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ABSTRACT

Two decades after their demonstration, superconducting nanowire single-photon detectors (SNSPDs) have become indispensable tools for
quantum photonics as well as for many other photon-starved applications. This invention has not only led to a burgeoning academic field
with a wide range of applications but also triggered industrial efforts. Current state-of-the-art SNSPDs combine near-unity detection effi-
ciency over a wide spectral range, low dark counts, short dead times, and picosecond time resolution. The present perspective discusses
important milestones and progress of SNSPDs research, emerging applications, and future challenges and gives an outlook on technological
developments required to bring SNSPDs to the next level: a photon-counting, fast time-tagging imaging, and multi-pixel technology that is
also compatible with quantum photonic integrated circuits.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0045990

I. INTRODUCTION

A. Single-photon detection and the emergence of
SNSPDs

Technologies operating at the single-photon level, the quantum
of the electromagnetic field,1 are crucial for communication, sensing,
and computation.2,3 Photons can encode information using different
degrees of freedom including polarization, momentum, number state,
energy, and time. For instance, quantum key distribution (QKD) was
demonstrated over a distance exceeding 4600 km,4 potentially forming
the backbone of a quantum internet.5 As crucial as the single-photon
carriers, are the high-performance single-photon detectors to perform
measurements on the quantum bits. They were instrumental in recent
demonstration of large-scale Boson sampling,6 showing a

computational advantage over conventional supercomputers.
Furthermore, in a number of other fields including bio-imaging, light
detection and ranging (LiDAR),7–9 optical time domain reflectometry
(OTDR),10,11 single-molecule detection,12 semiconductor circuits
inspection,13 star light correlation spectroscopy,14 diffuse optical
tomography,15 positron emission tomography (PET),16 mass spectros-
copy, and quantummetrology measurements,17 single-photon/particle
detectors are essential. For these applications, tremendous efforts have
been made to produce single-photon detectors combining near unity
system detection efficiencies (SDEs), low dark count rates (DCRs),
short timing jitters, high maximum count rates, photon number reso-
lution capabilities, and large active areas.

Single-photon avalanche diode (SPAD)18,19 and photomultiplier
tubes (PMTs)20,21 were first used to detect single photons. However,
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combining high detection efficiency with high time-resolution and low
noise in SPADs and PMTs remains a challenge. In addition, a limited
spectral response (limited at 1100nm for silicon) and afterpulsing fur-
ther limit their use for quantum technologies. With two decades of
development since their inception,22 superconducting nanowire
single-photon detectors (SNSPDs) offer unrivaled detection metrics
with an unprecedented combination of performance, for a comparison
of SPADs and PMTs with SNSPDs, see Ref. 23.

B. A brief history of SNSPDs development

Before the inception and maturity of SNSPDs, other supercon-
ducting devices such as Josephson-junctions,24 superconducting quan-
tum interference devices (SQUIDs),25 hot electron bolometers,26,27

and transition edge sensors (TESs)28–30 already achieved high per-
formances. The first demonstration of single-photon detection with
current-biased superconducting microbridges was reported in 2001 at
a wavelength of 0.81lm.22 The field of SNSPDs then underwent fast
development and was driven by applications’ requirements. In 2002,
meandering nanowires were introduced to increase the active area.31

In 2003, the first commercial use of SNSPD, for integrated circuit fault
testing, was reported.32 A key driver pushing SNSPD early develop-
ment was quantum key distribution (QKD) that made commercializa-
tion viable. The first SNSPD based QKD was reported in 200633 and
was followed by a world record 200 km QKD experiment34 doubling
the previous distance achieved with InGaAs SPADs and matched the
loss threshold for space to ground QKD of 40 dB. Soon after these pio-
neering works, fiber-coupled SNSPDs reached a detection efficiency of
24% at 1550nm (Ref. 35) and were further improved to 47% with
antenna structures.36 Optical cavities were integrated with SNSPDs to
boost the detection efficiency to 57% at 1550nm.37 In 2012, by stack-
ing two WSi SNSPDs and connecting them in parallel, the system
detection efficiency (SDE) was improved to over 87%.38 Another
important development in 2011 and 2012 was the integration of
SNSPDs with photonic waveguides,39,40 which made high on-chip
detection efficiency possible and delivered a key element to the toolbox
of integrated quantum photonics (see Sec. IIIA). In 2013, WSi
SNSPDs in an integrated cavity reached an SDE of 93% at 1550nm,41

92%–93% SDE was subsequently demonstrated with other material
platforms.42,43 In 2020, three independent groups reported> 98%
SDE based on three different material systems: MoSi with distributed
Bragg reflectors,44 dual-layer NbN meanders,45 and NbTiN with a
membrane cavity.46

