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Abstract—A statically balanced system is in equilibrium
in every pose. In classical balancing solutions for serial
linkages, each DOF is balanced by an independent ele-
ment. Disadvantages are increased mass and inertia for
counter-mass, and auxiliary links for spring solutions. Re-
cent literature presents a method for balancing serial link-
ages without auxiliary links; using multi-articular springs.
This method obtains constraint equations from the stiffness
matrix. Downsides are different coordinate systems for de-
scribing locations and states, and criteria constraining at-
tachments to fixed lines In the present paper Cartesian co-
ordinates are implemented in the stiffness matrix approach.
Goal is comparing the use of this single coordinate sys-
tem to using multiple, and obtaining increased insight in
and providing a visualization of parameter relations. The
Cartesian coordinates are implemented, providing a sim-
ple, intuitive method for designing statically balanced se-
rial linkages allowing for recognition of the full design
space. Obtained parameter relations are visualized in an
example.
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I. Introduction
A system which is in equilibrium in every motionless

state is called statically balanced. For such systems the
potential energy level remains constant in every pose [1].
This constant energy level greatly reduces operational ef-
fort as only dynamic effects remain to be overcome during
motion. Many applications for static balancing exist due to
these benefits [1], [2], [3], [4].

Different techniques exist to statically balance the ro-
tation of a rigid pendulum. A simple option is adding a
counter-mass [1], downside of which is the increased mass
and inertia [5]. A second option is connecting a zero-free-
length spring (ZFLS) between the link and fixed world [1].
For a ZFLS the spring force is proportional to its length.
Other less common solutions use a non-circular cam [6] or
compliant flexure elements [7]. These solutions are all de-
signed to balance a single degree of freedom (DOF).

Solutions for balancing a serial linkage with multiple
DOF make use of counter-mass or ZFLSs. In the first case a
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counter-mass is added to each link [8], [9], additional aux-
iliary links allow counter-mass relocation [10]. Inertia in-
crease becomes a greater problem as added weights of distal
counter-masses must be balanced as well. Classical ZFLS
solutions require a parallel beam construction providing a
link with fixed orientation at each joint [1], [11], [12]. Each
link is balanced by a single ZFLS that spans the joint of the
respective link, a mono-articular spring. The disadvantage
of parallel beams are an increased complexity and added
inertia. In these systems each DOF is balanced by an inde-
pendent balancing element.

Recent literature presents two methods in which ZFLSs
can span multiple joints to balance serial linkages without
parallel beams. The first method is the stiffness matrix ap-
proach by Lin et al. [12], [13], [14], [15]. Energy equa-
tions are set up in a general form U = 1

2Q
TKQ, sep-

arating states Q and parameters in a stiffness matrix K.
Off-diagonal elements of K contain state dependent energy
terms, constraining these terms equal to zero results in a
statically balanced system [13]. The second method is an
iterative method developed by Deepak and Ananthasuresh
[16]. Balance is ensured link by link, in steps, starting at the
most distal link. At each step, balance of a specific link is
acquired by adding up to two ZFLSs between this link and
fixed world. For each link only energy terms of the current
and previous step links affect its constraint equations [16].
In these two methods each DOF is balanced by combined
efforts of multiple ZFLSs.

Both methods can create statically balanced serial link-
ages and are based on an energy approach. Nevertheless
multiple differences exist in ease of implementation and ca-
pabilities. The first is that in Lin’s method all constraints are
obtained at once for a chosen spring configuration, whereas
in Deepak’s method only a selection of the constraints is
evaluated at once. If no straightforward solution is found,
Deepak’s method explains which spring(s) can be added for
a solvable system, Lin’s method does not directly. How-
ever, information on which links are unbalanced and thus
require additional springs can be extracted from the stiff-
ness matrix [15]. Another difference is that all springs are
connected to the fixed world in Deepak’s method while
in Lin’s method springs can be attached in between any
two links, i.e. additional constraints are provided consid-
ering these springs. Finally, Deepak’s method allows pla-



nar placement of spring attachments while in Lin’s method
criteria are set up constraining attachments to be located on
fixed straight lines [15].

