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Summary
In this thesis we try to provide novel solutions to key problems related to imaging
and imaging system. Imaging is usually referred to as the technique for reproducing
the information of the object. In optics, we usually refer the object information to
the light field in the object plane due to the interaction of the illumination field
and the object. Imaging technique allows the reproduced object information to be
recorded by detectors such as human eye, photoresist, or CCD/CMOS sensor.

In order to image an object, there must be light. We consider only unpolarized
quasimonochromatic light illuminating the object and we approximate the field in
the object plane by the multiplication of the transmittance/reflectance of the object
and the illumination field (the first Born approximation). However, the results in
this thesis can also be generalized to situations beyond the above scope. Here we
mainly focus on two aspects: the aberrations, the errors of the imaging system,
and the spatial coherence of the light field.

In a typical imaging scenario, we consider the object plane field as a source
consisting a series of point sources. The field generated by each point source
propagates independently to the image plane through the imaging system. Ideally,
these fields should all identically have the correct distribution and be centered at
the correct location. However, this is not the case in presence of the aberrations.
As a result, the image will become blurred.

In the image plane, different fields generated by different point sources interfere
with each other and the intensity of the interference pattern is measured by a
detector. The spatial coherence of the illumination field determines the ability of
interference. In the complete coherent case, for example the object is illuminated
by laser light, the field added together, while in the complete incoherent case, e.g.
the object itself is an incoherent source, the intensity of the field added together.

In most situations, the object is illuminated by an incoherent source placed at
certain distance such as that in the Köhler illumination and the illumination field is
only spatially partially coherent. Disturbances during the measurement process like
mechanical vibration and atmosphere turbulence also contribute to the degradation
of spatial coherence.

Spatial coherence also plays an essential role in computational imaging. In
this scenario, we measure diffraction patterns of the object field and we perform
imaging by computationally reconstructing the object field. However, when the
object field is spatially partially coherent, computing the diffraction pattern becomes
rather complicated. Without modification to the algorithm, the reconstruction will
be blurred, but even with modification, the algorithm can only handle limited degree
of spatial partial coherence.

In chapter 2, we study a method for retrieving the aberrations from a series of
blurred images. Conventional methods often characterize aberrations by measuring

ix



x Summary

the pupil wavefront and hence require spatially coherent illumination. Our method
is particularly suitable for incoherent imaging and only requires the imaging system
to be disturbed in a known fashion, e.g. by introducing known defocus.

While in chapter 2 we considers only shiftinvariant aberrations, we propose a
method to measure the shiftvariant aberrations in chapter 3. Here the aberrations
are functions of both the pupil and the fieldofview (FOV) coordinates. Our method
collects data of the aberrations at a large number of FOV locations in parallel. As
the data processing can also be parallelized, the proposed method is extremely
efficient compared to existing methods. Potential applications are imaging systems
with large FOV e.g. the lithography projection system for IC manufacturing in the
semiconductor industry.

In chapter 2 and chapter 3, our problem of retrieving aberrations from some
measurements is a typical inverse problem, which needs to be solved by employing
iterative optimization technique. It usually requires formulating an error function
that depends on the aberrations and deriving the gradient of the error function with
respect to the aberrations.

In chapter 4 and chapter 5, we propose two noniterative methods for measuring
the spatial coherence of an arbitrary field. In particular we measure the correlation
between the fields at a reference point and at a large number of sampling points.
Both methods use specially designed masks and require measuring the farfield
diffraction pattern of the transmitted/reflected light. The result is twodimensional
distribution that also serves the goal for computational imaging.
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2 1. Introduction

I n this thesis, we study the inverse problem on imaging and imaging system.
We consider only quasimonochromatic light and the scalar case of diffraction, in

which the polarization effect is neglected. Our study covers a broad range of topics,
including the spatial coherence of light, the aberration of the imaging system, and
the optimization technique for solving the inverse problem. Through the thesis I
tried to propose novel approaches for all problems. In the introduction chapter, we
discuss about some fundamental concepts.

1.1. The coherence of light sources

C oherence is a fundamental property of light that describes the correlation be
tween two electromagnetic waves. The degree of coherence is usually evalu

ated in terms of the visibility of the interference pattern formed by two waves. At
optical frequencies, the interference pattern varies so fast that the variation can
not be captured by the eye or by the camera. Therefore, only the timeaveraged
intensity distribution of the interference pattern can be measured. The degree of
coherence hence describes a statistical phenomenon that can only be observed in
timeaveraged measurements.