Aside from a high detection efficiency, detectors with low dark
count rates, i.e., undesired detection events generated without illumi-
nation or due to black-body radiation, are vital in many photon-
starved applications. Early works47 showed intrinsic dark counts to
originate from vortices crossing the nanowire cross section, which
may be triggered by thermal fluctuations or current-assisted unbinding
of vortex-antivortex pairs.48 Additionally, black-body radiation can be
a major source of dark counts, especially for large area SNSPDs and
particularly at longer wavelengths.49 To suppress black-body induced
dark counts, cold filters50 or fibers with end-face coatings can be
used.51 It has also been shown that the dark count rate increases under
illumination due to the suppression of switching current by incident
light.52 As of 2021, a dark count rate as low as 10�4 per second has
been demonstrated,50,53 further studies are required to determine the
origin of the remaining dark counts.

High time resolution is one of the distinctive advantages of
SNSPDs. Time jitter represents the time interval statistics between
photons impinging the detector and the generation of the electrical
detection signal. Early experimental works54,55 showed that in addition
to time jitter of the detector itself (briefly discussed in Sec. I C), several
other experimental parameters such as electrical noise, fiber disper-
sion, and the accuracy of laser synchronization signals all contribute to
the overall system time jitter. Experimentally, in 2006 a sub-30 ps time
jitter was demonstrated by making SNSPDs from a 4nm-thick NbN
film.56 In 2016, a timing jitter of 17.8 ps was achieved using an ultrafast
time-correlated single-photon counting setup.57 In 2017, by employing
a cryogenic amplifier, a 14.8 ps jitter was demonstrated42 with NbTiN
SNSPDs. In the same year, by optimizing the experimental measure-
ment setup, a 12 ps timing jitter was demonstrated with NbN
SNSPDs.58 Recently, the fiber-coupled SNSPD’s timing jitter was
pushed down to 7.7 ps.59 As of April 2021, the best reported time jitter
belongs to short straight nanowires and is<3 ps for NbN60 and 4.8 ps
for WSi.61

C. Understanding SNSPDs’ performance optimization
and trade-offs

To date, the theoretical understanding of the exact detection
mechanism in SNSPDs is still under development. We discuss some of
the leading models in Sec. IIA. Here, we briefly hint at some basic
observations to discuss the operation limits of SNSPDs.

Generally speaking, the detection efficiency of a SNSPD is influ-
enced by two parameters: its optical absorption, i.e., what fraction of
photons incident on the SNSPD is absorbed in the detector and the
internal efficiency, the probability that an absorbed photon generates a
measurable detection event. Small constrictions along the nanowires
(due to nano-fabrication and/or variation in the superconducting
film) were shown to be one limiting factor for the critical current as
well as for the internal detection efficiency.62,63 It was also demon-
strated that bends in a meandering nanowire can lead to a noticeable
reduction of the critical current as shown in Refs. 64–66; this current
crowding issue can be addressed by optimizing the bend geometry67

or with spiral SNSPDs.68 As for the absorption efficiency, the optical
absorption of typical superconductors used for SNSPD fabrication has
been studied,69 and the polarization dependence of SDE and nanowire
designs (fill factor, linewidth, and device size) are well-understood and
comprehensively discussed in Refs. 70 and 71. To minimize polariza-
tion dependence, three-dimensional architecture,38 near-field optics,72

dielectric capping layers,73 or fractal-shape nanowires74,75 were
demonstrated.

The operation temperature dependence of SNSPDs is, at least
experimentally, well understood: If the internal detection efficiency at
a specific temperature and for a specific photon energy is unsaturated
(no plateau in the detection rate vs bias current curve), the detection
efficiency reduces as the temperature increases. Additionally, both
intrinsic and blackbody induced dark counts are temperature depen-
dent.76 The former, independent of the applicable model or exact ori-
gin of DCR, is due to the fact that potential barriers (for example, for
vortex crossing or vortex-antivortex depairing) or electron/photon
interaction time constants are all temperature dependent. The intrinsic
darkcount, for a fixed bias to switching current ratio, often increases
with higher temperature. Extrinsic darkcount may decrease with tem-
perature as the detection efficiency for photons (for example, long
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wavelength blackbody photons) is reduced as the temperature
increases.76 Therefore, in a system in which blackbody radiation is
well filtered out, the signal to noise ratio (SNR) often decreases as the
temperature is increased.

