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Abstract: 22 

23 

Food security is important for human well-being worldwide. However, changing 24 

climate, population growth and shrinking land resources are threatening food security 25 

in many regions of the world. Jiangsu Province, China, is one such region. It is a major 26 

food-producing region of the country but is witnessing rapid population growth and 27 

urbanization that is putting pressure on agricultural water and land resources and 28 

threatening food security of the region. 29 

30 

This paper interprets the nexus between regional water availability and food security in 31 

Jiangsu Province under different climate change and socio-economic scenarios of 32 

population growth and land resource availability. Climate change scenarios are 33 

generated based on historical data and Global Climate Model (GCM) products. Socio-34 

economic scenarios are generated based on population growth and crop planted area 35 

projections. 36 

37 

The uptake of water and nutrients are considered as two dominant biophysical processes 38 

of crop growth and food production. Complementing it is human agency, including 39 

human labor, irrigation and land-preparation machinery, which are the factors behind 40 

water and nutrient use efficiencies of crops grown. Two dominant crops are considered, 41 

rice and wheat, that contribute to 61.4% of total crops produced in the province. 42 

43 

Results show that adaptation by human agency is necessary to ensure that food supply 44 

meets at least the demand of the province under all climate change and socio-economic 45 

scenarios. Under relatively favorable scenarios, labor could replace land-preparing 46 



machinery since the level of food production can be easily maintained with abundant 47 

water and land availability. Mechanization in agricultural production significantly 48 

increases food production under unfavorable conditions, since it improves water and 49 

nutrient use efficiencies and leads to higher crop yields. This demonstrates that human 50 

agency plays an important role in securing food under stressful scenarios of drier 51 

climate, population growth, and contraction of agricultural lands. 52 

53 

Key words: climate change; food security; scenario analysis; water and nutrient use 54 

efficiencies; trade-off between human labor and machinery in agriculture 55 

56 

57 



1. Introduction58 

Maintaining sufficient food supply is key to a healthy population and social stability 59 

(Springmann et al., 2016 ; Kaiser, 2011). This can either be realized through trade or 60 

through high and stable level of food produced locally. The latter is especially important 61 

under changing climate and evolving socio-economic conditions (Turral et al., 2011), 62 

such as rapid population growth (McCarthy et al., 2018), and shrinking agricultural 63 

lands (Hou et al., 2019; Qiu et al., 2020). This is because trade will likely be disrupted 64 

more often, offering less reliable means of securing food for local population (Cardwell, 65 

2014). 66 

67 

Under changing climate, local food production is expected to be affected by changing 68 

water availability and impact food security and agricultural employment (Hertel & 69 

Rosch, 2010; Rosemberg, 2010; Siwar et al., 2013). Food security, i.e. when food 70 

supply of a region is at least able to meet its own demand, is affected directly by such 71 

changing agro-ecological conditions and crop yields, as well as indirectly by 72 

inequitable distribution of incomes (Schmidhuber and Tubiello, 2007). Changing socio-73 

economic conditions (Garibaldi and Pérez-Méndez, 2019), such as shrinking 74 

agricultural land resources for food crops, are also expected to reduce overall food 75 

production (van Vliet et al., 2017; Wang, 2019). This exasperates food insecurity with 76 

rising demand for food due to population growth (Avery et al., 2019; Mondal and 77 

Sanaul, 2019). 78 

79 

Jiangsu Province, China, is one such region that exemplifies the pressures on food 80 

security. As one of the major regions of crop production in China (Gu and Guo, 2011), 81 

the province produces 37 million tons of food crops (BSC, 2019) and supports the 82 



enormous food demand of the country. It is also one of the regions which is under water 83 

stress (Li, J. & Li, L., 2012, Xu et al., 2011), and witnessing land and population growth 84 

pressures (Zhang et al., 2004; Qian et al., 2008; Zhu and Ou, 2020). With agricultural 85 

land shrinking in the process of urbanization, people are shifting from rural agriculture 86 

to modern industries, leading to rural to urban migration (Lyu et al., 2019). The province 87 

is likely to face food insecurity in the future and adaptation strategies are urgently 88 

needed (Xu and Ding, 2015). 89 

90 

Often not enough adaptation to bio-physical impacts, high-cost of measures, short-term 91 

merit but long-term negative adaptations, and lack of feasible adaptive strategies hinder 92 

adequate response to climate and socioeconomic changes (Warner and Geest, 2013). 93 

This highlights the need to unravel possible means to adapt under diverse future 94 

scenarios and secure sufficient food (Challinor et al., 2010), which move away from 95 

more expensive hard interventions such as supply oriented measures to soft 96 

interventions. Examples of the latter include how water and land resources are governed 97 

and used in crop production (Medeiros and Sivapalan, 2020; Li and Sivapalan, 2020; 98 

Kakinuma et al., 2014). 99 

100 

This paper uniquely views humans as agents of change that improve water and nutrient 101 

use efficiencies, and inquires to what extent food security can be ensured for Jiangsu 102 

Province. Since most food crops are farmed, labor is an indispensable part of such 103 

human agency (Achille et al., 2015). The agency also includes machineries, for 104 

irrigation and land-preparation, which improves the efficiency of water and nutrients 105 

uptakes for food crop production (Febrina et al., 2013; Ma et al., 2020; Huang et al., 106 

2018). 107 



108 

The human agency can adapt crop production to changing conditions and secure food 109 

(Crane et al., 2011; Olesen et al, 2011; Leisnham et al., 2013; Preston et al., 2015; 110 

Gomez-Zavaglia et al., 2020). However, no studies yet exist that have modelled human 111 

agency in context of crop production and assessed the effects of its adaptation to 112 

changing environment on food security. The aim of the paper is to assess the extent to 113 

which food security can be ensured by adapting human agency under changing 114 

conditions of water and land availability in Jiangsu Province. 115 

116 

The paper is organized into five sections. Section 2 describes the methodology used for 117 

generating climate change and socio-economic scenarios, modeling crop production, 118 

evaluating food security and maximizing it by adapting human agency, together with 119 

the main data sources used. Section 3 presents the results of “optimized” food security 120 

under different climate and socio-economic scenarios. Section 4 first discusses the 121 

improvements in crop water and nutrient use efficiencies that are brought about by 122 

adapting human agency. It then discusses the trade-offs between labor and machinery 123 

employed to optimize food security under different climate change and socio-economic 124 

scenarios. Section 5 then summarizes the main conclusions. 125 

126 



2. Methods and Materials 127 

Figure 1 illustrates the overall methodology. A crop model which combines bio-128 

physical mechanisms with human agency (Lyu et al., 2020) is applied. Climate change 129 

brought about by greenhouse gas emissions is assumed to effect crop yields due to 130 

changes in precipitation. The human agency, including labor, irrigation machinery 131 

power and land-preparing machinery power per unit area, determines the water and 132 

nutrient use efficiencies during crop growth. 133 

 134 

The socio-economic conditions are assumed to be dominated by population growth and 135 

food crop plant area and affect crop production and the ratio of food supply to food 136 

demand, i.e. food self-sufficiency rate – a key indicator of food security. 137 

 138 

The human agency adapts to changing climate and socio-economic conditions by 139 

improving the water and nutrient use efficiencies of food crops so that higher yields are 140 

achieved. The food self-sufficiency rate within Jiangsu Province is then determined as 141 

the ratio of food supply and food demanded for given population and planted area 142 

scenarios. Here food supply is the product of yield and planted area and food demand 143 

is determined by the dietary demand of the population of the province. 144 

 145 

Finally, it is assumed that the objective of adaptation by human agency is to jointly 146 

maximize the magnitude and stability (i.e. lower variance) of food self-sufficiency rate 147 