The degree of coherence depends on the phase difference between two waves.
We define that two waves are coherent when the phase difference is stationary,
which gives rise to the interference pattern (visibility = 1), and are incoherent when
the phase difference is not stationary, which smears the interference pattern by
timeaveraging (visibility = 0). The intermediate state is referred to as partially
coherent and is of great interest for theoretical studies and for practical applications.

We shall distinguish between the temporal coherence and the spatial coherence.
The former is related to the spectral bandwidth of the source, while the later is
related to the size of the source. To evaluate both coherences, we should observe
the interference pattern formed by two electromagnetic waves at different times
and at different locations, respectively.

Table. Relation between the source and the coherence of light
Point source Extended source

Monochromatic Spatially coherent,
Temporarily coherent

Spatially incoherent,
Temporarily coherent

Chromatic Spatially coherent
Temporarily incoherent

Spatially incoherent,
Temporarily incoherent

1.1.1. Temporal coherence
Consider a point source in the source plane which is placed on the axis of the setup
of the Young’s interference experiment as shown in Fig. 1.1. The point source
emits a series of wavepackets due to spontaneous emission. Each wavepacket
has a random initial phase and an amplitude that varies significantly in time. Such
a wavepacket series can be written as:

𝐸(r, 𝑡) =∑
𝑛
𝐴𝑛(r, 𝑡) exp[−𝑖(𝜔𝑡 − 𝛿𝑛)], (1.1)
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Source Screen Detector

Figure 1.1: Setup of the Young’s interference experiment. A chromatic point source is placed on the axis
in the source plane. The electromagnetic wave emitted by the point source first propagates to a screen
and then to a detector at certain distance. The arrows represent the direction of wave propagation, and
the curves represent the wavefront.

where 𝜔 denotes the central frequency (also called the carrier frequency), and
𝐴𝑛(r, 𝑡) and 𝛿𝑛 denote the timevarying amplitude and the initial phase of the 𝑛th
wavepacket, respectively. 𝐸(r, 𝑡) represents the electromagnetic wave emitted by
the point source at time 𝑡 and observed at r in the detector plane.

In Fig. 1.1, we place two pinholes symmetrically on both sides of the axis. We
take the wave that passes through one pinhole as the reference, and we denote the
time delay of the wave that passes through the other pinhole with respect to the
reference as 𝜏. So, for a given separation between the two pinholes, 𝜏 is a function
of the detector plane location r. The intensity distribution of the interference pattern
is measured by integrating over time 𝑇, which can be expressed by

𝐼(r, 𝜏) = ⟨|𝐸(r, 𝑡) + 𝐸(r, 𝑡 + 𝜏)|2⟩𝑇
= ⟨|𝐸(r, 𝑡)|2⟩𝑇 + ⟨|𝐸(r, 𝑡 + 𝜏)|2⟩𝑇 + 2ℜ {⟨𝐸(r, 𝑡)𝐸(r, 𝑡 + 𝜏)∗⟩𝑇} ,

(1.2)

where ⟨⋅⟩𝑇 denotes timeaveraging and ∗ denotes the complex conjugate. We define
the crossterm in Eq. (1.2) as the mutual coherence function (MCF) for time delay
𝜏:

𝐽(r, 𝜏) = ⟨𝐸(r, 𝑡)𝐸(r, 𝑡 + 𝜏)∗⟩𝑇 = lim
𝑇→∞

1
𝑇 ∫𝑇

𝐸(r, 𝑡)𝐸(r, 𝑡 + 𝜏)∗d𝑡. (1.3)

The MCF describes the correlation between a wave and itself as a function of 𝜏,
which is independent of the integration time 𝑇 as 𝑇 → ∞. Eq. (1.2) indicates that
the MCF determines the visibility of the timeaveraged interference pattern.

By substituting Eq. (1.1) into Eq. (1.2), we derive that the expression for the
timeaveraged interference pattern generated by a chromatic point source is given
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by

𝐼(r, 𝜏) = 1
𝑇 ∫𝑇

𝑁

∑
𝑛=1

|𝐴𝑛(r, 𝑡)|2d𝑡 +
1
𝑇 ∫𝑇

𝑁

∑
𝑛=1

|𝐴𝑛(r, 𝑡 + 𝜏)|2d𝑡+

2ℜ{1𝑇 ∫𝑇

𝑁

∑
𝑛=1

𝑁

∑
𝑛′=1

𝐴𝑛(r, 𝑡)𝐴𝑛′(r, 𝑡 + 𝜏)∗ exp[−𝑖(𝛿𝑛 − 𝛿𝑛′)]d𝑡} , (1.4)

where 𝑁 denotes the number of wavepackets captured by the detector during the
integration time 𝑇. We have 𝑁 → ∞ because 𝑇 → ∞. Therefore, only wavepackets
with the same initial phase (𝛿𝑛 − 𝛿𝑛′ = 0) can interfere, while wavepackets with
different initial phase (𝛿𝑛 − 𝛿𝑛′ ≠ 0) cannot. The MCF in Eq. (1.4) thus becomes

𝐽(r, 𝜏) ∝ ∫
𝑇
𝐴(r, 𝑡)𝐴(r, 𝑡 + 𝜏)∗d𝑡, (1.5)

which depends only on the timevarying amplitude of the wavepacket. Notice that
here different wavepackets have the same timevarying amplitude 𝐴(r, 𝑡).

