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Flood Extent Mapping in the Caprivi Floodplain
Using Sentinel-1 Time Series

Tsitsi Bangira , Lorenzo Iannini, Massimo Menenti , Adriaan van Niekerk, and Zoltan Vekerdy

Abstract—Deployment of Sentinel-1 (S1) satellite constellation
carrying aC-band synthetic aperture radar (SAR) enables regular
and timely monitoring of floods from their onset until returning to
nonflooded (NF) conditions. The major constraint on using SAR
for near-real-time (NRT) flood mapping has been the inability to
rapidly process the obtained imagery into reliable flood maps. This
study evaluates the efficacy of S1 time series for quantifying and
characterizing inundation extents in vegetated environments. A
novel algorithm based on statistical time-series modeling of flooded
(F) and NF pixels is proposed for NRT flood monitoring. For each
new available S1 image, the probability of temporarily F conditions
is tested against that of NF conditions by means of likelihood ratio
tests. The likelihoods for the two conditions are derived from early
acquisitions in the time series. The algorithm calibration consists
of adjusting two likelihood ratio thresholds to match the reference
F area extent during a single flood season. The proposed algorithm
is applied to the Caprivi region, the resulting maps were compared
to cloud-free Landsat-8 (LS8) derived maps captured during two
flood events. A good spatial agreement (85–87%) between LS8 and
S1 flood maps was observed during the flood peak in both 2017 and
2018 seasons. Significant discrepancies were noted during the flood
expansion and recession phases, mainly due to different sensitivities
of the data sources to the emerging vegetation. Overall, the analysis
shows that S1 can stand as an effective standalone or gap-filling
alternative to optical imagery during a flood event.

Index Terms—Floating and emergent vegetation, flood mapping,
land cover (LC), synthetic aperture radar (SAR), Sentinel-1 (S1),
time series.
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I. INTRODUCTION

R IPARIAN areas, such as the Caprivi flood plain, are
flooded (F) almost every year due to excess rainfall in the

upper catchments [1]. Riverine flooding affects the ecological
(e.g., ecosystem productivity, species distribution and occur-
rence, nutrients, and sediment dynamics) and socioeconomic
systems (e.g., causing loss of life, waterborne diseases, destruc-
tion of shelter, and infrastructure damage). Obtaining detailed
information at regional scales is deemed fundamental to guide
the identification of flood prone areas and to mitigate flood
hazards [2], [3]. In situ observations of flooding are severely
limited by the inaccessibility of such areas due to flooding, poor
road infrastructure, wet soils, and dense vegetation. However,
remote sensing techniques that make use of synthetic aperture
radar (SAR) and multispectral data have been widely recognized
as an alternative method for mapping floods in near real time
(NRT) over large geographical and inaccessible areas [3], [4].

Multispectral imagery is easily interpretable, and the ex-
traction of open water from such data is relatively straightfor-
ward [5]. However, cloud conditions can limit their application
for flood monitoring. In contrast, SAR sensors have all-weather
as well as day–night imaging capabilities [6]. Furthermore, SAR
has been shown to penetrate vegetation canopies to an extent
depending on canopy density, wavelength, and polarization,
which helps to observe surface water partly obscured by veg-
etation [7]–[9].

SAR data have been successfully used for flood mapping
in a number of studies [2], [10]–[13]. These studies focused
on detecting open water, assuming perfectly smooth surfaces
of high dielectric constants that reflect most of the radiation
away from side-looking SAR sensors. Open water regions were,
thus, identified as regions of low backscatter, appearing dark in
the image. This approach successfully delineates open water in
most cases, but the presence of emergent vegetation and waves
caused by wind can increase backscatter to such an extent that
inundated areas are confused with dry land surfaces [7], [8].
Emergent vegetation is when trees, grass, shrubs, and crops are
F or partially F. The amount of microwave energy scattered off
an object is mainly a function of its surface roughness, with
morphology and dielectric properties as subsidiary factors [14].
The interaction between the SAR signal and the vegetation
occurs through two main mechanisms. The first is a direct
reflection from the plant structure and the canopy, generating
so-called volume scattering. The second is a result of multi-
ple reflections from the horizontal surface (ground or water)
and vertical structures (trunks or stems), producing so-called
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double-bounce scattering. Therefore, the fraction of vegetation
in a given pixel has a significant impact on the SAR signal [15].
This makes flood detection in vegetated areas more challenging
than for open water features.

Recently, there have been significant improvements in SAR-
based algorithms for mapping flooded vegetation (FV) [3], [7],
[9], [16]–[18]. The commonality of these algorithms is that they
all make use of thresholding to initialize the classification pro-
cess. However, the accuracy of thresholding dramatically varies
depending on the land cover (LC) characteristics (e.g., rough soil
surface, vegetation, and open water) within the scene. Theoret-
ical electromagnetic backscattering models have traditionally
been used to define appropriate threshold values for mapping
FV [19]. However, such approaches require detailed soil, vege-
tation, and LC maps, which are often unavailable to accurately
estimate thresholds. There is, thus, a need for approaches that
automatically determine the optimal threshold value for a scene
without the need for ancillary data or operator intervention. Such
techniques must take double bouncing caused by vegetation
and the diffuse backscatter from dry and bare surfaces into
consideration. A previous study [20] pioneered an approach
that applied a split-based automatic thresholding procedure on
TerraSAR-X data for NRT flood detection. A similar approach
was taken by Matgen et al. [21], where a nonlinear fitting
algorithm under the gamma distribution assumption was used
to determine a suitable threshold to model F areas. Although
these studies achieved overall accuracies of more than 80%,
they are computationally expensive and time consuming, which
limits their application to operational and NRT flood mapping for
large and complex areas.

More work is needed to delineate inundated areas and FV
in NRT using Sentinel-1 (S1). Automatic processing chains
based on thresholding are ideal for rapid flood mapping and
for improving the delivery time of emergency information. The
study done by Twele et al. [3] proposed an automated S1-based
processing chain for detecting and monitoring floods in NRT.
The algorithm was applied to a single SAR image to detect open
water. Although a single SAR image can provide a reasonable
estimate of the flood extent, setting a threshold for flood prob-
ability based on one image is risky and inflexible, especially
in vegetated flood plains as local variations in LC are difficult
to deduce from a single image. However, temporal changes in
backscatter can be determined from a series of SAR images.
Moreover, single images do not reveal the abrupt change in the
intensity of backscatter values caused by FV [22]. However, by
analysing a series of SAR images additional information, such
as temporary FV; vegetation that is partially covered with water
after heavy rains or during a flood event can be extracted [23].

This study presents a rapid, simple, and semiautomated pixel-
based technique for mapping open water, temporary open water,
and FV over a large and complex region based on abrupt changes
occurring on the latest image. The threshold backscatter values
for identifying these phenomena are computed from the global
and local gray-level histograms of the SAR data using the
popular and versatile Otsu algorithm [24]. In contrast to previous
studies [22], [23], the proposed method is based on S1 time
series only and does not require any ancillary data such as river

levels and LC. For each new available image, the probability of F
conditions is estimated using the observations from the previous
images and is tested against the probability of wet conditions.
A pixel-adaptive modeling and testing procedure is applied
to the cross-polarized backscatter VH and to the polarization
ratio VH/VV. Operator intervention is only needed during the
algorithm setup, where the desired balance between false flood
positives and negatives must be specified.