(FSR) for a given climate change and socioeconomic scenario over the next 30 years 148 

till 2050. The human agency adapts in order to identify non-dominated sets of higher 149 

and stabler (lower variance) FSRs. Here by non-dominated sets it is meant that there 150 

are no other sets that dominate this set in terms of either having higher or stabler FSR. 151 



 152 

 153 

 154 

  155 
Figure 1 Illustration of the overall methodology. FSR stands for Food Sufficiency 156 

Ratio, which is the ratio of food demand and food supply.  157 

 158 



 159 

2.1 Study area  160 

As shown in Figure 2, Jiangsu Province is located in the southeastern coast of China. 161 

The province is in a transition zone between subtropical and warm temperate climate, 162 

with annual precipitation around 1000mm/year. Three of the main rivers of China run 163 

through it: Yi-Shu-Si, Huaihe and Yangzi (including the Taihu Lake river network). 164 

Benefiting from its abundant river systems and water resources, Jiangsu is one of the 165 

main exporters of food crops to other provinces in China (Li et al., 2009). It is able to 166 

supply food not only for its own residents, but also to other provinces across the country. 167 

 168 

 169 
Figure 2 Jiangsu Province, China. Also shown are the stations that are used in the 170 

study. 171 

 172 

There are eight crop-monitoring stations providing crop locations and related 173 

information of the growing seasons. Six stations for wheat: Fengxian, Ganyu, Xuyi, 174 

Huaiyin, Yangzhou, Kunshan and three stations for rice: Ganyu, Dantu, Gaochun, are 175 



considered. 176 

 177 

 178 

2.2 Stochastic climate scenario generation 179 

Representative Concentration Pathways (RCPs) (IPCC, 2019) have been applied as 180 

emission scenarios for climate backgrounds to generate regional precipitation and 181 

temperature time series with uncertainty (Lobell et al., 2006). Regional precipitation 182 

time series have been produced with a multi-model climate generator called Simgen 183 

(Greene et al, 2012a; Greene et al, 2012b; Greene et al, 2015). The Simgen climate 184 

generator incorporates nonlinear climate change trends, inferred using an ensemble of 185 

global climate models from the Coupled Model Intercomparison Project (CMIP5) 186 

(Taylor et al., 2012; Meehl & Hibbard, 2007; Hibbard et al., 2007; Hurrell et al., 2011). 187 

 188 

Under a given RCP condition, Simgen first uses a selected number of Global Climate 189 

Models (GCMs) to simulate historical precipitation data at the stations within the study 190 

area (as shown in Figure 2) and evaluates the performance of each GCM based on its 191 

correlation with the historical precipitation time series (Greene et al, 2012a; Eyring, 192 

2013; Aloysius et al., 2016). GCMs with correlation coefficients higher than 0.50 are 193 

selected for generating climate scenario time series for future time steps. The frequency 194 

distributions of temperature change (°C) and fractional change of precipitation with 195 

per °C change of temperature, together with the cumulative frequency distribution 196 

function (CDF) of the selected GCMs for RCPs 8.5 and 2.6 are shown in Figure 3a, b, 197 

for the study area. 198 

 199 

A combination of a selected GCM (corresponding to a percentile on the frequency 200 



distribution) with a RCP used by Simgen then produces corresponding precipitation and 201 

temperature time series with stochastic effects. Here, 100 runs each of 2 × 3 202 

combinations of two RCPs (2.6, 8.5) and three GCM percentiles (10%, 50%, 95%) are 203 

used to generate climate change scenarios. For more details on Simgen, readers are 204 

referred to Greene et al. (2012b). 205 

 206 

RCP2.6 represents a pathway where the radiation forcing reaches to about 3 W/m2 207 

before 2100 and then declines. The corresponding greenhouse gas emission 208 

concentration path (Emission Concentration Pathway, ECP) assumes constant 209 

emissions after 2100. RCP8.5 represents a pathway in which the radiation forcing 210 

reaches greater than 8.5 W/m2 and continues to rise after 2100. The corresponding ECP 211 

assumes constant greenhouse gas emission after 2100 and constant greenhouse gas 212 

concentration after year 2250. 213 

 214 

Precipitation time series have been generated for the six wheat crop stations and three 215 

rice crop stations (see Figure 2). For each combination of RCP and GCM percentile, 216 

the generated climate scenarios have four dimensions: 𝑃𝑃(𝑡𝑡) 𝑖𝑖,𝑗𝑗,𝑘𝑘, where 𝑡𝑡 is the time 217 

step (50 years from 2001 to 2050 in total, with climate scenarios applied since 2018), 218 

𝑖𝑖 denotes crop type (1 for wheat and 2 for rice), 𝑗𝑗 represents crop-monitoring station 219 

(𝑗𝑗 ∈ [1,6] for wheat, 𝑗𝑗 ∈ [1,3] for rice), 𝑘𝑘 indexes a stochastic run of Simgen with 220 

given RCP and GCM percentile (100 runs in total) 221 



 222 
Figure 3a Frequency distribution representing GCM related uncertainty and selection 223 

of percentile models under RCP 8.5 224 



 225 
Figure 3b Frequency distribution representing GCM related uncertainty and selection 226 

of models at 10, 50 and 90 percentiles under RCP 2.6 227 

 228 

 229 

2.3 Generation of options for adaptation by human agency 230 

Labor (capita), irrigation machinery (power) and land-preparing machinery (power) per 231 

unit area are treated as human agency. It improves the efficiencies of water and nutrient 232 

uptake, thereby improving crop yields.  233 

 234 

In order to generate realistic options for adaptation by human agency, appropriate data 235 

generating processes that describe temporal evolution of human agency are first 236 

identified. These are based on growth rate time series from 2002 to 2017 of labor force, 237 

𝑔𝑔𝐿𝐿, irrigation machinery power, 𝑔𝑔𝑀𝑀𝑀𝑀 and land-preparing machinery power, 𝑔𝑔𝑀𝑀𝐿𝐿. 238 