In the presented work the stiffness matrix approach is se-
lected for calculating balanced linkages as it provides all
constraints at once and allows additional spring placement
options. The exact implementation however is altered. Cur-
rent literature describes locations on links using polar coor-
dinate systems, while states are described using unit vectors
(xy-components). In the presented work Carthesian (xy-)
coordinates are used describing link locations as well as the
states.

Three goals are formulated in the presented paper. The
first goal is to implement Cartesian coordinates in the stiff-
ness matrix approach for balanced serial linkages to investi-
gate its benefits over the combined use of polar coordinates
for locations and xy-coordinates for states. The second goal
is to gain more insight in the relations between different pa-
rameters of this method in the design space, for instance it
will be investigated if placement of springs outside the ver-
tical straight lines is allowed. The third goal is to visualize
these behavioral relations in an example.

The structure of this paper is as follows. First, in
’Method’ the Cartesian coordinate stiffness matrix ap-
proach is derived. Next, in ’Application and behavior’ the
example of a balanced linkages is presented of which the
behavior is analyzed. Third, in ’Discussion’ the use of
Cartesian and polar coordinates are compared. Finishing
with the obtained conclusions concerning the set goals.

II. Method
We propose the consistent use of Cartesian coordinates in

the stiffness matrix approach for designing serial statically
balanced linkages. This is in contrast to the use of polar co-
ordinates for locations and Cartesian coordinates for states,
as used in current literature on this method [12], [13], [14],
[15]. In the presented paper the location of spring attach-
ments, joints and COMs is described using (local) x- and
y- coordinates on the respective links they are located on.
In this section the assumptions are explained first, followed
by the full derivation of the stiffness matrix approach using
xy-coordinates.

A. Assumptions and limitations
The presented method is set up for planar linkages, the

gravitational field acting in this plane has constant magni-
tude and direction. The links are connected to each other
and/or the fixed world using revolute joints. All springs
have linear ZFLS behavior and the mass of these springs is
neglected. Mechanical limits of links/springs colliding with
one another are not taken into account. The fixed world is
assumed to be rigid and static.

B. Derivation of stiffness matrix
The stiffness matrix approach is derived in five steps.

First all coordinate points are described as a function of the

link states and parameter values. The second step is setting
up potential energy equations for all spring and mass com-
ponents and writing these equations in a generalized form.
The third step is to combine the energy equations of the dif-
ferent components to obtain the total stiffness matrix. The
fourth step is obtaining the constraint equations for balance
from the stiffness matrix. The fifth and final step is focused
on how to solve the obtained equations. The equations are
set up for an n link system where the fixed world is link 1,
as a result the system has n− 1 moving links.

B.1 Step 1: Coordinate vectors
The state of link u is described by global unit vector qu

(Figure 1a). The fixed world vector q1 is constant, aligned
with the global x-axis. For moving links (u = 2 · · ·n)
vector qu is aligned with the local xu-axis. The origin of
each local coordinate system is located at the proximal joint
Ju−1. The yu-axis are orientated perpendicular to the re-
spective xu-axis. A unit vector in this yu direction is ob-
tained by rotating the state vector qu by 90◦ using rotation
matrix R. Combined state vector Q holds the states of all
n-links.

q1 =

[
1
0

]
(1a)

qu =

[
qxu
qyu

]
(1b)

Q =

q1

...
qn

 (1c)

I =

[
1 0
0 1

]
(1d)

R =

[
cos(90◦) − sin(90◦)
sin(90◦) cos(90◦)

]
=

[
0 −1
1 0

]
(1e)

Global coordinates of all point on the links are described
as a linear combination of the state vectors and constant
parameter values. Joint locations are described first. As
said, fixed world joint J1 is located in the global origin.
The distal joint Ju of a link u is always located on the local
xu-axis at distance Lu from the local origin (Figure 1b).
Vector components of joint locations are set up in equation
2.

J1 =

[
0
0

]
(2a)

Ju = L2Iq2 + L3Iq3 + · · ·+ LuIqu (2b)

=
u∑

i=2

LiIqi = Ju−1 + LuIqu

Spring attachment point locations for a spring j between
link u to link v are Aj and Bj respectively. These locations
are a linear combination of the proximal joint component
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Fig. 1: (a) Schematic representation of a serial linkage in a state defined by
unit vectors q. (b) Parameterization of locations on link u in the Cartesian
form.