DetectorWavepackets trains Interference

Figure 1.2: Illustration of the interference between two wavepacket trains in the Young’s interference
experiment. Each wavepacket train passes through a pinhole. The time delay, or the optical path
difference, between the two wavepackets trains, depends on the detector plane location and determines
the visibility of the interference. (Solid line: the timevarying oscillating amplitude. Dashed line: the
profile of oscillation. Gray rectangle: overlap between the two wavepackts trains.)

𝐽(r, 𝜏) in Eq. (1.5) is given by the overlap between the two wavepackets. The
overlap depends on the time delay 𝜏 and hence depends on the detector plane
location r. As a result, 𝐽(r, 𝜏) can actually be described by only r in the Young’s
interference experiment as shown in Fig. 1.2.

As r (with origin at the intersection of the optical axis and the detector plane)
increases, 𝜏 increases accordingly due to the increase of the optical path difference.
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Consequently, the overlap between the two wavepackets decreases, which leads
to the decrease of the ability to interfere with each other, and hence of the visibility
of the interference pattern decreases.

We shall notice that the duration of a wavepacket Δ𝜏 is inversely proportional
to the spectral bandwidth Δ𝜔. Therefore, the size of the area in the detector plane
where the two fields passing through the two pinholes are still correlated (giving
rise to a visible interference pattern) ultimately depends on the spectral bandwidth
Δ𝜔. The smaller the spectral bandwidth Δ𝜔 is, the larger the coherence area is.

In the extreme case when the interference pattern is generated by a monochro
matic point source whose spectral bandwidth Δ𝜔 → 0, visibility will be uniformly 1
everywhere in the detector plane because the duration of the wavepacket Δ𝜏 → ∞.
In practice, a monochromatic point source can be achieved by focusing a laser beam
on a spatial filter (a diaphragm).

1.1.2. Spatial coherence

Source Screen Detector

Figure 1.3: Demonstration of the origin of spatial coherence. A planar extended source, which consists
of a collection of independent monochromatic point sources, is placed in the source plane. The total
intensity distribution is the sum of the shifted interference pattern generated by each point source, and
the shift is proportional to the location of the point source. The gray area is covered by the same pitch
of different shifted interference pattern. If this area is larger than one pitch of the interference pattern,
the fringes will be completely smeared and hence the visibility becomes zero.

As we have demonstrated that when only one monochromatic point source is
present, the interference pattern will have uniform visibility in the detector plane.
When moving the point source in the source plane, the interference pattern will
shift accordingly as shown in Fig. 1.3. This is because the movement alters the
phase difference between the two fields at the two pinholes.

In the presence of a collection of independent point sources, we can observe the
smearing of the total intensity distribution because the shifted interference patterns
superpose with each other. This effect is due to the spatial extension of the source
and hence is referred to as the spatial coherence in order to be distinguished from



1

6 1. Introduction

the temporal coherence effect, which is due to the extension of a wavepacket in
the time domain.

In the case shown in Fig. 1.3, if the largest shift of the interference pattern
(generated by the point source on the edge of the source) is larger than half pitch
of the interference pattern, the fringes will then be completely smeared and hence
the visibility becomes zero. Consequently, the fields at these two pinholes are
uncorrelated, or in other words, spatially incoherent.

The correlation between the fields at these two pinholes depends on their sep
aration, for a given size of the source. As the separation increases, the pitch of
the interference pattern decreases, and so does the correlation. Therefore, using
a monochromatic extended source instead of a point source will make the field in
the screen plane become spatially partially coherent.

1.2. The theory of image formation

Object Plane

(ro)

Image Plane

(ri)

Pupil Plane

(ρ)

Figure 1.4: Illustration of an imaging process. Each point source that the object field consists of gen
erates an image field. An image of the object is defined as the intensity of the total image field. The
spatial coherence property of the object field has a significant impact on the image intensity.