The timing properties of SNSPDs (recovery time and time jitter)
have been thoroughly studied: Early on, the recovery time of NbN
SNSPDs was found to be limited by their kinetic inductance,77 reveal-
ing an intrinsic trade-off between large-area devices and fast recovery
times. A more systematic electro-thermal model78 was presented to
better explain the detection dynamics with a practical solution to
shorten recovery time by adding a resistor in series to SNSPDs.
However, in the same work, it was demonstrated that there is a limit
to reducing SNSPDs recovery times, this limit is dictated by electro-
thermal feedback and hence depends on the substrate material, on the
superconductor, temperature, bias, critical current, as well as on the
SNSPD’s kinetic inductance. While detectors with very fast electrical
recovery time (<1ns) have been demonstrated, it has also been shown
that the electrical recovery time (extracted from the pulse traces) is not
necessarily the same as the detector recovery time.79 Alternatively,
multi-pixel56 and multi-element structures80 were proposed and dem-
onstrated to increase the active area without sacrificing time perfor-
mance and even offering photon number resolution prospects.81

Since SNSPDs typically cover areas of hundreds of square micro-
meters and the electrical signal propagates through the detector with
finite speed, photons detected at different locations generate detection
pulses that reach the readout circuit at different times, leading to a geo-
metrical jitter.82 In 2017,83 the influence of Fano fluctuations on tim-
ing jitter was also reported. In the same year, timing jitter caused by
distributed electronic and geometric inhomogeneity of a supercon-
ducting nanowire84 was analyzed. Also, vortex-crossing-induced jitter
was systematically studied, and the theoretical limit of SNSPDs’ intrin-
sic timing jitter was estimated to be around 1 ps.85 Another study,
based on the two-temperature model coupled with the modified time-
dependent Ginzburg–Landau equation,86 argued that photon absorp-
tion location on a current-carrying superconducting strip has direct
influence on the minimal achievable time jitter. The minimum jitter
was shown to depend on the critical temperature of the superconduct-
ing film. This was calculated to be of the order 0.8 ps for a nanowire
with a width of 130nm made from a typical NbN superconducting
films with a critical temperature of 10K. Narrower nanowires can
potentially improve the minimum achievable jitter. If no other funda-
mental limitation for time jitter is discovered, ultimately, the time jitter
would be limited by the dynamics of suppression of superconductivity
(pair breaking) which depends on material, temperature, and the opti-
cal excitation density.87

D. Scope and content of this perspective

After summarizing the history and development of SNSPDs over
the past two decades, we highlight the leading theories to explain the
operation mechanism and provide the status quo and state-of-the-art
in SNSPD technology (Sec. II). A selected number of current and
potential future applications are discussed in Sec. III. Finally, we pro-
vide an outlook for future development (Sec. IV). For a more in-depth
and technical review of SNSPD’s working principle, intrinsic limita-
tions, and design solutions, we refer the readers to Ref. 88.

II. SNSPD DETECTION MECHANISMS AND STATE-OF-
THE-ART
A. SNSPD detection mechanisms

This section gives an overview of the leading physical models of
the detection mechanisms in SNSPDs, providing a qualitative descrip-
tion to understand basic working principles and device physics. We
consider the most common SNSPD implementation, based on a
superconducting nanowire (width 50–100nm) patterned from a thin
film (thickness 5–10nm) using a top-down nanofabrication process.
The nanowire, often designed as a meandering structure, is “DC-
biased” close to the device’s critical current via a bias tee, and low noise
amplifiers and counting electronics are used to detect single-photon
events and register corresponding voltage pulses. A phenomenological
model of the detection process was proposed in the initial reports on
SNSPDs22,89 and has been revised in the following two decades. To
allow for quantitative modeling and design optimizations, the detec-
tion process90 was divided into subsequent steps (see Fig. 1): (I) pho-
ton absorption; (II) creation of quasiparticles and phonons combined
with their diffusion; (III) emergence of a non-superconducting nano-
wire segment; (IV) re-direction of bias current in readout circuitry,
leading to a voltage pulse; and (V) detector recovery.

(I) The initial absorption of a single photon within the active
detector area is well described by a classical electromagnetic theory.
This allows for the use of established modeling tools92 to optimize
optical absorption in the superconducting layer for a desired wave-
length range. The absorption of a visible or near-infrared photon
results in (II) the formation and expansion of a cloud of quasiparticles,
which is initiated by the relaxation of the photo-excited electron and
followed by the creation, multiplication, and diffusion of quasiparticles
and phonons. These processes are governed by electron-electron,
electron-phonon, as well as phonon-phonon interactions and their
characteristic timescales,93 whereas the diffusion constants as well as
the ratio of the heat capacities of electrons and phonons are crucial for
the spatiotemporal relaxation dynamics. This downconversion process
is modeled through deterministic kinetic equations for electrons and
phonons94 or through a stochastic loss of excitation energy into the