Ju−1, the local xu component (axjIqu) and the local yu
component (ayjRqu) (Eq. 3). A schematic representation
containing these components is given in figure 1b.

Aj = Ju−1 + (axjI + ayjR) qu (3a)
Bj = Jv−1 + (bxjI + byjR) qv (3b)

Similarly the COM location of link u is set up (Eq. 4).

Su = Ju−1 + (sxuI + syuR)qu (4)

B.2 Step 2: Energy equations and generalized form

This step is to write energy equations in the generalized
form, separating the states Q and the parameters in the stiff-
ness matrix K.

U =
1

2
QTKQ (5)

Spring energy is expressed in this form first. The vector
describing spring length and orientation for spring j, going
from link u to link v, is Bj−Aj . This is as a function of the
states, because the locations of points Bj and Aj are state
dependent as well. The expression for this spring vector
is derived in equation 6. An expression is obtained where
constants are separated for each state (Eq. 6e). The com-
ponents C holding these constant parameters are shown in
matrix form (Eq. 7).

Bj −Aj =Jv−1 − Ju−1 − (axjI + ayjR) qu (6a)
+ (bxjI + byjR) qv

Jv−1 − Ju−1 =Ju + Ju+1 + · · ·+ Jv−1 (6b)

=
v−1∑
n=u

LnIqn

Bj −Aj =− (axjI + ayjR) qu (6c)

+
v−1∑
n=u

LnIqn + (bxjI + byjR) qv

Bj −Aj =((Lu − axj)I − ayjR)︸ ︷︷ ︸
Cu

qu (6d)

+
v−1∑

n=u+1

LnI︸ ︷︷ ︸
Cu+1+···+Cv−1

qn + (bxjI + byjR)︸ ︷︷ ︸
Cv

qv

Bj −Aj =

v∑
n=1

Cnqn (6e)

Cu =

[
Lu − axj ayj
−ayj Lu − axj

]
(7a)

Ci =

[
Li 0
0 Li

]
, for i = u+ 1, · · · , v − 1 (7b)

Cv =

[
bxj −byj
byj bxj

]
(7c)

Ci =

[
0 0
0 0

]
, for :

{
i = 1, · · · , u− 1
i = v + 1, · · · , n (7d)

Knowing the spring length, as a function of the states, its
potential energy can be calculated. The equation is set up
for a ZFLS j with stiffness kj (Eq. 8a) and rewritten in the
generalized form (Eq. 8d). In this form the states (Q) are
separated from the parameters in the stiffness matrix of the
spring (Ks,j).



Us,j =
1

2
kj(Bj −Aj)

2 (8a)

=
1

2
kj

(
n∑

u=1

Cuqu

)2

(8b)

=
1

2
kj

q1

...
qn


T C

T
1 C1 · · · CT

1 Cn

...
. . .

...
CT

nC1 · · · CT
nCn


q1

...
qn

 (8c)

=
1

2
QTKs,jQ (8d)

Ks,j = kj

C
T
1 C1 · · · CT

1 Cn

...
. . .

...
CT

nC1 · · · CT
nCn

 (8e)

Next the gravitational energy is expressed in the general-
ized form of equation 5. The height of the masses is found
in the second element of vector Su, containing the global
COM y-coordinate of link u. The value for height is ex-
tracted by vector product: height=

[
0 1

]
Su. This prod-

uct is not jet expressed as in the generalized form because
Su does not contain multiplications of states. By using
state q1, which is located on the fixed world, it is known
that (Rq1)

T =
[
0 1

]
, describing the gravitational field

direction. Therefore the height of a mass is expressed as
in the generalized form by product: height= (Rq1)

TSu.
Based on this term the energy equations are first written for
the mass of a single link u (Eq. 9) followed by a summed
relation containing the masses of all links (Eq. 10). For
this form the constant components Du that fill the stiffness
matrix are described (Eq. 11), followed by the generalized
form of the energy equation (Eq. 12).

Umu
= mug(Rq1)

TSu (9a)

= mugq
T
1 R

TSu (9b)

= mugq
T
1 R

T [Ju−1 + (sxuI + syuR)qu] (9c)

=mugq
T
1 R

T

[
u−1∑
i=1

(Liqi) + (sxuI + syuR)qu

]
(9d)

Effect of combined mass of all links, for a linkage with
n links (and thus n− 1 moving links) is given (Eq. 10).