Imaging systems transform an electromagnetic field in the object plane into a
target electromagnetic field in the image plane. According to the Huygens’ law,

each point of the object field is itself a source. In an imaging process, due to the
inevitable aberrations of the imaging system, the transformation is never perfect.
The total image field is the sum of the image fields emitted by all point sources,
which can be written as

𝐸𝑖(r𝑖) = ∬𝐻(r𝑖; r𝑜)𝐸𝑜(r𝑜)dr𝑜 . (1.6)

where 𝐻(r𝑖; r𝑖) represents the image field (a function of image plane location r𝑖)
generated by the point source at r𝑜 in the object plane. 𝐻(r𝑖; r𝑖) is also known as
the pointspread function (PSF) of the imaging system. In most situations, PSF is
assumed to be translationinvariant: 𝐻(r𝑖; r𝑜) = 𝐻(r𝑖 − r𝑜), which depends on only
the relative distance between r𝑖 and r𝑜. Notice that here we assume a unit scaling
ratio of the imaging system, namely no magnification or demagnification.
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Because only the intensity can be measured by using charge coupled devices
(CCD) or complementary metal oxide semiconductor (CMOS) sensors, the ”image”
of an object is referred to as the intensity of the total image field. The correlation
between the image field generated by each point source of the object plays an
important role in image formation. We can write the image intensity as

𝐼(r𝑖) = ⟨𝐸𝑖(r𝑖)𝐸𝑖(r𝑖)∗⟩

= ∬∬𝐻(r𝑖 − r𝑜1)𝐻(r𝑖 − r𝑜2)∗ ⟨𝐸𝑜(r𝑜1)𝐸𝑜(r𝑜2)∗⟩dr𝑜1dr𝑜2,
(1.7)

where ⟨⋅⟩ denotes the ensemble averaging. In Eq. (1.7), we define 𝐽𝑜(r𝑜1, r𝑜2) =
⟨𝐸𝑜(r𝑜1)𝐸𝑜(r𝑜2)∗⟩ as the MCF of the object field, which describes the correlation
between fields at r𝑜1 and r𝑜2. We can consider that the MCF 𝐽𝑜(r𝑜1, r𝑜2) determines
the weight of the product 𝐻(r𝑖 − r𝑜1)𝐻(r𝑖 − r𝑜2)∗. The image intensity Eq. (1.7)
thus represents a weighted sum for all possible combinations of r𝑜1 and r𝑜2.

Normally computing the image intensity using Eq. (1.7) is very timeconsuming
unless using fast methods based on approximations such as modal decomposition
approaches [1, 2] or in the cases of translationinvariant MCF [3]. In the cases when
the object field is completely coherent or completely incoherent, the computation of
the image intensity can be greatly simplified as a convolution, denoted by ∗, which
can be calculated using Fourier transform algorithms.

• Spatially coherent: The MCF of the object field is given by

𝐽𝑜(r𝑜1, r𝑜2) = 𝐸𝑜(r𝑜1)𝐸𝑜(r𝑜2)∗, (1.8)

which indicates that 𝐸(r𝑜1) and 𝐸(r𝑜2) are correlated for all possible combi
nation of r𝑜1 and r𝑜2. The image intensity is written as

𝐼(r𝑖) = |∬𝐻(r𝑖 − r𝑜)𝐸𝑜(r𝑜)dr𝑜|
2
= |𝐻(r𝑖) ∗ 𝐸𝑜(r𝑖)|

2 . (1.9)

• Spatially incoherent: The MCF of the object field is given by

𝐽𝑜(r𝑜1, r𝑜2) = 𝐸𝑜(r𝑜1)𝐸𝑜(r𝑜2)∗𝛿(r𝑜1 − r𝑜2), (1.10)

which indicates that 𝐸(r𝑜1) and 𝐸(r𝑜2) are correlated only when r𝑜1 = r𝑜2 and
are uncorrelated elsewhere when r𝑜1 ≠ r𝑜2. The image intensity is written as

𝐼(r𝑖) = ∬|𝐻(r𝑖 − r𝑜)|2|𝐸𝑜(r𝑜)|2dr𝑜 = |𝐻(r𝑖)|2 ∗ |𝐸𝑜(r𝑖)|2. (1.11)

To summarize, for the calculation of the image intensity 𝐼(r𝑖), we use Eq. (1.9),
the coherent imaging formula, when imaging a transmissive/reflective sample illu
minated by a laser beam, and use (1.11), the incoherent imaging formula, in the
case of e.g. fluorescent imaging. We remark that coherent effect may occur even
when the object is illuminated using a incoherent source [4]. In the intermediate
state when the imaging is only partially spatially coherent, characterizing the MCF
of the object field and computing the image intensity are both very challenging.
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1.3. Computation of the pointspread function

T he pointspread function (PSF) is defined as the image plane field distribution
generated by a point source in the object plane. The imaging system is usu

ally simplified by using a blackbox model for computing the PSF. This blackbox is
bounded by the entrance pupil and the exit pupil. The fields at these two pupils
are diverging and converging spherical waves centered at the point source and its
geometrical image, respectively.