FIG. 1. Macroscopic explanation of the detection mechanism (based on Refs. 22,
78, and 89). In the steady state (SS), the superconducting thin-film strip is current
biased. Photon absorption (I) leads to the creation of quasi-particles and phonons
(II). This leads to the formation of a normal-conducting part of the strip (III).
Redirection of the current toward the readout electronics allows a recovery of the
superconducting state (IV), which leads to a return of the current (V) to its initial
value. This reset dynamics is limited by the kinetic inductance of the device.
Center: The voltage readout signal with each step labeled. Adapted with permission
from Allmaras et al., Nano Lett. 20, 2163–2168 (2020). Copyright 2020 American
Chemical Society.91
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substrate.83 An instability of the superconducting state emerges due to
the quasiparticle cloud, linked with a local reduction of the supercon-
ducting order parameter, re-distribution of the current density, and
lowering of the effective critical current density. Combining ideas
from deterministic and stochastic models allows to describe a com-
plete set of measurements qualitatively,95,96 but these existing models
require further developments to be able to fully describe the physical
processes quantitatively. This instability can lead to a photon detection
event, associated with (III) parts of the nanowire transitioning to a
non-superconducting state. Following initial descriptions relying on a
normal-conducting “hotspot,” models of the SNSPD detection mecha-
nism have been refined, underlining the importance of magnetic vorti-
ces.47,97,98 For further details on the mechanisms governing the local
emergence of a non-superconducting segment of the detector area, we
refer to Engel et al.90 Subsequently, the resistive region of the nanowire
grows due to internal Joule heating.78 The increasing resistance, on the
order of several kX,78 leads to (IV) the re-direction of the bias current
from the nanowire toward the readout electronics. The circuit behav-
ior can be described using lumped element models99,100 or planar
microwave simulations. Once the resistive area has sufficiently cooled
down, (V) superconductivity is restored and the current flowing
through the nanowire returns to its initial value, whereas the dynamics
are governed by the kinetic inductance of the device.77,78 In cases
where the resistive domain does not cooldown rapidly enough, the
detector latches due to thermal runaway and no further photons can
be detected until the device is actively reset.101

While models for step (I), (IV), and (V) can be used to predict
and develop successful designs, models for step (II) and (III) are miss-
ing such capabilities. The fluctuations beyond the initial downconver-
sion cascade, the non-equilibrium state of electron-phonon baths, and
the missing element of intrinsic dark counts are examples for open
problems and challenges for the future.

B. State-of-the-art SNSPDs

In the section below, we discuss advances with regard to the
superconducting materials used for production of SNSPDs,

nanofabrication, multi-pixel detectors, the nano- and micro-wire
SNSPDs, wavelength range, state-of-the-art performance, and charac-
terization of SNSPDs that has led to detectors with> 98% SDE.44,46,102

1. Superconducting materials and nano-fabrication of
SNSPDs

SNSPDs have been made out of dozens of superconductors. The
material selection for the superconducting film can be based on vari-
ous factors, but the motivations for specific choices can mainly be
divided into two groups: optical properties such as absorption at differ-
ent wavelengths and superconducting properties such as critical tem-
perature and critical current density. In practice, other parameters
may also be taken into account, for example, for photons with higher
energy the use of higher critical temperature superconductors might
be preferred to simplify the cryo-cooling system while for mid-
infrared detectors (beyond 2–3lm), low-gap amorphous supercon-
ductors such as MoSi and WSi have so far been the main option. In
Table I, we present an overview of some leading results based on dif-
ferent superconducting materials. In addition to the highlighted super-
conducting materials in Table I, another important class of
superconducting materials that have been subject of research are the
high Tc superconductors. High-Tc SNSPDs are a topic of long-
standing discussions with reports of dark counts103 and signatures of
single-photon operation104 on the one hand and skepticism105 on the
other hand. Therefore, further studies are required to understand the
limits and potentially unlock the use of these promising platforms.

Production of high performance SNSPDs involves various nano-
fabrication technologies. Starting from a commercial substrate (typi-
cally silicon), the first fabrication step involves the deposition of a dis-
tributed Bragg reflector to enhance the optical absorption. (Metal
based reflectors are also possible42,46 but less common and nano-
antennas can also be integrated117,118 to enhance optical absorption.)
A superconducting thin film (typically 4–10nm) is then deposited on
top of the mirror layer. The electrical contacts are formed by means of
optical or e-beam lithography, metal deposition (evaporation or sput-
tering), and liftoff. The nanowire detector can be formed using a single

TABLE I. Overview of some SNSPD leading works on different material platforms.

