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A B S T R A C T

Automated vehicles are becoming a reality. Expectations are that AVs will ultimately transform personal mobility
from privately owned assets to on-demand services. This transformation will enhance the possibility of sharing
trips, leading to shared AVs (SAVs). The preeminent aim of this paper is to lay foundations for fast and efficient
algorithms to be used in such new driving conditions. These algorithms must be able to solve Dial-a-Ride
problems with transfers (DARPT). Hence, they should efficiently assign passengers to vehicles and routes while
also: administering vehicles dispatch, determining convenient parking for idling vehicles and managing vehicle
routing in real-time. In this paper, we develop two integer linear programming models (one in continuous time
and one in discrete time) and their extensions to solve the DARPT. Our models take into account routing, service
times, constraints on maximum route time-span, unserved requests, preferred arrival and departure time,
nonconstant travel times, convenient parking while optimizing routing costs and quality of the service. The
models are tested on instances based on Google Maps data by solving them with a commercial solver. The results
of these tests are the starting point for validating the performance of forthcoming, ad hoc metaheuristics to be
used in real-life sized scenarios.
1. Introduction

Automated vehicles (AVs) will reshape our transportation system.
The opportunities and potential they offer will lead to the most signifi-
cant transportation revolution since the introduction of the internal
combustion engine (Spieser et al. (2014)). In fact, nowadays, cities are
facing an increasing personal transportation demand combined with a
growing population, while spatial resources remain static. Traditional
solutions to congestion (roads expansion, added bus services, new sub-
way lines, etc.) cannot mitigate the traffic escalation. In order to meet this
expanding mobility demand, a new transportation mentality involving
shared autonomous vehicles (SAVs) is likely to become the dominant
mindset in the coming years (Fagnant and Kockelman (2014); Interna-
tional Transport Forum (2015)). Although this SAVs system has some
disadvantages, such as high initial cost barriers (Fagnant and Kockelman
(2015); Conceiç~ao et al. (2017)), loss of vehicles’ status symbol (Correia
and van Arem (2016)) and distrust from the public, this new mentality is
accelerated by the growing number of environmentally conscious citi-
zens and the rising popularity of on-demand ridesharing services, espe-
cially among young adults. In addition, thanks to the possible
interactivity among SAVs and to a smart managing system on top, lower
.
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and lower congestion levels will be achieved (Spieser et al. (2014); In-
ternational Transport Forum (2015); Liang et al. (2017)).

As pointed out by Spieser et al. (2014), while automated vehicle
technology continues to move forward, less attention has been devoted to
the logistics of effectively managing a fleet of potentially thousands of
such vehicles. Accordingly, our paper aims to fill this gap to a certain
degree by presenting exact formulations to solve the routing of SAVs. In
particular, we demonstrate the benefits of transfers and ridesharing for
small instances. The performance of forthcoming metaheuristics can be
compared against these results. A more formal definition of ‘ridesharing’
and ‘transfer’ is presented in Section 2. Since organizing transfers is a
meticulous and precise action that requires information on the position of
all vehicles, we assume vehicles to be autonomous and to be managed by
a centralized controller. Although these autonomous vehicles will most
likely be electric, we do not take battery consumption into account in this
research, since this will further complicate an already complex problem.

To simulate on-demand ridesharing systems, almost every afore-
mentioned author (Fagnant and Kockelman (2014); Martinez et al.
(2015); International Transport Forum (2015); Fagnant and Kockelman
(2015); Liu et al. (2017)) used agent based simulation. In this paper,
instead, we use exact optimization techniques to achieve optimal
pril 2021
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solutions; however, this limits the ability to solve real-life sized instances
due to high computational times.

The problem we aim to solve shares many characteristics with two
traditional problems in the vehicle routing problem (VRP) literature: the
(Splittable) Pick Up and Delivery Problem (PDP) and the Dial-A-Ride
Problem (DARP). Since these are infamously known to be NP-Hard and
difficult to approximate (Masson et al. (2014)), many authors focused on
heuristic solution methods.

PDP shares most of the routing structure with our problem. The main
difference lies in the fact that goods (typically letters or small parcels1)
are carried instead of people. Hence, in the PDP, the quality of the time
spent travelling is not considered. In addition, goods facilities may have
time windows while, in general, there is no preferred arrival or departure
time. Also, transfers are considered, but only in a few predetermined
hubs. To solve the PDP with transfers, Rais et al. (2014) introduce an
integer programming model and use standard branch-and-bound while
Cort�es et al. (2010) adopt branch-and-cut techniques. Also, Peng et al.
(2019) developed a MILP formulation for the (selective) PDP with
transfers and compared its solution with a particle swarm optimization
metaheuristic. Given the complexity of the problem, Peng et al. (2019),
Cort�es et al. (2010) and Rais et al. (2014) solve instances with five, six
and seven requests to optimality, respectively. Thangiah et al. (2007)
combined a constructive heuristic with local optimization to quickly
(under 5 s) solve the online version of the PDP. Danloup et al. (2018)
tested two metaheuristics, namely large neighborhood search (LNS) and
genetic algorithms (GA), showing a very performing implementation of
the latter. Masson et al. (2013) developed an adaptive large neighbor-
hood search (ALNS) algorithmwith different destroy and repair methods,
showing its performance on real-life data from the area of Nantes. Also,
Petersen and Ropke (2011) solve the pickup and delivery problem with
cross-docking opportunity (a variant of the PDP) using LNS. In addition,
their algorithm was tested on real-life instances with sizes ranging from
500 to 1000 requests (but only one possible transfer node). All the
aforementioned authors who solve the PDP considered only few nodes
(hubs) as possible transfer nodes, while we consider all nodes as possible
transfer nodes.

On the other hand, the DARP consists of designing routes for vehicles
and schedules for users who specify pickup and delivery requests be-
tween origins and destinations. DARPs are a well studied class of prob-
lems and extensive reviews can be found in Agatz et al. (2012),
Molenbruch et al. (2017) and Ho et al. (2018). In general, ridesharing is
allowed but transfers are not considered (Cordeau and Laporte (2003)).
Since people are transported, the quality of the travel time has to be
considered. Most authors state that minimizing the routing costs or
minimizing the time of the routes implies minimizing the loss of quality
of the service. Although reasonable, we prefer a more explicit approach,
as detailed in Section 3.2.2 and Section 4.1.1. Even though standard
DARP problems do not take transfers into account, some papers do
consider DARP with transfers (DARPT). Masson et al. (2014) used an
adaptive strategy combined with a ruin and repair mechanism while
Deleplanque and Quilliot (2013) developed a general insertion scheme.
In these papers, fast heuristic conditions were introduced to check if a
repaired route was feasible or not. Hou et al. (2016) developed a MILP
formulation and a greedy heuristic to compare electric taxi usage be-
tween the nontransferable taxi-sharing and the transferable one. They
show that, during rush hours, transfers could improve the number of
served passengers and the shared travel distance by 22% and 37%,
respectively. Nevertheless, transfers can only happen at recharging
stations.

Moving outside the conventional boundaries of the DARP with
transfers, Reinhardt et al. (2013) and Posada et al. (2017) developed
multi modal frameworks. In these papers, transfers happen between
1 since small packages are moved, the problem is often treated as capacity
unconstrained.
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different transport modes within an airport or between the public and the
private transportation, respectively.

Our contribution is the development of two MILPs -one in continuous
time and one in discrete time-to solve the DARP while considering:

� the possibility to transfer in all nodes of the network,
� routes with cycles such that a vehicle or a request can visit the same
node several times,

� the absence of a depot location, or equivalently, all nodes are
considered to be depots,

� nonconstant travel times,
� focus on quality of time: requests' preferred arrival and departure
time and quality loss due to transfers and waiting times,

� attention to convenient parking.

As shown by van den Berg and van Essen (2019) and confirmed by our
results (Section 5.3), either the continuous time models or the discrete
one can perform better depending on the situation. In order to tie
continuous and discrete variables in the continuous time model, we
introduce the concept of ‘move’ (Section 3.1). To the best of our
knowledge, cycles have been handled by creating dummy copies of
nodes, but they have not been explicitly modelled in the literature. Also,
cycles are very common in practical applications of people trans-
portation, for instance, a taxi may visit the airport or the city center
multiple times during a work shift. As shown in this paper, these features
increase the complexity of the standard DARP but allow for more
flexibility.

The remainder of this paper is organized as follows: the problem, our
assumptions and the notation used are described in detail in Section 2.
Section 3 and Section 4 depict the model in continuous time and in
discrete time, respectively. Section 5 details performance and computa-
tional results and, finally, Section 6 concludes the paper.

2. Problem formulation

In this paper, we describe how to solve the Dial-a-Ride problem with
transfers to optimality. The problem we consider is the following: given a
set of requests R and a set of vehicles V, minimize the generalized cost Z
(routing and quality of service), allowing transfers and ride sharing while
considering time and vehicle limitations. Allowing transfers means that
each passenger may be picked up by a vehicle, taken to a certain location,
dropped off and picked up by another vehicle. This procedure may be
repeatedmultiple times. Without loss of generality, we suppose the initial
time to be zero.

The road network is modelled as a graph with node set N connected
by a set of arcs A. For now, we assume that each vehicle can idle and each
request can wait at every node which, in turn, are all possible transfer
nodes. In Appendix B, we describe how the set of transfer nodes can be
limited.

We consider the length lij of arc ði; jÞ 2 A with i; j 2 N to be known.
The travel time of each arc is a function of the arc ði; jÞ 2 A and the time t
at which a vehicle starts travelling it, i.e. FðijtÞ. In this paper, we consider
two cases: the case where FðijtÞ returns a parameter dependent only on
arc ði; jÞ 2 A and the case where the travel time is depending on both arc
ði; jÞ 2 A and time t. In Section 3.3.2 and Section 4, we describe how to
derive a linear formulation even for nonconstant travel times (travel
times depending on t).

Each request r 2 R is characterized by nine parameters. The first one,
er , determines its earliest possible departure time; so, every request can
be picked up only after time er . The second parameter, lr , determines the
time instant before which each request must reach its destination;
otherwise, it is considered unserved. Every request r 2 R is also charac-
terized by parameters pdr and par . These parameters state the preferred
time instants for departure and arrival. It must hold that
er � pdr � par � lr . Parameters er and lr define a hard time window (on
the request, not on the node) while pdr and par define a soft one. This



Table 1
Sets, parameters and function.

R Set of requests.

er earliest departure time for request r 2 R.
pdr preferred departure time for request r 2 R.
par preferred arrival time for request r 2 R.
lr latest arrival time for request r 2 R.
br maximum number of transfers allowed per request r.
qr party size of request r 2 R (how many people in request r 2 R).
or origin of request r 2 R.
dr destination of request r 2 R.
Mr set of all the possible moves for request r 2 R.
M r cardinality of set Mr for request r 2 R.
V set of vehicles.
ov origin of vehicle v 2 V .
qv capacity of vehicle v 2 V .
Mv set of all the possible moves for vehicle v 2 V .
M v cardinality of set Mv;v 2 V .
N set of nodes.
A set of all arcs.
lij length of arc ði; jÞ 2 A.
FðijtÞ function that returns the travel time along arc ði; jÞ 2 A at time t.
TMax time instant after which no requests can be delivered, i.e. TMax � lr ;

8r 2 R.
ε shortest travel time in the network, i.e. minði;jÞ2A;t�0FðijtÞ.
α;β;γ1;γ2;μ1;
μ2;μ3;μ4;η;E

cost coefficients.

B parameter with high value.
Z generalized cost.
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newly introduced type of time limitation differs from standard hard time
windows, which are imposed on a node and not on a client, as well as
from maximum ride time, which are imposed on a client but do not
consider departure and arrival time per se but only their difference. The
maximum number of transfers allowed for request r 2 R is given by br and
the party size of the same request is given by qr . The origin and desti-
nation of request r 2 R is given by or 2 N and dr 2 N, respectively.

Each vehicle v 2 V is described by an initial position ov 2 N and a
capacity qv. α; β; γ1; γ2; γ3; γ4; η and E are cost parameters detailed in
Section 5.2, while B is a sufficiently large number. We name ε the min-
imum travel time among any arc ði; jÞ 2 A (i.e. minij2A;t�0FðijtÞ) and we let
TMax be equal to the maximum latest arrival time lr over all requests r 2 R
(i.e. maxr2Rlr).