 239 

Autoregressive Integrated Moving Average model (Kotu and Deshpande, 2018), 240 



ARIMA(1,0,0) is applied to the time series of 𝑔𝑔𝐿𝐿, 𝑔𝑔𝑀𝑀𝑀𝑀 and 𝑔𝑔𝑀𝑀𝐿𝐿, as it is found to be 241 

most appropriate model of the past time series. Being ARIMA(1,0,0), the lag 242 

coefficients of the models, i.e., 𝜏𝜏𝐿𝐿 , 𝜏𝜏𝑀𝑀𝑀𝑀 , and 𝜏𝜏𝑀𝑀𝐿𝐿 , for respective time series are 243 

sufficient to describe the time series. 244 

 245 

In order to stochastically simulate the time series, 2000 tuples of ARIMA coefficients 246 

𝜏𝜏𝐿𝐿, 𝜏𝜏𝑀𝑀𝑀𝑀, and 𝜏𝜏𝑀𝑀𝐿𝐿 within the range of [−0.9999,0.9999] are randomly sampled for a 247 

given climate scenario. The generated coefficient tuples are then expressed as [𝜏𝜏𝐿𝐿,𝑟𝑟, 248 

𝜏𝜏𝑀𝑀𝑀𝑀,𝑟𝑟, 𝜏𝜏𝑀𝑀𝐿𝐿,𝑟𝑟], 𝑟𝑟 ∈ [1,2000]. With 2000 samples of coefficient tuples, time series of 𝑔𝑔𝐿𝐿, 249 

𝑔𝑔𝑀𝑀𝑀𝑀  and 𝑔𝑔𝑀𝑀𝐿𝐿  are stochastically generated and 2000 human agency time series of 250 

human labor force, irrigation machinery power and land-preparing machinery power 251 

per area are thus obtained. 252 

 253 

 254 

2.4 Crop production simulation 255 

As shown in Figure 1, a crop production model is used that combines both bio-physical 256 

factors and human agency in simulating crop yields. Lyu et al., (2020) have 257 

demonstrated its utility in simulating wheat and rice production in Jiangsu Province, 258 

China.  259 

 260 

The crop production model treats Normalized Difference Vegetation Index (NDVI) as 261 

resulting from the joint effect of water and nutrient uptakes on plant greenness. 262 

Therefore, the effect of water uptake (represented by transpiration 𝑇𝑇) on NDVI is first 263 

filtered out and the remaining variance of NDVI is then assumed to approximate the 264 

effect of uptake of nutrients 𝑁𝑁. The yield-uptake relationship is then defined in the 265 



form of a production function 𝑌𝑌 = 𝜆𝜆𝑥𝑥𝑊𝑊𝛼𝛼𝑥𝑥𝑁𝑁𝛽𝛽 , where 𝑌𝑌  is crop yield, 𝑥𝑥𝑊𝑊  is water 266 

uptake given by 𝜂𝜂𝑊𝑊𝑃𝑃 , 𝑥𝑥𝑁𝑁  is nutrient uptake given by 𝜂𝜂𝑁𝑁𝐹𝐹 , 𝛼𝛼  and 𝛽𝛽  are 267 

corresponding elasticities and 𝜆𝜆 is a scaling factor. This production function represents 268 

the biophysical responses of crop yields to water and nutrient uptakes (Lyu et al., 2020). 269 

The parameters (𝜆𝜆,𝛼𝛼,𝛽𝛽) therefore do not assess economic or technological aspects of 270 

human agency. The human agency determines the water and nutrient use efficiencies, 271 

𝜂𝜂𝑊𝑊 and 𝜂𝜂𝑁𝑁 respectively, that translate available water P and applied nutrients F to 272 

water and nutrient uptakes 𝑥𝑥𝑊𝑊 and 𝑥𝑥𝑁𝑁 respectively. The relationship between water 273 

or nutrient use efficiency and human agency is estimated based on the following 274 

equations: 275 

𝜂𝜂𝑊𝑊
𝑗𝑗 = Λ𝐻𝐻𝑗𝑗 + 𝛿𝛿𝑗𝑗 + 𝜖𝜖𝑊𝑊 276 

𝜂𝜂𝑁𝑁
𝑗𝑗 = Θ𝐻𝐻𝑗𝑗 + 𝜃𝜃𝑗𝑗 + 𝜖𝜖𝑁𝑁 277 

(1a, b) 278 

Here, 𝑗𝑗  refers to a crop-monitoring station, 𝐻𝐻𝑗𝑗  represent station-specific human 279 

activities but its effect on efficiencies, (Λ,Θ), are general across all the stations. Fixed 280 

station-specific effects are quantified by (𝛿𝛿𝑖𝑖,𝜃𝜃𝑖𝑖),  and (𝜖𝜖𝑊𝑊, 𝜖𝜖𝑁𝑁)  represent the 281 

residuals accounting for the variances of efficiencies not explained by H.  282 

 283 

Human agency such as labor used in crop production 𝐿𝐿𝐶𝐶, irrigation machinery power 284 

𝑀𝑀𝑀𝑀 and land-preparing machinery power 𝑀𝑀𝐿𝐿 per unit area are considered in the set of 285 

independent variables H. All combinations of joint and individual effects (such as 286 

𝐿𝐿𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀𝐿𝐿 , 𝐿𝐿𝐶𝐶𝑀𝑀𝑀𝑀 , 𝑀𝑀𝑀𝑀𝑀𝑀𝐿𝐿 , 𝐿𝐿𝐶𝐶𝑀𝑀𝑀𝑀 , 𝐿𝐿𝐶𝐶 , 𝑀𝑀𝑀𝑀  and 𝑀𝑀𝐿𝐿 ) are first regressed and only those 287 

effects that were statistically significant are selected in the final model. In the 288 

calibration of Eq. 1, station specific observed values of 𝜂𝜂𝑊𝑊 and 𝜂𝜂𝑁𝑁 were calculated 289 



as 𝜂𝜂𝑊𝑊 = 𝑇𝑇
𝑃𝑃
  and 𝜂𝜂𝑁𝑁 = 𝑁𝑁

𝐹𝐹
 , where 𝑇𝑇  and 𝑃𝑃  are transpiration and precipitation fluxes 290 

respectively integrated over the crop growing seasons, 𝑁𝑁 is the nutrient proxy, and 𝐹𝐹 291 

is fertilizer use per area, which is the nutrient resource for croplands. See supplementary 292 

materials for the estimated parameters of the equations.  293 

 294 

Climate change scenarios impose its effects on crop growth via precipitation P 295 