Material Efficiency/time jitter Temperature Wavelength

NbN (Refs. 43 and 45) 92%–98.2%/40–106.1 ps 0.8–2.1 K 1550–1590 nma

NbTiN (Refs. 42 and 46) 92%–99.5%/14.8–34 ps 2.5–2.8 K 1290–1500 nmb

WSi (Refs. 41 and 44) 93%–98%/150 ps 120 mK–< 2Kc 1550 nm
MoGe (Ref. 106) 20%/69–187 ps 250 mk–2.5 K 1550 nm
MoRe (Ref. 107) —/— 9.7K —
MoSi (Refs. 108–110) 80%–87% /26–76 ps 0.8–1.2 Kd 1550 nm
NbRe (Ref. 111) —/35 ps 2.8 K 500–1550 nm
NbTiN (Ref. 76) 15%–82% /30–70 ps 2.5–6.2 K 400–1550 nm
NbSi (Ref. 112) —/— 300 mK 1100–1900 nm
TaN (Ref. 113) —/— 0.6–2K 600–1700 nm
MgB2 (Refs. 114–116) —/— 3–5K Visible

aOptimal performance at< 1K while an SDE of 90%–95% was achieved at 2.1 K. Time jitter depends on temperature and design. Errobar for 98.2% efficiency was 61%.
bErrorbar for 99.5% efficiency was (�2.07, þ0.5)%.
cOperation up to �2K possible at the cost of higher time jitter,41 temperature and jitter measurements are not mentioned in Ref. 44. Errorbar for efficiency measurements was 60.5%.
dIn Ref. 109, an operating temperature of 2.3 K was demonstrated with added cost of higher time jitter and lower internal efficiency saturation.
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electron-beam lithography step followed by reactive ion etching. For
detector packaging and to achieve stable and efficient operation, cou-
pling to an optical fiber is crucial, which is typically done with self-
aligned schemes requiring additional lithographic steps combined
with deep etching of the substrate (micro-machining using a Bosch
process). The complete process is illustrated in Fig. 2.

Deposition of the superconducting layer is a crucial step, and its
quality has a direct impact on the detector performance. This is typi-
cally performed by magnetron sputtering and can yield nanocrystal-
line or amorphous layers. Excellent deposition uniformity and
nanofabrication processes are required to ensure manufacturing of
devices with reproducible and consistent superconducting properties.
In this regard, amorphous materials such as WSi and MoSi as well as
optimized crystalline films with relatively larger thicknesses
(8–12nm)59,119 are considered more forgiving and thus favorable for
high-yield detector fabrication. In addition, plasma-enhanced atomic
layer deposition120,121 and single-crystalline molecular beam epitaxy122

growth of NbN were recently demonstrated as viable and potentially
high-yield alternatives for SNSPD fabrication.

2. Wavelength range

SNSPDs have been demonstrated to operate from the x-ray to
the mid-infrared wavelength range. In 2012, soft x-ray detection was
demonstrated.123 In contrast to the standard detection mechanism,
where photons are absorbed in the meander, for x-ray detection the
absorbance in thin superconducting layers with thicknesses around
10 nm is low and absorption in the substrate plays a major role.124,125

Due to the significant higher particle energy, x-ray detectors can have
saturated intrinsic efficiency at considerably larger geometrical

parameters, which can increase x-ray absorption in the superconduc-
tor to a few percent.126,127 SNSPDs for UV photons have reached effi-
ciencies of >85%, dark count rates of 0.25 counts per hour and timing
jitter< 60 ps.128 By engineering film deposition to optimize energy
sensitivity, WSi detectors were shown with a saturated internal effi-
ciency at 10lm129 in 2020. Although beyond the scope of single-
photon detection, it is worth mentioning that SNSPD structures can
also be used to detect a and b particles.130

3. Multipixel SNSPDs

In systems with a small number of superconducting single-
photon detectors such as fiber-coupled multi-pixel arrays,59 a straight-
forward way to address individual detection channels is through
spatial multiplexing of the biasing and RF detection signals through
several coaxial lines. As multi-pixel arrays scale in size, a limit on the
number of coaxial lines is set by the cryostat cooling power.131 Multi-
pixel readout techniques for SNSPDs are under development, a
row-column readout of pixels for a 32� 32 detector-array using only
64 electrical connections was demonstrated.132 This method is very
attractive as the number of required RF lines is only 2N, for arrays
consisting of N2 detectors, though this approach does not allow for
simultaneous readout of all pixels. Time-domain multiplexing is
another approach, where a single superconducting transmission line is
used to address several detectors on the same chip.133–137 One of the
main challenges of this approach is the fast propagation speed of the
electrical signal in the superconducting transmission-lines, approach-
ing the speed of light, which limits the possibility for dense packing of
detectors.134 Dispersion engineering was recently used to reduce group
velocity of the detection signal in the superconducting transmission-
line by orders of magnitude. Both planar and multi-layered structures
were used to control the group velocity of the detection sig-
nals.133,135–137 Another promising route for scalable readout of multi-
pixel SNSPDs is the use of single flux quantum (SFQ) logic.138–143