3. Continuous time model

In this section, we detail the concept of a ‘move’ (Section 3.1), the
core continuous time model (Section 3.2) and its extension (Section 3.3).
The extended model fulfills the same aim as the core model (i.e. solving
the DARPT), but also includes additional features such as service times
and nonconstant travel times. These features are added to have a closer
resemblance to real-life. Both the continuous time and discrete time
model rely on the idea of tracking requests' flows (from their origin to
their destinations) and forcing vehicles' flows to overlap and be paired
with them (more details in Section 3.2.6 and Section 4.1.3). We refer to
the formulations based on this idea as flow formulations.

3.1. Moves

While designing routes involves discrete variables, adopting a
continuous time model implies having variables in continuous time.
Since discrete and continuous variables influence each other and have to
be considered simultaneously, we introduce the ‘move’ concept. A ‘move’
refers to the act of travelling an arc. In fact, we associate each request r 2
R with a setMr ¼ f1; 2; 3; ::;M rg. The cardinality M r of this set is bigger
than the maximum number of arcs request r 2 R can travel given its time
limits (from er to lr). In particular, given the time limitations on each
request and a non degenerative graph (i.e. each travel time is strictly
greater than zero), there is a bound on the maximum number of arcs a
request can possibly travel. Equivalently, there is a bound on the
maximum number of arcs that a vehicle can travel; so, each vehicle v 2 V
is also associated with a set of moves Mv ¼ f1; 2;3; ::;M vg. The cardi-

nalities of sets Mr and Mv are given by M r ¼
�
lr�er
ε

�
and M v ¼

�
TMax
ε

�
,

respectively. Fig. 1 graphically shows how these moves are counted. The
text next to each arc indicates who is travelling that arc and at which
move. The figure clearly shows that vehicles and requests can travel the
same arc at different moves.

All the parameters described in Section 2 and in this section are
Fig. 1. Example of moves. Colors refer to who is travelling that arc (red for vehicle
indicates who is travelling that arc and at which move. (For interpretation of the refe
this article.)

3

summarized in Table 1.
3.2. Core model

After introducing the concept of ‘move’, we dedicate this section to
the description of the core continuous model. This core model takes into
account routing, timing, pairing, capacity constraints, constraints on the
maximum number of possible transfers and the possibility of unserved
requests while minimizing a trade off between routing costs and the loss
of the quality of the service.

3.2.1. Variables
In this section, we describe the variables used in the model. To model

the routing, we employ binary variables xrijm which assume value one
when request r 2 R travels arc ði; jÞ 2 A in move m 2 Mr and zero
otherwise. If considered in the order of the moves, these variables
describe the route of request r 2 R. Next to the routing, variables
describing the chronological framework are needed; for this, we intro-
duce continuous variables trm and wr

m for request r 2 R and move
m 2 f0g [Mr . Since m defines the move from one node to another, trm
assumes the value of the time instant at which request r 2 R arrives in a
node after move m 2 Mr , while wr

m assumes the value of how much time
V0, yellow for vehicle V1 and green for request R). The text next to each arc
rences to color in this figure legend, the reader is referred to the Web version of



Table 2
Variables continuous time model.

trm time variable indicating when request r 2 R arrives at a node after move
m 2 f0g [Mr .

tvm time variable indicating when vehicle v 2 V arrives at a node after move
m 2 f0g [Mv.

wr
m waiting variable indicating how much time request r 2 R waits after move

m 2 f0g [Mr .
wv
m waiting variable indicating how much time vehicle v 2 V waits after move

m 2 f0g [Mv.
xrijm binary variable which is one if request r 2 R travels arc ði; jÞ 2 A at move

m 2 Mr , zero otherwise.
yvijm binary variable which is one if vehicle v 2 V travels arc ði; jÞ 2 A at move

m 2 Mv, zero otherwise.
cþr variable indicating late arrival for request r 2 R.
c�r variable indicating early arrival for request r 2 R.
dþr variable indicating late departure for request r 2 R.
d�r variable indicating early departure for request r 2 R.
arv binary variable which is one if request r 2 R is paired with vehicle v 2 V ,

zero otherwise.
prmr vmv binary variable which is one if request r 2 R at move mr 2 Mr is paired with

vehicle v 2 V at move mv 2 Mv, zero otherwise.
ur binary variable which is one if request r 2 R is unserved, zero otherwise.
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request r 2 R waits after move m 2 Mr . In the timing and waiting vari-
ables (trm andwr

m), the additional move f0g is considered to determine the
initial departure time which occurs before the first move. Fig. 2 depicts
the relation between xrijm, t

r
m and wr

m. In this figure, we analyze the first
two moves of the route travelled by request r 2 R. We suppose the origin
or to be in node i 2 N. The black arrows illustrate the moves; in partic-
ular, the first move is from node i 2 N to node j 2 N while the second one
is from node j 2 N to node k 2 N. The red arrows are associated with the
timing variables trm and indicate which node the arrival time values refers
to. The green boxes relate to the waiting times wr

m and are depicted next
to the nodes they are assigned to.

Equivalent variables for the vehicles are needed. For routing pur-
poses, we introduce binary variables yvijm which are one when vehicle v 2
V travels arc ði; jÞ 2 A at move m 2 Mv and zero otherwise. In addition,
continuous variables tvm and wv

m are used to characterize the timing of
vehicle v 2 V for move m 2 f0g [Mv.

Naming cr the actual arrival time of request r 2 R to its destination dr ,
we define continuous variables cþr and c�r such that cþr ¼maxðcr ; parÞ and
c�r ¼ minðcr ;parÞ. Similar considerations apply for continuous variables
dþr and d�r which, in turn, are constrained such that dþr ¼maxðzr ; pdrÞ and
d�r ¼ minðzr ;pdrÞ, where zr is the actual departure time of request r 2 R
from its origin or . This is useful to penalize late or early arrival and de-
parture times, as described in Section 3.2.2.

Binary variables arv are one when request r 2 R is paired with vehicle
v 2 V during its route and zero otherwise. In addition, binary variables
prmrvmv are one when request r 2 R during move mr 2 Mr is paired with
vehicle v 2 V during movemv 2 Mv and zero otherwise. The behaviour of
these variables is explained in detail in Section 3.2.6. Finally, we intro-
duce binary variable ur which assumes value one when request r 2 R is
unserved and zero otherwise. Table 2 reports all the variables previously
described.

3.2.2. Objective function
The objective function aims at minimizing the generalized cost Z. This

cost is set equal to the sum of the following eight terms. The first term
indicates the travel cost of a solution which is given by:

α
X
v2V

X
ði;jÞ2A

X
m2Mv

yvijmlij:

To penalize the time travelled by each passenger inside a vehicle
(which is computed as arrival time minus departure time and waiting
time), we introduce the second term:

β
X
r2R

qr
 
trM r �

X
m2f0g[Mr

wr
m � tr0

!
:

In this second term, trM r assumes the value of the time instant at which
Fig. 2. Example of routing (black arrows), timing (red arrows) and waiting
variables (green boxes) for the first two moves of request r 2 R. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the
Web version of this article.)
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a request arrives at its destination. This is explained in detail in Section
3.2.4.

The third term handles early and late departure while the fourth term
determines the penalty for early and late arrival:

μ1
X
r2R

�
pdr � d�r

�þ μ2
X
r2R

�
dþ
r � pdr

�
;

μ3
X
r2R

�
cþr � par

�þ μ4
X
r2R

�
par � c�r

�
:

We assign a penalty related to the loss of quality every time there is a
transfer. This is taken into account by the fifth term:

η
X
r2R

X
v2V

arvqr :

In order to penalize howmuch time passengers wait at transfer nodes,
we add the following sixth term:

γ1
X
r2R

X
m2Mr

qrwr
m:

In this sixth term, the first move (move number zero) is excluded
because, for a request, waiting at its origin node is already penalized as
an early or late departure.

The seventh term determines parking costs, which are considered
proportional to the parking time:

γ2
X
v2V

X
m2f0g[Mv

wv
m:

Finally, the last term penalizes the unserved requests:

þE
X
r2R

urqr:

Hence, the generalized cost Z is given by:

Z ¼ α
X
v2V

X
ði;jÞ2A

X
m2Mv

yvijmlij þ β
X
r2R

qr
 
trM r �

X
m2f0g[Mr

wr
m � tr0

!
þμ1

X
r2R

�
pdr � d�

r

�þ μ2
X
r2R

�
dþr � pdr

�þ μ3
X
r2R

�
cþr � par

�
þμ4

X
r2R

�
par � c�r

�þ η
X
r2R

X
v2V

arvqr þ γ1
X
r2R

X
m2Mr

qrwr
m

þγ2
X
v2V

X
m2f0g[Mv

wv
m þ E

X
r2R

urqr : (1)

Although this objective function is quite elaborate, it approximates
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real-life.

3.2.3. Routing constraints
Firstly, to model the routing, we have to impose that, at each move, at

most one arc can be chosen. This is provided by constraints (2).X
ði;jÞ2A

xrijm � 1;8r 2R; 8m 2 Mr (2)

Also, we have to ensure that each request is either unserved (i.e. ur ¼
1) or starts at its origin, possibly travel through some nodes, and finally
ends at its destination. This is ensured by constraints (3)–(5). In partic-
ular, constrains (3) enforce that, if a request moves (i.e. is served), it has
to start from its origin. Constraints (4) establish flow conservation in each
node while constraints (5) impose that request r 2 R has either to arrive
at its destination or it is unserved.X
ðor ;jÞ2A

xror j1 �
X
ði;jÞ2A

xrij1; 8r 2 R; (3)

X
ði;jÞ2A

xrijm ¼
X
ðj;kÞ2A

xrjkðmþ1Þ;8r 2R; 8m2Mr n fM rg; j 6¼ dr ; (4)

ur þ
X
mr2Mr

X
ði;dr Þ2A

xridrmr
¼ 1;8r 2 R (5)

Similar considerations hold for the vehicle flow. Constraints (6)
restrict each vehicle to select at most one arc per move while constraints
(7) force a moving vehicle to start from its origin. Constraints (8) ensures
flow conservation in all nodes. In fact, this set of constraints imposes that,
if a vehicle uses exactly bm � M v arcs to reach its destination, it holds that
for each m � bm,

P
ði;jÞ2Ay

v
ijm ¼ 1 and that after the bmth move

P
ði;jÞ2Ay

v
ijm ¼

0. The last move is not considered because it has no following move (mþ
1). Vehicles have to obey constraints similar to the ones of the requests,
but have no defined destination node; hence, there is no associated
constraint.X
ði;jÞ2A

yvijm � 1;8v2V ; 8m 2 Mv (6)

X
ðov ;jÞ2A

yvovj1 �
X
ði;jÞ2A

yvij1; 8v 2 V (7)

X
ði;jÞ2A

yvijm �
X
ðj;kÞ2A

yvjkðmþ1Þ;8v2V ; 8m2Mv n fM vg;8j 2 N (8)

3.2.4. Timing constraints
Without loss of generality, we assume time to start at zero. Firstly, we

ensure, through constraints (9) and (10), timing and waiting variables to
be positive.

trm � 0;8r 2 R;8m 2 f0g [Mr (9)

wr
m � 0; 8r 2 R; 8m 2 f0g [Mr (10)

Then, we impose chronological timing. With chronological timing,
wemean that the arrival time at any node (but the first) is the arrival time
at the previous node plus the waiting time at the previous node plus the
travel time. This is ensured by constraints (11). Clearly, if FðijtÞ is a time
independent parameter, constraints (11) are linear. Nonetheless, in
Section 3.3.2, we derive a linear formulation for the case where the travel
time depends on the departure time. If no arc is chosen, then

P
ði;jÞ2Ax

r
ijm is

zero, hence trmþ1 ¼ trm þ wr
m.

trmþ1 ¼ trm þwr
m þ

X
ði;jÞ2A

xrijmF
�
ij
�
trm þwr

m

��
;8r2R; 8m2f0g [Mr n fM rg

(11)
5

Also, we force the initial time of request r 2 R to be its earliest time
instant (constraints (12)), and we force its last time instant to be smaller
than its latest arrival time (constraints (13)).

tr0 ¼ er; 8r 2 R (12)

trM r � lr; 8r 2 R (13)

To not have conveniently large waiting times at the end of the route to
better fit time preferences, we impose constraints (14). In fact, when no
arc is chosen for a certain move, i.e. request r 2 R has reached its desti-
nation, we have no waiting time. This means that trm ¼ tbm r for m � bm,

with bm the move with which request r 2 R has reached its destination.

wr
m �B

X
ði;jÞ2A

xrijm;8r 2R; 8m 2 Mr (14)

Constraints (13) do not imply that we have to reach the destination
node at the last move. Rather, they say that if a request reaches its
destination at move bm, then trm ¼ tbm r for bm � m � M r . This is ensured by
the absence of waiting times once the destination is reached (constraints
14).

