated for both the November 4 and
October 25 events. The forecast did indicate some level of
persistence as three-fourth of all severe events were fore-
casted as significant events at 48 hr before being
upgraded to a severe event at 24 hr. Incidentally, signifi-
cant events were not well detected at short lead-times but
scored a POD of 0.5 at 48 and 72 hr and a FAR of 1 at
24 hr implying that at 24 hr these events were always
forecasted at a higher value. All hazard event categories
showed poor discrimination at the 72 and 98 hr lead-
time. Only 3 years of data were used to calibrate the rain-
fall thresholds, which is seen as a considerable limitation.
The results indicate, even with a relatively coarse spatial
resolution, the ECMWF data was still capable of
predicting events and performed better for more severe
events. These results could be improved using higher spa-
tial resolutions from limited area forecast models and
more robust bias correction methods and longer calibra-
tion test datasets.

7.4 | Hazard matrix

The hazard categorisation, ensemble probability exceed-
ance, and the corresponding decision/warnings to be
taken are summarised in Figure 9. UK Met Office

TABLE 4 Revised rainfall thresholds considering location drainage conditions, non-exceedance probability and return periods

(mm) 0–11.99 12–19.99 20–31.99 >32

Hazard class 2011 No to minimal flooding Minor flooding Significant flooding Severe flooding

TABLE 5 Summary of major events in 2013–2015 (validation period) to be evaluated including the bias-corrected forecast depths at

different lead times

Event Date
Obs

Lead-time

(mm) 6hr (mm) 12hr (mm) 24hr (mm) 48hr (mm) 72hr (mm) 96hr (mm)

1 04/11/2015 20.1 8.6 17.9 41.6 35.9 26.6 20.4

05/11/2015 43.9 43.8 31.4 41.3 24.8 16.7 12.8

06/11/2015 44.9 5.2 5.8 8.3 5.1 3.5 2.8

2 25/10/2015 32.0 46.9 28.6 36.0 20.0 13.8 11.1

3 07/01/2015 20.1 16.7 15.4 12.6 7.1 5.2 6.2

4 06/01/2013 18.0 19.3 16.8 21.4 22.9 20.3 16.4

08/01/2013 36.1 24.5 22.3 35.7 12.6 9.7 7.7

5 13/12/2013 25.9 8.5 7.1 7.9 4.2 2.9 2.5
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probability thresholds were used in the absence of
established probability thresholds (Figure 4). For both
events, severe events were predicted at both 6 and 24 hr
lead-times with over 60% likelihood warranting a “take
action” decision. At 48 hr the events were predicted with
a “high likelihood of significant event” or “low likelihood
of a severe event”; “Be prepared” and no major hazard at
96 hr. The agreement on the decision category while defi-
nite at some longer lead-times also shows uncertainty at
longer lead-times and ambiguity in making a confident
decision.

It is acknowledged that these results are highly
dependent on the threshold as discussed in the next

paragraph. Thresholds derived should not be final but
need to be updated regularly as more data becomes avail-
able. Sourcing evidence of floods was one of the biggest
challenges in the research as there are no official existing
historical records of floods in Alexandria. In addition to
having a limited number of years, there are many cir-
cumstantial factors, which contribute to urban flooding
such as rainfall intensity, localised flooding in surface
depressions, sewer blockages, pump reliability, function-
ality, and changes in permeability over time, of which
could not be accessed.

There is uncertainty associated with the derivation of
the thresholds. Table 7 evaluates how the warning class
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FIGURE 8 Threshold

categorisation for 25 October and

4 and 5 November event (mean

ensemble and mean ± 2 SDs at

different LTs)

TABLE 6 Summary of categorical scores for observed events (2013–2015): Probability of Detection (POD), False Alarm Ratio (FAR), and

Critical success ratio (CSI) or Threat score

Lead-time (hr)

Minor Significant Severe

POD FAR CSI POD FAR CSI POD FAR CSI

6 0.5 0 0.5 0 0 0 0.5 0 0.5

12 1 0 1 0 0 0 0 0 0

24 0 1 0 0 1 0 0.75 0 0.75

48 0 1 0 0.5 0 0.5 0 0 0

72 0 1 0 0.5 0 0.5 0 0 0

98 0 0 0 0 0 0 0 0 0

YOUNG ET AL. 11 of 16



for these specific events would vary had slight changes to
the thresholds been made. In general, there was less vari-
ability with the shorter lead-times and at higher severity
events. For the Oct and Nov events, the hazard character-
isation remained unchanged from a range of 26–38 mm.
For the January 6 and 8 event, the classification
remained “significant” for most ranges as well. For the
purposes of this analysis, the October 25 and November
4 events were perceived as two independent events but in
reality, there is an interdependency as the previous event
would have saturated the system resulting in lower
thresholds for the subsequent flood. Thresholds were
derived based on daily-accumulated totals; however, is it
also necessary to examine multiday accumulation thresh-
olds to address clustered events.