Suppose that the field at the entrance pupil is ideal. The aberrations, caused by
both the imaging system and the ambient medium, and the loss of light intensity
are described by the amplitude and the phase of the pupil function (modulation to
the field at the exit pupil), respectively.

The PSF can be obtained by computing the farfield diffraction of the exit pupil
field in the image space. We define that the image space contains the focal plane,
in which the geometrical image of the point source locates, and defocused planes,
both of which are perpendicular to the optical axis.

In this thesis, we discuss only the computation of the PSF for low NA (NA < 0.6)
imaging systems. The situation is also known as the scalar case, in which the effect
of polarization is neglected.

We denote coordinates of the exit pupil and the image space by k and r, re
spectively. The axial coordinate in the image space is denoted by 𝑧 with the origin
at the intersection of the 𝑧 axis and the image plane (focal plane). We remark that
the location of the image plane is defined with respect to the object plane.

The field distribution of the PSF in the image space can be computed using the
Debye diffraction integral [5, 6], which is effectively a Fourier transform from the
exit pupil plane (k) to the image space (r):

𝑃𝑆𝐹(r, 𝑧) ∝ ∬𝑃(k) exp(𝑖𝜋𝑧NA
2

𝜆 |k|2) exp(−𝑖2𝜋NA𝜆 k ⋅ r)d2k (1.12)

where 𝑃(k) is the pupil function of the imaging system. The amplitude is often
assigned to be uniform (no loss of light intensity), while the phase is often described
in terms of the Zernike polynomials. We can thus express the pupil function by

𝑃(k) = exp{𝑖2𝜋∑
𝑚,𝑛

𝜁𝑚𝑛 𝑍𝑚𝑛 (k)} , (1.13)

where 𝜁𝑚𝑛 are Zernike coefficients in the unit of wavelength 𝜆 and 𝑍𝑚𝑛 (k) are the
Zernike polynomials defined as

𝑍𝑚𝑛 (𝜌, 𝜃) = {
√2(𝑛 + 1)𝑅|𝑚|𝑛 (𝜌) cos(|𝑚|𝜃), 𝑚 > 0
√𝑛 + 1𝑅|𝑚|𝑛 (𝜌), 𝑚 = 0
√2(𝑛 + 1)𝑅|𝑚|𝑛 (𝜌) sin(|𝑚|𝜃), 𝑚 < 0

, (1.14)

where 𝜌 and 𝜃 are the radial and the azimuthal coordinates in the pupil plane,
respectively, and 𝑛 and 𝑚 are the radial and the azimuthal orders, respectively.
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Each Zernike polynomial 𝑍𝑚𝑛 (𝜌, 𝜃) corresponds to anke aberration and the absolute
value of the Zernike coefficient |𝜁𝑚𝑛 | represents the weight of the rootmeansquare
wavefront error of the corresponding aberration.

The Zernike polynomials contain two parts: the radial part is given by

𝑅𝑚𝑛 (𝜌) =
(𝑛−𝑚)/2

∑
𝑘=0

(−1)𝑘 ∗ (𝑛 − 𝑘)!
𝑘!(𝑛+𝑚2 − 𝑘)!(𝑛−𝑚2 − 𝑘)!

𝜌𝑛−2𝑘 , (1.15)

where 𝜌 is normalized such that 0 ≤ 𝜌 ≤ 1, and the azimuthal part is a trigonometric
function depending on the sign of order 𝑚.

The term exp(𝑖𝑧|k|2) in Eq. (1.12) represents the effect of defocus relative to
the image plane (𝑧 = 0 represents the image plane). Normalizing the image plane
coordinates r by 𝜆/NA and the defocus distance 𝑧 by 𝜆/(𝜋NA2), respectively. We
can further write Eq. (1.12) as the Fourier transform of the pupil function and a
defocus term:

𝑃𝑆𝐹(r′, 𝑧) ∝ 𝐹 {𝑃(k) exp(𝑖𝑧|k|2)} (r′), (1.16)

The sampling of the pupil and the PSF should satisfy the ShannonNyquist sampling
theorem. Let the length and the interval of the sampling in the pupil plane and in
the image plane be denoted by (𝐿k, Δk) and (𝐿r, Δr), respectively. The sampling
theorem states that

𝐿k ≥
𝜆

NAΔr
,

Δk ≤
𝜆

NA𝐿r
.