For vehicles, we duplicate the equivalent of the timing constraints
with small adjustments; in particular, we impose:

tvm � 0; 8v 2 V ; 8m 2 f0g [Mv; (15)

wv
m � 0;8v 2 V ;8m 2 f0g [Mv; (16)

tvmþ1 ¼ tvm þwv
m þ

X
ði;jÞ2A

yvijmF
�
ij
�
tvm þwv

m

��
; 8v2V ; 8m2f0g [Mv n fM vg;

(17)

tv0 ¼ 0; 8v 2 V ; (18)

tvM v �TMax;8v 2 V ; (19)

wv
m �B

X
ði;jÞ2A

yvijm;8v2V ; 8m 2 Mr: (20)

3.2.5. Departure and arrival times constraints
We want variable dþr to assume the maximum of the preferred de-

parture time pdr and the actual departure time tr0 þ wr
0 of request r 2 R

and d�r to assume the minimum of these two. Hence, we adopt the
following constraints:

dþ
r � pdr ;8r 2 R (21)

dþ
r � tr0 þ wr

0; 8r 2 R (22)

d�
r � pdr ;8r 2 R (23)

d�
r � tr0 þ wr

0; 8r 2 R (24)

Similar constraints hold for the arrival time.

cþr � par; 8r 2 R (25)

cþr � trM r ;8r 2 R (26)

c�r � par; 8r 2 R (27)

c�r � trM r ;8r 2 R (28)

Given the previous constraints and the composition of the objective
function, the departure and arrival time will be forced to be as close as
possible to pdr and par .



Fig. 3. Example of a double pick up by the same vehicle. The black arrows
represent the route of the vehicle ðo; i; j; i; kÞ. The red request has origin o and
destination k while the green request has origin i and destination j. The com-
bined party sizes of the two requests exceeds the capacity of the vehicle. (For
interpretation of the references to color in this figure legend, the reader is
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3.2.6. Pairing
In this section, we explain how to pair vehicles and requests. We use

moves to discretize routes even though the timing is expressed in
continuous variables. We use binary variable prmrvmv to pair couple
[request r 2 R - request move mr 2 Mr], with couple [vehicle v 2 V-
vehicle movemv 2 Mv]. On one hand, we impose that each request can be
paired to at most one vehicle per move in constraints (29); on the other
hand, a vehicle can be paired simultaneously with multiple requests as
long as this does not violate its capacity, as expressed in constraints (30).X
v2V

X
mv2Mv

prmrvmv � 1;8r 2 R;mr 2 Mr (29)

X
r2R

X
mr2Mr

prmrvmv q
r � qv;8v 2 V ;mv 2 Mv (30)

As long as a request and a vehicle are paired, they have to travel the
same arcs (constraints (31) and (32)) at the same time (constraints (33)
and (34)). Constraints (31)–(34) are the linearization of:X
ði;jÞ2A

xrijmr
yvijmv

� prmrvmv ;8r 2R;8mr 2Mr; 8v2V ; 8mv 2 Mv

and

prmrvmv

�
tvmv

� trmr

�
¼ 0;8v2V ;8r2R;8mr 2Mr ;8mv 2 Mv

which are always true when prmrvmv ¼ 0. The inequality in the first
nonlinear set of constraints is due to the fact that, by chance, a vehicle
and a request may travel the same arc while not being paired together.

xrijmr
� yvijmv

þ �1� prmrvmv

�
; 8v2V ; 8r 2R;8ði; jÞ 2A;8mr 2Mr ; 8mv 2 Mv

(31)

xrijmr
� yvijmv

� �1� prmrvmv

�
; 8v2V ; 8r 2R;8ði; jÞ 2A;8mr 2Mr ; 8mv 2 Mv

(32)

trmr
� tvmv

þ �1� prmrvmv

�
B;8v2V ;8r 2R; 8mr 2Mr ;8mv 2 Mv (33)

trmr
� tvmv

� �1� prmrvmv

�
B;8v2V ;8r 2R; 8mr 2Mr ;8mv 2 Mv (34)

Constraints (33) and (34) (in combination with the timing constraints
(17)) impose that, if a vehicle is paired to more than one request in i 2 N,
the arrival time in j 2 N of the vehicle and of all the paired requests is
equal to the arrival time of the request that arrived the latest in i 2 N plus
its waiting time plus the travel time through ði; jÞ 2 A.

In addition, if a request is not paired with any vehicle, it cannot move
(constraints (35)).X
ði;jÞ2A

xrijmr
�
X
v2V

X
mv2Mv

prmrvmv ;8r 2R;8mr 2 Mr (35)

Finally, we impose an upperbound on the maximum number of
transfers a request can experience (constraints (36) and (37)). Variable
arv captures if request r 2 R has ever been paired to vehicle v 2 V . The
number of transfers a request can encounter is the number of vehicles the
request has been paired with minus the first one.

Barv �
X
mr2Mr

X
mv2Mv

prmrvmv ;8v 2 V ;8r 2 R (36)

X
v2V

arv � 1 � br ;8r 2 R (37)

3.2.7. Double pick up
There is an extremely unlikely case where the model does not see a

transfer. This eventuality never happens in our instances and rarely can
6

happen in practice; nevertheless, for the sake of completeness, we explain
the possible problem throughout an example (depicted in Fig. 3). Sup-
pose that we have 5 time instants in chronological order,
t1 < t2 < t3 < t4 < t5, and that vehicle v 2 V and request r 2 R are paired
at time t1. Then, at time t2 the request is dropped off at node i 2 N while
the vehicle continues its route reaching node j 2 N at time t3. Finally, the
same vehicle comes back to node i at time t4 to pick up again request r 2
R and brings it to node k 2 N at time t5. This second pick up is not
counted in the model. In general, we can say that if a particular vehicle,
for multiple times, picks up and drops off the very same request
consecutively, not all the resulting transfers are properly counted. Please
note that if two different vehicles sequentially pick up the same request,
the transfer is correctly accounted for by the model (as we show in the
example depicted in Fig. 8b). This double pick up by the same vehicle can
happen only when there are large time windows and tight capacity
constraints at the same time. In fact, the complete route of a new request
should fit inside the route of an already existing one. Time limitations
make this possibility unlikely. Given the extreme rarity of this situation,
we do not consider this eventuality.
3.3. Model extension

In this section, we show how to extend the model such that it con-
siders people dependent service times (time for get-in operations). As
motivated by Ichoua et al. (2003), Donati et al. (2008) and Schmid and
Doerner (2010), we also consider nonconstant travel times. Both features
are added to have a closer resemblance to real-life.

3.3.1. People dependent service time
In this section, we explain how to consider different service times for

different requests (people dependent service time). As service time, we
consider the time needed to get in a vehicle. Also, we assume each
request r 2 R to be picked up by a particular vehicle v 2 V at most once.
Each request is considered to have a known service time named sr . We
introduce binary variable grm which assumes value one if request r 2 R
experiences a get in operation at move m 2 Mr and zero otherwise. To
ensure this, we impose the following three constraints: constraints (38)
for the first move of a request, constraints (39) for the first move of a
referred to the Web version of this article.)



Fig. 4. Example of three time slots.

2 For example, given time-dependent travel time T(t) such that T(t1) ¼ 3,T(t2)
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vehicle and constraints (40) for all other moves of requests and vehicles.

gr1 �
X
v2V

X
mv2Mv

pr1vmv ; 8r 2 R (38)

grmr
�
X
v2V

prmrv1;8r 2 R;8mr 2 Mr (39)

grmr
� prmrvmv � prmr�1vmv�1; 8v 2 V ; 8mv 2 Mv n f1g;8r 2 R;8mr 2 Mr n f1g

(40)

Constraints (40) exploit that, when a request is picked up, the vehicle
and the request were not paired at the previous move (hence,
prmr�1vmv�1 ¼ 0) while, at the current move, they are paired (hence,
prmrvmv ¼ 1). Thus, the difference between the two values is one. The
corresponding timing constraints (11) are then modified to:

trmþ1¼ trmþwr
mþgrms

rþ
X
ði;jÞ2A

xrijmF
�
ij
�
trmþwr

m

��
;8r2R;8m2f0g[Mr nfM rg:

(41)

We assume that, when vehicle v2V picks up two requests simulta-
neously from the same node, only the largest service time is considered.
In Appendix A.1, we show a different formulation for the case when
service times add up.

To model this for vehicles, we introduce binary variables hvmr which
assumes value one if and only if two conditions apply. The first condition
is that vehicle v 2 V at move m 2 Mv picks up request r 2 R (and maybe
some others). The second condition is that, among all the requests picked
up at movem 2 Mv by vehicle v 2 V , request r 2 R has the highest service
time. To ensure that hvmr can be one for only one request at move m 2Mv

of vehicle v 2 V , we impose constraints (42).X
r2R

hvmr � 1; 8v 2 V ; 8m 2 Mv (42)

To ensure the selection of the request with the highest service time,
we impose the following three constraints: constraints (43) for the first
move of a vehicle, constraints (44) for the first move of a request and
constraints (45) for all other moves of requests and vehicles.X
r2R

hv1rsr � prmrv1s
r ;8v 2 V ;8r 2 R;8mr 2 Mr: (43)

X
r2R

hvmvrs
r � pr1vmv s

r ; 8v 2 V ; 8mv 2 Mv;8r 2 R: (44)

X
r2R

hvmvrs
r��prmrvmv�prmr�1vmv�1

�
sr ;8v2V ;8mv2Mvnf1g;8r2R;8mr2Mrnf1g:

(45)

For vehicle v2V at move mv2Mv, constraints (43)–(45) force binary
variables hvmr to be one for request r2R such that its related service time
sr is greater than or equal to the service times that the vehicle is expe-
riencing. Then, we impose through constraints (46) and (47) a tight
upper bound. In fact, constraints (46) allow variable hvmr to assume value
one only if request r2R was not paired to vehicle v2 V at the previous
move. Constraints (47) force hvmr to be zero if request r2 R is not paired
with vehicle v2V at move m2Mv.

hvmvr � 1�
X
mr2Mr

prmrvmv�1;8v 2 V ;8mv 2 Mv n f1g;8r 2 R (46)

hvmvr �
X
mr2Mr

prmrvmv ; 8v 2 V ; 8mv 2 Mv;8r 2 R (47)

Finally, we change constraints (17) into:
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tvmþ1¼tvmþwv
mþ

r2R
srhvmrþ

ði;jÞ2A
yvijmF ij tvmþwv

m ;8v2V ;8m2f0g[MvnfM vg:

X X � � ��

(48)

3.3.2. Nonconstant travel time
So far, we have considered the generic function FðijtÞ. In this section,

we show how to linearize this function. A similar approach to deal with
nonconstant travel times can be found in Malandraki and Daskin (1992).
The main difference is that Malandraki and Daskin (1992) developed a
method for the TSP; hence, for each node, exactly one incoming and one
outgoing arc is travelled. With our formulation instead, for each node,
zero, one, or more incoming and outgoing arcs can be travelled.

Firstly, when nonconstant travel times are taken into account, we
need to ensure the same starting time for each pairing.2 Hence, we add
constraints (49) and (50). These constraints explicitly force the starting
time of a pairing to be the same.

trmr�1þwr
mr�1� tvmv�1þwv

mv�1þ
�
1�prmrvmv

�
B;8v2V ;8r2R;8mr2Mr ;8mv 2Mv

(49)

trmr�1þwr
mr�1�tvmv�1þwv

mv�1�
�
1�prmrvmv

�
B;8v2V ;8r2R;8mr2Mr ;8mv2Mv

(50)

Since variables trm and wr
m are defined for m2f0g[Mr , constraints

(49) can range for all mr 2Mr even though they refer to time and waiting
variable at the previous move. Similar considerations hold for constraints
(50) and variables tvm and wv

m. Secondly, we define TS as the set of time
slots in which we can have different travel times (e.g. three time slots in
Fig. 4).

