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Adaptive fault accommodation of pitch actuator stuck type of fault in
floating offshore wind turbines: a subspace predictive repetitive control

approach*

Yichao Liu1, Joeri Frederik1, Alessandro Fontanella2, Riccardo M.G. Ferrari1 and Jan-Willem van Wingerden1

Abstract— Individual Pitch Control (IPC) is a well-known
and, in normal operating conditions, effective approach to
alleviate blade loads in wind turbines. However, in the case
of a Pitch Actuator Stuck (PAS) type of fault, conventional
IPC is not beneficial since its action is disturbed by the
failed pitch actuator. In this paper, a Subspace Predictive
Repetitive Control (SPRC)-based IPC is proposed to implement
a Fault Tolerant Control (FTC) strategy for Floating Offshore
Wind Turbines (FOWTs) affected by PAS faults. In particular,
an online subspace identification step is first carried out to
obtain a linearized model of the FOWT system in faulty
condition. The identified FOWT system is then used to develop
a repetitive control law. Consequently, the adaptive repetitive
control solution is implemented on the remaining healthy pitch
actuators, in order to accommodate the PAS fault. Results
show the developed SPRC approach allows to accommodate
the PAS faults, achieving a considerable reduction of the
blade loads in combination with lower pitch activities for the
healthy actuators. This allows to continue power production
and postpone maintenance operations, thus reducing the O&M
costs.

I. INTRODUCTION

Offshore wind has gained substantial attention over the
past decade as one of the most promising renewable energy
resources [1]. In the campaign of the offshore wind exploita-
tion, the Floating Offshore Wind Turbine (FOWT) becomes
the ideal alternative to bottom-fixed solutions for harvesting
the deep-water wind resources [2].

However, FOWTs may experience unexpected mechanical
and electric faults because of the harsh environmental condi-
tions in which they have to operate and of the limited access
possibility for maintenance [3]. In particular, the pitch and
hydraulic systems, which play a critical role in optimizing the
power generation, mitigating operational loads, stalling and
aerodynamic braking, make up the biggest portion (around
13%) of the overall failure rate for offshore wind turbines [4].
Therefore, the reliability, safety and resilience of the pitch
and hydraulic systems have received considerable attention
in the study and development of FOWTs [5].

The pitch and hydraulic systems might experience severe
faults, such as Pitch Actuator Stuck (PAS), which will lead
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Mechanical Engineering Department, Via La Masa 1, 20156, Milano, Italy.
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to a complete loss of control authority, as well as non-
severe ones, such as pitch actuator or sensor degradation [6].
Currently the preferred way for dealing with a PAS once it is
successfully detected is via a safe and fast shutdown of the
wind turbine. However, as PAS faults may occur frequently
[7], such a policy is likely to lead to high Operation and
Maintenance (O&M) costs due to lost power production and
unplanned maintenance. These reasons make it urgent to
develop a FTC approach that could: 1) accommodate the
PAS, 2) prevent further deterioration of the faulty system
and 3) make it possible to continue power production until
the next planned maintenance.

The goal of this paper is to propose a novel adaptive
FTC solution for FOWTs, that shall reduce blades loads in
nominal healthy conditions and accommodate PAS faults. To
pursue this goal, a so-called Subspace Predictive Repetitive
Control (SPRC) strategy is introduced. It is based on the
online solution, at every time step, of two problems. The
first one consists in identifying a linear model of the FOWT
dynamics at frequencies of interest, via online subspace iden-
tification. In particular, a contribution of the present paper is
an extension that allows to identify the model even in faulty
conditions. The second problem uses the online identification
results for generating an individual pitch control (IPC) law,
based on the Repetitive Control (RC) approach. The solution
is such that the blade loads are minimized in both healthy and
faulty conditions. The effectiveness of the proposed adaptive
FTC with the SPRC-based IPC is illustrated via a numerical
study involving a 10MW FOWT benchmark [8].

The remainder of the paper is organized as follows.
Section II introduces the 10MW FOWT and the simulation
environment. In section III, the SPRC approach of the IPC
is detailed. Next, a numerical simulation using the Fatigue,
Aerodynamics, Structures, and Turbulence (FAST) simulator
is implemented in section IV. Section V presents concluding
remarks.