UΣm =
n∑

u=2

Umu
(10a)

= qT
1

n∑
u=2

(
RTmug

[
u−1∑
i=1

(Liqi) + (sxuI + syuR)qu

])
(10b)

= qT
1

∑n
u=2

RT
[(∑n

i=u+1mi

)
gLuI +mug(sxuI + syuR)

]︸ ︷︷ ︸
Du

qu


(10c)

Du = RT

[(
n∑

i=u+1

mi

)
gLuI +mug(sxuI + syuR)

]

(11a)

=

 mugsyu mugsxu +

(
n∑

i=u+1

mi

)
gLu

−mugsxu −

(
n∑

i=u+1

mi

)
gLu mugsyu


(11b)

The generalized form UΣm is obtained as states and pa-
rameters are separated.

UΣm =
1

2
QTKmQ (12a)

Km =


O D2 · · · Dn

DT
2 O · · · O

...
...

. . .
...

DT
n O · · · O

 (12b)

When analyzing a new system it is possible to quickly set
up the stiffness matrices without having to go through all
derivations performed in this step. It is advised to directly
substitute the component matrices for the springs Cu(Eq.
7a-7d) and the mass components Du (Eq.11). By substi-
tuting these component matrices in equation 8e and 12b the
stiffness matrix Ks,j and Km are obtained.

B.3 Step 3: Total stiffness matrix
The combined energy Ut, containing all spring and mass

terms is obtained by combining the spring and mass stiff-
ness matrices (Eq. 13).

Ut =
1

2
QTKtQ (13a)

Kt =

(
nsprings∑

i=1

Ks,i

)
+Km (13b)



B.4 Step 4: Constraint equations
In a balanced system, any state can be changed freely

with respect to any other state without changing the overall
potential energy level. For this to be the case, the effective
stiffness between any two different states should be equal
to zero. These represent all state dependent energy terms.
The effective stiffness terms for these relative rotations are
found on the off-diagonal part of the stiffness matrix Kt

[14]. As a result, all off-diagonal parts of the Kt matrix are
constrained to be equal to zero for balance [13].

The number of constraint equations depends on the size
of the Kt matrix, which in turn depends on the number of
links n. The matrices are symmetrical, thus all relations
are found in the upper triangular part (Eq. 8e, 12b). Addi-
tionally, all relations in one of these triangular parts occur
twice, once in each even and uneven row. Thus only every
other row has to be examined to obtain all relations. Al-
together the amount of constraint equations for an n-link
system is equal to n(n− 1) [14].

B.5 Step 5: Obtain balance by solving constraint equa-
tions

The next step is solving the obtained constraint equa-
tions. In general, the minimal amount of variables to be
calculated is equal to the number of equations. For exam-
ple, for a three link planar system the number of constraint
equations is equal to six and as a result at least six param-
eters should be left free while solving such a system. The
remaining parameters can be selected to have constant val-
ues.

III. Application and behavior
In this section an illustrative example of a balanced link-

age is presented. The behavior of the balanced system is
analyzed to gain a better understanding of how different
parameters can be changed while maintaining the desired
balance. Increased insight in the inner workings of the sys-
tem will allow for a more efficient design process and a
better overview of possible solutions. Found relations for
varying parameters while maintaining balance are provided
and visualized. The system studied has two moving links
(Figure 2a) and is positioned in a gravitational field acting
in the y−direction with g = 9.81m/s2.

J 1

J 2

m2
m3

(a)

B 1

B 2

A1

A2

J 1

J 2

k1

k2

m2
m3

(b)

Fig. 2: (a) Unbalanced linkage. (b) Spring configuration of example 1. (c)
Spring configuration of example 2.

A. Example
Two springs are used to balance the system, one bi-

articular ZFLS connecting the fixed world to link 3 and one

mono-articular ZFLS that connects links 2 and 3 (Figure
2b). In the first step the system locations in figure 2b are
expressed in xy-coordinates as in figure 1b. The actual lo-
cation vectors (Eq. 2,3,4) are not shown as their creation
is not required for continuing in this method, nevertheless
they are useful for instance to plot the system. In the sec-
ond step the component matrices for the two springs C1

and C2 (Eq. 14) and the mass terms D (Eq. 15) are con-
structed based on equations 7 and 11. By substituting these
component matrices in equations 8e and 12b the spring ma-
trices Ks1,Ks2 and mass stiffness matrix Km are obtained
(Eq. 16a,16b). The third step is to construct the total stiff-
ness matrix by combining the spring and mass matrices (Eq.
16c). In the fourth step the constraint equations are obtained
from the Kt matrix (Eq. 17). The constraint equations to
be satisfied for balance are the off-diagonal parts of the Kt

matrix set equal to zero. Here only terms in odd rows (1
and 3) are considered as the even rows contain the same
relations.