In order to have a finite number of time slots, the function FðijtÞmust
be piece-wise constant. If not, it is still possible to approximate FðijtÞ to a
piece-wise discrete function and use its approximation. We introduce
binary variables TTr

ijmrk and TTv
ijmvk which are one when arc ði; jÞ 2 A is

chosen for move mr 2 Mr of request r 2 R and for move mv 2 Mv of
vehicle v 2 V , respectively, in time slot k 2 TS, and zero otherwise. Pa-
rameters δijk represent the amount of time needed to travel arc ði; jÞ 2 A in
the time slot k 2 TS. Each time slot k 2 TS is defined by a lower and an
upper bound - namely, lbijk and ubijk; respectively - such that ubijk�1 ¼
¼ 2 and t2 ¼ t1 þ 1, then different starting times can lead to the same arrival
time.



Fig. 5. Example of space-time network. On the left, the original network; on the
right, its associated space-time network.
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lbijk. Subsequently, we need to constrain variables TTr
ijmk and TTv

ijmk to
assume value one if and only if, at move m 2 Mv or m 2Mr , respectively,
arc ði; jÞ 2 A is chosen at time twhich falls into time slot k 2 TS. To ensure
this, we impose constraints (51), (52) and (53) for the requests and
constraints (54), (55) and (56) for the vehicles.X
k2TS

TTr
ijmk ¼ xrijm;8r 2R;8m2Mr; 8ði; jÞ 2 A (51)

X
ði;jÞ2A

TTr
ijmklbijk � trm þwr

m þ grms
r; 8r 2R; 8m2Mr ;8k 2 TS (52)

trmþwr
mþgrms

r�
X
ði;jÞ2A

TTr
ijmkubijkþB

 
1�

X
ði;jÞ2A

TTr
ijmk

!
;8r2R;8m2Mr ;8k2 TS

(53)

X
k2TS

TTv
ijmk ¼ yvijm;8v2V ;8m2Mv; 8ði; jÞ 2 A (54)

X
ði;jÞ2A

TTv
ijmklbijk � tvm þwv

m þ
X
r2R

srhvmr;8v2V ; 8m2Mv; 8k 2 TS (55)

tvmþwv
mþ
X
r2R

srhvmr�
X
ði;jÞ2A

TTv
ijmkubijkþB

 
1�
X
ði;jÞ2A

TTv
ijmk

!
;8v2V ;8m2Mv;8k2TS

(56)

Variables TTr
ijmrk and TTv

ijmvk can fully substitute variables xr
ijmr

and yvijmv
,

as we can clearly see from the equality constraints (51) and (54).
Finally, we change constraints (41) to:

trmþ1 ¼ trm þwr
m þ grms

r þ
X
k2TS

X
ði;jÞ2A

TTr
ijmkδijk ;8r 2R;8m 2 Mr n fM rg; (57)

and constraints (48) to:

tvmþ1 ¼ tvm þwv
m þ

X
r2R

srhvmr þ
X
k2TS

X
ði;jÞ2A

TTv
ijmkδijk ; 8v2V ;8m 2 Mv n fM vg:

(58)

In this way, we obtain a linear formulation which is able to consider
nonconstant travel times.

4. Discrete time model

In this section, we describe the core discrete time model (Section 4.1)
and its extension (Section 4.2). We assume the discretization step to be
one time unit; if not, every time related equation should be multiplied by
a scaling factor. Given the introduction of the discretization step, we
define T as the set of all time instants, from the very first time instant zero
until the last possible time instant TMax. Also, for every request r 2 R, we
define Tr as the set of all time instants in ½er ; lr � 1�. For each request r 2
R, the set Tr defines the time instants at which r could start travelling an
arc without violating its latest time instant.

For this model, we use a space-time network, which means that every
node is duplicated for each considered time instant. Also, for every arc ði;
jÞ 2 A, i.e. the physical network, there exist many arcs in the space-time
network. In general, there exist one for each time instant. Arcs are
modelled as follows: in the space-time network, each node i 2 N at time
t 2 T is connected to each node j 2 N at time t2 2 T such that t2 is equal to
t plus the travel time from i to j at time t, i.e. δijt . Each node i 2 N at time t
is also connected to node i 2 N at time tþ 1. These last arcs are used to
model parking or passengers waiting for a(nother) vehicle. Fig. 5 displays
a simple example of how to transform a standard network into a space-
8

time network.
The structure of the space-time network allows to directly consider

arcs with travel times depending on the departure time. We denote the
set of all arcs in the space-time network by A*. Since the travel times are
embedded in the space-time formulation, routing variables embed timing
causality. In fact, we introduce, both as routing and timing variables,
binary variables xrijt and yvijt . The first variable assumes value one if

request r 2 R travels arc ði; j; tÞ 2 A* and zero otherwise; identically, the
second variable assumes value one if vehicle v 2 V travels arc ði; j; tÞ 2 A*

and zero otherwise. In addition, we introduce binary variables arv and
arvt . These variables are used to model request-vehicle pairing. In fact, arvt
assumes value one if request r 2 R is carried by vehicle v 2 V at time t 2
T and arv assumes value one if request r 2 R was carried by vehicle v 2 V
at any time t 2 T. Finally, we introduce variable ur for request r 2 R
which assumes value one if the request is unserved, zero otherwise. These
sets, parameters and variables are summarized in Table 3 and Table 4.

Although they may appear similar, our formulation strongly differs
from time-index formulations (van den Bergh et al. (2016)) because, in
our formulation, vehicles are allowed to travel the same arc multiple
times. Moreover, some authors (Cort�es et al. (2010); Masson et al.
(2014)) modelled transfer nodes as a couple of dummy nodes (one node
for the drop-off and one for the pick-up) connected by a direct arc with
zero travel time. The main advantage of duplicating transfer nodes is
that, in doing so, the chronological order within the transfer is respected
by construction. In general, this is a useful property, but it is redundant in
our case. In fact, in the discrete time case, the chronological order within
the transfer is also respected by construction in the space-time network.
In the continuous case instead, it is enforced due to explicit timing var-
iables and constraints (Section 3.2.4). Introducing duplicates for the
transfer nodes would not exclude the need for timing variables and
constraints since we also aim at minimizing travel times, waiting times at
transfer nodes and premature/late arrival and departure, all of which still
has to be explicitly modelled via the timing variables and constraints that
we introduce.

4.1. Core model

Before introducing the mathematical formulation, we explain howwe
model waiting and parking. We model parking of vehicle v 2 V at node
i 2 N at time t 2 T, by moving from node i 2 N at time t 2 T to node i 2 N
at time tþ 1 2 T; hence, variable yviit assumes value one. The same holds
for requests when they are waiting.

We employ a similar approach to determine early or late arrival and
departure. For example, to know at what time request r 2 R arrives at its



Table 3
Sets and parameters for the discrete time model.

T set of all time instants.
Tr set of time instants t 2 T such that t 2 ½er ; lr � 1�;8r 2 R.
A* set of arcs in the space-time network.
δijt travel time of arc ði; j; tÞ 2 A*.

Table 4
Variables for the discrete time model.

xrijt binary variable which is one if request r 2 R travels arc ði; j; tÞ 2 A*, zero
otherwise.

yvijt binary variable which is one if vehicle v 2 V travels arc ði; j; tÞ 2 A*, zero
otherwise.

arvt binary variable which is one if vehicle v 2 V carries request r 2 R at time t 2 T,
zero otherwise.

arv binary variable which is one if vehicle v 2 V carries request r 2 R, zero
otherwise.

ur binary variable which is one if request r 2 R is unserved, zero otherwise.
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destination dr 2 N, we consider the values of the flows xrdrdr t from t ¼ lr

backwards. The time instant t 2 T such that xrdrdr t�1 ¼ 0 and xrdrdr t ¼ 1 is
the time at which request r 2 R arrived at its destination dr 2 N. Addi-
tionally, if request r 2 R has preferred arrival time par 2 T for destination
dr 2 N, we compute

P
t�par ð1�xrdrdr tÞ to determine the number of time

instants it was late. Similar ideas are used to determine early or late
arrival, early or late departure, and also to establish waiting times at
transfer nodes.

4.1.1. Objective function
The objective function minimizes the generalized cost Z (i.e. routing

cost and costs related to a loss of quality of the service) and it is composed
of eight terms. Each term penalizes one of the following: travel costs,
passenger time spent in the vehicle, early or late arrival and departure
times, number of transfers, passenger time spent waiting at transfer
nodes, parking costs and unserved requests.

The first term determines the travel costs:

α
X
v2V

X
ði;j;tÞ2A*

yvijt lij:

The time spent by passengers in the vehicles is penalized in the second
term:

β
X
r2R

X
ði;j;tÞ2A* ;i6¼j

xrijtδijtq
r :

The third and fourth terms are composed of two components each and
determine the incurred penalty for departing and arriving early or late.
To define the penalty for departing early, we use

μ1
X
r2R

X
t<pdr2Tr

�
1� xroror t

�
qr

while the penalty if a client departs too late is regulated by

μ2
X
r2R

X
t�pdr2Tr

xroror tq
r :

The penalty for arriving early is given by

μ3
X
r2R

X
t<par2Tr

xrdrdr tq
r

while the penalty for arriving late is defined by:

μ4
X
r2R

X
t�par2Tr

�
1� xrdrdr t

�
qr :

The fixed penalty for each transfer is given by the fourth term:
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η
r2R v2V

arvqr :

XX

To consider the reduction of the quality of the service due to waiting
at transfer nodes, we introduce

γ1
X
r2R

X
ði;i;tÞ2A*

xriitq
r

with i 6¼ or and i 6¼ dr . To determine the parking cost, we add:

γ2
X
v2V

X
ði;i;tÞ2A*

yviit :

Finally, to penalize the unserved requests we add:

E
X
r2R

urqr:

Hence, the generalized cost Z is given by:

Z ¼ α
X
v2V

X
ði;j;tÞ2A*

yvijt lij þ β
X
r2R

X
ði;j;tÞ2A* ;i 6¼j

xrijtδijtq
r þ μ1

X
r2R

X
t<pdr2Tr

�
1� xroror t

�
qr

þμ2
X
r2R

X
t�pdr2Tr

xroror tq
r þ μ3

X
r2R

X
t<par2Tr

xrdrdr tq
r þ μ4

X
r2R

X
t�par2Tr

�
1� xrdrdr t

�
qr

þη
X
r2R

X
v2V

arvqr þ γ1
X
r2R

X
ði;i;tÞ2A*

xriitq
r þ γ2

X
v2V

X
ði;i;tÞ2A*

yviit þ E
X
r2R

urqr : (59)

4.1.2. Routing and timing constraints
Because of the structure of the space-time network, routing con-

straints directly translate to timing constraints. For each request r 2 R,
we enforce its flow to start from its origin at t ¼ er (constraints (60) and
(61)) and either to end at t ¼ lr or to be unserved (constraints (62)).X
i;j2N;i 6¼or

xrijer ¼ 0;8r 2 R (60)

X
j2N

xror jer ¼ 1;8r 2 R (61)

X
i2N

xridr t2 þ ur ¼ 1;8r 2R; t2jt2 þ δijt2 ¼ lr (62)

For each vehicle, we impose that its route starts from its origin at time
t ¼ 0 (constraint (63) and (64)) and ends at t ¼ TMax (constraint (65)).X
i;j2N;i 6¼ov

yvij0 ¼ 0;8v 2 V (63)

X
j2N

yvovj0 ¼ 1;8v 2 V ; (64)

X
i2N

X
j2N

yvijt ¼ 1;8v2V ;8t2 T jtþ δijt ¼ TMax (65)

We establish flow conservation through constraints (66) and (67).X
i2N

xrijt2 ¼
X
i2N

xrjit ;8r 2 R;8j 2 N;8t 2 Tr (66)

X
i2N

yvijt2 ¼
X
i2N

yvjit ;8v 2 V ;8j 2 N;8t 2 T
�fTmaxg (67)

where t2 þ δijt2 ¼ t and t2 2 T.