II. DESCRIPTION OF THE 10MW FOWT AND OF THE
FAULT SCENARIO

In this section, the FOWT model considered as reference
in the present paper is described. It is based on the DTU
10MW three-bladed variable speed reference wind turbine
and the Triple-Spar floating platform [8]. The block diagram
for the 10MW FOWT simulation model is portrayed in
Fig. 1. It comprises an aero-hydro-structural dynamic part
simulated in the well known FAST numerical package [9]
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Fig. 1. Block scheme of the controller and loop of the 10MW FOWT.

and a wind turbine control part implemented in MathWorks
Simulink. Specifically, the pitch control can be divided into
1) Baseline control utilizing the classical Collective Pitch
Control (CPC) [8], which encompasses the white block, 2)
Multi-Blade Coordinate (MBC)-based IPC [10], which is
represented by the dark grey block, 3) SPRC-based IPC,
which is characterized by a light grey block and would be
introduced in section III.

As for the aero-hydro-structural dynamic part, the FOWT
will be characterized by the following discrete-time system,

xk+1 = A0xk + ρ(xk, uk)+

βk−k0
Φx

k(uk, ϑ
x) + ηxk(xk, uk, k)

yk = C0xk

, (1)

where k = 0, 1, . . . is the discrete time index and x ∈ Rn,
u ∈ Rr, y ∈ Rl represent the state, the control input and the
measurement output vectors, respectively. Vector u collects
the three pitch commands, y the three blades Out-of-Plane
(OoP) bending moment. The matrix A0 ∈ Rn×n and the
vector field ρ : Rn × Rr 7→ Rn denote the linear and
nonlinear parts of the FOWT nominal (i.e. relative to healthy
conditions) dynamics while C0 ∈ Rl×n is the nominal
output matrix. The unavoidable modelling uncertainties and
periodic disturbances induced by wind loading are described
by ηxk : Rn × Rr × R 7→ Rn.
βk−k0

is the time profile of the fault, where k0 is the
faulty time index. The term βk−k0Φx

k(uk, ϑ
x) represents the

changes of the dynamics of the state equation, due to the
occurrence of the PAS type of faults. The PAS is modelled
by the following equation,

Φx
k = −uk + ϑxε , (2)

where ϑx denotes the value of pitch angle of the f th blade
induced by the actuator stuck while ε represents an all zeroes

column vector of suitable size having a single 1 in its f th

position. In addition, it is assumed that only one blade is
stuck in each case study.

III. ADAPTIVE FAULT ACCOMMODATION WITH SPRC
The FOWT system dynamics in equation (1), can be ap-

proximated by an LTI system affected by unknown periodic
disturbances [11] in prediction form as,{

xk+1 = Ãxk +B(uk + Φx
k) + Ẽdk + Lyk

yk = Cxk + Fdk + ek
, (3)

where dk denotes the periodic component of disturbances on
the blades, ek ∈ Rl is the aperiodic component of the blade
loading.

Furthermore, Ã , A− LC and Ẽ , E − LF , where
matrices A ∈ Rn×n, B ∈ Rn×r, C ∈ Rl×n, L ∈ Rn×l,
E ∈ Rn×m and F ∈ Rl×m are the state transition, input,
output, observer, periodic noise input and periodic noise
direct feed-through matrices, respectively. During healthy
conditions (0 ≤ k < k0), it holds Φx

k = 0.
By defining a periodic difference operator δ, the effect of

the periodic disturbance on the input-output system could be
eliminated:

δdk = dk − dk−P = 0,

δuk = (uk + Φx
k)− (uk−P + Φx

k−P ),

δyk = yk − yk−P ,

with P being the disturbance period. During the occurrence
of a PAS type of fault, δu for the f th blade is 0, since Φx

k =
Φx

k−P accordingly.
Based on the definition of δ, equation (3) is formulated as{

δxk+1 = Ãδxk +Bδuk + Lδyk

δyk = Cδxk + δek
(4)

If we consider a given time window of length p in the
past, we can define the following stacked vector

δU
(p)
k =


uk − uk−P

uk+1 − uk−P+1

...
uk+p−1 − uk+p−P−1

 , (5)

and, similarly, the vector δY (p)
k . Then, the future state vector

δx(k+p) can be introduced based on δU (p)
k and δY (p)

k as

δxk+p = Ãpδx(k) +
[
K

(p)
u K

(p)
y

] [
δU

(p)
k

δY
(p)
k

]
, (6)

where K(p)
u and K(p)

y are defined as,

K(p)
u =

[
Ãp−1B Ãp−2B · · · B

]
,

K(p)
y =

[
Ãp−1L Ãp−2L · · · L

]
.