II. MATERIALS

A. Study Area

The proposed technique was evaluated in the Caprivi flood-
plain, located in the northeastern part of Namibia (see Fig. 1).
The Caprivi floodplain is an extensive flat sand-filled part of the
Kalahari basin with elevations ranging from 950 to 980 meters
above sea level [25]. The floodplain is complex and surrounded
by four rivers, namely, the Zambezi (fourth longest river in
Africa), Cuando/Kwando, Linyanti, and Chobe [26], [27]. These
rivers have different hydrological regimes with diverse habitats,
vegetation, and aquatic life [28]. The Zambezi River has a typical
autumn flood regime, with a peak flow from March to May.
The Chobe River flows in a southwestern direction, when the
Zambezi River starts flooding and changes direction toward
the Zambezi (northeast) when the levels of the Zambezi start
subsiding. The Kwando and Linyanti Rivers normally flood in
June and July, respectively [26].

The Caprivi floodplain is a typical savannah ecosystem,
consisting of sparsely distributed impalila, riverine, mopane,
and Kalahari woodlands interspersed with open thick-stemmed
grasslands [25]. The main economic activity of the area is
tourism, subsistence agriculture, and commercial fishing. The
Caprivi people have adapted to the flooding cycles by migrating
to temporary accommodation in elevated campsites (established
by the government) during the wet season. When the floodwater
recedes, the communities return to their homes to continue with
their agricultural activities.

B. In Situ Data Collection

In situ observations (see Fig. 1, right) were collected using a
handheld Trimble differential global positioning system (GPS)
receiver with submeter accuracy. The GPS recordings were taken
using a boat to identify the locations of areas with different
vegetation types and flood levels during the flood event. The field
surveys were conducted from April 4 to 7 2017. The samples
were identified prior to the field survey and stratified according to
LC (some samples were found to be inaccessible during the field
survey). The visited locations were recorded and were used to
extract spectral data and backscatter (dB) values from Landsat-8
(LS8) and S1 data, respectively. The major LC classes observed
at the sampled locations were dry soil, temporary open water,
open water, FV, and nonflooded (NF) vegetation. Redundant
observations were deleted resulting in a total of 725 samples,
125 for each LC type. The samples were also labeled as F and
NF.
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Fig. 1. Location map of the study area (left) and collected ground observations overlayed on a true color Landsat-8 image from April 10, 2017 (right).

Fig. 2. Rainfall events in the Caprivi floodplain from July 2015 to October
2018.

Fig. 2 shows the rainfall records in the Caprivi floodplain at
Katima Mlilo (see Fig. 1) for the period July 1 2015 to October 31
2018, based on data from the integrated multisatellite retrievals
for global precipitation measurement mission. The figure shows
that rainfall started around mid-October and ended in early April
over the two years.

The peak rainfall occurs between January and March, whereas
as shown by the analysis in Section V, the flood peaks occur in
either April or May. Therefore, the floods in Caprivi are not
a result of excessive rainfall received in the area. It is mainly
because the large volumes of upstream water break the banks of
the Zambezi River toward the end of the rainy season.

C. Remote Sensing Data Collection

For the period from December 2016 to September 2018, the
test area is covered by 55 images of S1 interferometric wide
swath acquisitions with a regular sampling of 12 days. Only
one satellite (Sentinel-1B) in the ascending orbit (6 P.M. local
time) is active over the region. The Ground Range Detected
(GRD) products were used for the study. Such products provide
the intensities in digital number (DN) format that is calibrated

TABLE I
OUTLINE OF THE SENTINEL-1 AND LANDSAT-8 OLI DATASETS

USED FOR THE STUDY

and processed to obtain the radar cross section per meter square
on the ground, commonly referred to as the sigma nought (σ0)
or the normalized radar cross section (NRCS). As outlined in
Table I, the images have a spatial ground resolution of 20 ×
22 m (ground range × azimuth) after multilooking with an
estimated equivalent number of looks of 4.4. Both the VH- and
the VV-polarized images underwent the same standard prepro-
cessing operations, as described in Section IV-A. The study area
is illuminated with incidence angles ranging from 33◦ to 39◦. It
is assumed that the impact of the six-degree difference on the
backscatter is negligible.

The dates of the S1 and LS8 acquisitions used are reported
in Fig. 3. The S1 images of March 25, April 6, May 12, and
June 29, 2017 and their associated cloud-free LS8 acquisitions
(with exact match except for the image acquired on April 10)
are highlighted as they are adopted for calibrating the algorithm
during the flood expansion (first two pairs) and flood recession
(last two pairs) phase. The two images at the beginning of April
(S1 at April 6 and LS8 at April 10) are used for the validation
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Fig. 3. Acquisition dates of S1 and LS8 used in the study. The in situ data collection is also reported. All the S1 images have been fed to the flood mapping
algorithm. The markers indicate which S1 and LS8 acquisitions have been used for cross validation, for algorithm calibration, and for the validation with the in
situ data.

Fig. 4. (a) S1 time series for two vegetated locations before, during, and after the 2017 flood event in Caprivi. The simplified boundaries for the most significant
scattering mechanisms occurring in the flood plain are also represented in the VH and VV planes. The first location (brown line) shows the signal of tall grass and
shrubs, whereas the second (blue line) is for short grass. The colored markers convey temporal information. In the first location, the flooding period started earlier
and ended later than in the second location. (b) Sketched representation of the scattering mechanisms for the different LC types and different flood levels. Note
that the scenarios c and y essentially produce the same mechanism types. The double-bounce reflection from the soil–canopy and soil–water interaction in VV are
indicated by the three-segment arrows in a and b, respectively.

with the in situ measurements as they were acquired during the
field survey.

III. BACKSCATTER ANALYSIS

The interaction of water with vegetation and soil changes the
nature and intensity of the SAR polarimetric mechanisms [29].
Although this study focuses on the Caprivi region, similar trends
can be observed in regions with similar climate, landscape mor-
phology, vegetation type, and vegetation distribution. During
the onset of the rainy season (from November to February), the
backscatter gradually increases in both the copolarized (VV)
and cross-polarized (VH) channels, as the plants develop and
the water content increases in the soil and in the canopy. The
occurrence of a flood event manifests itself in the radar imagery
through abrupt changes in the amplitude or/and in the type of the
scattering mechanisms [30]. Such changes are LC dependent.

