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Abstract 

 Commercial claims for LED-based products in 

terms of lumen maintenance are fully based on TM-21 

extrapolations using LM-80 data. We presented an 

approach based on statistical data analytics, following 

the work from Yu & Tseng, at EuroSimE2015. Since 

then, more LM80 test data came available both for High 

Power (HP) and Mid Power (MP) LEDs. In this paper, 

we will present the results of further investigations, 

where we have taken the work from Meeker into 

account. This is needed as some commercial claims are 

based on 10 years of warranty and some service bids 

provide periods of 20 to 25 years of operation. 

1. Introduction 

The debate on producing commercial claims for 

LED-based products in terms of lumen maintenance is 

still not settled. Most companies base their product 

lifetime claims fully on LED-level LM80 data [1] and 

TM-21 extrapolations [2].  Even more, the 

standardization bodies like e.g. IEC [3, 4] have agreed 

that such an approach is allowed. Here, the lumen 

maintenance lifetime is defined as the time when the 

maintained percentages of the initial light output fall 

below a failure threshold. In earlier publication, we have 

mentioned that there may be a risk in doing this as TM-

21 only relies on the behavior of the average LED 

degradation, instead of taking into account the 

degradation of all individual LEDs [5, 6, 7]. In [5] we 

have presented a more profound statistical analysis that 

makes the step from TM-21 extrapolation to lumen 

maintenance on product level. We investigated different 

approaches able to perform lumen maintenance 

extrapolations. For that, we have analyzed several LM80 

data sets from a statistical point of view [6, 7]. In [7] we 

proposed an alternative statistical approach to estimate 

lumen depreciation of LED’s. Our analysis of a series of 

LM80 data sets did show the strength of the described 

method as the resulting unique fitted parameters 

describe the lumen maintenance of the LED over a long 

period. In principle we found that there is also no need 

for a limitation based on the so-called 6x rule from TM-

21. The method we used, was based on the statistics 

defined by Yu & Tseng [8]. 

In this same book chapter [7], we also proposed the 

use of an even more complex stochastic models that can 

properly describe the degradation path for LEDs. Here, 

the big challenge is to get accurate estimates of a 

product’s lifetime which, obviously, strongly depends 

on the appropriateness of modeling its degradation path. 

A typical degradation path consists of mean degradation 

curve and its error term (measurement error). There are 

two approaches available in the literature. First, the 

mixed effects model is one of the most popular 

approaches in degradation analysis [9, 10, 11]. In order 

to describe the unit-to-unit variations of the test units, 

the unknown parameters of the mean degradation path 

are described in terms of the mixed (or random) effects. 

Often the mixed effects formulations do not take the 

time-dependent error structure into consideration. 

Therefore, the stochastic process formulation, or Gauss-

Markov method can be an alternative approach to model 

the product’s degradation path. Dealing with those more 

complex models, to find the maximum likelihood 

estimates (MLEs) of the unknown parameters, the 

mixed effects model is computationally intensive. 

STATA or R can be used. However, on-hand procedures 

do not always guarantee that the precise parameter 

estimations can be obtained. Besides the mixed and 

Gauss-Markov approaches, the application of Bayesian 

methods may be promising [12, 13]. Bayes allows a 

reliability engineer to incorporate one’s prior knowledge 

about the unknown parameters of the model into data 

analysis to provide important improvements in 

precision.  Based on previous experiments an engineer 

may specify priors for the effects of temperature and/or 

current. As generally well-known such priors are key 

components in a Bayesian model specification and 

should be chosen carefully. 

In this paper we have chosen to use the method by 

Meeker and Weaver [11] to analyze a large set of LM80 

data. The method is denoted as repeated measures 

accelerated degradation test (RMADT) and finds 

significant contributions in other industries for 

describing degradation of e.g. metals and carbon. 

Datasets from both mid-power (MP) and high-power 

(HP) LEDs are used against this RMADT approach. 

Results are described for the datasets and conclusions 

given. 

2. Methodology 

LM80 data sets are incoming on a daily basis. The 

number of LED suppliers is not only growing, also the 

number of LED package types is significantly 

increasing. Although the active device (or epitaxy) can 

differ from type to type, the packaging materials and 

associated processes are not that different. From a pure 

data analytics point of view this means that data sets can 

be united, leading to statistically relevant numbers. In 

our approach, we have gathered LM80 sets of two 

distinct types: HP LEDs and MP LEDs, see table below. 