It is assumed that p is large enough such that Ãj ≈ 0 if
∀j ≥ p [12]. In such a case, δxk+p is approximated by

δxk+p =
[
K

(p)
u K

(p)
y

] [ δU
(p)
k

δY
(p)
k

]
(7)
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Combining equation (7) with (4), the approximation of
δŷk+p is obtained as,

δyk+p =
[
CK

(p)
u CK

(p)
y

] [ δU
(p)
k

δY
(p)
k

]
+ δek+p (8)

It is clear from equation (8) that the matrix of coefficients[
CK

(p)
u CK

(p)
y

]
contains all the necessary information

on the behaviour of the FOWT system and can be estimated
based on the input u and output y. We can now introduce
the matrix Ξ ∈ Rl×((r+l)·p) containing the FOWT Markov
parameters as,

Ξ =
[
CK

(p)
u CK

(p)
y

]
(9)

Therefore, the aim of the identification is to find an online
solution of the Recursive Least-Squares (RLS) optimization.
In order to realize the adaptive control for the PAS type of
fault, we will assume that the blade n load is independent
of blade m, where n 6= m. Therefore, the subspace identifi-
cation step for both healthy and faulty conditions is carried
out by the following RLS optimization as,

Ξ̂k,(i) = arg min
Ξ̂k

∞∑
k=0

∥∥∥∥∥δyk,(i) − λΞ̂k,(i)

[
δU

(p)
k,(i)

δY
(p)
k,(i)

]∥∥∥∥∥
2

2

,

(10)
where λ is a forgetting factor (0 � λ ≤ 1) to attenuate
the effect of past data, and adapt to the updated system
dynamics online. In this paper, a large value, i.e. λ =
0.99999, was selected to guarantee the robustness of the
optimization process (such value for λ corresponds to a
window length of 106 samples [13]). In addition, i = 1, 2, 3
is the blade number, while Ξ̂k,(i) denotes the estimate of
independent Markov parameter for each blade. Consequently,
the optimization process in equation (10) is conducted three
times at each time instant k. Next, Ξ̂k is synthesized as,

Ξ̂k =

 Ξ̂k,(1)

Ξ̂k,(2)

Ξ̂k,(3)

 . (11)

Based on the value Ξ̂k, the FOWT system dynamics are
identified, taking into account the faulty conditions deter-
mined by the PAS occurrence. It is worth noticing that the
FOWT system should be persistently excited in order to
obtain a unique solution of the RLS optimization ([14]).
Based on the identified Ξ̂k, the state feedback controller can
be formulated by the following state-space representation,

according to [15], Ȳj+1

δθj+1

δȲj+1


︸ ︷︷ ︸

K̄j+1

=

 Il·P φ+ ̂
Γ(P )K

(P )
u φ φ+ ̂

Γ(P )K
(P )
y φ

0l·P 0r·P 0l·P

0l·P φ+ ̂
Γ(P )K

(P )
u φ φ+ ̂

Γ(P )K
(P )
y φ


︸ ︷︷ ︸

Āj Ȳj
δθj
δYj


︸ ︷︷ ︸

K̄j

+

 φ+Ĥ(P )φ
Ir·P

φ+Ĥ(P )φ


︸ ︷︷ ︸

B̂j

δθj+1 , (12)

where j = 0, 1, 2, · · · is the rotation count. Ĥ(P ) and Γ(P )

are the same matrices defined in [16]. θ ∈ R2r is the control
inputs projected on the basis function Ψ which is defined in
[17],

U
(P )
k = Ψθj , (13)

where θ is updated at each P . The state transition and input
matrices are updated at each discrete time instance k. Based
on this, the classical optimal state feedback matrix Kf,j

can be synthesised in a Linear Quadratic Regulator (LQR)
sense [18]. The control input vector δθj is then formulated
according to the state feedback law,

δθj+1 = −Kf,jK̄j , (14)

Considering that δθj+1 = θj+1 − θj , the projected output
update law θj+1 can be calculated as,

θj+1 = αθj − βKf,j

 Ȳj
δθj
δȲj

 , (15)

where α ∈ [0, 1] and β ∈ [0, 1] are the tuning parameters to
increase the convergence rate of the algorithm. Finally, the
input signals Uk can be computed by equation (13).

IV. CASE STUDY

Now, the effectiveness of the proposed adaptive fault
accommodation scheme is verified via a numerical study
based on the 10MW FOWT model presented in section II.