Frequency multiplexing was also demonstrated for SNSPDs,144 where
several resonant cavities operating at different radio frequencies are
coupled to individual detectors on a single transmission-line. For the
latter, a challenge in large scale systems is the complexity involved
with matching resonant frequencies of the cavities to the driving radio
frequency tones. Alternatively, amplitude coding of the detection sig-
nals of SNSPDs provides another approach for multiplexing.145,146

The advantage is the simplicity of fabrication and readout method
using a voltage division circuit. On the other hand, the drawback is the
need for on-chip resistors to set different amplitude levels, which dissi-
pate heat, and additionally the size of the array is limited by the leakage
current in different branches.136

4. Nanowire vs microwire detectors

SNSPDs have typical nanowires widths in the range of
40–120nm. These devices show exceptional performance but require
complex nanofabrication. Recently, detectors with wide micrometer
lines were reported: Superconducting microstrip single-photon detec-
tors (SMSPDs).147 These devices have, compared to SNSPDs, far larger
critical currents and lower kinetic inductance, making them suitable
for the fabrication of large-area detectors as shown in a number of
recent works.148–151 For example, Ref. 149 demonstrates devices with
meander widths of 1 and 3 lm and active areas up to 400� 400 lm2

FIG. 2. Illustration of the process flow for fabricating SNSPDs from a bare silicon
substrate to a fiber-coupled device. For details see main text.
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with excellent light detection in micro-strips fabricated by conven-
tional optical lithography.151 Additionally, very recently, high perfor-
mance single-photon detection (SDE> 90%) was demonstrated.68

Since this a relatively new research direction, there are limited reports
on time resolution;152 wavelength limits and high count-rate perform-
ances are yet to be reported.

III. SNSPD APPLICATIONS

In this section, we review a non-exhaustive number of established
and emerging applications of SNSPDs.

A. Quantum optics, information processing, quantum
communication, and integrated quantum photonics

SNSPDs have been the detectors of choice in landmark quantum
information processing experiments, i.e., on large scale boson sam-
pling6 and record breaking quantum communication experi-
ments.153–155 Also high performance SNSPDs played a major role in
the loophole-free test of local realism based on Bell experiment.156 A
recent promising direction for application of SNSPDs in quantum
information promising is its integration with ion-trap.157 For an up-
to-date review on the use of SNSPDs in quantum technologies, we
refer to Ref. 105.

Complex quantum photonics integrated circuits require many
on-chip single-photon detectors. SNSPD in traveling wave geome-
try,39,40 with its outstanding performance and small footprint, serves
as an excellent candidate for this function in photonic integrated cir-
cuits. Waveguide-integrated SNSPDs have already been used for on-
chip single qubit quantum optics experiments,158,159 to demonstrate
on-chip two qubit quantum interference,160 and for on-chip secure
quantum communication.161 SNSPDs were integrated in different
nano-photonics platforms such as Si,40,162–168 SiN,158–160,169–174

GaAs,39,174–177 AlN,174,178 LiNbO3,
174,179,180 Ta2O5,

181 and dia-
mond.182,183 In Ref. 184, the performance of most of these earlier
SNSPD nano-photonics platforms is reviewed. Integrated SNSPDs
have also demonstrated sub-nanosecond recovery time.165,181 Another
important aspect in sophisticated integrated quantum photonics cir-
cuitry is the reliability of photonics elements. It has been shown173

that by fabricating traveling wave SNSPDs buried under photonic
waveguides, one can determinedly ensure that only the best perform-
ing detectors are integrated. Further development of integrated
SNSPDs, as envisioned in Sec. IVB can significantly enhance the role
of SNSPDs in future quantum nanophotonics circuits.

B. Light detection and ranging (LIDAR)

LIDAR is an optical measurement technique for studying envi-
ronmental parameters such as the atmosphere, vegetation, as well as
remote objects. The detector performance influences the resolution,
acquisition time, and maximum range. It has been shown that
SNSPDs outperform conventional Geiger-mode avalanche photodio-
des both in low noise environments and, under appropriate operation,
in noisy (high background) environments.7,8 SNSPDs were used for
measuring sea fog in an area 180-km in diameter.185 Kilometer-range,
high resolution imaging at telecom wavelength has also been demon-
strated.186 Another promising direction with encouraging recent
results is single-photon LIDAR beyond 2000 nm, a wavelength range
with both reduced solar flux and atmospheric absorption.9