Short and sparsely distributed vegetation has a different
backscatter pattern compared to dense distributed taller grass
or shrubs, as illustrated in Fig. 4. Short vegetation [see blue line
in Fig. 4(a)] experiences a sudden drop in both the VH and VV
intensities as soon as the soil is inundated. The decrease in VH is
typically higher as large portions of the canopy responsible for

most of the cross-polarized reflected signal (volume scattering)
are quickly lost below the water level. On average, the values of
VV are significantly lower than preflood values. However, the
response of VV is more variable than that of VH. This is mainly
due to the higher sensitivity of the copolarized signal to surface
scattering. The roughness of the water surface due to wind-blown
waves (Bragg and non-Bragg effects) [31] likely compensates,
at least partly, for the loss of the canopy scattering [32]. It is also
assumed, within our definition of short vegetation, that no signif-
icant enhancement effects are expected from the interaction of
the field with the canopy and with the water surface. This implies
that the plant elements (stems, sheaths, blades, and leaves) are
thin or short enough compared to the radar wavelength (5 cm in
the S1 case).

In the case of tall vegetation, with vertically oriented ele-
ments in the plant geometric structure, a more diverse temporal
trajectory can be expected [see, as an example, the red line
in Fig. 4(a)]. In dry conditions, most of the reflected signal
can be typically attributed to the direct interaction of the field
and the canopy. However, as shown in panel a of Fig. 4(b),
when the incident wave is not fully obstructed by the vegetation
layer, a smaller portion of the backscatter in the copolarized
bands can be attributed to rough surface scattering from the soil
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and multiple bounce scattering from soil–canopy interaction.
The soil–canopy mechanisms prevail over the direct surface
scattering when the soil surface is smooth. Contrary, the balance
is reversed for very rough soils. During the inundation, both
copolarized (HH and VV) and cross-polarized channels (HV and
VH) experience a loss in the volume backscatter, as the canopy
is gradually submerged. When the signal penetrates the canopy
and touches the water surface, however, this loss is partly or fully
compensated in the copolarized backscatter by the inception of
water–plant/plant–water interaction mechanisms that can even
produce NRCS enhancements with respect to the preflood lev-
els [7], [8]. The cross-polarized returns are instead significantly
less influenced by such double-bounce effects, as shown in panel
b of Fig. 4. Such contrasting behavior in the two channels
provides the rationale for using the VH/VV ratio for mapping FV.
For grasses and sparse shrubs, which is the dominant vegetation
in semiarid areas, the increase in VV typically occurs at the
beginning of the flood event when the water is shallow [see
red-colored line in Fig. 4(a)]. The VV NRCS drops to bare
ground or lower levels when the water is high enough to sub-
merge most of the plant structure (in case of calm or light wind).
The cross-polarized backscatter can get to and even fall below
the noise equivalent sigma nought (NESZ) power in the case of
an open and smooth water surface. However, due to the removal
of the thermal noise bias [33] in the preprocessing phase, such
levels are, however, still significant. In such F conditions, the VH
channel is the most suited indicator for detecting the presence
of “open” water, due to the aforementioned sensitivity of VV to
surface roughness [34]. In support of these considerations and
further assisted by Fig. 4, four different imaginary regions in
the dual polarization backscatter domain can be identified for
semiarid (not impervious) areas:

1) an FV region characterized by double-bounce mecha-
nisms and hence by VH/VV < −10 dB;

2) a region associated with open water and dry soil with very
low VH (< −20 dB) and VV (< −15 dB) NRCS. The
larger range of values potentially spanned by VV with
respect to VH shall be attributed to the variability in the
surface roughness conditions;

3) a moderate backscatter region with VH and VV NRCS
values fluctuating. This includes a variety of LC conditions
such as vegetated surfaces (grasses, shrubs, and crops) and
wet bare soil;

4) a dense vegetation region characterized by high VH
(> −15 dB) and high VV (> −10 dB) NRCS.

In view of such analysis, both the cross-polarization and
copolarization intensities as well as their temporal trajectories
are essential for delineating and mapping FV.

IV. METHODOLOGY

Based on the conceptual analysis presented in the previous
sections, a novel approach for the continuous monitoring of
floods, from their onset until the return to NF conditions, is
proposed. The mapping algorithm is entirely based on S1 data,
whereas its calibration is based on one or more flood maps
during both the flood expansion and the flood recession phases.

In this article, two maps for each phase were used, derived from
optical (LS8) images. The proposed validation phase accounts
for a comparison with the optical-derived maps on multiple flood
seasons and an absolute accuracy evaluation with the in situ data.
The use of digital elevation models (DEMs), a common ancillary
data source for spatial flood constraining, was not considered
since the Caprivi floodplain is extremely flat, with an estimated
total elevation range of 28 m over a 3000-km2 area. As conveyed
by the flowchart in Fig. 5, when a new S1 product is available
at time t, a new processing cycle or iteration is carried out. The
cycle receives the following as inputs:

1) the preprocessed VH and VV images at time t;
2) the stack of the past L images;
3) the intermediate products generated by the previous itera-

tion at time t− 1, comprising the land and water signature
models (discussed in Section IV-B);

4) the previous flood map output.
Each cycle involves preprocessing, modeling, and classifica-

tion phases. The modeling and classification steps, highlighted
by the blue-colored frame in the flowchart, are applied inde-
pendently to the cross-polarized backscatter, σ0,V H , and to the
polarization ratio, σ0,V H

σ0,V V
. Although not explicitly reported in

Fig. 5, two distinct sets of intermediate products are, thus,
returned at the end of each iteration. The reader should also be
aware that the models and the mathematical expressions reported
in the next subsections are based on a logarithmic scale (dB
values).

A. Preprocessing

The S1 VH and VV GRD products are radiometrically cali-
brated, unbiased from the thermal noise, terrain-corrected, and
projected to a geographic coordinate system using the sentinel
application platform. The two polarization channels are speckle
filtered by applying a refined Lee sigma filter [35]. Speckle
filtering reduces the speckle noise and leads to a spatially and
temporally smooth image, depending on the areas’ homogeneity.
The polarization ratio (in dB) is computed through simple band
subtraction.

B. Modeling

For every up-to-date image at time t, the observed pixel
feature, yt, is tested against two probability models: 1) a dry/NF
land model and 2) an F land model. The model parameters are
predicted from the previous observations, and hence, they are
computed at time t− 1. Simple unimodal Gaussian distributions
have been adopted for both models. The outcome of the testing
procedure, illustrated in Section IV-C, are binary maps with
pixels labeled as either NF or F.