A. Model configuration

As shown in Fig. 1, a 10MW FOWT model with twelve
Degrees of Freedom (DOFs) was dynamically simulated
in FAST v8.16 [9] and coupled to MathWorks Simulink,
where the wind turbine controllers were implemented. More
specifically, we enabled in this simulation the DOFs of the
generator, the 1st and 2nd flapwise blade modes, the 1st

edgewise blade mode, the fore-aft and side-to-side tower
bending modes as well as the six platform motions. The
FOWT dynamics were studied under three different Load
Cases (LCs). For the sake of verifying the control strategy, all
of them were characterized by a constant and uniform wind
field, analogously to [8]. The mean hub-height wind speed
Uhub was set to 12, 16 and 20 m/s respectively. Furthermore,
a specific PAS type of fault was chosen for the three LCs,
considering a different pitch angle setting ϑx for the stuck
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blade, which in all cases was the third one (i.e. f th = 3). The
magnitude of ϑx was set to 20◦, 0◦ and 10◦, respectively.
For each LC, 2000s were simulated with a fixed discrete time
step of Ts = 0.01s, with the PAS fault always occurring at
t =1000s.

Each LC was simulated alternatively implementing the
proposed SPRC-based IPC and a MBC-based IPC. The
performances of each control strategy in healthy and faulty
conditions were evaluated according to their capacity to
reduce the blade loads with respect to a baseline control
implementing CPC.

In order to implement the online subspace identification
part of the proposed SPRC-based IPC, a filtered pseudo-
random binary signal with a maximum value of 3◦ is su-
perimposed on top of the collective pitch demand of blades.
This signal ensures persistence of excitation in the nominal
healthy and faulty conditions and does not significantly
affect the FOWT performances. Moreover, the value of past
window p was selected as 21, in order to increase the
convergence rate of the subspace identification.

B. Adaptive FTC with SPRC-based IPC

First of all, some time-domain plots are presented to
illustrate the performance of the different controllers. Fig. 2
shows the comparisons of blade root Out-of-Plane (OoP)
bending moments in LC2 for the two IPC control strategies,
and for the CPC baseline. In the healthy condition before
1000s, both the MBC-based IPC and our SPRC-based IPC
are able to effectively reduce the periodic blade loads. When
a PAS fault occurs, the SPRC-based IPC does automatically
start to learn the changed FOWT dynamics and adapt its
control law, as explained in Section III. It is interesting to
note that when the MBC-based IPC is implemented, the
bending moments increase on the blade #1 and decrease
on the blade #2 during the faulty condition. This makes the
aerodynamics on the rotor more unbalanced: in particular,
the bending moments on blade #2 drop into a negative value
(around −1.5 × 104) due to the increased pitch angle from
MBC-based IPC, as shown in Fig. 3. One plausible expla-
nation is that the signals from the Coleman transformation
utilized in the MBC-based IPC are contaminated by the failed
pitch actuator and hence, the classical MBC-based IPC is
not capable of reducing the loads, thus worsening the faulty
condition.

Furthermore, the Power Spectral Densities (PSDs) of
aforementioned OoP bending moments collected in the
healthy condition (900s to 1000s) and the faulty condition
(2900s to 3000s) are presented in Fig. 4. Both MBC-based
IPC and SPRC-based FTC are able to effectively reduce
the blade loads at 1P frequency in the healthy condition.
However, the MBC-based IPC is unable to realize the load
reduction in the faulty condition. Comparing to the MBC-
based IPC approach, significant reductions of the OoP bend-
ing moments on the two healthy blades are achieved by
the SPRC-based IPC when the third blade undergoes a PAS
fault. More specifically, the dominant peak at 1P frequency
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Fig. 2. Blade root OoP bending moments. (a)-(c) Simulation time from
900s to 1100s, (b)-(d) Simulation time from 1900s to 2000s. The faulty
periods are indicated by a grey background. Blade #3 is not shown since it
is the faulty blade.
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(around 0.16Hz), caused by rotor imbalance, is reduced more
effectively.

In order to quantify the performance of the analyzed con-
trol strategies, Tab. I shows the load reduction with respect
to baseline control in terms of standard deviation of the OoP
bending moment for the considered three LCs. The standard
deviation of the OoP bending moment for each blade was
calculated considering only the part of the simulation from
900s to 1100s and from 1900s to 2000s. As anticipated,
the proposed SPRC-based approach allows to reduce the
loads induced by the unbalanced aerodynamics by more
than 63% for the healthy blades thanks to its adaptive fault
accommodation ability. The most significant load reduction
(more than 83%) occurs in LC3, with highest wind and
wave loads. This is an indication of the proposed approach
capabilties to handle harsh wind and wave conditions even
during a fault. In total, the aerodynamic loads on the rotor
are reduced by more than 98% in all three LCs. Since the
aerodynamic unbalance of the rotor is alleviated, the OoP
bending moments on the faulty blade slightly decrease as
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Fig. 4. Power spectrum density of the blade root OoP bending moments
(a)-(c) Healthy condition from 900s to 1000s, (b)-(d) Faulty condition from
1900s to 2000. Blade #3 is not shown since it is the faulty blade.