C1,1 =

[
−ax1 ay1

−ay1 −ax1

]
C2,1 =

[
0 0
0 0

]
C1,2 =

[
L2 0
0 L2

]
C2,2 =

[
L2 − ax2 ay2

−ay2 L2 − ax2

]
C1,3 =

[
bx1 −by1

by1 bx1

]
C2,3 =

[
bx2 −by2

by2 bx2

]
(14)

D1 =

[
0 0
0 0

]
D2 =

[
m2gsy2 m3gL2 +m2gsx2

−m3gL2 −m2gsx2 m2gsy2

]
D3 =

[
m3gsy3 m3gsx3

−m3gsx3 m3gsy3

]
(15)

Ksi =
1

2
ki

CT
i,1Ci,1 CT

i,1Ci,2 CT
i,1Ci,3

CT
i,2Ci,2 CT

i,2Ci,3

sym CT
i,3Ci,3

 (16a)

Km =

 O D2 D3

O O
sym O

 (16b)

Kt = Ks1 +Ks2 +Km (16c)

Kt(1, 3) = 0 =− k1ax1L2 +m2gsy2 (17)
Kt(1, 4) = 0 =− k1ay1L2 +m2gsx2 +m3gL2

Kt(1, 5) = 0 =− k1(ax1bx1 + ay1by1) +m3gsy3

Kt(1, 6) = 0 =k1(ax1by1 − ay1bx1) +m3gsx3

Kt(3, 5) = 0 =k1bx1L2 − k2(ay2by2 − bx2(L2 − ax2))

Kt(3, 6) = 0 =− k1by1L2 − k2(ay2bx2 + by2(L2 − ax2))



In the final step the constraint equations are solved for
four different cases, each showing different behavior (Fig-
ure 3). Between these cases some general properties of the
system remain the same. Specifically spring stiffness, mass
and link length values. In each case the constraints are
solved for parameters ax1, bx1, by1, bx2, by2 and k1. Var-
ied inputs between cases are parameters ax2 and ay2, de-
scribing the location of attachment A2. Furthermore sy2

is varied, describing the location of the COM of link 2.
Obtained parameter values of balanced configurations are
summarized in table 3e. Parameters on the first six rows
(above the horizontal line) are calculated by solving the
constraints, remaining parameter values (under the line) are
chosen inputs.

In the first case all spring connections are aligned with
the links (Figure 3a). In case 2, attachmentA2 of the second
spring is rotated about the joint J2, as a result attachment
B2 rotates with the same angle about J2 as well (Figure
3b). In case 3, the COM of link 2 is relocated. Resulting
in simultaneous rotations of attachments B1 and B2 (Fig-
ure 3c). In the final case 4, both offsets of A2, as in case
2, and sy2, as in case 3, are combined. The solved config-
uration shows a combination of the behavior caused by the
individual offsets of the previous cases (Figure 3d).

0.1 [m]

(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4

Case 1 Case 2 Case 3 Case 4 Units
ax1 0 0 -0.025 -0.025 [m]
bx1 0.1125 0.1125 0.1059 0.1059 [m]
by1 0 0 0.0265 0.0265 [m]
bx2 -0.0981 -0.0785 -0.0923 -0.06 [m]
by2 0 -0.0589 -0.0231 -0.0739 [m]
k1 261.6 261.6 261.6 261.6 [Nm ]

k2 600 600 600 600 [Nm ]
ay1 0.1 0.1 0.1 0.1 [m]
ax2 0.15 0.18 0.15 0.18 [m]
ay2 0 -0.09 0 -0.09 [m]
m2 2 2 2 2 [kg]
m3 2 2 2 2 [kg]
L2 0.3 0.3 0.3 0.3 [m]
sx2 0.1 0.1 0.1 0.1 [m]
sy2 0 0 -0.1 -0.1 [m]
sx3 0.15 0.15 0.15 0.15 [m]
sy3 0 0 0 0 [m]

(e)

Fig. 3: In scale balanced solutions for example 2. (a) Case 1. (b) Case 2.
(c) Case 3. (d) Case 4. (e) Parameter values for the different cases.