1) NF Model: The observed feature of a generic pixel in NF
conditions at time t is described by

yt ∼ N (μt, νt) (1)

with μt and νt being the theoretical mean and variance of the
probability density function (PDF) model, respectively. The
generic nomenclature yt can represent either VH or the ratio
VH/VV, expressed in dB. Extreme values are closer together in
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Fig. 5. Flowchart for the cycle/iteration t of the flood mapping algorithm. The blue-colored frame represents the processing block that is identically applied to
both the VH and VH/VV inputs. Note as well that the flowchart does not include the map fusion step, which shall follow as a simple external postprocessing.

the logarithmic scale; therefore, the logarithmic scale provides
a closer adherence to the model than the linear one. This can
be specifically observed when the Chi-square distribution of
the radar cross section rapidly tends to log-normality with the
increasing number of looks. The set of L previous observations
is defined as

yt = {yn, n = (t− L), . . . , (t− 1)} (2)

where the observed feature at time t is not included.
The observation set can be further extended to a spatial

neighborhood Ω of the pixel

Yt = {yt, ∀ pixel ∈ Ω} . (3)

Assuming a static process, the NF distribution parameters can
be estimated from the samples in (2) and (3) by means of

μ̂t =
〈
yt

〉
(4)

ν̂t = var(Yt) (5)

where
〈
.
〉

and var (.) recall the sample mean (in time) and
variance (both in time and space) estimators.

Note that the assumption of stationarity is only reasonable
for short temporal intervals (1–1.5 months) and low L values.
Since the Caprivi area is observed with S1 data every 12 days,
L was set to 3. The neighborhood Ω was then set to a 5 × 5
spatial window centered on the pixel. The decision to account
for a spatial neighborhood in the variance calculation has been
determined by the need to decrease the random chance of low
ν̂ values that can easily lead to false flood alarms. For the same
reason, a lower bound νmin on the variance, function of μ̂, has
been introduced. This constraint was implemented as

ν̂ −→ max
{
ν̂, σ2

min

}
(6)

Fig. 6. (Left) Standard deviation of the estimated VH and VH/VV NRCS,√
ν̂t, reported against the associated mean value, μ̂t. The behavior is shown for

the whole floodplain area during a dry acquisition (January 12, 2017) through
the bivariate distribution of the model parameters and the 20th, 50th, and 80th
percentiles (white lines) calculated on the marginal PDF of

√
ν̂t for every μ̂t

value. The samples can be related to the theoretical expectations (cyan lines) for
fully developed speckle averaged over 5, 25, and 50 looks. The lower bound for
the standard deviation of the model [see (6)] is shown in the black-dotted line.

with σ
[VH]
min = −0.1 · μ̂[VH] for VH, σ

[VH/VV]
min = −0.1 ·

μ̂[VH/VV] + 1 for VH/VV and where the reference to the
time t is left implicit.

In both cases, the bound is determined heuristically and de-
creases for higher feature (VH or VV) values. For the VH feature,
the application of (6) leads, for instance, to a minimum standard
deviation of 3.5 and 1 dB for μ̂ values of −25 and −10 dB,
respectively. The radiometric stability of weak scatterers, with
NRCS closer to the NESZ (reported at−25 dB for S1), is affected
by the thermal noise to a larger extent than stronger scatterers.
This behavior clearly emerges in Fig. 6, where the distributions
of the estimated standard deviation values are shown for the
month of January 2017, before the start of the flooding event.
At least 60% of the samples, i.e., those ranging within the 20th
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and 80th percentile intervals (white lines), are located between
the theoretical expectations for a fully developed speckle multi-
looked on 5 and 50 looks. Such a large span is explained by the
presence of both extremely heterogeneous and homogeneous
areas (both in space and time) in terms of water content and
vegetation structure. The impact of the latter is partly reduced
in the polarization ratio. This is clearly conveyed in the (right)
VH/VV panel, where the distribution is more skewed toward the
50 looks.

Finally, Fig. 6 shows that the σmin functions (black lines)
approximately fall in the 50th and 80th percentile region, hence
conveniently assuming low radiometric stability of the NF pixels
in favor of a reduction of false flood alarms.

2) F Model: Similar, to the NF case, the F pixels are statis-
tically modeled as

yt ∼ N (μF
t , ν

F
t ). (7)

However, the F model is not pixel adaptive. The same set of
parameters μF and νF are adopted for all the pixels. To account
for all the pixels classified as F in the previous iteration, the
parameters are estimated as

μ̂F
t =

〈
yt−1, ∀ F pixel at (t− 1)

〉
(8)

ν̂Ft = var (yt−1, ∀ F pixel at (t− 1)) . (9)

The same constraint expression in (6) is applied to ν̂F . Dif-
ferently from the NF case, however, the threshold σmin is set to a
fixed value of 2.5 dB, determined empirically, for both VH and
VH/VV. With concern to the initialization of the F model, the
signature for VH is extracted from the Zambezi and Chobe River
areas. For the VH/VV ratio, the values of μF

0 = −14 dB and
νF0 = σ2

min were instead heuristically chosen. When the image
at time t− 1 does not offer enough F pixels, the last significantly
F image or the reference/initialization parameters is used. In this
work, the latter option was adopted. In a more refined system, a
temporal threshold based on the last F image can be implemented
to regulate the selection between the two options.

C. Classification

For every pixel, the algorithm performs at time t one of the
following two tests (see Fig. 5), depending on the class label (F
or NF) at time t− 1:

1) NF2F: an NF to F change test if the pixel was classified
as NF;

2) F2NF: an F to NF change test if the pixel was classified
as F.

The tests are based on the likelihoods computed from the
distributions defined in (1) and (7). In the NF2F case, the
generalized likelihood ratio test takes the expression

LR =
lF(t)

lNF(t)
=

P (yt|μF
t , ν

F
t )

P (yt|μt, νt)

F
≷

NF
γ (10)

where lF and lNF are the two likelihood functions evaluated for
the observation yt.

The change from NF to F conditions is accepted if the
probability of the pixel being F is γ times larger than that of

TABLE II
CLASSES PRODUCED BY FUSING THE VH AND VH/VV MAPS

F—flooded areas; NF—nonflooded areas; TW—
temporary open water; FV—flooded vegetation.

being NF, with γ > 1. A large γ value would yield few false
positives (pixels erroneously classified as F) and a large number
of false negatives (missed flood pixels). Small values of γ would
intuitively lead to the opposite performance outcome.

For F pixels, the F2NF test is performed, defined as

LR =
lNF(t)

lF(t)
=

P (yt|μtstart , νtstart)

P (yt|μF
t , ν

F
t )

NF
≷
F

β (11)

where β > 1 regulates the return of the surface to dry conditions
and tstart refers to the time of the last NF observation of the
pixel in the time series. The PDF parameters μt and νt stop
being updated when the pixel is labeled as F. A pixel, therefore,
returns to its NF status when its current and preflood backscatter
values are almost equal and very different from the overall F area
signature.

The outcome from (10) and (11) is spatially processed to
remove outliers, by applying a majority filter with a 5 × 5
window size. The model parameters for the next iteration, at
time t+ 1, are calculated by (4), (5), (8), and (9).

D. Flood Map Fusion

The flood mapping process is extended by fusing the VH
output with the VH/VV output. In light of the analysis in
Section III, the two flood maps can be combined, as shown in
Table II, to synthesize the following three LC classes (with their
acronyms): NF, FV, and TW.