C. Mass spectrometry

SNSPDs offer excellent potential for applications in the field of
mass spectrometry, where impacts of single ions can be measured.
They show exceptional sensitivity and, additionally, operate at a con-
venient (particularly considering the size and the heat load of common
mass spectrometry chambers) temperature of 2–5K that is within the
operating temperature range of relatively inexpensive Gifford-
McMahon and pulsed-tube cryostats. The feasibility of sub-
nanosecond detection using these detectors has already been demon-
strated.12,187 In Addition, a proof of principle for detection of neutral
and low energy particles was demonstrated.188,189 Superconducting
nanowire detectors do not rely on the secondary electron mechanism,
and their detection mechanism is based on the creation of high energy
quasiparticles by the impact, allowing for 100% detection efficiency
even for macromolecules.190 While SNSPDs offer excellent performan-
ces, until recently their active area had been limited. With the develop-
ment of SNSPD arrays (employing any of several existing multiplexing
techniques), kilo-pixel detectors have been introduced132 that can
cover much larger areas, and by interfacing SNSPD arrays and
cryogenically cooled electronics (see Sec. IVA), even larger arrays are
expected to become available.

D. Diffuse correlation spectroscopy

Biological tissues are strongly diffusive media. Diffused optical
imaging is a functional medical imaging modality that uses the lower
attenuation of near-infrared light to probe physiological parameters in
the tissue such as oxy- and deoxyhemoglobin.15 The light transport in
these tissues is mainly dominated by scattering, and it has been shown
that achievable resolution (the half-width of the point-spread function)
scales with thickness.191 Recently, SNSPDs have been considered for
improving the performance of diffuse correlation spectroscopy.192

E. Optical time domain reflectometry (OTDR)

To identify the position of losses and scattering along optical fiber
networks, reflection of a laser pulse is measured and timing yields
information on the fault position.193 The ability to operate at the
single-photon level, with the outstanding time resolution and low dark
counts of SNSPDs, allows for OTDR measurements to be carried out
over the longest possible distances and yield cm resolution.10,11,194

Additionally, OTDR can be used to implement fiber-optic distributed
Raman sensor for absolute temperature measurements.195,196

F. Future applications

In neuromorphic computing, SNSPDs were recently proposed
both as a direct platform for neuromorphic computing197,198 and in
conjunction with on-chip semiconducting photon sources.199,200

Neuromorphic computing is the discipline that produces neural-
inspired computational platforms and architectures. Carver Mead in
the late 1980s has come a long way and has had important results such
as beating humans in the game of Go.201

In astronomy, SNSPDs are finding uses for exoplanet transit
spectroscopy, in deep space optical communication, as well as in the
search for dark matter. Detecting such particles places stringent
requirements on the detector, SNSPDs have been shown to be suitable
candidates for direct detection of dark-matter particles from the halo
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of milky way directly creating an excitation in a detector on Earth of
sub-GeV particles.53 Another application is wideband optical commu-
nication to satellites. The limited power available on satellites places
stringent requirements on the downlink detectors, with yet stronger
requirements if the emitter is further away, as for a deep space probe.
These requirements have shed light on SNSPDs202–206 for downlink,
and possibly for uplink.

Nearly 70 years after the pioneering intensity correlation
experiments by Hanbury-Brown and Twiss,207 there is a growing
interest in temporal correlation spectroscopy to achieve a high
angular resolution in studies of celestial light sources with star light
correlation spectroscopy. Temporal intensity interferometry in
comparison with conventional direct interferometry has the advan-
tages of having a simplified implementation. This is because no
light recombination or physical delay lines are needed and as a
result the correlation will be insensitive to environmental turbulen-
ces. Recently, using avalanche photodiodes with an active area of
100 lm2, time jitter of 500 ps and integrating for 70.5 h, temporal
intensity interferometry (photon bunching) experiments were car-
ried on three bright stars. Currently available SNSPD technology
readily offers �5 folds improvements of SNR as compared to
Ref.14. Future SNSPD developments will push the boundaries of
this field even further.

Advances in single-photon detection at mid-infrared wave-
lengths208,209 have led to a growing interest in mid-infrared spectros-
copy with SNSPDs.210,211 Recently, Wollman et al.,212 for the origins
space telescope concept, studied the potentials of SNSPDs as a tool to
probe bio-signatures in exoplanets atmospheres: using a mid-infrared
spectrometer, they will study small spectral changes in a star light due
to the absorption or emission from a transiting exoplanet atmosphere.
The wavelengths range from 2.8 to 20lm is of particular interest,
because it contains absorption lines of many important molecules vital
for life; SNSPD based sensors are promising candidates for exoplanet
transit spectroscopy.

Positron emission tomography (PET)16 is a routinely used func-
tional imaging technology to visualize changes in metabolic and physi-
ological activities as well as chemical regional composition inside the
body. PET is an important tool in cancer therapy and with the help of
radiotracers, it can retrieve quantitative information about location
and concentration of tumor cells. The high time-resolution of SNSPDs
integrated with scintillators213 will allow to reach the 10-picosecond
PET challenge.214,215 Combining SNSPDs with various types of scintil-
lators (particularly cryogenic scintillators) is an exciting research field
for SNSPD and PET but also for the broader high-energy physics
community.