(Kawuma Menya, 2011; Kukal & Irmak, 2018; Makowski et al., 2020). The simulated 296 

crop yields (i.e., crop production per unit planted area) under each climate scenario (i.e., 297 

a combination of a RCP and a GCM percentile) 𝑞𝑞  for either wheat or rice is 298 

represented by variable 𝑌𝑌(𝑡𝑡)𝑗𝑗,𝑝𝑝,𝑞𝑞,𝑟𝑟, where 𝑡𝑡 is time step (50 years from 2001 to 2050, 299 

with climate scenarios applied since 2018), 𝑗𝑗 represents a crop-monitoring station (𝑗𝑗 ∈300 

[1,6]  for wheat, 𝑗𝑗 ∈ [1,3]  for rice), 𝑟𝑟  denotes human agency scenario ( 𝑟𝑟 ∈301 

[1,2000]), and 𝑝𝑝 represents a stochastic run of Simgen under each climate scenario, 302 

𝑝𝑝 ∈ [1,100]. 303 

 304 

 305 

2.5 Socio-economic scenarios 306 

For a given level of crop yield as determined by the human agency factors under a 307 

climate change scenario, socio-economic conditions linked to population and plant area 308 

finally determine the level of food self-sufficiency within the study area. 309 

 310 

As shown in Figure 4, three scenarios of population (Low, Mid, High) have been 311 

simulated based on provincial population prediction datasets (Bureau of Statistics of 312 

Jiangsu, 2002; Bureau of Statistics of Jiangsu, 2012) and the observed time series of 313 

population within the province (Bureau of Statistics of Jiangsu, 2019).  314 



 315 
Figure 4 Socio-economic scenario I: Population 316 

 317 

The crop plant area scenarios are based on the planted area dataset in the Statistical 318 

Yearbook of Jiangsu (Bureau of Statistics of Jiangsu, 2018) and the cost per unit area 319 

dataset in the China Rural Statistical Yearbook (National Bureau of Statistics, 320 

2002~2018). Future crop planted area time series have been simulated based on 321 

relationships between two food crops (wheat, rice) and six cash crops (used as 322 

benchmark) since these crops compete over finite land area available and the decisions 323 

to grow which crops are affected by the costs of growing those crops (Chen et al., 2016; 324 

Zhao and Yan, 2019). It is assumed that farmers are cost minimizers. The farmers decide 325 

on how much area is allocated to food crops relative to cash crops based on minimizing 326 

costs (Chen, 2019; Mo et al., 2020). Corresponding efficiency conditions imply linear 327 

relationships between areas under food crops relative to cash crops and costs of cash 328 

crops relative to food crops. Following steps outline the steps taken to unravel the linear 329 

relationships. 330 

 331 

First the time series of the total planted areas of the eight selected crops are observed to 332 

vary linearly in time. A linear forecasting model (R = 0.95, p-value < 10-3, as shown in 333 

Figure 5a) is used to estimate past trend based on historical data from 2011 to 2018 and 334 



to generate trend-based scenarios of total planted area for the future.  335 

 336 

The ratios of food crop planted areas with the six cash crops (𝐶𝐶) planted areas are then 337 

estimated based on linear regressions, with the ratios of cash crop average cost per unit 338 

area with the food crops cost per unit area as the independent variables: 339 

𝐴𝐴𝑉𝑉
𝐴𝐴𝐶𝐶

= 𝑓𝑓1 (
Υ𝐶𝐶
Υ𝑉𝑉

) 340 

𝐴𝐴𝑅𝑅
𝐴𝐴𝐶𝐶

= 𝑓𝑓2 (
Υ𝐶𝐶
Υ𝑅𝑅

) 341 

(2a, b) 342 

where 𝐴𝐴𝑉𝑉 and 𝐴𝐴𝑅𝑅 are the planted areas of wheat (𝑉𝑉) and rice (𝑅𝑅) respectively, Υ𝑉𝑉, 343 

Υ𝑅𝑅 and Υ𝐶𝐶 are the costs per unit areas of wheat, rice and cash crops respectively, and 344 

𝑓𝑓1 and 𝑓𝑓2 are linear functions. Figure 5b and 5c show the regression results for wheat 345 

(R = 0.84, p-value < 10-4) and for rice (R = 0.92, p-value < 10-7). It shows that the cash 346 

crops within the province have been gradually replaced by food crops because the cost 347 

per unit area of cash crops have been increasing relative to that of food crops. Finally, 348 

the slope of the trend line for total planted area, estimated based on historical data above, 349 

is used to generate scenarios for future areas planted under food crops. 350 

 351 

According to the Statistical Yearbook of Jiangsu, in 2018 the area planted under wheat 352 

and rice in Jiangsu was 4618.68 kha (103 hectares), whereas the area under the six cash 353 

crops was 274.93 kha (i.e., ~5% of area under food crops). This means that food crops 354 

have already dominated the cash crops in the province and may not significantly 355 

increase in the future. Therefore, the future scenarios of area under food crops only 356 

considered stable or declining trends, i.e., constant or negative slopes of the linear 357 

forecasting models for wheat and rice, for it to be realistic. Random errors were added 358 



based on the residuals between observed and linear model of the historic data.  359 

 360 

Four scenarios from low to high slopes are created as shown in Figure 6. The lowest 361 

slope scenario is based on the slope displayed in Figure 5a, the other three use scaled 362 

slopes which are 75%, 50%, and 25% of the slope in the lowest slope scenario. As 363 

shown in Figure 6, the four crop plant area scenarios, from low to high, were named as 364 

‘0AL’, ‘1AM1’, ‘2AM2’ and ‘3AH’. ‘A’ means ‘Area’, ‘L’, means ‘Low’, ‘M’ means 365 

‘Medium’, and ‘H’ means ‘High’. 366 

 367 

 368 
Figure 5 Crop plant areas and calibration of forecasting models 369 

 370 
Figure 6 Crop plant area scenarios. 371 

 372 

 373 

2.6 Food security indicator: self-sufficiency ratio 374 

Food self-sufficiency rate, Ψ, is defined as the ratio of food crop production to food 375 



crop demand of the province.  376 

 377 

The food crop production per capita is calculated as follows: 378 

𝑌𝑌�(𝑡𝑡)𝑚𝑚,𝑛𝑛,𝑝𝑝,𝑞𝑞,𝑟𝑟 =  
𝐴𝐴𝑉𝑉(𝑡𝑡)𝑛𝑛

6 ∑ 𝑌𝑌𝑉𝑉(𝑡𝑡)𝑗𝑗,𝑝𝑝,𝑞𝑞,𝑟𝑟
6
𝑗𝑗=1 ∗ +𝐴𝐴𝑅𝑅(𝑡𝑡)𝑛𝑛

3 ∑ 𝑌𝑌𝑅𝑅(𝑡𝑡)𝑗𝑗,𝑝𝑝,𝑞𝑞,𝑟𝑟
3
𝑗𝑗=1

ϕ(t)𝑚𝑚
 379 

(3) 380 

where, 381 

𝑌𝑌�(𝑡𝑡)𝑚𝑚,𝑛𝑛,𝑝𝑝,𝑞𝑞,𝑟𝑟 is the food crop production per capita at time step 𝑡𝑡, for human agency 382 

scenario 𝑟𝑟  with precipitation time series 𝑝𝑝 , (for each climate scenario 𝑞𝑞  there are 383 