E. Calibration and Validation

1) Calibration and Cross-Validation With Landsat: The per-
formance of the proposed algorithm was evaluated by comparing
the classification results to cloud-free LS8 maps. The use of
optical imagery to validate SAR water detection has become
a common practice, despite the potential errors in delineating
inundated areas using optical data [2], [23], [36]. The LS8 water
maps were produced by thresholding the popularly used normal-
ized difference wetness index (NDWI) [37]–[40]. The NDWI
highlights the strong absorption of near-infrared (NIR) radiation
by water features, contrasting to other water extraction indices,
such as the modified normalized difference water index [41],
which works better in delineating water and built-up areas in
urban areas. The NDWI image can theoretically be segmented
using a threshold value of zero. However, differences in geo-
graphical image characteristics can create a differing range of
values, requiring the need for individual image thresholding. To
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achieve this, Otsu’s segmentation method, which maximizes the
variance between the water and nonwater classes, was used [24].
The NDWI is calculated as follows:

NDWI =
ρG − ρNIR

ρG + ρNIR
(12)

where ρG is the spectral reflectance in the green (band 2) region
of the spectrum and ρNIR is the spectral reflectance in the NIR
(band 5) regions of the spectrum.

The comparison was carried out on the total F area obtained
by merging (Boolean union) the FV and TW pixel sets (see
Table II, or, equivalently, by merging the F pixels from the VH
and VH/VV maps. The user [see (13)] and producer accuracy
[see (14)] performance indicators are adopted for the flood class

Precision =
#(S1 flood AND LS8 flood)

#(S1 flood)
(13)

Recall =
#(S1 flood AND LS8 flood)

#(LS8 flood)
. (14)

The classified data are the S1-based maps and the reference
data are the LS8-based maps. Equations (13) and (14) are
evaluated by matching the closest LS8 map (in time) to the S1
map under assessment over the region in Fig. 1.

The calibration procedure aims at achieving a convenient
tradeoff between precision and recall during the two flood tran-
sition phases: the flood expansion phase and the flood recession
phase. The precision–recall symmetry (Precision = Recall) is
obtained when the F area from S1 equals that from LS8. In
this study, the calibration was performed in the 2017 season.
First, γ is adjusted by analyzing the algorithm output for the
March 25 (flood expansion) and April 6 (flood peak) acquisi-
tions, as illustrated in Fig. 7. The selected threshold, γ = 5,
overestimates the flood extent during its early stages and slightly
underestimates it during the peak. Then, the May 12 and June
29 (flood recession phase) acquisitions were used to calibrate
β, which regulates the flexibility between F and NF conditions.
As conveyed by the right panels in Fig. 7, the selected value,
β = 30, provides a good match for the May 12 acquisitions and
a 5-km2 area excess with respect to LS8 at the end of the flood.
The performance is evaluated on all the available S1–LS8 pairs,
as shown in Fig. 3, including the aforementioned ones used for
calibration. In interpreting the results, the reader shall, hence,
consider that a minimal positive performance bias could apply
to the latter.

2) Validation With In Situ Data: The flood classification
results produced by the algorithm were assessed using the ob-
servations collected during the in situ surveys. The evaluation
was performed on the map generated from the S1 acquisition
on April 6, 2017, as it closely matched the in situ observations
(April 4–7). The same map has been used for the calibration of
the algorithm in its expansion phase (threshold γ). Therefore,
the S1 results are likely to be affected by a marginal bias in
terms of adherence to the LS8 results. Several classification
accuracy measures were implemented, namely the producer’s
accuracy (PA), user’s accuracy (UA), overall accuracy (OA),
and Kappa (K) [42]. In contrast to (13) and (14), the PA and UA
are herewith evaluated on both the NF and F classes (as their

Fig. 7. Algorithm calibration. The total F area (TW + FV) is evaluated for
different thresholds γ (left panels) during the flood expansion (March 25, 2017)
and flood peak (April 6, 2017), and for different threshold β (right panels)
during the flood recession (May 12 and June 29, 2017). The area estimated from
the matching LS8 acquisitions by NDWI thresholding is also reported, and the
selected thresholds (γ = 5 and β = 30) are highlighted.

average). A McNemar’s test [43] was also performed to assess
the statistical significance of the improvements brought by the
map fusion (VH + VH/VV) compared to using a single feature
(VH or VH/VV). The test is nonparametric, assuming that the
number of correctly and incorrectly identified points is equal for
both classifications [44], [45]. Differences were considered as
statistically significant at the 5% confidence level, thus, for a Z
value greater than 1.96.

V. RESULTS

A. Model Analysis on Exemplary Time Series

This section elaborates on the behavior of the proposed algo-
rithm by focusing on exemplary time series covering the 2017
and 2018 flood events. Two LC features, namely, short grass
and tall grass, are used for demonstration purposes. The short
grass series refers to a pixel at coordinates Lat, Lon=−17.5950,
24.6137, the same represented by the blue line in Fig. 4, whereas
the second belongs to a thicker grass field at point coordinates
−17.5853, 24.6496. The analysis is supported by the panels
in Fig. 8 that illustrate the temporal behavior of the VH, VV,
and VH/VV backscatter data. The NF and F model parameters
retrieved by the algorithm are presented through the brown- and
blue-colored stripes. The LC conditions on April 4–7, 2017 are
also conveyed by means of in situ pictures.

In the short grass scenario, the VH and VV channels have
similar temporal behavior. On the contrary, the VH/VV ratio
appears flattened around −8 dB, reaching low values (−13 dB)
only during a couple of acquisitions. On both occasions, the
drop is, however, too gradual to be recognized as a flood by the
algorithm. The flood events, as expected from Section III, are
only detected through the sharp VH (8–9 dB) drops in March
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Fig. 8. Example of S1 time series for: (a) a pixel of short grass (<30 cm) at lat,lon = (−17.5950,24.6137); (b) a pixel of tall grass (>30 cm) at lat,lon
= (−17.5853, 24.6496). The green and blue vertical bars indicate the F dates as mapped respectively by the VH and VH/VV algorithms. The brown and
blue-colored series refer respectively to the PDFs of the dry/NF (brown) and of the F (blue) signatures used for the classification test. Both the mean value
(circle markers) and the standard deviation (given by stripe width) of the PDF are represented. The ground campaign dates (April 4–7, 2017) are also highlighted
through red dashed boxes.

(for both years). Fig. 8(b) shows the tall grass series. On the
contrary, it can be observed that the FV conditions are identified
by the VH/VV ratio in both the 2017 and 2018 flood events. It
is also interesting to notice that the double-bounce mechanisms
associated with FV are significantly stronger in 2017. This can
be inferred from the higher VH and VV NRCS values (+6 dB
approximately) during the March–April period. In 2018, the
double-bounce mechanisms produce a slight VV enhancement
as it could barely compensate for the loss of volume scattering.
A large drop in VH is observed as a result. This can be as a result
of either a higher flood stage reached in 2018 or differences in
vegetation phenology between the two years.