(1.17)

In order to computed the PSF on the given sampling grid (for example to mimic
the measurement using a sensor array), the sampling of the pupil should satisfy
Eq. (1.17) and vice versa. However, the satisfaction of Eq. (1.17) does not natu
rally guarantee the optimal accuracy of PSF computation. Usually oversampling is
required to avoid the aliasing effect on the boundary of the pupil. Eq (1.16) can
be computed using the fast Fourier transform (FFT) or the chirpz transform (CZT)
algorithm [7, 8]. A recent alternative is the semianalytical approach: the extended
NijboerZernike (ENZ) theory [9, 10].

1.4. The inverse problem

I nverse problem is the process of inferring the parameters of a physical model
from the measurements. The physical model should take the parameters as

the input and produce the measurements as output. Typical inverse problems in
optics are diffractive imaging [11–13], image based aberration retrieval [14–16],
image restoration [17, 18], 3dimensional profile metrology in scatterometry for
lithography [19, 20], etc.

An inverse problem is said to be wellposed, when the physical model satisfies
three criteria:

• a solution exists,
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Figure 1.5: The phase of the pupil function and the corresponding PSF intensity for various aberrations.
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• the solution is unique,

• the solution depends on the initial condition in a continuous way.

When any of the three criteria is violated, the inverse problem is said to be illposed.
Particularly, the inverse problem is said to be illconditioned when the last criteria is
violated. In illconditioned inverse problem, a small change in the initial condition
leads to an arbitrary large change in the solution. The solution is thus not stable
and sensitive to the measurement noise.

Unfortunately, most of the inverse problems are illposed. In this section, we
will discuss how to formulate an inverse problem using the maximum likelihood
estimation based on the noise model and then study how to solve the inverse
problem for a nonlinear physical model.

1.4.1. Maximum likelihood estimation
The maximum likelihood estimation (MLE) estimates, for a given physical model,
the parameters that most likely reproduce the measurements. Suppose that the
measurements (with noise) taken by the pixelated detector and the predictions
(without noise) made by the physical model are 𝑔(𝑥, 𝑦) and 𝑓(𝑥, 𝑦), respectively.

Due to the noise, the number of photons detected (proportional to the inten
sity) at each pixel can be modeled as an independent and identically distributed
(i.i.d.) random variable. Provided the probability density that the measured inten
sity obeys, we can formulate a likelihood function that evaluates the likelihood of
a given measurement being detected. Thermal noise (JohnsonNyquist noise) and
photon shot noise are typical noises in the detectors. MLE finds the parameters
that most likely reproduce the noisy measurements by maximizing the likelihood
function or, equivalently, minimizing its logarithm.

Consider the imaging problem as an example. The measured and the predicted
image are 𝑔(𝑥, 𝑦) and 𝑓(𝑥, 𝑦;𝛾𝛾𝛾), respectively. We assume that the model of imaging
depends on the parameters 𝛾𝛾𝛾 = [𝛾1, 𝛾2, ⋯]. Both 𝑔(𝑥, 𝑦) and 𝑓(𝑥, 𝑦;𝛾𝛾𝛾) represent
distributions of intensities.

Assuming that the dominant noise of the measurement is the thermal noise
generated by the thermal agitations of the electronic components of the detector.
For the pixel at (𝑥, 𝑦), the noisy image intensity 𝑔(𝑥, 𝑦) is a random variable whose
probability density follows the Gaussian distribution with mean given by the perfect
(noise free) image intensity 𝑓(𝑥, 𝑦;𝛾𝛾𝛾) and variance 𝜎2𝑛:

𝑃𝐺,(𝑥,𝑦)[𝑔(𝑥, 𝑦);𝛾𝛾𝛾, 𝜎2𝑛] =
1

√2𝜋𝜎2𝑛
exp {−[𝑔(𝑥, 𝑦) − 𝑓(𝑥, 𝑦;𝛾

𝛾𝛾)]2
2𝜎2𝑛

} . (1.18)

Therefore, the probability density for the entire image is given by

𝑃𝐺[𝑔(𝑥, 𝑦);𝛾𝛾𝛾, 𝜎2𝑛] =∏
𝑥,𝑦

1
√2𝜋𝜎2𝑛

exp {−[𝑔(𝑥, 𝑦) − 𝑓(𝑥, 𝑦;𝛾
𝛾𝛾)]2

2𝜎2𝑛
} . (1.19)

Eq. (1.19) is the likelihood function in the case of thermal noise. It is customary to
use the natural logarithm of Eq. (1.19) which is given by (assuming that the noise
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at each pixel is i.i.d. random variable)

ln𝑃𝐺[𝑔(𝑥, 𝑦);𝛾𝛾𝛾, 𝜎2𝑛] =
1

√2𝜋𝜎2𝑛
∑
𝑥,𝑦
−[𝑔(𝑥, 𝑦) − 𝑓(𝑥, 𝑦;𝛾

𝛾𝛾)]2
2𝜎2𝑛

∝ −∑
𝑥,𝑦
[𝑔(𝑥, 𝑦) − 𝑓(𝑥, 𝑦;𝛾𝛾𝛾)]2.