B. Behavior in example
The four cases in example 2 are all statically balanced

as they all fulfill the constraint equations. The unbalanced
three link system is analyzed first in the orientation in which
it has minimal gravitational energy (Figure 4a). In this po-
sition link 2 is oriented at angle α with respect to the verti-
cal. Angle α is now determined by setting the momentMJ1

around J1 to be equal to zero as it should be when in equi-
librium (Eq.18). The system shown in figure 4b is equal to
the linkage of figure 4a only with redrawn links that give
room for springs to be drawn later on.

MJ1 = 0 = m2sy2 cos(α)−m2sx2 sin(α)−m3L2 sin(α)

(18a)

(m2sx2 +m3L2) sin(α) = m2sy2 cos(α) (18b)

sin(α)

cos(α)
= tan(α) =

m2sy2

m2sx2 +m3L2
(18c)

α = tan−1

(
m2sy2

m2sx2 +m3L2

)
(18d)

J 2

J 1

m2

m3

α

sx
sy L 2

2
2

(a)

J 2

J 1

m2

m3

α

(b)

J 2

J 1

A1

A2

B 1
B 2

m2

m3
β

α

α

(c)

Fig. 4: (a) and (b) Unbalanced linkage in equilibrium. (c) Relations be-
tween the location of spring attachment points required for a balanced sys-
tem.

Next, it is recognized that for balance a zero moment is
required in all orientations. As this is already the case for
the original system in the orientation of figure 4b neither
of the added springs should apply a moment around any
of the joints to keep this moment free condition. Spring 1
is located between the fixed world point A1 and link 3 at
point A3, and thus spawns both joints. As a result, spring
connections A1 and B1 should be aligned with both joints
J1 and J2, exactly at the previously determined angle α
(Figure 4c). Spring 2 connects A2 on link 2 and B2 on link
3 and thus spawns only the second joint J2. Therefore, in
this orientation with minimal potential the two connection
points of this spring are to be aligned with J2 (Figure 4c).

Furthermore, as α is only dependent on parameters of
the original linkage its value is unaffected by adjusting the
other spring. For spring 2 the alignment of attachment A2



depends on both angles α and β with respect to the local co-
ordinate system of link 2. AttachmentB2 is dependent only
on angle β with respect to the local coordinates of links 3.
Therefore, by changing β spring 2 can be relocated any-
where on a ring shaped disk around J2, as partially visual-
ized by dotted lines in figure 4c.

The locations of the spring attachments are now de-
scribed based on a single position of the linkage where the
gravitational energy is at a minimum. This does not directly
prove that the system is in balance in any pose as it is only
clear that this one position is in equilibrium. However, the
proof that the system can be balanced in any configuration
is already given using the stiffness matrix approach. What
the analysis of this single position does provide is insight in
where the attachments can be placed and why they are con-
strained to lie on certain lines or positions. Additionally it
can be reasoned that the system is capable of being balanced
in all orientations as the energy behavior of all components
is sinusoidal with respect to each rotation. These sinusoids
have equal periods as these are equivalent to full rotations
of a links, all having a minimum or maximum in the ori-
entation of figure 4. The sinusoidal functions are either in
phase or shifted by half a phase exactly and so can interfere
with one another to cancel each other out.

The behavior described so far in this example is based on
the orientations in which springs can be placed for the se-
lected spring configuration (Figure 4). However some addi-
tional interesting observations are made based on parameter
magnitudes.