𝑘𝑘 ∈ [1,100] precipitation time series with stochastic effects of climate), under plant 384 

area scenario 𝑛𝑛 and population scenario 𝑚𝑚. 385 

𝐴𝐴𝑉𝑉(𝑡𝑡)𝑛𝑛 and 𝐴𝐴𝑅𝑅(𝑡𝑡)𝑛𝑛 are the plant areas of wheat (𝑉𝑉) and rice (𝑅𝑅) at time 𝑡𝑡, under plant 386 

area scenario 𝑛𝑛. 387 

ϕ(t)𝑚𝑚 is the population at time step 𝑡𝑡, under population scenario 𝑚𝑚. 388 

𝑗𝑗  represent the agricultural meteorological monitoring stations, for wheat 𝑗𝑗 ∈ [1,6] , 389 

for rice 𝑗𝑗 ∈ [1,3]. Note that the numerator of equation (3) is the sum of wheat and rice 390 

production levels averaged over the six and three corresponding stations respectively. 391 

 392 

The calculation of self-sufficiency ratio Ψ(t)𝑚𝑚,𝑛𝑛,𝑝𝑝,𝑞𝑞,𝑟𝑟 is defined as. 393 

Ψ(t)𝑚𝑚,𝑛𝑛,𝑝𝑝,𝑞𝑞,𝑟𝑟 =  
𝑌𝑌�(𝑡𝑡)𝑚𝑚,𝑛𝑛,𝑝𝑝,𝑞𝑞,𝑟𝑟

𝐷𝐷�
 394 

(4) 395 

Where, 396 

𝑌𝑌�(𝑡𝑡)𝑚𝑚,𝑛𝑛,𝑝𝑝,𝑞𝑞,𝑟𝑟 is the food crop production per capita. 397 

𝐷𝐷� is the demand per capita for wheat and rice. The total food crop demand was assumed 398 



as 400 kg/capita (Wang et al., 2013). No shift in diet is considered that may lead to 399 

changes either in the total demand for food crops per capita or in the demand for wheat 400 

relative to rice. Considering that the total production of wheat and rice in 2018 401 

accounted for about 88.7% of all food crops (BSJ, 2019), a factor of 0.90 is used to 402 

estimate total 𝐷𝐷� for wheat and rice as 360 kg/capita. 403 

 404 

 405 

2.7 Food security 406 

Under each of the six climate change scenarios (two RCPs and three GCM percentiles), 407 

100 precipitation time series are stochastically generated. For each such generation, 408 

2000 human agency options are applied that are randomly sampled according to the 409 

ARIMA model to obtain corresponding crop yields for rice and wheat. Then 12 socio-410 

economic scenarios, i.e., three population scenarios and four crop planted area scenarios, 411 

are used to estimate the food sufficiency ratio within Jiangsu Province, China. 412 

 413 

For a given climate scenario 𝑞𝑞, population scenario 𝑚𝑚, and crop planted area scenario 414 

𝑛𝑛, a collection of food self-sufficiency rates Ψ(t)𝑚𝑚,𝑛𝑛,𝑝𝑝,𝑞𝑞,𝑟𝑟, are obtained. Note here that 415 

𝑟𝑟 ∈ [1,2000] denotes the human agency options, i.e., combination of labor, irrigation 416 

and land-preparing machinery power per unit area of cropland and 𝑝𝑝 ∈ [1,100] 417 

denotes the 100 precipitation time series with stochastic effects under the given climate 418 

scenario 𝑞𝑞. 419 

 420 

Simplifying Ψ(t)𝑚𝑚,𝑛𝑛,𝑝𝑝,𝑞𝑞,𝑟𝑟  to Ψ(t)𝑝𝑝,𝑟𝑟 , a two-dimensional food security indicator is 421 

estimated that considers the magnitude and variance of food sufficiency ratio over time. 422 

 423 



In order to estimate the average magnitude of food sufficiency, average of food 424 

sufficiency ratio is first estimated over the 100 stochastic precipitation time series. 425 

Ψ�(𝑡𝑡)𝑟𝑟 =
1

100
�Ψ(t)𝑝𝑝,𝑟𝑟

100

𝑝𝑝=1

 426 

(5) 427 

The magnitude and variance of food self-sufficiency rate are then obtained by the 428 

equations below respectively, 429 

Ψ�𝑟𝑟 =
1

50
�Ψ�(𝑡𝑡)𝑟𝑟

50

𝑡𝑡=1

 430 

(6a) 431 

𝜎𝜎Ψ�𝑟𝑟 = � 1
50 − 1

��Ψ�(𝑡𝑡)𝑟𝑟 −
1

50
�Ψ�(𝑡𝑡)𝑟𝑟

50

𝑡𝑡=1

�

250

𝑡𝑡=1

 432 

(6b) 433 

These two quantities provide the two dimensions of food security, which are how large 434 

and how stable food sufficiency is over time. The two quantities can also be thought of 435 

as two objectives to be optimized by adapting human agency under different climate 436 

and socioeconomic scenarios, e.g., in the form 437 

min(−Ψ�𝑟𝑟 ,𝜎𝜎Ψ�𝑟𝑟) 438 

 (7a, b) 439 

Given the nature of the objective function being multi-objective, non-dominated sets of 440 

(−Ψ�𝑟𝑟 ,𝜎𝜎Ψ�𝑟𝑟)  are sought. The human agency parameter tuples [𝜏𝜏𝐿𝐿,𝑟𝑟 , 𝜏𝜏𝑀𝑀𝑀𝑀,𝑟𝑟 , 𝜏𝜏𝑀𝑀𝐿𝐿,𝑟𝑟 ] 441 

corresponding to non-dominated sets are identified as the adaptation by human agency 442 

to secure food. Non-dominated sets are such that there are no other ways human agency 443 

can adapt that will result in both larger magnitude of food self-sufficiency ratio as well 444 



as stabler (i.e., with lower variance) ratio. These therefore describe how the time series 445 

of human agency should evolve over time in order to optimize food security for the 446 

region. 447 

 448 

 449 

2.8 Data sources 450 

The data sources of all the datasets are shown below in Table 2.  451 



Table 2. Description of data used. 452 
Data 

categories 
Variables 
(symbol) Unit Period Spatial 

Resolution Temporal Resolution Data source 

Hydro- 
climatic 

Temperature (T) °C 2000 
-2017 0.5*0.5 ° 

Daily time series 
distributed using 
monthly data 

CRU (CRU, 1901-2017; 
Harris et al., 2014) 

Precipitation (P) 
For crop model 
calibration. 

mm 

2000 
-2017 0.5*0.5 ° 

Derived from monthly 
data. 
Growing-season-
accumulated value for 
each year. 