4.1.3. Pairing constraints
In this section, we explain how to pair vehicles and requests. Firstly,

we have to impose that each request at any time instant can be paired to
at most one vehicle (constraints (68)). A request can be paired with no
vehicle for some time; for example, when it is waiting.
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v2V
arvt � 1; 8r 2 R; 8t 2 Tr (68)
X
Differently, a vehicle can be paired with more than one request, as

long as this does not violate its capacity constraint, which is given by:X
r2R

arvtqr � qv;8v 2 V ;8t 2 T : (69)

Also we have to impose that, as long as a vehicle and a request are
paired, they have to travel the same route, i.e. if arvt ¼ 1, then xr

ijt ¼ yv
ijt ;

8ði; j; tÞ 2 A*. We do so by imposing

xrijt � yvijt þð1� arvtÞ;8r 2R; 8v2V ; 8ði; j; tÞ 2A*
			t 2 Tr (70)

and

xrijt � yvijt �ð1� arvtÞ;8r 2R; 8v2V ; 8ði; j; tÞ 2A*
			t 2 Tr: (71)

Yet, constraints (70) and (71) can be equivalently rewritten as:X
j2N

xrijt �
X
j2N

yvijt þð1� arvtÞ;8r 2R; 8v2V ; 8i2N;8t 2 Tr ; (72)

X
j2N

xrijt �
X
j2N

yvijt �ð1� arvtÞ;8r 2R; 8v2V ; 8i2N;8t 2 Tr ; (73)

X
i2N

xrijt �
X
i2N

yvijt þð1� arvtÞ;8r 2R; 8v2V ; 8j2N; t 2 Tr ; (74)

X
i2N

xrijt �
X
i2N

yvijt �ð1� arvtÞ;8r 2R; 8v2V ; 8j2N;8t 2 Tr : (75)

Constraints (70)–(75) are always true when arvt ¼ 0. The first
formulation (70) and (71) is composed by 2 �		Nj2 �		Tr

		 �		R		 �		V		 con-
straints, while the second formulation (72)–(75) requires only 2= jNj of
those constraints. Even though fewer constraints do not necessary mean
that the problem is easier to solve (valid inequalities are an example), in
this case it does.

Additionally, to enforce that whenever a request is not paired to any
vehicle, it has to wait, we impose constraints (76).X
i2N

xriit � 1�
X
v2V

arvt; 8r 2 R; 8t 2 Tr (76)

Finally, to model that each request may have a maximum of br

transfers, we introduce constraints (77) and (78):

Barv �
X
t2T

arvt ;8v 2 V ;8r 2 R; (77)

X
v2V

arv � 1 � br ;8r 2 R: (78)

4.2. Model extension

As for the continuous time case (Section 3.3), we show how to extend
the model in order to consider people dependent service time (time for
get-in operations). Differently with respect to the continuous time model,
nonconstant travel times are directly embedded in the structure of the
space-time network.

4.2.1. People dependent service times
In this section, we present how to introduce people dependent service

times. We can set any finite integer number of time steps (sr) as service
times through constraints (79).X
i2N

xriit � arvt � arvt�sr ;8t2 Tr jt� sr 2Tr ; 8r 2R;8v 2 V (79)
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If, at the same time, more than one request are picked up, only the
longest one is considered. How to model the sum of all service times
instead of the longest service time is shown in Appendix A.2. Fig. 6 shows
an example of how constraints (79) work. In this example, there are three
requests; request r0 is already in the taxi at time t0 and it dropped off at
time t1. The other two requests, r1 and r2, can be picked up at t1 the
earliest (the time the taxi arrives in i 2 N). Nevertheless, the service time
of r2 (sr2 ¼ 4) constraints the vehicles to move at t5 the earliest. Hence,
while the pick up process of r2 starts immediately, the boarding process of
r1 (service time sr1 ¼ 2) starts at time t3.

Also, introducing service times leads to the following modifications of
the two terms related to departure in the objective function (59):X
r2R

X
t<ðpdrþsr Þjt2Tr

μ1
�
1� xroror t

�
qr

andX
r2R

X
t>ðpdrþsr Þjt2Tr

μ2x
r
oror tq

r :

In fact, the service time causes the departure time and the time at
which the node is left to differ by sr time instants. Given the different
approach in modeling early and late departure, these modifications are
not needed in the continuous time model.

5. Computational experiments

Even though the DARPT is an NP-hard problem, the number of var-
iables and constraints in both the continuous time and discrete time
formulations are bounded by polynomial functions in the size of the
problem. Table 5 summarizes variables in the continuous and in the
discrete model.

In order to compare the models, we assume the discrete time step to
be ε; then, it holds that jMvj ¼ jTj and jMr j ¼ jTr j. It follows that the
variables in the continuous time model are more than the ones in the
discrete time model. In fact, the continuous time model is composed of
3 � jRj � jTr j þ 3 � jV j � jTj þ jRj � jAj � jTr j þ jV j � jAj � jTj þ 5 � jRj þ jRj � jVj þ
jRj � jTr j � jAj � jKj þ jV j � jTj � jAj � jKj þ jRj � jTr j � jV j � jTj variables (of
which 2jRj � jTr j þ 2jV j � jTj þ 4jRj are continuous), while the discrete
time model has jRj � jAj � jTr j þ jV j � jAj � jTj þ jRj � jV j � jTr j þ jRj variables
(all binary). Although these are two (almost) equivalent models, the
continuous time one has 2 � jRj � jTr j þ 2 � jV j � jTj þ 4 � jRj continuous
variables more and jRj � jVj � jTjðjTr j �1Þ þ jV j � jTvj þ jRj � jTr j þ jV j �
jTvj � jAj � jKj þ jRj � jTr j � jAj � jKj binary variables more (Table 5).

Table 6 shows the number of constraints, divided by type, in both
models. Also in this case, the discrete time model has less constraints
with respect to its continuous counterpart.

5.1. Benchmark

To test the models, we apply the minor changes explained in Ap-
pendix C; then, we create the following benchmark, based on real-life
data. In general, in order to be useful, transfers ask the length of the
trips to be longer than the deviation and the stop of the vehicle. Hence,
we choose to test our models with interurban trips. We select the twenty
most populated cities (the central station of each city has been considered
as the exact coordinate) in the most densely populated province of the
Netherlands, i.e. South Holland. In particular, we choose: Rotterdam,
Delft, Capelle aan den IJssel, Schiedam, Gouda, The Hague, Rijswijk,
Voorburg, Leiden, Zoetermeer, Dordrecht, Zwijndrecht, Gorinchem,
Spijkenisse, Vlaardingen, Barendrecht, Maassluis, Alphen aan den Rijn,
Ridderkerk and Papendrecht. We connect these cities as shown in Fig. 7.

We collected travel data, i.e. length and time of each arc, from Google
Maps. On July 17, 2019 we acquired (expected) travel times for July 18,
2019 from 8:00AM to 9:45AM with time intervals of 15 min each. The
chosen day is an average commuting day (Thursday) where no major



Fig. 6. Example of service times. Request r0 is already on vehicle v at time t0 and drops off at time t1. Request r1 has a service time sr1 ¼ 2 time instant and leaves node
i at time t5. Request r2 has a service time sr2 ¼ 4 time instant and leaves node i at time t4.

Table 5
Variables in continuous and discrete time model.

Continuous time model Discrete time model

trm –

tvm –

wr
m –

wv
m –

xrijm xrijt
yvijm yvijt
cþr –

c�r –

dþr –

d�r –

arv arv
prmr vmv arvt
gvmv

–

grmr
–

TTv
ijmk –

TTr
ijmk –

ur ur

Table 6
Constraints in continuous and discrete time model.

Type of constraints Continuous time model Discrete time model

Routing 2jRj � jTr j þ 2jRj þ 2jV j � jTj þ
jVj

3jRj þ jRj � jNj � jTr j

þ 3jVj þ jV j � jNj �
jTj

Timing 4jRj � jTr j þ 2jRj þ 4jV j � jTj þ
2jV j

–

Departure and arrival 8jRj –

2jRj � jTr j þ jV j � jTj þ jRj � jV j 2jRj � jTr j þ jV j � jTj
Pairing þ 2jAj � jRj � jTr j � jVj � jTj þ 4jRj � jV j � jNj � jTr j

þ 2 � jRj � jTr j � jV j � jTj þ jRj þ jRj � jVj þ jRj
jRj þ jRj � jTr j þ jV j � jTj

People depending service
time

þ jRj � jTr j � jVj þ 3jRj � jV j � jTj jRj � jV j � jTr j

þ jRj � jTr j � jVj � jTj
2jRj � jTr j � jVj � jTj þ
jRj � jTr j � jAj

Nonconstant travel time þ 2jRj � jTr j � jTSj þ
2jV j � jTj � jTSj

–

þ jV j � jTj � jAj þ jRj � jTr j þ
jV j � jTj
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road blocks were present. In our tests, we used a time step of 1 min;
hence, we set travel times for the time instants in between two collected
data points to the value of the earliest data point. On this map, we test ten
times each of the following cases: V2R3, V2R4, V2R5, V3R4, V3R5,
V3R6, V3R7, V4R5, V4R6, V4R7, V4R8, V4R9. By ViRj, we mean that
there are i vehicles and j requests in the instance.

Vehicles are initially positioned to give a good coverage of the area. In
particular, we position the first vehicle in Dordrecht, the second one in
Vlaardingen, the third one (if any) in Alphen aan den Rijn and the last
one (if any) in Rotterdam. The positions of the vehicles are indicated by
the black nodes in Fig. 8. The capacity qv of each vehicle is set to 6.

We set the destination dr of each request to The Hague (the green
node in Fig. 8) and the latest arrival time lr to 10:00. This increases the
chances that the last parts of some requests’ routes overlap in space and
are close in time. This makes transfers more likely to happen.

All requests have randomly chosen parameters such that the origin or

is different from The Hague and such that the time preferences are
coherent. In fact, we set the earliest time er to be earlier than the
preferred departure time pdr which in turn should be earlier than the
preferred arrival time par which also has to be earlier than the latest
arrival time lr . In addition, we set the preferred arrival time par to be later
than the preferred departure time pdr plus the service time sr . In for-
11
mulas, this translates to: er � pdr � pdr þ sr � par � lr . These random
choices are repeated until 1:2SPP � lr � er � 1:5SPP, where SPP is the
shortest possible time to go from origin or to destination dr (in the con-
stant travel time configuration). For each request, the maximum number
of transfers br and the party size qr are uniformly randomly chosen
among {1,2,3}. Service times sr are set to qr minutes.

All the above described instances and their logs with detailed solu-
tions are available at the following website (http://doi.org/10.4121/uu
id:1ad27269-cdcf-43ed-a639-8fea09c48449). The instances are tested
in continuous and discrete time, both in the core and enlarged configu-
rations. For comparison reasons, we also test the same instances in a no
transfer setting by fixing the maximum number of transfers br to zero.

5.2. Tuning parameters

To tune the parameters, we refer mainly to Correia and van Arem
(2016) which, in turn, estimated the cost parameters based on a semi-real
case study of private and public transportation in the Netherlands. The
main differences and additions are the values of the travel costs α, the

http://doi.org/10.4121/uuid:1ad27269-cdcf-43ed-a639-8fea09c48449
http://doi.org/10.4121/uuid:1ad27269-cdcf-43ed-a639-8fea09c48449


Fig. 7. South Holland region with our network.

Fig. 8. Examples of transfers. The colored arcs indicate the path of each vehicle and their origin nodes are denoted by the black nodes. The origin nodes of the requests
are depicted by yellow nodes while the green node indicates their final destination. The red nodes represent nodes where a transfer happens and the grey nodes
represent nodes that are simply passed by the vehicles. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of
this article.)
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cost of a transfer η and the cost of waiting at a transfer node γ1. The value
of the travel cost α was set to €1 per km, instead of €0:1 per km, because
this is closer to the prices for Dutch taxis (note that Correia and van Arem
(2016) referred to privately owned vehicles, not an on-demand service).
Also, we set the cost of waiting at a transfer node γ1 equal to €1:106 per
minute, in between the cost of the time spent inside a vehicle β ¼ €0:806
per minute and the cost of premature departure μ1 ¼ €1:306 per minute.
In addition, we set the cost of late arrival μ4 to the cost of premature
departure μ1and the costs of late departure μ2 and premature arrival μ3 to
12
€0:306 per minute. Finally, the cost of each transfer η is set to €1 and the
penalty E for each unserved request to €999. Table 7 displays all the
values of the parameters.

5.3. Tests

All tests are run on a Linux machine with the following architecture:
x86_64, 4 CPUs (Intel(R) Core(TM) i5 CPU 660 @ 3.33 GHz). It ran code
written in Python 2.7 through the Spyder interface and adopting Gurobi
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7.5.2 as the MILP solver. A time limit of 1 h was set for the solution of
each MILP.

5.3.1. Examples
Fig. 8 shows the results for the third and eighth instance of V4R7. In

both cases, 4 vehicles are used to serve 5 requests (two requests are
unserved). The grey nodes represent nodes that are simply passed by the
vehicles (no pick up or transfers); the colored arcs indicate the path of
each vehicle (one colour per vehicle) while their origin nodes are
denoted by the black nodes. The red nodes represent nodes where a
transfer happens, the origin nodes of the requests are depicted by yellow
nodes while the green node indicates their final destination. The three
nodes with double colors represent nodes where multiple actions happen.
In particular in Fig. 8a, the yellow and red node denotes the origin node
of a request as well as a transfer node; in Fig. 8b, the yellow and black
node denotes the origin node of a request as well as the origin node of a
vehicle while the red and black node describes the origin node of a
vehicle as well as a transfer node.

