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Abstract—Pulsed electromagnetic (EM) scattering from a rel-
atively narrow superconducting strip is analyzed with the aid of
the EM reciprocity theorem and the Cagniard-DeHoop (CdH)
technique. The analysis yields a stable convolution-type equation
that is solved using the marching-on-in-time (MOT) technique for
coefficients representing the time-domain (TD) electric current
induced in the strip. Illustrative numerical examples are validated
with the help of the CdH method of moments (CdH-MoM).

Index Terms—computational electromagnetics, time-domain
analysis, time-domain integral equation technique, Cagniard-
DeHoop technique, transient scattering, superconductivity.

I. INTRODUCTION

The CdH technique [1]–[5] is a joint transform method that

was originally developed to explain seismic data. Since the

CdH technique is capable of solving a large class of canonical

EM problems directly in TD, it has been found useful for

benchmarking purely numerical techniques, both in accuracy

and in speed of computation. More recently, a fundamentally

new TD integral-equation technique, referred to as the CdH-

MoM, has been put forward [6], [7], thereby demonstrating

the applicability of the CdH technique in computational elec-

tromagnetics (see also [8]). An illustrative application of the

CdH-MoM is also the subject of the present contribution,

where the EM plane-wave induced TD electric current in a

relatively narrow, planar superconducting strip is analyzed. For

a thorough discussion of applications of superconductors in

antenna and microwave engineering, the reader is referred to

[9], [10].

II. PROBLEM DEFINITION AND ITS FORMULATION

We shall analyze the TD response of a superconducting

planar strip that occupies {−w/2 < x < w/2,−δ/2 < z <
δ/2}, where w > 0 denotes the strip’s width and δ > 0 its

(vanishing) thickness. The strip is located in the homogeneous,

isotropic and loss-free background medium described by (real-

valued, scalar and positive) parameters ǫ0 and µ0 with the

corresponding EM wave speed c0 = (ǫ0µ0)
−1/2 > 0 and

wave admittance Y0 = 1/c0µ0. The time coordinate is {t ∈
R; t > 0}, H(t) denotes the Heaviside unit-step function and

δ(t) is the Dirac-delta distribution. The strip is irradiated by a

E-polarized, uniform impulsive EM plane wave, Ei
y(x, z, t) =

ei(t − p0x + γ0z), where ei(t) denotes its (causal) signature

and p0 = sin(θ)/c0 with γ0 = cos(θ)/c0 are the wave

slowness parameters in the x- and z-direction, respectively

(see Fig. 1). The EM properties of the superconducting strip
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Fig. 1. A narrow superconducting strip irradiated by the impulsive EM plane
wave.

are described by its two-fluid conduction relaxation function

(see [10, Sec. 1.2] and [11, Sec. 19.5])

κc(t) = σn(T/Tc)
4δ(t) +

[

1− (T/Tc)
4
]

Λ−1H(t) (1)

where σn denotes the normal-state conductivity at the critical

temperature Tc, Λ = µ0λ
2 is the London parameter, in which

λ represents the penetration depth at temperature T = 0 and,

finally, T/Tc is the reduced temperature. It is assumed that the

strip shows a high contrast with respect to the embedding such

that the equivalent TD layer conductance GL(t) = δκc(t) is

of order O(1). Then, the following TD cross-layer conditions
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apply

lim
z↓δ/2

Ey(x, z, t)− lim
z↑−δ/2

Ey(x, z, t) = 0 (2)

lim
z↓δ/2

Hx(x, z, t)− lim
z↑−δ/2

Hx(x, z, t) = ∂J s
y(x, t) (3)

as δ ↓ 0, for all {−w/2 < x < w/2} and t > 0, where

∂J s
y(x, t) = GL(t) ∗

t
Ey(x, 0, t) (4)

has the meaning of contrast sheet electric current density [12,

Eq. (12)] and ∗
t

denotes the time-convolution operator.

Employing the TD cross-layer conditions, the EM reci-

procity theorem of the time-convolution type [11, Sec. 28.2] is

next applied to interrelate the (causal) scattered EM field state

(further denoted by superscript s) with the (causal) testing field

state (further denoted by superscript T). In this way, we arrive

at
∫ w/2

x=−w/2

ET
y (x, 0, t) ∗t

∂J s
y(x, t)dx

=

∫ w/2

x=−w/2

Es
y(x, 0, t) ∗t

∂JT
y (x, t)dx (5)

The TD reciprocity relation (5) with Eqs. (4) and (1) is further

solved for the induced electric-current response induced in

the superconducting strip. The TD solution presented in this

contribution is limited by the assumption that the strip’s width

is relatively small with respect to the spatial support of the

exciting plane-wave signature ei(t).