(1.20)

Notice that the logarithmic likelihood function for thermal noise Eq. (1.20) can be
interpreted as the L2 norm of the difference between the measurement 𝑔(𝑥, 𝑦)
and the prediction 𝑓(𝑥, 𝑦;𝛾𝛾𝛾). So MLE is equivalent to the method of least squares
because maximizing Eq. (1.20) is equivalent to minimizing the least squares.

An alternative assumption is that the dominant noise of the image is due to
the fluctuation of the number of photons detected. At pixel (𝑥, 𝑦), the number of
detected photons 𝑔(𝑥, 𝑦) follows the Poisson distribution with reference given by
the expected photons 𝑓(𝑥, 𝑦;𝛾𝛾𝛾):

𝑃𝑃,(𝑥,𝑦)[𝑔(𝑥, 𝑦);𝛾𝛾𝛾] =
𝑓(𝑥, 𝑦;𝛾𝛾𝛾)𝑔(𝑥,𝑦)
𝑔(𝑥, 𝑦)! exp[−𝑓(𝑥, 𝑦;𝛾𝛾𝛾)], (1.21)

The probability density for the entire being measured is given by

𝑃𝑃[𝑔(𝑥, 𝑦);𝛾𝛾𝛾, 𝜎2𝑛] =∏
𝑥,𝑦

𝑓(𝑥, 𝑦;𝛾𝛾𝛾)𝑔(𝑥,𝑦)
𝑔(𝑥, 𝑦)! exp[−𝑓(𝑥, 𝑦;𝛾𝛾𝛾)]. (1.22)

Taking the natural logarithm of Eq. (1.22) the photon shot noise likelihood function,
we obtain:

ln𝑃𝑃[𝑔(𝑥, 𝑦);𝛾𝛾𝛾, 𝜎2𝑛] =∑
𝑥,𝑦
[𝑔(𝑥, 𝑦) ln 𝑓(𝑥, 𝑦;𝛾𝛾𝛾) − ln𝑔(𝑥, 𝑦)! − 𝑓(𝑥, 𝑦;𝛾𝛾𝛾)]

∝∑
𝑥,𝑦
[𝑔(𝑥, 𝑦) ln 𝑓(𝑥, 𝑦;𝛾𝛾𝛾) − 𝑓(𝑥, 𝑦;𝛾𝛾𝛾)] ,

(1.23)

where the constant term ln𝑔(𝑥, 𝑦)! has been neglected. We shall notice that when
the expected number of photons 𝑓(𝑥, 𝑦) is large, the Poisson distribution that 𝑔(𝑥, 𝑦)
obeys can be approximated by the Gaussian distribution with mean and variance
both equal to 𝑓(𝑥, 𝑦).

1.4.2. Gradient descent method for optimization
Consider a physical model that depends nonlinearly on the parameters 𝛾𝛾𝛾. For such
a nonlinear inverse problem, no analytical solution of 𝛾𝛾𝛾 can be derived and instead
we find the solution of 𝛾𝛾𝛾 numerically via iterative optimization. In this thesis we
discuss the gradient descent method for optimization, which determines the update
of 𝛾𝛾𝛾 based on the gradient of an error function with respect to 𝛾𝛾𝛾.
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Figure 1.6: The logarithmic likelihood function for thermal noise (left) and photon shot noise (right).

Let us consider the imaging problem as an example again. The parameters 𝛾𝛾𝛾
can be regarded as the aberrations. The first step is to define an error function
using the least squares as follows:

ℒ(𝛾𝛾𝛾) = ∬[𝑔(𝑥, 𝑦) − 𝑓(𝑥, 𝑦;𝛾𝛾𝛾)]2 d𝑥d𝑦, (1.24)

Defining the error function as Eq. (1.24) indicates that the dominant noise of 𝑔(𝑥, 𝑦)
is additive and the probability density follows the Gaussian distribution with mean
equal to 𝑓(𝑥, 𝑦;𝛾𝛾𝛾) and variance given by the noise level.