The first observation is that the location of spring at-
tachment point B1 (Figure 4c) is a unique point depending
solely on parameters of the original linkage, i.e. it is fixed
independently of all other spring related parameters. Using
the solve function in MATLAB the constraint equations
are solved for parameters bx1 and bx2. These parameters
describe the location of B1, expressed as a function of the
other parameters (Eq.19). The obtained equations consist
solely of parameters describing link length, mass or COM
location. Thus, the location of this attachment point can not
be varied when the linkage that is to be balanced has fixed
dimensions and mass.

bx1 =
L2

2m
2
3sx3 + L2m2m3(sx2sx3 + sy2sy3)

(L2m3 +m2sx2)2 +m2
2s

2
y2

(19a)

by1 =
L2

2m
2
3sy3 + L2m2m3(sx2sy3 − sx3sy2)

(L2m3 +m2sx2)2 +m2
2s

2
y2

(19b)

For the spring attachment A1 an additional constraint is
found. It is found that the distance from joint J1 to this
point A1 is inversely related to its spring stiffness k1. This
is by solving the constraint equations (Eq.17) for the pa-
rameters ax1 and ay1 which describe the location of A1

(Eq.20a and 20b). Furthermore, the relation for α can again
be extracted from these constraints by looking at the rela-

tive magnitudes of ax1 and ay1 (Eq.20c).

ax1 =
m2gsy2

L2

1

k1
(20a)

ay1 =
m2gsx2 +m3gL2

L2

1

k1
(20b)

α =tan−1

(
ax1

ay1

)
= tan−1

(
m2sy2

m2sx2 +m3L2

)
(20c)

For spring 2, an additional constraint is found as well,
this is next to angle β which describes the springs orienta-
tion. When all other parameters are fixed, the product of its
stiffness k2, distance from J2 toA2 and distance from J2 to
B2 is constant ( k2 · |A2 − J2| · |B2 − J2| = constant ). In
other words, the two described lengths and the stiffness of
this spring can be varied freely within these bounds without
affecting any other parameter. This magnitude of the ’con-
stant’ value in this relation is affected by the location of A1

and k1, however it is unpractical to take these into account
in the same relation and much more convenient to fix these
parameters before altering either A2, B2 or k2.

IV. Discussion
Constraint equations in polar form, for the system stud-

ied in the presented example, are set up in the work of
Lin et al.[13]. In this form link locations are defined by
a magnitude and an angle, representing the same relations
as in equation 17. Behavior found in the presented example
shows a number of simultaneous rotations of COM loca-
tions and/or spring connection points that can be performed
without affecting the balance of the system (Figure 4). One
could argue to use a polar coordinate system to describe this
behavior as it is rotational. However, the centers of rotation
for these simultaneous rotations can either be on the first
joint, the second joint or a seemingly arbitrary point on one
of the links. As the location of the center point is inconsis-
tent it cannot be ensured that this point is always positioned
on the origin of the local coordinate system from which
the polar coordinates are defined. Furthermore, describ-
ing a rotation using polar coordinates about a point other
than the origin is, according to the authors, unnecessarily
complicated compared to describing such a rotation as a
sum of vector components in a Cartesian coordinate sys-
tem. Moreover, using polar coordinates the possibility of
this rotational behavior is not recognized in literature [15].
Criteria are set which limit spring attachment to be on fixed
lines instead of allowing planar placement [15]. As the
Cartesian design equations describe the balance conditions
in a simpler manner it is easier to find solutions in the com-
plete design space using these coordinates. For this reason
a Cartesian coordinate system is recommended when alter-
ing a system having planar offsets. Other benefits of using a
Cartesian system are that the resulting constraint equations
will be free of sinusoidal term, and describing coordinates



on a link using xy-components is more intuitive compared
to using an angle and magnitude.

V. Conclusion
In this work the implementation of the stiffness matrix

approach is altered such that states and link locations are
expressed in the same coordinate system. The first goal
was to implement Cartesian coordinates and comparing it
to the use of polar coordinates in the stiffness matrix ap-
proach. The Cartesian coordinates were successfully im-
plemented and in comparison they were found to be more
intuitive in use, provide simpler constraint equations and be
more convenient for altering parameters of balanced sys-
tems. The main benefit of this simpler description is that
previously unidentified solutions, having planar spring at-
tachment placement, are now recognized. The second goal
was to gain more insight in the relations between parame-
ters while the third goal was to illustrate these behavioral
relations in two examples. These two goals were achieved
simultaneously as in the example a basic system (having
two moving links) was analyzed. Relations were found
between orientation, positioning and magnitude of springs
and masses. These are described and illustrated providing
a visual overview of the design space. Obtained relations
provide knowledge in the possibilities to vary spring sys-
tem parameters while maintaining static balance.
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