Fig. 8a shows a transfer between the green and the pink vehicle and a
transfer between the yellow and the blue vehicle. Fig. 8b shows a
sequence of two transfers, from the green and the pink vehicle to the blue
vehicle.

5.3.2. Average results
Table 8 shows the average results of the conducted tests. We remind

that, for each scenario, 10 different instances were generated. The rows
illustrate the features of the solutions. The first row indicates the number
of vehicles jVj and requests jRj in the instances. The following eight rows
specify how many instances were solved to optimality within the time
limit for the various cases. The cases differ in continuous (C) and discrete
(D) time model, core (Core) and enlarged (Enl) model, and transfers (T)
and no transfers (No-T) case.

Then, the following four rows indicate how many instances present at
least one transfer. The number in brackets indicates how many of the
instances not solved to optimality present at least one transfer in their
incumbent solution. After showing how many instances have transfers,
we display the total number of transfers happening over all instances per
case. Similarly as before, the number in brackets indicate how many
transfers happen in the incumbent solution of the instances not solved to
optimality.

Succeeding the rows on transfers, we present features regarding the
computation time and the objective function for the continuous time and
discrete time models where transfers are allowed. The presented values
of the objective functions and computation times are the averages over
the values of the instances that both models could solve to optimality. In
some cases, one of the two models could not solve any instance. Only in
these cases, the average objective values and computation times of the
model that could solve some instances are calculated on all these in-
stances solved to optimality.

The following four rows indicate the gap percentage in the objective
function and computation time between the continuous time and discrete
Table 7
Values of the parameters.

Name Value Description

А 1 € per km Travel cost per kilometer.
В 0.806 € per min Cost of time spent inside a vehicle per minute per person.
γ1 1.106 € per min Cost of waiting at transfer nodes per minute per person.
γ2 1.81 € per hour Cost of parking per minute.
μ1 1.306 € per min Cost of premature departure per minute per person.
μ2 0.306 € per min Cost of late departure per minute per person.
μ3 0.306 € per min Cost of premature arrival per minute per person.
μ4 1.306 € per min Cost of late arrival per minute per person.
Н 1 € Cost of transfer.
E 999 € Penalty per person per unserved request.
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time models. Each parameter is computed as VD�VC
VD

, where VD can assume
either the value of the objective function or the computational time of the
discrete time model and VC assumes either the value of the objective
function or the computational time of the continuous time model.

Finally, the last eight rows assess the benefits (in the objective func-
tions) of introducing transfers. Since setting br ¼ 0 is not the best way to
model the standard DARP without transfers, we do not present the
computational time of the no transfers case. In these rows, each param-
eter is computed as VNo�T�VT

VT
, where VT assumes the value of the objective

function in the models where transfers are allowed while VNo�T assumes
the value of the objective function of the models where transfers are not
allowed.

For all models, we notice that when an empty vehicle has to move, it
tries to do so during a traffic jam. This can easily be explained by looking
at the objective function. Since for empty vehicles travelling costs are
only related to travel distance and not to travel time, vehicles try to
maximize their commuting time to minimize their parking fees. This does
not hold when a request is being served by the vehicle, because a time-
related penalty has to be paid.

Continuous time instances may achieve lower objective function
values because of the quality loss implied in discretization itself. For
example, if the best departure time for a request is generic t, in discrete
time, it would need to rely on t's closest time instant. A time step of 1 min
is small enough to curtail the error embedded in the discretization itself.
In fact, the gap in the objective function is at most 0:39%.

Analyzing the results, we can state that, in general, discretizing the
time results in slightly worse solutions in terms of objective function
value but better results in terms of computational times. Although most
of the discretized instances were solved in considerably less time than
their continuous counterpart, this seems not to hold when the size of the
problems increases. Indeed, the continuous time model solved more in-
stances to optimality (and often in less time) in every scenario where 4
vehicles are present. This confirms the conclusions of van den Berg and
van Essen (2019) which states that for different conditions, the contin-
uous or discrete model could yield better results in terms of computation
time.

Since more instances are solved within the time limit in the core
models compared to the enlarged models, we can deduce that including
service times and variable travel times increases the level of difficulty in
solving the problem.

Although transfers are thought to save travel costs, this does not al-
ways show in randomly created small instances. Nevertheless, transfers
improve the average best solution by 12:24% in V3R7 (for the enlarged
discrete case). In this case, one instance can serve all requests when
transfers are allowed while it can serve all requests but one when
transfers are not allowed. This creates the difference in the objective
function values. It may seem that, in some cases, allowing transfers
makes the problem easier (for instance, in continuous enlarged V4R6,
more instances were solved when allowing transfers). Since the models
and instances used (both for the transfer and the no transfers case) are
designed to include and favour transfers, this comparison would be
unfair.

The number of transfers (considering also transfers in the incumbent
solutions) seems to increase steadily as the instance size grows. This is a
very promising feature of this problem. We conjecture that transfers can
lead to considerable savings in bigger instances.

6. Conclusions

In this paper, we described and tested two mixed integer linear
models, and their extensions, for the DARPT where cycles are allowed.
Additionally, we introduced the ‘move’ concept. This is useful when
modelling loops and relating continuous variables (timing variables) to
binary ones (routing and causality variables). We showed how much
transfers increase the complexity of the problem (more instances were



Table 8
Computational results.

size V2R3 V2R4 V2R5 V3R4 V3R5 V3R6 V3R7 V4R5 V4R6 V4R7 V4R8 V4R9

# Instances Opt C T Core 9/10 7/10 6/10 10/10 8/10 8/10 3/10 9/10 9/10 6/10 3/10 2/10
# Instances Opt D T Core 10/10 10/10 10/10 10/10 10/10 9/10 9/10 5/10 5/10 5/10 2/10 0/10
# Instances Opt C T Enl 9/10 3/10 4/10 8/10 3/10 1/10 1/10 7/10 5/10 4/10 1/10 1/10
# Instances Opt D T Enl 10/10 10/10 10/10 10/10 10/10 8/10 10/10 2/10 1/10 0/10 0/10 0/10
# Instances Opt C No-T
Core

10/10 8/10 7/10 10/10 9/10 8/10 3/10 9/10 7/10 2/10 2/10 0/10

# Instances Opt D No-T
Core

10/10 10/10 10/10 10/10 10/10 10/10 10/10 8/10 8/10 7/10 6/10 4/10

# Instances Opt C No-T
Enl

8/10 5/10 3/10 8/10 5/10 0/10 1/10 2/10 1/10 0/10 0/10 0/10

# Instances Opt D No-T
Enl

10/10 10/10 10/10 10/10 10/10 10/10 10/10 7/10 8/10 3/10 1/10 2/10

# Instances Trans C T
Core

1 (0) 0 (1) 1 (0) 1 (0) 2 (0) 1 (0) 0 (0) 4 (0) 3 (1) 3 (4) 2 (3) 1 (6)

# Instances Trans D T
Core

1 (0) 1 (0) 1 (0) 1 (0) 2 (0) 1 (0) 1 (0) 2 (2) 2 (2) 4 (2) 1 (4) 0 (4)

# Instances Trans C T Enl 0 (0) 0 (1) 2 (0) 0 (0) 0 (1) 1 (0) 0 (2) 3 (0) 2 (2) 3 (6) 1 (3) 0 (6)
# Instances Trans D T Enl 0 (0) 0 (0) 1 (0) 0 (0) 1 (0) 1 (0) 1 (0) 0 (3) 0 (4) 0 (5) 0 (4) 0 (4)
# Trans C T Core 1 (0) 0 (2) 1 (0) 1 (0) 2 (0) 1 (0) 0 (0) 4 (0) 3 (1) 3 (6) 2 (3) 1 (8)
# Trans D T Core 1 (0) 2 (0) 1 (0) 1 (0) 2 (0) 1 (0) 1 (0) 2 (2) 2 (2) 6 (2) 1 (8) 0 (4)
# Trans C T Enl 0 (0) 0 (2) 2 (0) 0 (0) 0 (1) 1 (0) 0 (2) 3 (0) 2 (2) 3 (8) 1 (3) 0 (8)
# Trans D T Enl 0 (0) 0 (0) 1 (0) 0 (0) 1 (0) 1 (0) 1 (0) 0 (3) 0 (4) 0 (7) 0 (8) 0 (7)
Time C T Core 112.92 1442.01 988.76 490.19 1001.09 1036.39 466.98 1265.61 967.57 2691.73 1425.74 2905.04
Time D T Core 9.99 41.67 413.77 231.87 186.61 826.32 190.60 1733.12 1446.40 2646.50 1739.84 –

Time C T Enl 787.35 481.26 1346.05 1888.43 1300.43 3348.60 2329.74 2671.78 1890.01 3254.65 2213.50 3187.35
Time D T Enl 13.80 41.69 202.08 339.98 223.91 335.19 507.51 121.36 2450.13 – – –

Obj C T Core 640.67 1227.71 2495.72 593.31 830.24 1081.63 760.88 819.11 102.77 1157.01 1032.88 1312.12
Obj D T Core 640.67 1227.71 2495.72 593.31 830.24 1081.63 760.88 819.11 104.06 1159.16 1036.92 –

Obj C T Enl 868.60 519.04 2418.89 582.16 679.04 958.48 861.21 455.01 1073.34 1219.85 1259.39 1353.13
Obj D T Enl 871.19 521.86 2420.95 582.63 679.13 960.59 861.46 455.51 1075.59 – – –

Gap C/D T Obj Core (%) 0 0 0 0 0 0 0 0 0.13 0.19 0.39 –

Gap C/D T Time Core (%) �1030.74 �3360.56 �138.97 �111.41 �436.46 �25.42 �145.00 26.98 33.10 �1.71 18.05 –

Gap C/D T Obj Enl (%) 0.30 0.54 0.09 0.08 0.01 0.22 0.03 0.11 0.21 – – –

Gap C/D T Time Enl (%) �5605.46 �1054.25 �566.10 �455.46 �480.77 �899.00 �359.06 �2101.47 22.86 – – –

Gap T/No-T C Obj Core
(%)

0.06 0.00 2.22 0.04 0.08 0.04 0.00 0.44 0.25 0.11 0.02 –

Gap T/No-T C Obj Enl
(%)

0.00 0.00 0.02 0.00 0.00 – 0.00 0.00 0.00 – – –

Gap T/No-T D Obj Core
(%)

0.04 0.01 1.40 0.04 0.06 0.03 6.31 0.54 0.12 0.26 0.23 –

Gap T/No-T D Obj Enl
(%)

0.00 0.00 1.21 0.00 11.23 0.02 12.24 0.00 0.00 – – –
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solved to optimality in the no transfers case compared to the case where
transfers were allowed) and how much cost savings (in the objective
functions) they can lead to. Also, we illustrated a method to create in-
stances based on Google Maps data. Clearly, this method can easily scale
up and create real-life sized instances which would be useful in practice
for testing (meta)heuristics.

All the models proposed in this paper allow for a great deal of flexi-
bility. In fact, requests and vehicles can have different dimensions and, in
general, there is no need for parameters α; β; γi; μi to be constant or equal
for every passenger or vehicle. In practical applications, it would be
possible to dynamically tune these parameters depending on the history
of a customer. In such a way, it is possible to ensure an equally distributed
quality of service among clients.

Interestingly, transfers are not explicitly modelled. In fact, transfers
and their related complexity are embedded in the flow formulation of the
vehicles and of the requests. This formulation easily allows for sequences
of transfers and transfers with multiple vehicles. Also, with this flow
formulation, the number of variables is not affected by how many
14
transfers are allowed. However, since the resulting models have many
equality constraints, they may be computationally more challenging than
formulations where only inequality constraints are used.

Some of the small instances were not solved to optimality within the
given time limit. This was expected since we faced a more complex
variant of an infamous NP-hard problem. Nevertheless, the sizes of the
solved instances are in the range of the ones solved in the literature for
similar problems.