From Fig. 8, it can be observed that the model estimates, espe-
cially with reference to the dry pixel-adaptive (NF) signatures,
follow the data with an apparent delay. This smoothing effect,
introduced by the temporal integration window set to a size of
L = 3 samples, plays a fundamental role in avoiding that the
signature to follow the data in abrupt changes. However, some
exceptions might arise when a slight VH or VH/VV decrease is
encountered during the flood onset, as shown in Fig. 8(b) by the
VH/VV ratio behavior during March 2017. In such situations, the
dry (NF) signature, μt, drifts toward that of the water signature,
μF
t , with a partial loss in discrimination capabilities of the

algorithm. Nevertheless, it can be observed that even in such
critical scenarios, the classifier manages to produce a reasonable
output.

B. Open Water and FV Maps on the Entire Floodplain

The flood estimates provided by VH, VH/VV, and the fu-
sion of the two products are analyzed over the entire Caprivi
floodplain. Fig. 9 shows the results of the spatial evolution of
the flood from March 13 to May 12, 2017. The plotted fusion
(VH + VH/VV) maps show that the inundation started along the
Zambezi River then quickly extending toward the west, close to
Chobe River. This region, which is between the two rivers, has
the highest vegetation density during the rainy season, and the
maps, as expected, exhibit a large FV component (shown in red
in Fig. 9). The flood then progresses to the southern portion of
the floodplain, which is more sparsely vegetated. At this time,
the maps exhibit a predominant TW component (shown in blue
in Fig. 9). Overall, the eastern parts of the floodplain experience
most of the inundation, and F areas are noticeable for about two
months.

Fig. 10 shows the F area extent (km2) during the 2017 and
2018 flood seasons. S1 provides images throughout the year.
SAR data are better for flood monitoring, specifically during
floods when the cloud cover is high. In most areas, the area that
is F is obscured by clouds, which motivate the use of SAR data.
In this regard, the algorithm allows for continuous monitoring
throughout both phases of the flood, with a reliable false alarm
performance during the dry season (from August to January),
as less than 70 km2 remain labeled as F. Thanks to the regular
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Fig. 9. Fusion of VH and VH/VV flood maps of the Caprivi floodplain from March 13, 2017 to May 12, 2017.

Fig. 10. Multitemporal comparison of the F area extracted from VH, VH/VV, and the union of the two.

revisit of S1, it can be observed that the time to maximum flood
extent is very short, unlike the time it takes for the flood to
recede. The polarization ratio effectively captures the flood in
its initial phase in both seasons. This can be clearly seen for
2017, as the VH contribution is almost null in the first month
(until the end of March). In contrast, the VH is more sensitive
and complementary (with respect to VH/VV) at the onset of the
2018 flood. These interyear differences are likely due to the fact
that the 2018 flood was more severe.

Different plant phenologies during the time of inundation
may also have played a role, as shown in Fig. 8. In addition,
the differences between the two flood cycles can be seen by
comparing the duration of the flood in each season (two months
longer in 2018) and the F area returned by the VH/VV ratio
(see Fig. 10). Furthermore, the application of the rule in Table II
would lead to the observation of a larger FV extent, as identified
in 2018. However, closer analysis, aided by Fig. 4, revealed
that low VH/VV values were occasionally associated with open
water, such as in the case of very low VH (< −28 dB) and
VV (< −14 dB) values. This is attributed to a small percentage
of TW pixels (typically characterized by very low VH NRCS)

within the FV-labeled pixels. Such class confusion is inherent to
the simplified definition of FV and is most likely to occur during
high flood levels, which partly explains the interyear VH/VV
discrepancies between the 2017 and 2018 flood events.

C. Validation Against In Situ Data

The April 6 algorithm output was compared to the LC infor-
mation collected during the surveying campaign and to the April
10 LS8 flood map. Fig. 11 shows the PA, UA, OA, and K values
for the algorithm VH, VH+VH/VV outputs, and for LS8. The PA
values for the F class are 84.7%, 96.5%, and 93.4% respective
of VH, LS8, and VH + VH/VV images. For each VH + VH/VV
image, increasing values of OA and Cohen’s Kappa from VH
demonstrate the contribution of VH/VV to the accuracy of the
SAR-derived flood extent map.

The PA for identifying the water pixels is significantly better
for the LS8, displaying less misclassification of nonwater fea-
tures as water. In general, the OA of LS8 is 8% higher than that
of the VH + VH/VV. The Kappa coefficient (K) varies from 0.74
for VH to 0.85 for LS8 showing a good relationship between the
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Fig. 11. Overall classification accuracy results for VH, LS8, and fusion of VH
+ VH/VV. The S1 and LS8 (NDWI) results are based on the April 6 and 10,
2017 acquisitions, respectively.

ground observations result and the satellite data, with minimal
correlation caused by chance.

On average, the OA achieved on the classification of the
fused dataset is about 5% higher compared to the VH-based
classification. McNemar’s test showed that the difference in
accuracies when the VH and VH+VH/VV datasets were used as
input is statistically significant (Z > 1.96). Therefore, the study
claims that the proposed fusion method has greater potential
than using only VH for detecting floods using S1.

D. Comparison With Landsat-8

The comparative analysis with LS8 is approached by address-
ing the F area extent and the performance metrics in (13) and
(14). These are computed for the whole 2017–2018 span, as
shown in Fig. 12. The calculation accounts only for the cloud-
free areas in the Landsat imagery, whose percentage is reported
with a blue line in the top panel (see Fig. 12). The analysis
is conducted on the total F area extent, with no distinction
between FV and open water. Fig. 12 shows that S1 provides
a close match with LS8 throughout both the 2017 and 2018
flood seasons. For 2017, a good match is achieved during the
flood peak, with a balanced 87% on precision and recall (it shall
be reminded that the amount of S1-only positives match that
of LS8-only positives when the estimated F areas are equal),
whereas the percentage drops approximately to 75% during the
expansion and recession phases. The slight unbalances in favor
of precision during the flood expansion phase are in agreement
with the calibration choices in Fig. 7. The performance behavior
during 2018 is qualitatively comparable to that of 2017, despite
the differences in the timing and the extent of the two flood
events. The maximum joint agreement of 85% is registered in
the second half of May 2018 close to the flood expansion peak.
The similarity is slightly poorer (<80%) and more unbalanced
during the other flood phases, with S1 more than LS8 before the
peak and less sensitive during the recession phase.

A visual inspection of the matching and nonmatching features
in two locations, one along the Zambezi and one along the Chobe
river (labeled as region of interest in Fig. 1), was carried out,

supported by Fig. 13 to better understand the differences in
accuracies between the LS8 and S1 products. In the Zambezi
region, the attention is drawn, at first, to the area adjacent to
the river, contoured by a dashed yellow line. The S1 algorithm
underestimated the F area both before (March 25, 2017) and after
(May 12, 2017) the flood peak. This behavior is mainly attributed
to the poor resolution of the S1 maps when compared to scale of
the LC heterogeneity in the river proximity, consisting of narrow
grass patches and higher vegetation (shrubs and trees). The
resolution of S1 maps is reduced with respect to the nominal S1
GRD pixel after the speckle and the majority filtering steps in the
preprocessing and postprocessing, respectively. As a result, LS8
has a higher effective resolution, but this is partly compensated
by a higher sensitivity of the S1 product in open grass areas.