In total, we analyzed approximately 2x 27000 data 

points. 
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Table 1: HP LED dataset details. 

LED  If [A] Tcase [degC] Number of 

readpoints 

HP1 0.7; 1.0 55; 85; 105 1680 

HP2 0.35; 0.5; 0.7; 

1.0; 1.5 
55; 85; 105; 125 3880 

HP3 0.5; 0.7; 1.05; 

1.2 
55; 85; 105 4200 

HP4 1.5; 2.1; 3.0 55; 85; 105 1950 

HP5 0.35; 0.7 55; 85; 105 2500 

HP6 1.5; 2.1; 3.0 85; 105 1300 

HP7 0.5; 0.7 85; 105 1550 

HP8 0.5; 0.7; 1.0; 55; 85; 105; 120 3850 

HP9 0.7; 1.2; 1.5 55; 85; 105; 120 2880 

HP10 0.5; 0.7; 1.0; 1.5 55; 85; 105; 125 2277 

 

Table 2: MP LED dataset details. 

LED  If [A] Tcase [degC] Number of 

readpoints 

MP1 0.1;0.15;0.2 55; 85; 105 3518 

MP2 0.135;0.2 55; 85; 105 2115 

MP3 0.15;0.2 25; 55; 85; 95 1900 

MP4 0.06;0.08 55; 85; 105 3902 

MP5 0.15;0.2;0.24 55; 85; 105 2147 

MP6 0.165;0.2 55; 85; 105 750 

MP7 0.2; 55; 85; 105 3150 

MP8 0.065;0.15;0.18 55; 85; 105 539 

MP9 0.1;0.15;0.2 55; 85; 105 2034 

MP10 0.12;0.2 55; 85; 105 1830 

MP11 0.15;0.28 55; 85; 105 2372 

MP12 0.65;0.1;0.2 55; 85; 105 3112 

 

As mentioned in the introduction, we will use the 

method presented by Weaver and Meeker [11], known 

as repeated measures accelerated degradation test 

(RMADT). The degradation of lumen for a LED at time 

t [hrs] and accelerating factors temperature T [°C], and 

current I [A] by: 

      (1) 

With 

   (2) 

where C>0, n>0, and B<0 

 

 We can use the linear mixed-effects models 

available in Stata [14]. These models are also known as 

multilevel models or hierarchical linear models. The 

overall error distribution of the linear mixed-effects 

model is assumed to be Gaussian, and heteroskedasticity 

and correlations within lowest-level groups also may be 

modeled. The key to fitting mixed models lies in 

estimating the variance components, and for that there 

exist many methods. Most of the early literature in 

mixed models dealt with estimating variance 

components in ANOVA models. For simple models 

with balanced data, estimating variance components 

amounts to solving a system of equations obtained by 

setting expected mean-squares expressions equal to their 

observed counterparts. 

The transformed observed lumen degradation Y at 

time t is: 

             (3) 

 With: 

 
We assume that the variability in the regression 

parameters ln(C) and can be described by a bivariate 

normal distribution. This assumption reflects the LED-

to-LED variability in the degradation intercepts and 

slopes: 

  (4) 

• With  is the mean vector. We assume that (ln(C), 

)’ is independent of e, and that there is no 

autocorrelation in time. 

• Because degradation data is available for multiple 

Mid & High-power LEDs, we can estimate an 

overall model. 

• The on-hand mixed effect model can be estimated 

by Stata. 

• We refer to Weaver & Meeker [11] for a description 

between the degradation model and the induced 

failure time, e.g. assuming lumen maintenance less 

than 80% is not allowed. 

The results are described in next paragraph. 

3. Results 

3.1 High-power LEDs 

Figure 1 depicts four typical degradation curves of 

the HP LED LM80 data, including the fitted behavior 

(following equation (2)). The different graphs represent 

different setting of current and temperature. For each 

LED a model can be found, having all conditions in it. 

Looking at the figures, a wide variety of degradation can 

be found, e.g.: 

- Remain stable at the low-stress conditions 

- Increase then decrease 

- Gradually increase 

- Gradually decrease 

Also, it is not a given that higher stress conditions lead 

to higher lumen decrease. There can be multiple reasons 

for such none-theoretical behavior, e.g.: 
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- Insufficient data integrity 

- Large noise over signal values 

- Not using reference samples 

- Corrections during the measurements (for 

instance at 6000hrs) 

- Differences between test houses  

- Exposure to chemical incompatible substances 

from air pollutants or from outgassing of 

neighboring materials [7, 15] 

 

Table 3 list all the fitted parameters for the HP LED 

dataset. The ranges for the parameters underline the 

differences in degradation behavior, as mentioned 

above. Looking at the parameters one can state the 

following: 

- : TM-21 assumes that this parameter should be 

1.0. Table 3 clearly identifies that this a strong 

approximation as the data set finds realistic 

values in the range of 0.1-1.5 with an average of 

0.8. 