CRU (CRU， 1901-2017；
Harris et al., 2014) 

Precipitation (P) 
For climate 
scenarios. 

1969-
2013 0.25*0.25 ° Derived from daily 

data. 

GLDAS Catchment Land 
Surface Model L4 daily 
0.25*0.25 ° V2.0 (Li et al., 
2018; Rodell et al., 2004) 

Transpiration 
(Tr)  

W/m2 
(converted 

to mm) 

2000-
2017 0.25*0.25 ° 

Derived from monthly 
data. 
Growing-season-
accumulated value for 
each year. 

GLDAS Noah Land Surface 
Model L4 monthly 
0.25*0.25 ° V2.1 (Rodell et 
al., 2004) 

Crop 
Information 

NDVI (g) 

- 

2000 
-2017 30 m 

Derived from 8-day 
data. 
Growing-season-
maximum value for 
each year. 

Landsat 7 NDVI  
(imported from Google Earth 
Engine:  
‘LANDSAT/LE07/C01/T1_8
DAY_NDVI’, Gorelick et al., 
2017) 

Crop type & 
Growing season 

1991 
-2010 Station-level Yearly 

National Meteorological 
Information Center of China 
(2006) 

Provincial crop 
yield (Y) kg/ha 2001 

-2017 Provincial Yearly Statistical Yearbook of 
Jiangsu (BSJ, 2018) 

Crop plant area 
(A) 

1000ha 
(kha) 

2001 
-2018 Provincial Yearly Statistical Yearbook of 

Jiangsu (BSJ, 2019) 

Crop cost per 
area (Υ) 

CNY/mu 
(1 mu = 
1/15ha) 

2001 
-2018 Provincial Yearly China Rural Statistical 

Yearbook (NBS, 2019) 

Human 
Agency 

Total Population 104 Capita 2001 
-2019 

Provincial Yearly 

Statistical Yearbook of 
Jiangsu (BSJ, 2019) 

Population 
Prediction Data 
2011-2030 

104 Capita 2011 
-2030 

Compilation of population 
prediction data in Jiangsu 
Province 2011-2030 (BSJ, 
2012) 

Population 
Prediction Data 
2001-2050 

104 Capita 2001 
-2050 

Compilation of population 
prediction data in Jiangsu 
Province 2001-2050 (BSJ, 
2002) 

Labor force in 
crop cultivation 
(𝐿𝐿𝐶𝐶) 

Capita/kha 

2001 
-2017 

Statistical Yearbook of 
Jiangsu (BSJ, 2018) 

Irrigation 
machinery (𝑀𝑀𝑀𝑀) Kw/ 

kha Land-preparing 
machinery (𝑀𝑀𝐿𝐿) 

Fertilizer use (F) Ton/ 
kha 

 453 



3. Results 454 

 455 

3.1 Food secure non-dominated sets 456 

 457 

Figure 7a and 7b show the non-dominated sets (pareto frontier) of (−Ψ�𝑟𝑟 ,𝜎𝜎Ψ�𝑟𝑟) for two 458 

climate scenarios, which correspond to food secure options identified from amongst the 459 

simulated adaptation options by human agency (i.e., from 2000 random samples of 460 

tuples [𝜏𝜏𝐿𝐿,𝑟𝑟, 𝜏𝜏𝑀𝑀𝑀𝑀,𝑟𝑟, 𝜏𝜏𝑀𝑀𝐿𝐿,𝑟𝑟]).  461 

 462 

The impact of crop plant area contraction scenarios on food security is most significant. 463 

Figure 7a and 7b display the food security scenarios, including non-dominated sets, for 464 

the least optimistic climate scenario ‘(RCP8.5, P10%)’ and the most optimistic climate 465 

scenario, ‘(RCP2.6, P95%)’. RCP 8.5 is generally taken as the basis for worst case 466 

climate change scenario, since it assumes that the emission of green-house gases will 467 

continue to rise throughout the 21st century. On the other hand, RCP 2.6 assumes the 468 

most stringent limitations on future green-house gas emissions. The temperature rise 469 

under RCP 8.5 is generally higher than that under RCP 2.6 as shown in Figure 3a, b and 470 

leads to less precipitation.  471 

 472 

In each of the figures, the three rows correspond to the three population scenarios 473 

named as ‘1PopL’, ‘2PopM’, ‘3PopH’. The definitions of these population scenarios 474 

are listed in Table 3. 475 

 476 

Table 3 Population scenarios and its definitions in terms of fertility rate and time to 477 

peak (BSJ 2002, 2012, 2019) 478 



Year 
Fertility rate (%) Peak population (104) 

Low 
(1PopL) 

Mid 
(2PopM) 

High 
(3PopH) 

Low 
(1PopL) 

Mid 
(2PopM) 

High 
(3PopH) 

2001~2019 Historical population data 

2020~2050 1.65 1.75 1.85 8139.8 
(2024) 

8167.5 
(2025) 

8241.1 
(2026) 

 479 

The four columns of Figure 7a and 7b correspond to the four crop planted area (A) 480 

scenarios, namely ‘0AL’, ‘1AM1’, ‘2AM2’, and ‘3AH’ (see Figure 6). Here ‘L’ means 481 

low, standing for the most negative growth rate (i.e., contraction rates) of -33.93 482 

kha/year after 2018 of planted area; M1 and M2 correspond to relatively mild planted 483 

area contraction rates after 2018, i.e. 75% and 50% of low scenario rates respectively. 484 

H means High, with a relatively stable growth rate of planted area after 2018, which is 485 

25% of the value in the low scenario. 486 

 487 
 488 

 489 

Figure 7a Food secure pareto frontiers under least optimistic climate scenario 490 

(RCP8.5, P10%). The 491 

x-axis shows the objective of minimizing the negative of average food self-sufficiency 492 
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ratio (−Ψ�𝑟𝑟), y-axis shows the objective of minimizing the standard deviation of self-493 

sufficiency ratio over time, i.e., 𝜎𝜎Ψ�𝑟𝑟. 494 

Red markers represent the non-dominated sets of (−Ψ�𝑟𝑟 ,𝜎𝜎Ψ�𝑟𝑟), i.e., the food secure 495 

pareto frontier, while the grey markers represent the dominated set. 496 

 497 
 498 

 499 

Figure 7b Food secure Pareto frontiers under most optimistic climate scenario 500 