During the flood recession phase, the S1 map reported more F
areas than LS8. Still within the Zambezi region, and especially
in the area contoured by a cyan dashed line (see Fig. 13), the S1
positives (F for S1 and NF for LS8) are mainly attributable to
the polarization ratio, as the VH present insignificant anomalies.
The same behavior is observed in the Chobe region during the
2017 flood expansion (March 25). Apparent double-bounce re-
flections can be observed especially in the northwestern area (as
evident from the VV NRCS enhancement). In the same location,
the NDWI shows very low values (< −0.2). These examples
clearly illustrate the added value of SAR with respect to the
optical indexes, although such benefits only apply to a small
percentage of the overall area. The last location marked in Fig. 13
(fourth column) is characterized by a borderline behavior of the
radar and optical signatures during the flood recession phase,
leading to a missed flood detection from S1. It can be observed
that the NDWI and the VH NRCS images present similar spatial
heterogeneity, although neither exhibits clear flood anomalies.
The discrepancy is then mainly accountable to the choice of the
threshold β.

Further insight on the algorithm sensitivity is obtained by
investigating the histograms of the optical and radar features
for the matching and nonmatching flood map areas on the
entire floodplain, shown in Fig. 14. The analysis covers two
dates each year. Fortunately, three of these dates have available
concurrent LS8 and S1 products. The other matching dates
considered are March 12 and March 8, 2018 for LS8 and S1
products respectively. From the NDWI panels, it can be no-
ticed that the S1 negatives and positives (yellow and cyan bell
curves, respectively) are skewed toward the NDWI threshold,
implying a substantial similarity in the response to the flood
between the two sensors, as well as a high sensitivity of the
maps to small threshold adjustments. This can also be inferred
by analyzing the VH panels. Although the pixel-adaptive thresh-
old makes the plots readability less straightforward, it can be
observed that the discrepancies occur for pixels with high VH
NRCS when compared to that of the matching pixels (red bell
curves). However, such consideration does not apply to the
March12, 2018 graph, since the LS8–S1 confusion for this latter
is most likely related to the four-day intermap difference.

The most appealing histograms are, however, provided by the
VV NRCS and by the VH/VV ratio. The S1 positives and nega-
tives show distinct distributions in these features’ domains. The
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Fig. 12. (Top) Total flood area extent extracted from the Landsat NDWI products and from closest (in date) S1 output (TW + FV). The percentage of cloud-free
area in the LS8 imagery is reported in a blue line. Notice that only the unobstructed area is used for the comparison. (Bottom) Precision and recall metrics are
reported with saturated colors for the relevant dates and with desaturated colors for images with marginal F area extent.

panels convey that S1 positives can be mainly associated with
FV, which are characterized by low ratio and high VV values as a
result of double bounce. In contrast, the S1 negatives can be asso-
ciated with canopy scattering without water–plant enhancements
as they occupy a higher VH/VV ratio band indicatively VH/VV
>−8 dB. This interpretation is also confirmed by the normalized
difference vegetation index (NDVI) panels, where both errors
occur at high greenness values, approximately NDVI > 0.5, and
thus for substantially developed vegetation. Some interesting
NDVI differences are further registered between the 2017 and
2018 events. In 2018, the error distributions are more separated,
with distinctively higher NDVI values for S1 positives. This
is most likely due to the larger extent and duration of the
flood in 2018, which enhances the sensitivity of optical sensors
to taller grasses.

Finally, the bimodal behavior of histograms in 2018, espe-
cially concerning the matching pixel distributions, is addressed.
Such distributions suggest that two different groups of F pixels
are present: one is characterized by open water and very low
VH and VV NRCS and the second is most likely comprising
emerging or floating vegetation, with slightly higher backscatter
intensities. However, the first scenario is less pronounced in 2017
due to the lower flood level.

VI. DISCUSSION

The principal objective of this study was to assess the suit-
ability of dual polarized S1 acquisitions (VH + VV) with a
short revisit time (twelve days in Africa) for monitoring flood
events in a vegetated floodplain. To achieve this aim, the study
introduces a novel methodology that makes use of an S1 time
series throughout the entire flood event with temporal continuity
between different seasons. The model is pixel adaptive, implying
that the thresholds for the identification of changes are pixel and
time dependent. In particular, the dry (NF) signature of each

pixel is retrieved from its NF samples in the previous month
(three samples in the 12-day S1 revisit configuration), avoiding,
therefore, specific training for different LC types.

The calibration phase of the algorithm consists of the retrieval
of two coefficients for the whole scene and the thresholds for the
two likelihood ratio tests. The first regulates the transitions from
a dry to F land and the second addresses the transition back to
dry land. In this study, the coefficients were adjusted by using
LS8-derived maps as reference. This makes sense when S1 is
used as a gap-filling alternative to optical sensors. In addition,
the water signatures for each of the processed VH and VH/VV
ratio radar features must be initialized. These signatures are
unique for the whole floodplain, although they are allowed to
change over time according to (8) and (9). The adoption of a
whole-scene signature for F pixels was favored over a pixel-
adaptive approach due to the interseasonal variability in flood
levels and, hence, in signature responses, which could hinder
the flood detection test if poorly addressed. On the other hand,
a pixel-adaptive model is deemed potentially beneficial from
the F to NF test and, therefore, worthy of further investigation.
Note, in addition, that use of whole-scene water parameters
facilitates the ease of use and the applicability of the technique
to different regions without retraining as their interscenario
variability is expected to be low. However, this must be properly
assessed in future work, especially in areas with a different LC or
illuminated with different (shorter) revisit times than the 12 days
available for Caprivi.

The proposed model and the algorithm implementation are
conceptually based on two assumptions: 1) large sudden drops
in the time series of the VH NRCS or of the VH/VV ratio can be
linked to a flood event. The significance of the drop is evaluated
by relating it to the preflood mean value and standard devia-
tion; and 2) when returning to NF conditions, the backscatter
approaches its preflood levels. These assumptions shaped the
methodology in a change detection approach and are, hence,
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Fig. 13. Flood maps and spectral features/indexes derived from S1 and LS8. The comparison covers the two cross-validation regions shown in Fig. 1. From
top to bottom, the panels report the following information: an LS8 RGB color composite (3, 2, 1); an S1–LS8 confusion map showing the matching pixels in
red, the S1-only F pixels in cyan, and the LS8-only F pixels in yellow; the LS8 NDWI; the VH NRCS; the VV NRCS; and the VH/VV ratio from S1. The areas
characterized by relevant LS8–S1 discrepancies (and therefore commented in Section V-D) are contoured in the upper panels with lines colored in accordance with
the associated mismatch.