This paper lays the foundations for other interesting developments
such as the offline large-scale DARPT and its online counterpart. Most
likely, these problems can be solved only with heuristic methods.
Declaration of competing interest
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A. Modifications about people dependent service times

In Sections 3.3.1 and 4.2.1, we explained how to include people dependent service times under the assumption that, if multiple requests are picked
up simultaneously, only the largest service time is considered. In this appendix, we consider the same problem under the assumption that, if multiple
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requests are picked up simultaneously, their sum is considered.
A.1 Continuous time model

The constraints related to the requests ((38)–(41)) hold also in this case while the ones related to the vehicles ((42)–(47)) are modified as follows.
To ensure that hvmvr assumes value one whenever request r 2 R is picked up by vehicle v 2 V at move mv 2 Mv, we impose the following three

constraints: constraints (80) for the first move of a vehicle, constraints (81) for the first move of a request and constraints (82) for all other moves of
requests and vehicles.

hv1r �
X
mr2Mr

prmrv1; 8v 2 V ; 8r 2 R (80)

hvmvr � pr1vmv ; 8v 2 V ; 8mv 2 Mv;8r 2 R (81)

hvmvr �
�
prmrvmv � prmr�1vmv�1

�
;8v2V ; 8mv 2Mv n f1g;8r 2R; 8mr 2 Mr n f1g (82)

To ensure a tight upper bound, we impose constraint (83). Since
P

v2V
P

r2Ravrsr is exactly the sum of all service times that actually took place,
constraint (83) prohibits hvmr to assume value one just to have conveniently large waiting times to better fit time preferences.X
v2V

X
mv2Mv

X
r2R

hvmvrsr �
X
v2V

X
r2R

avrsr (83)

The modified timing constraints (48) remain unchanged.

A.2 Discrete time model

For the discrete timemodel, we introduce binary variable hrvt which assumes value one if request r 2 R is being picked up by vehicle v 2 V at time t 2
T. Hence, we substitute constraints (79) by:

hrvt � arvt � arvt�sr ;8r 2R; 8v2V ; 8t 2Tr jt� sr 2 Tr (84)

andX
r2R

hrvt � 1; 8v 2 V ; 8t 2 T : (85)

This allows to consider one request at a time, hence the total service time experienced becomes the sum of the single service times. To ensure a tight
upper bound, we impose constraint (86).X
v2V

X
t2Tr

X
r2R

hrvtsr �
X
v2V

X
r2R

avrsr (86)

B. Idling, parking, transit and transfer nodes

In this appendix, we define constraints to model the nodes with restricted accessibility. This is useful, for instance, to model nodes situated near
historical attractions. Requests can easily be directed there but parking is not allowed. For the sake of ease, we define:

– an idling node as a node where a request can wait but a vehicle cannot park.
– a parking node as a node where a request cannot wait but a vehicle can park.
– a transit node as a node where a request cannot wait and a vehicle cannot park.
– a transfer node as a node where a request can wait and a vehicle can park.
B.1 Continuous time model

To model this in the continuous time model, we impose:

– wv ¼ 0 for every idling and transit node.
– wr ¼ 0 for every parking and transit node.

Given a disjoint partition N1 of idling nodes, N2 of parking nodes, N3 of transit nodes and N4 of transfer nodes, we impose the following set of
constraints:

wr
m �

X
ði;jÞ2Ajj2N1[N4

xrijmB;8r 2R;m2f0g [Mr : (87)

We impose a similar set of constraints for parking, with the addition that a vehicle should still be able to stop to pick a request up at any idling node.
15
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wv
m �

ði;jÞ2Ajj2N2[N4

yvijmBþ
r2R

hvmrsr; 8v2V ;8m2f0g [Mv (88)

X X

B.2 Discrete time model

To model idling, parking, transit and transfer nodes in the discrete time model, we impose:

– yviit ¼ 0 for every idling and transit node.
– xriit ¼ 0 for every parking and transit node.

Given a disjoint partition N1of idling nodes, oN2f parking nodes, ofN3 transit nodes and of N4transfer nodes, we impose the following sets of
constraints:X
r2R

X
ði;i;tÞ2A* ji2N2[N3 ;t2Tr

xriit ¼ 0 (89)

andX
t2T

yviit �
X
r2R

hrvt ;8i 2 N1 [ N3;8v 2 V ;8t 2 T : (90)

C. Equivalent models

Even though the continuous and discrete time model share the same foundations, sometimes their objective functions differ despite having the same
routing and timing solution. This appendix explains how to modify the models such that, for the same solution, they return the same objective function
value. These modifications do not affect the values of the routing and timing variables, which are already equivalent for the two models.

C.1 Unserved requests and late arrival

When a request is not served, a penalty has to be paid. In the continuous time model, this is in addition to the (presumed) late departure and arrival
term. Since the penalty for late departure is irrelevant with respect to the one for unserved requests, this does not affect the general routing. In order to
obtain from both models the same objective function value, we modify constraints (26) into:

cþr � trM v
� Bur ;8r 2 R: (91)

Similarly, we modify constraints (24) into:

d�
r � tr0 þ wr

0 þ Bur ;8r 2 R: (92)

C.2 Objective functions

Only in the discrete timemodel, the service time is considered as waiting time; therefore, vehicles have to pay parking costs during the service times.
To balance this difference, we add

þγ2
X
r2R

X
v2V

X
m2Mv

hrvmsr

to the objective function of the continuous time model, where γ2 represents the parking costs per minute.
Finally, we add the following term to the continuous time objective function:

þγ1
X
r2R

X
v2V

X
m2Mv

hrvmsr :

By doing so, the service time of a request is equally penalized by a γ1 factor in both models when the request is waiting at a transfer node. Recall that
γ1 represents the cost of waiting at a transfer node per minute per person.

D. Complete models

In this appendix, we present the complete models. This appendix does not add or modify any constraints with respect to the ones previously
introduced.
16
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D.1 Continuous time model - Core

minimize Z ¼ α
X
v2V

X
ði;jÞ2A

X
m2Mv

yvijmlij þ β
X
r2R

qr
 
trM r

�
X

m2f0g[Mr

wr
m � tr0

!
þμ1

X
r2R

�
pdr � d�r

�þ μ2
X
r2R

�
dþ
r � pdr

�þ μ3
X
r2R

�
cþr � par

�
þμ4

X
r2R

�
par � c�r

�þ η
X
r2R

X
v2V

arvqr þ γ1
X
r2R

X
m2Mr

qrwr
m

þγ2
X
v2V

X
m2f0g[Mv

wv
m þ E

X
r2R

urqr (1)

such thatX
ði;jÞ2A

xrijm � 1 8r 2 R; 8m 2 Mr
(2)

X
ðor ;jÞ2A

xror j1 �
X
ði;jÞ2A

xrij1 8r 2 R (3)

X
ði;jÞ2A

xrijm ¼
X
ðj;kÞ2A

xrjkðmþ1Þ 8r 2 R; 8m 2 Mr n fM rg; j 6¼ dr (4)

ur þ
X
m2Mr

X
ði;dr Þ2A

xridrm ¼ 1 8r 2 R (5)

X
ði;jÞ2A

yvijm � 1 8v 2 V ; 8m 2 Mv
(6)

X
ðov ;jÞ2A

yvovj1 �
X
ði;jÞ2A

yvij1 8v 2 V (7)

X
ði;jÞ2A

yvijm �
X
ðj;kÞ2A

yvjkðmþ1Þ 8v 2 V ; 8m 2 Mv n fM vg; 8j 2 N (8)

trm � 0 8r 2 R; 8m 2 f0g [Mr (9)

wr
m � 0 8r 2 R; 8m 2 f0g [Mr (10)

trmþ1 ¼ trm þ wr
m þ

X
ði;jÞ2A

xrijmδij 8r 2 R;8m 2 f0g [Mr n fM rg (11)

tr0 ¼ er 8r 2 R (12)

trM r
� lr 8r 2 R (13)

wr
m � B

X
ði;jÞ2A

xrijm 8r 2 R;8m 2 Mr
(14)

tvm � 08v 2 V ; 8m 2 f0g [Mv (15)

wv
m � 08v 2 V ; 8m 2 f0g [Mv (16)

tvmþ1 ¼ tvm þ wv
m þ

X
ði;jÞ2A

yvijmδij8v 2 V ; 8m 2 f0g [Mv n fM vg (17)

tv0 ¼ 0 8v 2 V (18)

tvM v
� TMax 8v 2 V (19)

wv
m � B

X
ði;jÞ2A

yvijm 8v 2 V ; 8m 2 Mr
(20)
17
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dþr � pdr 8r 2 R (21)

dþr � tr0 þ wr
0 8r 2 R (22)

d�r � pdr 8r 2 R (23)

d�r � tr0 þ wr
0 8r 2 R (24)

cþr � par 8r 2 R (25)

cþr � trM r
8r 2 R (26)

c�r � par 8r 2 R (27)

c�r � trM r
8r 2 R (28)

X
v2V

X
mv2Mv

prmrvmv � 1 8r 2 R;mr 2 Mr
(29)

X
r2R

X
mr2Mr

prmrvmv q
r � qv 8v 2 V ;mv 2 Mv

(30)

xrijmr
� yvijmv

þ �1� prmrvmv

� 8v 2 V ;8r 2 R;8ði; jÞ 2 A;8mr 2 Mr; 8mv 2 Mv (31)

xrijmr
� yvijmv

� �1� prmrvmv

� 8v 2 V ;8r 2 R;8ði; jÞ 2 A;8mr 2 Mr; 8mv 2 Mv (32)

trmr
� tvmv

þ �1� prmrvmv

�
B 8v 2 V ;8r 2 R;8mr 2 Mr ;8mv 2 Mv (33)

trmr
� tvmv

� �1� prmrvmv

�
B 8v 2 V ;8r 2 R;8mr 2 Mr ;8mv 2 Mv (34)

X
ði;jÞ2A

xrijmr
�
X
v2V

X
mv2Mv

prmrvmv 8r 2 R;8mr 2 Mr
(35)

Barv �
X
mr2Mr

X
mv2Mv

prmrvmv 8v 2 V ;8r 2 R (36)

X
v2V

arv � 1 � dr 8r 2 R (37)

xrijm 2 f0; 1g 8r 2 R;8ði; jÞ 2 A;8m 2 Mr (93)

yvijm 2 f0; 1g 8v 2 V ;8ði; jÞ 2 A;8m 2 Mv (94)

arv 2 f0; 1g 8r 2 R;8v 2 V (95)

prmrvmv 2 f0; 1g 8r 2 R; 8mr 2 Mr ;8v 2 V ;8mv 2 Mv (96)

D.2 Continuous time model - Extension

minimize Z ¼ α
X
v2V

X
ði;jÞ2A

X
m2Mv

yvijmlij þ β
X
r2R

qr
 
trM r

�
X

m2f0g[Mr

wr
m � tr0

!
þμ1

X
r2R

�
pdr � d�r

�þ μ2
X
r2R

�
dþ
r � pdr

�þ μ3
X
r2R

�
cþr � par

�
þμ4

X
r2R

�
par � c�r

�þ η
X
r2R

X
v2V

arvqr þ γ1
X
r2R

X
m2Mr

qrwr
m

þγ2
X
v2V

X
m2f0g[Mv

wv
m þ E

X
r2R

urqr (1)
18



J. Pierotti, J. Theresia van Essen EURO Journal on Transportation and Logistics 10 (2021) 100037
such thatX
ði;jÞ2A

xrijm � 1 8r 2 R; 8m 2 Mr
(2)

X
ðor ;jÞ2A

xror j1 �
X
ði;jÞ2A

xrij1 8r 2 R (3)

X
ði;jÞ2A

xrijm ¼
X
ðj;kÞ2A

xrjkðmþ1Þ 8r 2 R; 8m 2 Mr; j 6¼ dr (4)

ur þ
X
m2Mr

X
ði;dr Þ2A

xridrm ¼ 1 8r 2 R (5)

X
ði;jÞ2A

yvijm � 1 8v 2 V ; 8m 2 Mv
(6)

X
ðov ;jÞ2A

yvovj1 �
X
ði;jÞ2A

yvij1 8v 2 V (7)