(RCP2.6, P95%) 501 

Red markers represent the non-dominated sets of (−Ψ�𝑟𝑟 ,𝜎𝜎Ψ�𝑟𝑟), i.e., the food secure 502 

pareto frontier, while the grey markers represent the dominated set. 503 

 504 

Both the figures confirm that the food secure (pareto) frontier moves towards higher 505 

level of average food sufficiency ratios when population growth rate is lower or planted 506 

area contracts slower. This is intuitive because faster population growth puts food 507 

security under stress, while more available land for crops leads to more production of 508 

food, thereby increasing food self-sufficiency. 509 

 510 

Moreover, the pareto frontier rotates clockwise as higher levels of food self-511 

sufficiency, Ψ� , are achieved. This means that food self-sufficiency is more variable 512 
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over time at higher levels of average food self-sufficiency, indicating that the tradeoff 513 

between the two objectives, i.e., min −Ψ�𝑟𝑟 and min 𝜎𝜎Ψ�𝑟𝑟, increases with higher levels 514 

of average food self-sufficiency rate.  515 

 516 

The pattern of the effects of climate scenarios on food self-sufficiency rate is similar to 517 

those of socio-economic scenarios. The food secure pareto frontier moves towards 518 

higher level of food sufficiency in the most optimistic scenario (RCP2.6, P95%), but 519 

with higher variability, than in the case of (RCP8.5, P10%). 520 

 521 

3.2 Pareto optimal food self-sufficiency time series 522 

 523 

Figure 8a and 8b show the median values of average food self-sufficiency ratios for 524 

non-dominated human agency sets and for dominated sets (in gray) sets for the two 525 

scenarios (RCP8.5, P10%) and (RCP2.6, P95%). The time series are from 2018 to 2050, 526 

which are shown along with the historical values available from 2001 to 2017. 527 

 528 



 529 
 530 

 531 

Figure 8a Median food self-sufficiency ratios time series Ψ�(𝑡𝑡)𝑟𝑟 for dominated and 532 

non-dominated sets under climate scenario (RCP8.5 P10%). 533 

Blue line: historical time series; Red line: time series corresponding to non-dominated 534 

human agency sets; Grey line: time series corresponding to dominated sets. The 535 

province is self-sufficient if it remains above the dashed line (i.e., Ψ�(𝑡𝑡)𝑟𝑟 > 1). 536 
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 537 
 538 

 539 

Figure 8b Food self-sufficiency rate time series Ψ�(𝑡𝑡)𝑟𝑟 for dominated and non-540 

dominates sets for climate scenario (RCP2.6 P95%). 541 

Blue line: historical time series; Red line: optimized (non-dominated) time series; 542 

Grey line: dominated time series. The province is self-sufficient if it remains above 543 

the dashed line. 544 

 545 

 546 

The (3PopH, 0AL) scenario is the worst socioeconomic scenario for food security for 547 

both the climate scenarios. The worst scenario is the least optimistic climate scenario 548 

with highest population growth rate and rapidly declining crop planted area. Under the 549 

scenario of rapidly declining crop planted area, the average food self-sufficiency rate 550 

drops below 1.0 when human agency doesn’t adapt, indicating heightened risk of food 551 

insecurity. However, with adaptation by human agency, the food self-sufficiency rate is 552 

maintained above 1.0. This means that human agency has the ability to ensure food 553 

security even under least optimistic scenarios of the future.  554 

 555 
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Under the most optimistic socioeconomic scenario of (1PopL, 3AH) shown in Figure 556 

8b, the average food self-sufficiency rate keeps rising and finally reaches a value above 557 

1.2. The most optimistic scenario is the most optimistic climate scenario with slowest 558 

growth in population and no contraction of available cropland. With food self-559 

sufficiency rate higher than 1.0, the crop production within the province can satisfy the 560 

food demand of the province and outside. Also note that the difference between the 561 

dominated and non-dominated solutions is not as high as in the least optimistic scenario, 562 

meaning that adaptation by human agency plays a critical role when dealing with less 563 

optimistic future scenarios. 564 

 565 

For the scenarios in between, average food self-sufficiency can be maintained between 566 

1.0 and 1.2 when human agency adapts to changing conditions. Adaptation by human 567 

agency is important even under more optimistic scenarios since without it food self-568 

sufficiency can fall below 1.0 (corresponding to the dominated food sufficiency time 569 

series). The median levels of food self-sufficiency for non-dominated solutions (red 570 

lines in Figure 8a and 8b) are always higher than that of dominated solutions (gray line). 571 

Again, the gap between the non-dominated and the dominated time series is more 572 

significant under less optimistic scenarios, i.e., with higher temperature, less 573 

precipitation, less crop plant area, and more stress from population growth.  574 

 575 

The subplot ‘3PopH, 0PAL’ in Figure 8a shows that the gap of food self-sufficiency 576 

between non-dominated and dominated solutions can exceed by 10% under the least 577 

optimistic climate and socioeconomic scenario. Under the scenarios of, e.g., lower 578 

pressure on cropland area and from population growth (from 0AL to 3AH), the gap 579 

between non-dominated and dominated solutions narrows and is between 5 to 10%. 580 



This indicates the importance of adaptation by human agency under more stressful 581 

climate and socioeconomic conditions, e.g., of drought, or fast-pace urbanization. 582 

Human agency, which is a combination of labor, irrigation and land-preparation 583 

machinery, can effectively ensure food security within Jiangsu Province under possible 584 

future water or land resources stresses. 585 

 586 

  587 



4. Discussion 588 

 589 

4.1 Improving water and nutrient use efficiencies by adapting human agency 590 

 591 

Modern technologies in agriculture such as irrigation and land preparation machineries 592 

can bring significant improvements in the water and nutrient use efficiencies of crops. 593 

Water-saving irrigation technology has been applied to 2637.47-2767.23 kha from 2017 594 

to 2018 (Bureau of Statistics of Jiangsu, 2019), which is about 34.9%-36.8% of total 595 

agricultural cropland within the province. Across China, latest technologies such as 596 

water-fertilizer integrated irrigation system based on Internet of Things (IoT) has also 597 

been designed and proposed (Shi et al., 2017; Hao et al., 2020). Also, land-preparing 598 

machinery are better in preparing croplands for higher nutrient use efficiency of food 599 

crops than human labor. 600 

 601 



 602 
Figure 9 Water and nutrient use efficiencies in log-space with optimized (non-603 

dominated, ND) and dominated (D) solutions of human agency under unfavorable 604 

(UnFav) and favorable (Fav) scenarios. 605 

Unfavorable: least optimistic climate (RCP8.5, P10%), and most stressed 606 

socioeconomic scenario (‘3PopH, 0AL’) 607 

Favorable: most optimistic climate scenario (RCP2.6, P95%) and least stressed 608 

socioeconomic scenario (‘1PopL, 3AH’) 609 

 610 

Figure 9 shows the average level of water and nutrient use efficiencies in log-space 611 

under two extreme scenarios: most optimistic and least optimistic climate and 612 

socioeconomic scenarios. 613 

 614 

The non-dominated efficiencies are higher in general under unfavorable conditions. 615 