inherently robust to the well-known confusion problem with
persistently low backscatter areas, such as bare dry soil [6], [46].
The devised signature calculation procedures effectively account
for the stronger temporal fluctuations typically occurring in such
areas, mainly due to NESZ and changes in moisture. It should
be noted that both assumptions can expose the algorithm to the

risk of false flood positives. In the case of the first assump-
tion, the false positives would be caused by unforeseen and
hence unmodeled events (such as deforestation and crop harvest
events in agriculture areas). The occurrence of such events can
be addressed by introducing additional information, such as
interferometric coherence [47], in a postprocessing step or by
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Fig. 14. Analysis of a mismatch between S1 and LS8 flood maps for four
representative dates in 2017 and 2018. The panels illustrate the histograms of
NDVI and NDWI (LS8) and of VH, VV, and VH/VH (S1) for the matching
F pixels (red), for the S1-only F pixels (cyan), and for the LS8-only F pixels
(yellow) over the entire floodplain. Note that the March 12, 2018 LS8 product
date has been compared with the March 8, 2018 S1 product. Part of the
discrepancies can be, hence, attributed to the four-day differences.

removing areas prone to such activities. The second assumption
can hinder the return to NF conditions. When the backscatter
intensity, with the main reference to the VH NRCS, remains
low, the pixel would be labeled as F throughout the dry season.
In its current form, the algorithm does not include mechanisms
to control such scenarios. In semiarid and rural regions without
intense land use, these issues are unlikely to frequently emerge,
as conveyed by the results in our study area.

The effectiveness of the proposed method and the sensitivity
of the S1 imagery were evaluated by comparing the results
to flood maps derived from the LS8 NDWI. As the sensors
exhibit similar performances in mapping temporary open water,
the sensitivity to FV raised most of the interest. In presence
of emerging and floating vegetation, water surface smoothness
and high permeability can produce water–plant double bouncing
effects, which enhance the backscatter, in particular from the

copolarized (VV and HH) channels [3], [7], [23]. Good sensi-
tivity of VH to FV was observed in [23] and [48]. However,
other studies, such as [49] and [50], argued that VV polarization
is more suited for identifying partially submerged vegetation.
Currently, it is well known that single polarizations are unable
to properly address the scattering complexity of FV. The use of
multiple polarization channels and polarimetric combinations
(differences and ratios most notably) has recently been proposed
to handle FV [8], [51].

Our study consolidated that the use of both VH and VV
polarizations in the form of their ratio (VH/VV) was found to
be a convenient strategy to account for the double-bounce effect
from FV and provided a phenomenological justification for it.
It was observed that the FV in the presence of double-bounce
effects spans a wide range of VH and VV values (from −15
to −5 dB for VV and from −30 to −20 dB for VH), as the
NRCS depends on both the structure of the canopy and the flood
depth, which concurs with previous studies [52]. It was shown
(see Fig. 8) that the VV NRCS does not necessarily exhibit an
increase with respect to its preflood level.

The overall classification accuracy obtained from the fused
VH and VH/VV maps is only slightly inferior to that obtained
using the cloud-free LS8, based on the collected in situ ob-
servations. The use of a single polarization (VH) resulted in a
performance loss of up to 5% with respect to the dual-polarized
approach, as a significant portion of the FV would be disre-
garded. The estimated flood extent during the flood peak is very
similar to the NDWI-based map with an 85–87% precision and
recall performance for both the 2017 and 2018 flood events. The
similarity during the expansion and recession phases of the flood
registered slightly lower values, which is due to the different
responses of the sensors to the vegetation dynamics combined
with the adopted calibration strategy (which favored the flood
extent matching during the peak).

The discrepancies between the S1 and LS8 flood maps mainly
occurred in vegetated areas. In particular, it was observed that
the S1 commissions (compared to LS8) correspond to areas with
very high values of NDVI (>0.5), whereas the S1 omissions
(compared to LS8) can be related to areas with low canopy
greenness (0.3<NDVI<0.6). The latter also includes F features
with pixel size comparable to or lower than that of the resolution
of S1 maps, which is hampered by 5 × 5 majority filter applied
in postprocessing. The study, hence, confirmed that polarimetric
C-band radar signals are particularly sensitive to partially sub-
merged canopies with vertically oriented elements such as stems
and trunks as they lead to double-bounce mechanisms [7], [53],
[54]. In contrast, NDWI is more influenced by the amount of
open water and the moisture content of the vegetation recorded
in a pixel [55].

Despite the relatively long (12-day) revisit time of S1, the
ability of SAR to acquire images during cloud cover gives the
statistical modeling developed in this study an advantage over
methods that make use of optical data. The proposed SAR-based
multitemporal technique is suitable for flood monitoring during
cloud cover conditions. Application of this method to datasets
with shorter revisits intervals is expected to further improve the
temporal as well as the spatial delineation of F areas, possibly
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bridging the absolute performance gap with optical sensors
(under clear-sky conditions). The study also supports evidence
of the value VH and VH/VV fusion and demonstrates that the
ratio is a convenient way for characterizing the F area in terms of
FV and TW. The F areas detected by VH/VV are labeled as FV,
whereas the ones revealed exclusively by VH are regarded as
TW. The accuracy of such classification procedure has not been
thoroughly evaluated as it was out of the scope of this work to
associate the labels to a precise LC taxonomy. It was discussed
how borderline cases of temporary open water detected by
VH/VV (e.g., for Bragg scattering from water) and FV detected
by VH cannot be excluded.

In conclusion, the developed method was tested over an area
with flat terrain. It is likely that the inclusion of ancillary data
(e.g., DEMs that can provide a representation of the floodplain
geometry and initial conditions) will improve the performance
of the technique in areas with varied topography. However, DEM
errors, resolution, or degree of generalization must be carefully
considered in the workflow.

VII. CONCLUSION

This study evaluated the potential of S1 SAR images for the
continuous mapping of floodplains dominated by herbaceous
vegetation cover. In particular, the work focused on the Caprivi
floodplain region and covered the 2017 and 2018 flood events. A
novel pixel-based mapping strategy relying on the causal model-
ing of the VH and VH/VV time series and on two likelihood ratio
tests (for the detection of flood start and flood end) is proposed.
The method was designed for NRT applications, as the model
parameters are retrieved from the past samples in the series. It
was shown that the 12-day S1 dataset is capable of adequately
delineating the extent of the inundated areas during both the
expansion and the recession phases of the flood. The maps
produced by the algorithm reach an 85% spatial agreement with
the available LS8-derived maps during the period of maximum
flood expansion. The agreement was weaker before and after
the peak, mainly due to different sensitivity to the FV of the two
sensors.

Dual-polarized SAR detected FV when water–plant double-
bounce mechanisms occurred. However, it is less sensitive when
the plant structure does not generate backscatter enhancements,
such as for shorter vegetation. The most significant discrepancies
between the S1 and LS8 products were registered during the
recession phase, with the agreement dropping to 75%. It was
shown that the VH/VV ratio is suited for mapping FV. The in
situ data, collected during the 2017 event peak, confirmed that
the addition of the VH/VV ratio to the VH NRCS leads to a
significant increase in absolute accuracy.
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