X
ði;jÞ2A

yvijm �
X
ðj;kÞ2A

yvjkðmþ1Þ 8v 2 V ; 8m 2 Mv n fM vg; 8j 2 N (8)

trm � 0 8r 2 R;8m 2 f0g [Mr (9)

wr
m � 0 8r 2 R;8m 2 f0g [Mr (10)

tr0 ¼ er 8r 2 R (12)

trM r
� lr 8r 2 R (13)

wr
m � B

X
ði;jÞ2A

xrijm 8r 2 R;8m 2 Mr
(14)

tvm � 0 8v 2 V ;8m 2 f0g [Mv (15)

wv
m � 0 8v 2 V ;8m 2 f0g [Mv (16)

tv0 ¼ 0 8v 2 V (18)

tvM v
� TMax 8v 2 V (19)

wv
m � B

X
ði;jÞ2A

yvijm 8v 2 V ;8m 2 Mr
(20)

dþr � pdr 8r 2 R (21)

dþr � tr0 þ wr
0 8r 2 R (22)

d�r � pdr 8r 2 R (23)

d�r � tr0 þ wr
0 8r 2 R (24)

cþr � par 8r 2 R (25)

cþr � trM r
8r 2 R (26)

c�r � par 8r 2 R (27)

c�r � trM r
8r 2 R (28)
19
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v2V mv2Mv

prmrvmv � 1 8r 2 R;mr 2 Mr
(29)
XX
X
r2R

X
mr2Mr

prmrvmv q
r � qv 8v 2 V ;mv 2 Mv

(30)

xrijmr
� yvijmv

þ �1� prmrvmv

� 8v 2 V ;8r 2 R;8ði; jÞ 2 A;8mr 2 Mr; 8mv 2 Mv (31)

xrijmr
� yvijmv

� �1� prmrvmv

� 8v 2 V ;8r 2 R;8ði; jÞ 2 A;8mr 2 Mr; 8mv 2 Mv (32)

trmr
� tvmv

þ �1� prmrvmv

�
B 8v 2 V ;8r 2 R;8mr 2 Mr ;8mv 2 Mv (33)

trmr
� tvmv

� �1� prmrvmv

�
B 8v 2 V ;8r 2 R;8mr 2 Mr ;8mv 2 Mv (34)

X
ði;jÞ2A

xrijmr
�
X
v2V

X
mv2Mv

prmrvmv 8r 2 R;8mr 2 Mr
(35)

Barv �
X
mr2Mr

X
mv2Mv

prmrvmv 8v 2 V ;8r 2 R (36)

X
v2V

arv � 1 � dr 8r 2 R (37)

gr1 �
X
v2V

X
mv2Mv

pr1vmv ; 8r 2 R (38)

grmr
�
X
v2V

prmrv1;8r 2 R; 8mr 2 Mr
(39)

grmr
� prmrvmv � prmr�1vmv�1 8v 2 V ; 8mv 2 Mv n f1g;8r 2 R;8mr 2 Mr n f1g (40)

X
r2R

hvmr � 1 8v 2 V ;8m 2 Mv
(42)

X
r2R

hv1rsr � prmrv1sr 8v 2 V ; 8r 2 R; 8mr 2 Mr
(43)

X
r2R

hvmvrsr � pr1vmv sr 8v 2 V ;8mv 2 Mv;8r 2 R (44)

X
r2R

hvmvrsr �
�
prmrvmv � prmr�1vmv�1

�
sr 8v 2 V ; 8mv 2 Mv n f1g;8r 2 R;8mr 2 Mr n f1g (45)

hvmvr � 1�
X
mr2Mr

prmrvmv�1 8v 2 V ;8mv 2 Mv n f1g;8r 2 R (46)

hvmvr �
X
mr2Mr

prmrvmv 8v 2 V ; 8mv 2 Mv;8r 2 R (47)

trmr�1 þ wr
mr�1 � tvmv�1 þ wv

mv�1 þ
�
1� prmrvmv

�
B 8v 2 V ;8r 2 R;8mr 2 Mr ;8mv 2 Mv (49)

trmr�1 þ wr
mr�1 � tvmv�1 þ wv

mv�1 �
�
1� prmrvmv

�
B 8v 2 V ;8r 2 R;8mr 2 Mr ;8mv 2 Mv (50)

X
k2TS

TTr
ijmk ¼ xrijm 8r 2 R; 8m 2 Mr; 8ði; jÞ 2 A (51)

X
ði;jÞ2A

TTr
ijmklbijk � trm þ wr

m þ grms
r 8r 2 R; 8m 2 Mr ; 8k 2 TS (52)

trm þ wr
m þ grms

r �
X
ði;jÞ2A

TTr
ijmkubijk þ B

 
1�

X
ði;jÞ2A

TTr
ijmk

!
8r 2 R;8m 2 Mr ;8k 2 TS (53)
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k2TS
TTv

ijmk ¼ yvijm 8v 2 V ; 8m 2 Mv; 8ði; jÞ 2 A (54)

X
X
ði;jÞ2A

TTv
ijmklbijk � tvm þ wv

m þ
X
r2R

srhvmr 8v 2 V ; 8m 2 Mv; 8k 2 TS (55)

tvm þ wv
m þ

X
r2R

srhvmr �
X
ði;jÞ2A

TTv
ijmkubijk þ B

 
1�

X
ði;jÞ2A

TTv
ijmk

!
8v 2 V ; 8m 2 Mv; 8k 2 TS (56)

trmþ1 ¼ trm þ wr
m þ grms

r þ
X
k2TS

X
ði;jÞ2A

TTr
ijmkδijk 8r 2 R; 8m 2 Mr n fM rg (57)

tvmþ1 ¼ tvm þ wv
m þ

X
r2R

srhvmr þ
X
k2TS

X
ði;jÞ2A

TTv
ijmkδijk 8v 2 V ;8m 2 Mv n fM vg (58)

xrijm 2 f0; 1g 8r 2 R; 8ði; jÞ 2 A; 8m 2 Mr (93)

yvijm 2 f0; 1g 8v 2 V ;8ði; jÞ 2 A;8m 2 Mv (94)

arv 2 f0; 1g 8r 2 R;8v 2 V (95)

prmrvmv 2 f0; 1g 8r 2 R; 8mr 2 Mr ;8v 2 V ;8mv 2 Mv (96)

grm 2 f0; 1g 8r 2 R; 8m 2 Mr (97)

hvmr 2 f0; 1g 8r 2 R;8v 2 V ;8m 2 Mv (98)

D.3 Discrete time model - Core

minimize Z¼α
X
v2V

X
ði;j;tÞ2A*

yvijt lijþβ
X
r2R

X
ði;j;tÞ2A* ;i6¼j

xrijtδijtq
r

þμ1
X
r2R

X
t<pdr2Tr

�
1�xroror t

�
qrþμ2

X
r2R

X
t�pdr2Tr

xroror tq
r

þμ3
X
r2R

X
t<par2Tr

xrdrdr tq
rþμ4

X
r2R

X
t�par2Tr

�
1�xrdrdr t

�
qr

þη
X
r2R

X
v2V

arvqrþγ1
X
r2R

X
ði;i;tÞ2A*

xriitq
rþγ2

X
v2V

X
ði;i;tÞ2A*

yviitþE
X
r2R

urqr (59)

such that:X
i;j2N;i6¼or

xrijer ¼ 0 8r 2 R (60)

X
j2N

xror jer ¼ 1 8r 2 R (61)

X
i2N

xridr t2 þ ur ¼ 1 8r 2 R; t2 2 Trjt2 þ δidr t2 ¼ lr (62)

X
i;j2N;i6¼ov

yvij0 ¼ 0 8v 2 V (63)

X
j2N

yvovj0 ¼ 1 8v 2 V (64)

X
i2N

X
j2N

yvijt ¼ 1 8v 2 V ; 8t 2 T
		t þ δijt ¼ TMax (65)

X
i2N

xrijt2 ¼
X
i2N

xrjit 8r 2 R; 8t 2 Tr ; t2 2 Tr
		t2 þ δijt2 ¼ t; 8j 2 N (66)
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X
i2N

yvijt2 ¼
X
i2N

yvjit 8v 2 V ; 8j 2 N; 8t 2 T
�fTmaxg; t2 2 T

		t2 þ δijt2 ¼ t (67)

X
v2V

arvt � 1 8r 2 R; 8t 2 Tr
(68)

X
r2R

arvtqr � qv 8v 2 V ;8t 2 T (69)

X
j2N

xrijt �
X
j2N

yvijt þ ð1� arvtÞ 8r 2 R;8v 2 V ;8i 2 N;8t 2 Tr
(72)

X
j2N

xrijt �
X
j2N

yvijt � ð1� arvtÞ 8r 2 R;8v 2 V ;8i 2 N;8t 2 Tr
(73)

X
i2N

xrijt �
X
i2N

yvijt þ ð1� arvtÞ 8r 2 R;8v 2 V ;8j 2 N;8t 2 Tr
(74)

X
i2N

xrijt �
X
i2N

yvijt � ð1� arvtÞ 8r 2 R;8v 2 V ;8j 2 N;8t 2 Tr
(75)

X
i2N

xriit � 1�
X
v2V

arvt 8r 2 R; 8t 2 Tr
(76)

Barv �
X
t2T

arvt 8v 2 V ;8r 2 R (77)

X
v2V

arv � 1 � dr 8r 2 R (78)

xrijt 2 f0; 1g 8r 2 R;8ði; j; tÞ 2 A* (99)

yvijt 2 f0; 1g 8v 2 V ;8ði; j; tÞ 2 A* (100)

arv 2 f0; 1g 8r 2 R;8v 2 V (101)

arvt 2 f0; 1g 8r 2 R; 8v 2 V ; 8t 2 Tr (102)

D.4 Discrete time model - Extension

minimize Z¼α
X
v2V

X
ði;j;tÞ2A*

yvijt lijþβ
X
r2R

X
ði;j;tÞ2A* ;i 6¼j

xrijtδijtq
r

þμ1
X
r2R

X
t<ðpdrþsr Þ2Tr

�
1�xroror t

�
qrþμ2

X
r2R

X
t�ðpdrþsr Þ2Tr

xroror tq
r

þμ3
X
r2R

X
t<par2Tr

xrdrdr tq
rþμ4

X
r2R

X
t�par2Tr

�
1�xrdrdr t

�
qr

þη
X
r2R

X
v2V

arvqrþγ1
X
r2R

X
ði;i;tÞ2A*

xriitq
rþγ2

X
v2V

X
ði;i;tÞ2A*

yviitþE
X
r2R

urqr (59)

such that:X
i;j2N;i6¼or

xrijer ¼ 0 8r 2 R (60)

X
j2N

xror jer ¼ 1 8r 2 R (61)

X
i2N

xridr t2 þ ur ¼ 1 8r 2 R; t2 2 Trjt2 þ δidr t2 ¼ lr (62)
22
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i;j2N;i6¼ov
yvij0 ¼ 0 8v 2 V (63)
X
X
j2N

yvovj0 ¼ 1 8v 2 V (64)

X
i2N

X
j2N

yvijt ¼ 1 8v 2 V ; 8t 2 T
		t þ δijt ¼ TMax (65)

X
i2N

xrijt2 ¼
X
i2N

xrjit 8r 2 R; 8t 2 Tr ; t2 2 Tr
		t2 þ δijt2 ¼ t; 8j 2 N (66)

X
i2N

yvijt2 ¼
X
i2N

yvjit 8v 2 V ; 8j 2 N; 8t 2 T
�fTmaxg; t2 2 T

		t2 þ δijt2 ¼ t (67)

X
v2V

arvt � 1 8r 2 R; 8t 2 Tr
(68)

X
r2R

arvtqr � qv 8v 2 V ;8t 2 T (69)

X
j2N

xrijt �
X
j2N

yvijt þ ð1� arvtÞ 8r 2 R;8v 2 V ;8i 2 N;8t 2 Tr
(72)

X
j2N

xrijt �
X
j2N

yvijt � ð1� arvtÞ 8r 2 R;8v 2 V ;8i 2 N;8t 2 Tr
(73)

X
i2N

xrijt �
X
i2N

yvijt þ ð1� arvtÞ 8r 2 R;8v 2 V ;8j 2 N;8t 2 Tr
(74)

X
i2N

xrijt �
X
i2N

yvijt � ð1� arvtÞ 8r 2 R;8v 2 V ;8j 2 N;8t 2 Tr
(75)

X
i2N

xriit � 1�
X
v2V

arvt 8r 2 R; 8t 2 Tr
(76)

Barv �
X
t2T

arvt 8v 2 V ;8r 2 R (77)

X
v2V

arv � 1 � dr 8r 2 R (78)

X
i2N

xriit � arvt � arvt�sr 8t 2 Trjt � sr 2 Tr ;8r 2 R;8v 2 V (79)

xrijt 2 f0; 1g 8r 2 R;8ði; j; tÞ 2 A* (99)

yvijt 2 f0; 1g 8v 2 V ;8ði; j; tÞ 2 A* (100)

arv 2 f0; 1g 8r 2 R;8v 2 V (101)

arvt 2 f0; 1g 8r 2 R; 8v 2 V ; 8t 2 Tr (102)
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