More trade-off between the two in wheat production compared to rice is due to how 616 

sensitive crop specific efficiencies are related to human agency. The water use 617 

efficiency of wheat is sensitive to the human agency under non-dominated cases, while 618 



that of rice is not. However, the nutrient use efficiency of both wheat and rice can be 619 

significantly improved with adapting human agency, i.e. corresponding to non-620 

dominated cases. The difference between non-dominated and dominated efficiencies 621 

under favorable conditions is insignificant, which again emphasizes that human agency 622 

matters when conditions are unfavorable. There is more scope for improving 623 

efficiencies when conditions are unfavorable due to poor water and land supply and 624 

high food demand. 625 

 626 

 627 

4.2 Trade-offs between labor and machinery used 628 

 629 
 630 

 631 

Figure 10a Trade-off between crop labor force, 𝐿𝐿𝐶𝐶, and land-preparing machinery 632 

power, 𝑀𝑀𝐿𝐿, used under least optimistic climate scenario (RCP8.5, P10%). 633 

Points with color correspond to food secure pareto frontier 634 

Green color means higher average food self-sufficiency Ψ�𝑟𝑟, yellow color means 635 

lower Ψ�𝑟𝑟. 636 
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 637 

 638 
 639 

 640 

Figure 10b Trade-off between crop labor force 𝐿𝐿𝐶𝐶 and land-preparing machinery 641 

power 𝑀𝑀𝐿𝐿 under most optimistic climate scenario (RCP2.6, P95%) 642 

Points with color correspond to food secure pareto frontier 643 

Green color means higher food self-sufficiency rate Ψ�𝑟𝑟, yellow color means lower 644 

Ψ�𝑟𝑟. 645 

 646 

 647 

Figure 10a and 10b plot labor (𝐿𝐿𝐶𝐶) against land-preparing machinery power (𝑀𝑀𝐿𝐿) for 648 

two climate scenarios: (RCP 8.5, P10%) and (RCP 2.6, P95%). The rows of each figure 649 

denote population growth rates (three levels from low to high), whereas the columns 650 

represent crop plant area contraction rates (four levels from low to high). 651 

 652 

Modern machinery appears to be the main agency that delivers higher food self-653 

sufficiency under all circumstances. Under unfavorable socioeconomic conditions, i.e., 654 

with higher population growth and sharper contraction of available land resources for 655 

Lower planted land area contraction 

Lo
w

er
 p

op
ul

at
io

n 
gr

ow
th

 



crop cultivation, agricultural land-preparing machinery plays more important role to 656 

ensure nutrient and water use efficiency in order to increase the production of food crop, 657 

ensuring a higher and stabler supply of food. The effect of labor on food sufficiency is 658 

relatively low. This indicates that agricultural mechanization would ensure food 659 

security in Jiangsu Province under the unfavorable scenario of rapid urbanization. 660 

Agricultural lands will shrink in the process of urbanization. This will shift people from 661 

rural agriculture to modern industries, leading to rural to urban migration (Lyu et al., 662 

2019). Agricultural mechanization can however replace the demand of shrinking human 663 

labor while ensuring same or higher levels of food production, thereby ensuring food 664 

security in the region. 665 

 666 

Under the scenarios of less stressed socioeconomic conditions, i.e., lower population 667 

growth or lower contraction of crop planted area, the need for agricultural machinery, 668 

which can rapidly improve crop unit yields and thus result in higher food self-669 

sufficiency rate, would not be that urgent compared to the unfavorable case. More labor 670 

can be hired to relieve under-employment in rural agriculture areas. 671 

 672 

Similarly, in context of climate scenarios, agricultural labor demand would slightly rise 673 

in more optimistic climate scenarios since the urgency to use agricultural machinery is 674 

eased to a certain extent. When the climate is less optimistic, e.g. (RCP8.5, P10%), 675 

agricultural machinery is important agency that should be adapted to improve food crop 676 

production capacity and ensure high and stable food self-sufficiency. 677 

  678 



5. Conclusion 679 

This study investigated how food security can be ensured within Jiangsu Province, 680 

China under different climate and socioeconomic scenarios by adapting human agency. 681 

The human agency comprises of crop production labor, irrigation machinery power and 682 

land-preparing machinery. Climate scenarios included six combinations of two RCPs 683 

(RCP 2.6, and RCP 8.5) and three percentiles (10%, 50%, 95%) of a distribution of 684 

GCMs most representative of the past climate conditions of the province. The 685 

socioeconomic scenarios considered combinations of three population growth rates and 686 

four rates of crop plant area growth into the future. Two crops, rice and wheat, were 687 

considered. The predicted time series of food self-sufficiency rate were evaluated, and 688 

trade-offs between human power and land-preparing machinery power were analyzed 689 

to reveal the critical role played by human agency in adapting to different climate and 690 

socio-economic conditions.  691 

 692 

The results demonstrated that adapting human agency led to improved water and 693 

nutrient use efficiencies of crop production, especially in least optimistic climate and 694 

socioeconomic scenarios. The Jiangsu Province can be self-sufficient in food under all 695 

considered climate and socioeconomic scenarios considered when options are available 696 

for human agency to adapt. The gap between adaption and non-adaptation solutions 697 

was found to be larger under more challenging scenarios of lesser precipitation, higher 698 

population growth or stronger contraction of crop plant area. This suggests that human 699 

adaptation can significantly improve food security within Jiangsu Province especially 700 

when there are higher stresses of water or land resources insecurity.  701 

 702 

 703 



Under lower water or land resources stress conditions, labor could replace land-704 

preparing machinery since the level of food production can be easily maintained with 705 

abundant water and land availability. On the other hand, when climate change 706 

negatively affects the precipitation, or when population rises more rapidly, machinery 707 

such as water-saving irrigation or even water-fertilizer integrated irrigation systems 708 

together with land-preparing machinery, instead of human labor, could lead to higher 709 

levels of water and nutrient use efficiencies. These are much needed to secure food 710 

under adverse conditions. 711 

 712 

The applied crop model (Lyu et al., 2020) ignores seeds and pesticides inputs to crop 713 

production. As reported in the literature, ignoring these inputs can lead to over-714 

estimation of production levels (Zida et al., 2011). Similarly, only precipitation and 715 

temperature effects of climate change were considered and not those of CO2 716 

fertilization. This may lead to under-estimation of production levels under adverse 717 

climate change scenarios (Rashid et al., 2019). We used historical 18 years agro-718 

meteorological stations data. Here crop yields were not limited by availability of seeds 719 

and fertilizers, therefore it would not be possible to assess the effects of these inputs on 720 

crop yields and production. However, assessing the positive feedbacks between CO2 721 

concentration and crop yields is possible. We defer this improvement in crop model for 722 

future research. 723 

 724 

 725 

  726 
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