III. PROBLEM SOLUTION

The EM scattering problem formulated in the previous

section is further solved via the CdH technique that employs

the one-sided time Laplace transformation

Êy(x, z, s) =

∫ ∞

t=0

exp(−st)Ey(x, z, t)dt (6)

with {s ∈ R; s > 0} thus relying on Lerch’s uniqueness the-

orem [13, Appendix]. The temporal transformation is further

combined with the wave slowness representation

Êy(x, z, s) = (s/2πi)

∫ i∞

p=−i∞

exp(−spx)Ẽy(p, z, s)dp (7)

that entails ∂x → −sp. Assuming the uniform spatial distri-

bution of the induced current density and introducing Eqs. (6)

and (7) in (5), the resulting (transform-domain) reciprocity

relation can be readily cast into the following form
[

Ẑext(s) + 1/wĜL(s)
]

Îs(s) = êi(s) i0(sp0w/2) (8)

where i0(x) denotes the modified spherical Bessel function of

the first kind and

Ẑext(s) =
sµ0

2πi

∫ i∞

p=−i∞

i20(spw/2)
dp

2γ0(p)
(9)

has the meaning of external impedance [14], where γ0(p) =
(1/c20 − p2)1/2 with Re(γ0) ≥ 0.

To solve the resulting relation (8) iteratively via the MOT

approach, the unknown electric current is expanded in

Îs(s) ≃

M
∑

k=1

ikΛ̂k(s) (10)

where ik denotes the unknown coefficients (in A) and the TD

original of the triangular function is defined by

Λk(t) =

{

1 + (t− tk)/∆t for t ∈ [tk−1, tk]

1− (t− tk)/∆t for t ∈ [tk, tk+1]
(11)

along the discretized time axis {tk = k∆t,∆t > 0, k =
1, 2, · · · ,M} ⊂ {t ∈ R; t > 0}. Substituting Eq. (10) the

s-domain reciprocity-based relation (8) and transforming the

result to the TD, we obtain a convolution-type equation that

can be solved for the current coefficients using the MOT

technique. This leads to

im = c0∆tY0e
i(tm)/Φ(∆t)− Φ−1(∆t)

m−1
∑

k=1

ik

×
[

Φ(tm − tk−1)− 2Φ(tm − tk) + Φ(tm − tk+1)
]

(12)

for all m = {1, . . . ,M}, where

Φ(t) =
[

Υ(w, t)− 2Υ(0, t) + Υ(−w, t)
]

/w2

+ (Λ1/µ0wδ)
[

1− exp(−t/σ1Λ1)
]

H(t) (13)

and σ1 = σn(T/Tc)
4, Λ1 = Λ/[1 − (T/Tc)

4] (see Eq. (1)),

and the TD function Υ(x, t) follows upon applying the CdH

technique as

Υ(x, t) =
1

2π

{

x2

2
cosh−1

(

c0t

|x|

)

+
c0tx

2

(

c20t
2

x2
− 1

)1/2

− c0t|x| tan
−1

[

(

c20t
2

x2
− 1

)1/2
]}

H(t− |x|/c0)

+
c0tx

2
H(x)H(t) (14)

for all x ∈ R and t > 0.

IV. NUMERICAL EXAMPLE

In this section, the MOT solution (12) is validated with the

aid of the CdH-MoM technique [6]. To that end, we shall

analyze the TD response of a YBCO (= Yttrium Barium Cop-

per Oxide) superconducting planar strip of width w = 10µm
and thickness δ = 0.5µm. Its conduction relaxation function

is described via parameters taken from [15]: T = 77K,

Tc = 92.5K, σn = 1.7 · 106 S/m and λ = 0.3µm. The plane

wave is defined by its bipolar triangular signature

ei(t) = (2em/tw)
[

tH(t)− 2
(

t− tw/2
)

H
(

t− tw/2
)

+ 2
(

t− 3tw/2
)

H
(

t− 3tw/2
)

− (t− 2tw)H(t− 2tw)
]

(15)

with em = 1.0V/m, c0tw = 100w and θ = 0. Figure 3 shows

the electric-current density induced in the center of the super-

conducting strip. As can be seen, the results calculated via the
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Fig. 2. Plane wave pulse shape.

MOT procedure agree well with the ones achieved using the

CdH-MoM assuming the piecewise linear spatial distribution

over the strip divided into 2 nodes. Minor discrepancies can

be attributed to the difference in the spatial basis functions.
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Fig. 3. Pulse shape of the electric-current density induced at the center of
the superconducting strip.

V. CONCLUSION

Combining the time-convolution EM reciprocity theorem

with the CdH method, a novel TD integral-equation technique

for analyzing the TD plane-wave EM scattering from a rel-

atively narrow superconducting planar strip was introduced.

The validity of the proposed computational methodology was

conclusively demonstrated with the aid of the CdH-MoM [6].
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