TABLE I
COMPARISONS OF THE BLADE LOADS WITH DIFFERENT CONTROL

STRATEGIES*.

Control strategies Load case 1 Load case 2 Load case 3
Blade 1
MBC-IPC (%) 55.90 20.00 10.48
SPRC-FTC (%) 63.74 76.29 83.04
Blade 2
MBC-IPC (%) -36.80 -64.22 20.72
SPRC-FTC (%) 64.02 74.01 88.36
Blade 3
MBC-IPC (%) 30.94 -7.48 5.95
SPRC-FTC (%) 0.19 4.48 1.97
Cumulative loads
MBC-IPC (%) 20.98 -44.51 -54.81
SPRC-FTC (%) 98.65 98.60 98.25

*The positive values indicate the percentage of the load reduction compared
to the baseline control strategy.

well by around 0 to 4.5%. From the data in Tab. I it is
also possible to notice that the standard deviation of the
OoP moments is much higher when the MBC-based IPC
is implemented. Especially, the italics implies the loads are
increased by the MBC-based IPC and higher than baseline
control. This implies that the classical IPC approach is not
an effective way to deal with the PAS type of faults.

Moreover, it is found from Fig. 3 that the pitch angle
commands set by the CPC vary much slower than with the
IPC-based approaches. The effect of the SPRC-based IPC
is to superimpose a periodic variation on top of the CPC
pitch request, in order to reduce the loads induced by the
PAS. It is also interesting to note that the control action
of the MBC-based IPC is influenced by the PAS, resulting
in a pitch angle request with a mean value different from
the one of the CPC and SPRC-based IPC, which further
deteriorates the faulty condition. The advantage of the SPRC-
based IPC can be seen from the pitch rate presented in Figs. 5
and 6. The pitch rate demand is much lower than in the
conventional IPC approach and it is strictly limited within
the concerned 1P frequency. Actually, the effects of pitch rate
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Fig. 5. Pitch rate of the blades. (a)-(c) Simulation time from 900s to
1100s, (b)-(d) Simulation time from 1900s to 2000. Time periods of faulty
condition are indicated by a grey background. Blade #3 is not shown since
it is the faulty blade.
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Fig. 6. Power spectrum density of the pitch rate. (a)-(c) Healthy condition
from 900s to 1000s, (b)-(d) Faulty condition from 1900s to 2000. Blade #3
is not shown since it is the faulty blade.

are typically quantified by the Actuator Duty Cycle (ADC)
indicator [19] which is an effective criterion to approximate
the lifespan of pitch actuators. Smaller ADC values imply
the reduced cyclic fatigue loads on the actuators and lower
pitch activities. Fig. 7 presents the ADC for both nominal
healthy conditions (i.e., 900s to 1000s) and faulty conditions
(i.e. 1900s to 2000s) for the three LCs. As visible, the ADC
of most blade pitches is, in general, reduced by the proposed
SPRC-based approach by around 10% in healthy conditions
and 19% in faulty conditions compared to the MBC-based
IPC. Considering Fig. 5, it can be concluded that a significant
amount of load mitigation during faulty conditions, which
indeed is a form of fault tolerance, is achieved by the SPRC-
based IPC without the need to increase pitching activities.
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Fig. 7. ADC of the blade pitch actuator for the FOWT in healthy conditions
(a)-(c)-(e) (simulation time from 900s to 1000s) in LCs 1, 2, 3 respectively
and in faulty conditions, (b)-(d)-(f) (simulation time from 1900s to 2000s)
in LCs 1, 2, 3 respectively.

V. CONCLUSIONS

Accommodating PAS type of faults in wind turbines poses
huge challenges to control engineers on account of the
reliability, safety and resilience of FOWTs. In the paper, we
devise a novel adaptive FTC with SPRC, essentially an IPC
combining online subspace identification with basis function
learning control, to realize load reduction in the healthy
conditions and automatically accommodate PAS faults in
an adaptive way in the faulty conditions. Such an adaptive
approach allows to realize significant load mitigation without
priori knowledge from the turbine system and fault diagnosis
architecture.

The effectiveness of the developed FTC with SPRC-
based IPC is demonstrated through numerical simulations
of a 10MW FOWT under different load cases. Results
have shown that effective load alleviation is achieved in
both nominal healthy and faulty conditions in an adaptive
way with low pitch activities. More importantly, such a
SPRC-based approach makes it possible to continue power
production in faulty conditions, before maintenance can be
performed.
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