In biomedical imaging, SNSPDs open new possiblities: the weak
emission from oxygen singlet at 1270nm can readily be measured,
operation further in the infrared allows for deeper imaging in biologi-
cal samples where scattering is lower and specific molecules can be
tracked.

For some quantum computation implementations, an important
challenge is to funnel large amounts of data in and out of cryostats
operating at mK temperatures with limited cooling power. This limits
the classical approach of using coaxial lines, the use of optical fibers to
communicate at the single-photon level using SNSPDs with systems
operating at mK offers the prospects of a very large data bandwidth
with very low thermal loads.

IV. OUTLOOK

After a review of current and future applications of SNSPDs in
Sec. III, we present two important envisioned SNSPD developments
that could further boost the impact of SNSPDs in science and
technology.

A. Large SNSPD arrays with integrated cryogenic
electronics

Addressing the readout challenge of large SNSPD arrays, i.e.,
accessing and processing large amounts of data generated at cryogenic
temperatures, is imperative for high-end imaging applications. As dis-
cussed in Sec. II B 3, each readout technique has specific advantages
and disadvantages. We envision future large-scale systems with hybrid
cryogenic RF readout techniques utilizing different readout schemes in
different sub-systems. Additionally, dispersion engineering is a power-
ful tool that can be used to tailor the properties of the superconducting
transmission lines for better footprints or to boost the operating
bandwidth.216,217

For applications requiring large SNSPD arrays (e.g., high resolu-
tion imaging and spectroscopy), it is essential to integrate cryogenic
readout circuits close to the SNSPD and separate them from process-
ing units (comparators, counters, time to digital converters, and digital
processing units) operating at higher temperatures. Connections
among these units must have high RF transmission while providing
high thermal isolation (i.e., low thermal conduction, see, for example,
Ref. 218). Such an envisioned system is illustrated in Fig. 3: The array
sensor is connected via superconducting transmission lines to the pixel
addressing and pulse pre-amplification electronics (illustrated as
addressing and analog amplifiers in the figure) within the first cryo-
genic stage. Low thermal conductivity coaxial links are used to connect
the first cryogenic stage to the second stage (30–50K). The second
cryogenic stage is where further complex processing are performed
which may include (but be not limited to) triggering, pulse counting,
time to digital converters for time stamping, data compression, and
serializers able to handle the large data stream. We foresee successful
implementation of large area, high density imaging sensors such as the
one shown in Fig. 3 can bring about a step change to many imaging
applications discussed in Sec. III. A further step could be the integra-
tion of such a sensor in compact cryo-coolers,219 making it even more
attractive for applications, where size and power consumption are
important decision-making factors such as equipment integrated in
satellites.

B. SNSPD-based re-configurable integrated quantum
photonics

Using SNSPDs for conditional reconfiguration of quantum pho-
tonics circuits based on detection events, as illustrated in Fig. 4, can
facilitate quantum communication schemes such as teleportation,
entanglement swapping, and quantum repeaters. Such schemes rely
on performing a (Bell-state) measurement on a photonic qubit, then
feed-forward the resulting detection electrical signal to conditionally
modify another photonic qubit on the same or a different chip. This
comes as a challenge though, the timescale for the voltage signal of
SNSPDs is on the order of nanoseconds, necessitating delaying optical
signals on the chip by a similar timescale to allow for conditional
reconfiguration of the circuit based on detection events. To overcome
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such a challenge, ultra-fast on-chip SNSPDs must be implemented, in
combination with heat-free fast re-configurable photonic circuits and
ultra-low loss optical delay lines to match the electrical signal delay.
An important step toward such a goal was recently demonstrated by
realizing waveguide integrated SNSPDs with thin-film lithium niobate

circuits, which can deliver the needed modulation for fast routing of
single photons on-chip.220 Another interesting application for such
re-configurable circuits is quantum simulators for implementing
sampling problems, quantum transport simulations, or disordered
quantum systems. The integration of efficient sources and detectors
with low-loss optical waveguides on the same chip will significantly
advance the scalability prospects for photonic quantum simulators.

V. CONCLUSION

In this perspective, we reviewed the evolution of SNSPDs, the
state-of-the-art, working mechanisms, fabrication methods, material
platforms, readout schemes, applications, and disruptive enabled tech-
nologies. Our goal is to provide a dynamic multidisciplinary picture
targeted toward both the community of SNSPD researchers and scien-
tists working on overlapping lines of research, where this technology
can have important impact. An outlook for future developments of
SNSPD is also provided along with two key envisioned enabling devel-
opments to boost the impact of SNSPD in science and technology.
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