7.5 | Experimentation of the system on a
real case: The 2018 storm

The above derived rainfall thresholds and hazard classifi-
cations are currently being utilised by the Alexandria
Sanitation and Drainage Company (ASDCO) to issue

warnings and initiate anticipatory actions. In December
2018, officials were put on alert for an extreme rainfall
event on December 5. The 24 hr rainfall accumulation
was forecast to be 33 and 27 mm at the 48 and 24 hr fore-
cast time horizons, respectively. Applying the rainfall
threshold categorisations, these events were forecast as
“Severe” 48 hr before and “Significant” 24 hr before. The
probabilistic forecast at both leadtimes indicated a “high
likelihood of significant flooding/be prepared” would
have been issued. ASDCO used the deterministic forecast,
combined with their knowledge of the past flood and crit-
ical hot spot areas. The city initiated pre-emptive actions
including pumping and checking of pumps at specific
locations and cleaning of drains. In actuality, the
observed rainfall for the event on December 5 was
observed to be 23 mm; a “Significant” flood but minimal
reports of flooding were received. Probabilistic forecasts
are not yet being used, but it is anticipated this will the
next phase as city officials realise the benefits and how to
use probabilistic forecast. The pre-emptive measures
implemented by the city were able to prevent flooding
and disruption. Before these threshold categorisations,
there was no formal process for pluvial flood warnings or

FIGURE 9 Hazard matrix and

decision categorisation for 25 October

and 4 November events. Probability of

ensemble exceeding a threshold is

shown

TABLE 7 Sensitivity of hazard classification at the 6 hr lead time with changing thresholds

No. Threshold range (mm) Hazard classification

1 0–16–25–36

2 0–15–24–35

3 0–14–23–34

4 0–13–22–33

5 0–12–20–32

6 0–11–19–31

7 0–10–18–30

8 0–9–17–29

Jan 2013 Oct 2015 Nov 2015

5 6 7 8 24 25 26 4 5 6
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plans for anticipatory actions in the city. Additionally,
new pumps have been installed to facilitate anticipatory
flood actions. With this approach, the city mitigated the
2018 flood and are now more prepared for future floods.
This is a useful, practical, and simple method when pro-
active actions are not highly objectionable under false
alarms. This is one step toward improved adaptation to
the increasing severity and intensity of rainfall events
observed in recent years and likely to increase in the
coming years. If probabilistic forecast had been used,
“high likelihood significant flooding/be prepared” would
have been issued. In the interim, the city continues to
use the thresholds classifications.

8 | CONCLUSION

In Alexandria and other MENA cities there is high rain-
fall variability, insufficient drainage capacity, flood pre-
paredness is low and often the risk of pluvial flooding is
unknown. In data-scarce regions the threat is imminent;
there needs to be an interim trade-off between complex-
ity and technical feasibility to effectively reduce impacts
until the necessary detailed studies can be done. This
research demonstrated and applied a practical approach
of predicting extreme rainfall events associated with
floods using limited data and no flood models by incorpo-
rating available data such as historical flood data from
social media and satellite precipitation products (SPPs).
In addition to assessing uncertainty, ensembles combined
with a rainfall threshold approach allowed characterisa-
tion of exceedance likelihood associated with flooding.
From an operational forecasting perspective, this proba-
bilistic information was used to support decision making.

In urban areas, subdaily rainfall intensity is essential
to predicting floods. TIGGE ensemble forecast has a fore-
cast grid of approximately 50 × 50 km and may present
difficulties in forecasting in small areas as values are
averaged over 2,500 km2. The nonlinearity of rainfall and
flood events in addition to the low number of events and
historical data limited extensive validation of this method
which is one of the main challenges of using ensembles.
However, results were very favourable and the methodol-
ogy is developed so that it can be used with higher resolu-
tion NWP models or radar estimates as available.

The simplified phased warning and response
approach is consistent with operational forecasting agen-
cies. Combined with the ensemble forecasting and rain-
fall threshold approach, this method adds some
complexity over the widely used deterministic rainfall
forecasts. However, it can strike a balance between a sim-
plified approach and forecast uncertainty estimation. It
does not assess exposure and vulnerability or indicate

possible impacts but when combined with previous
knowledge of “hot-spot” areas, can prove valuable in
supporting decision-making as was demonstrated in the
2018 event. This method is not proposed as an absolute
substitute for EWS using stormwater models but rather it
allows “buy-in time” to increase preparedness until more
data becomes available. Additionally, the benefit of site-
specific thresholds applied on a local scale rather than on
the national scale means local authorities can make spe-
cific independent decisions and increase preparedness of
their cities and communities.

Notwithstanding, communication of warnings still
needs to be incorporated to ensure effective warnings.
Consideration should be made for different durations
and significant changes in catchment characteristics over
time. This emphasises the importance of flexible anticipa-
tory mitigation measures that can be adapted to uncer-
tainties in the forecast and other urban drivers.
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