- C: this is a scaling factor and all values can be 

the found. An average value makes no sense. 

- B: this value is the temperature acceleration, the 

average value of 4091 reflects an activation 

energy of 0.35eV, which is quite reasonable. 

- n: reflects the influence of current, negative 

values can be discarded. In the current data set 

we find realistic values in the range of 0.2-3.8 

with an average value of 1.7. It is known that 

current acceleration for HP LEDs can be quite 

substantial. 

 

In Table 4, the co-variances are listed.  The co-

variance describes the LED-to-LED variability in the 

degradation intercepts and slopes for HP LEDs. 

 

 

Figure 1: Four typical degradation curves for the HP 

LEDs analyzed. 

 

Table 3: Fitted parameters values for all HP LEDs. 

Values cursive are unrealistic. NA means parameter 

cannot be fitted due to lack of data. 

LED   C B n 

HP1 1.47 88.0 -7501 1.83 

HP2 0.87 1.32E-5 451 1.86 

HP3 0.44 2.42E-3 -537 -0.08 

HP4 0.83 2.30E-7 1562 NA 

HP5 0.67 2.11E-5 388 0.18 

HP6 0.30 74.8 -3729 1.16 

HP7 0.12 0.15 -1530 -0.45 

HP8 1.31 1.64E-8 -678 -0.48 

HP9 -0.30 1175.5 -2776 1.41 

HP10 1.06 1.55E9 -11889 3.83 

Table 4: Co-variances for the HP LEDs, as given by 

equation (4).  

 
 

3.2 Mid-power LEDs 

Figure 2 depicts four typical degradation curves of 

the MP LED LM80 data, same as above for HP LEDs. 

The different graphs represent different setting of 

current and temperature. Looking at these figures, for 

each case a substantial amount of degradation is 

measured. This makes the model fitting easier, fitted 

parameters are listed in Table 5. For MP LEDs, we find 

that: 

- : average value is 1.5 which is quite reasonable 

giving the degradation behavior of this 

technology. 

- B: An average value of 2827 corresponds with 

an activation energy of 0.24 eV for MP LEDs, 

which is quite reasonable. 

- n: current influence is found to be average 0.7, 

which is lower than found for HP LEDs. This is 

mainly due to the lower current densities in MP 

LEDs. 

In Table 6, the co-variances are listed. The 

covariance describes the LED-to-LED variability in the 

degradation intercepts and slopes for MP LEDs. 
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Figure 2: Four typical degradation curves for the MP 

LEDs analyzed. 

Table 5: Fitted parameters values for all MP LEDs. 

Values cursive are unrealistic. NA means parameter 

cannot be fitted due to lack of data. 

LED   C B n 

MP1 0.59 4.15 -3708 -0.14 

MP2 3.41 1.97E-12 -2673 0.53 

MP3 1.93 4.15E-7 -1300 1.23 

MP4 0.71 1.7E-4 -2253 0.47 

MP5 0.88 0.11 -802 -0.01 

MP6 1.34 1.05E-6 -471 NA 

MP7 0.54 14.9 -4472 -0.66 

MP8 3.30 4.05E-13 -1362 NA 

MP9 0.92 0.66 -3502 0.38 

MP10 1.03 3.36E-4 -1161 0.63 

MP11 1.77 1071.1 -8739 1.96 

MP12 1.52 2.16E-3 -3478 0.53 

Table 6: Co-variances for the MP LEDs, as given by 

equation (4). 

 

4. Conclusions 

In this paper we describe our next steps to find 

appropriate statistical models able to describe LED 

degradation. We analyzed ten long-term datasets of HP 

LEDs and twelve for MP LEDs. A new model was used, 

the so-called repeated measures accelerated degradation 

test (RMADT). Fitted parameters are presented as well 

as co-variances between them. The results show that 

finding a good representation of LED degradation 

behavior is not easy, even impossible. Data integrity, 

reference samples, noise over signal are disturbing a 

clean degradation curve. If we take out certain data, we 

surely can find reasonable model parameters for both 

LED technologies. 
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