The gradient descent method starts with a initial guess of 𝛾𝛾𝛾. In each iteration, 𝛾𝛾𝛾
is updated along a certain direction by a certain step size, and the iterative process
repeats until the error function converges, i.e. ℒ(𝛾𝛾𝛾) or the variation of ℒ(𝛾𝛾𝛾) is
sufficiently small. The iterative process will also stop if any of the constraints, e.g.
the maximum iteration number or the maximum time duration, is violated. We
illustrated a flow chart of the optimization in Fig. 1.7.

To determine the update direction of 𝛾𝛾𝛾, we define the variation of the error
function with respect to the aberration as

𝛿ℒ(𝛾𝛾𝛾) = ℒ(𝛾𝛾𝛾 + 𝜖𝜂𝜂𝜂) − ℒ(𝛾𝛾𝛾), (1.25)

where 𝜖 is a number and 𝜂𝜂𝜂(𝑥, 𝑦) is an arbitrary vector. Taking the Taylor’s expansion
of 𝐿(𝛾𝛾𝛾 + 𝜖𝜂𝜂𝜂) at 𝜖 = 0, we obtain

ℒ(𝛾𝛾𝛾 + 𝜖𝜂𝜂𝜂) = ℒ(𝛾𝛾𝛾) + [∇ℒ(𝛾𝛾𝛾 + 𝜖𝜂𝜂𝜂)|𝜖=0]
T
𝜂𝜂𝜂 + 𝒪(𝜖), (1.26)

where

∇ℒ(𝛾𝛾𝛾 + 𝜖𝜂𝜂𝜂)|𝜖=0 = [
𝜕ℒ(𝛾𝛾𝛾)
𝜕𝛾1

, 𝜕ℒ(𝛾
𝛾𝛾)

𝜕𝛾2
, ⋯]
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Figure 1.7: The flow chart of the optimization algorithm for solving the inverse problem.

The variation of the error function with respect to 𝛾𝛾𝛾 thus is given by

𝛿ℒ(𝛾𝛾𝛾) = ∇ℒ(𝛾𝛾𝛾)T𝜂𝜂𝜂, (1.27)

where we have kept only the first order term and neglected the higher order terms.
Eq. (1.27) indicates that the variation of the error function depends on the choice of
the arbitrary function 𝜂𝜂𝜂. Because we aim to find 𝛾𝛾𝛾 that minimizes the error function,
in each iteration, we want to update 𝛾𝛾𝛾 in the direction along which the descent of
the error function is the steepest. Consequently, the arbitrary function 𝜂𝜂𝜂 should be

𝜂𝜂𝜂 ∝ −∇ℒ(𝛾𝛾𝛾) (1.28)

and the variation of the error function becomes

𝛿ℒ(𝛾𝛾𝛾) = −𝛼‖∇ℒ(𝛾𝛾𝛾)‖22 (1.29)

where 𝛼 is a scalar that represents the step size and ‖ ⋅ ‖22 is the L2 norm.
The determination of the step size along the update direction of 𝛾𝛾𝛾 is a question

that deserves investigation. One way is to find the optimal 𝛼 using the line search
method which solves the following optimization problem:

𝛼 = argmin
𝛼
ℒ(𝛾𝛾𝛾 + 𝛼𝜂𝜂𝜂) (1.30)



References

1

15

Although the line search method finds 𝛼 that decreases the error function the most
along 𝜂𝜂𝜂, a complete optimization, which is usually timeconsuming, is required in
each iteration. An alternative is to find the optimal 𝛼 that satisfies the following
condition:

ℒ(𝛾𝛾𝛾 + 𝛼𝜂𝜂𝜂)) ≤ ℒ(𝛾𝛾𝛾) − 𝛼𝛿, (1.31)

where 𝛿 ∈ (0, 1) is the control parameter of the condition. In each iteration, the
initial step size 𝛼 is reduced by a factor of Δ ∈ (0, 1) until the condition is satisfied.

Another approach is to determine 𝛼 by assuming that the cost function ℒ shows
an approximate parabolic behavior locally as function of 𝛼. The value of 𝛼 yielding
a minimum of the local parabolic approximation for ℒ can then simply be derived
from the derivative of this parabolic function.
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2.1. Background
For advanced imaging systems such as microscope, telescope, and lithographic
projection lens, image blurring is mainly caused by the error of the wavefront at
the pupil. The ideal wavefront generated by any point source in the object plane has
for an perfect imaging system a spherical shape which is centered at the location of
the geometrical image of this point source in the image plane. Each type of error,
referred to as the aberration, leads to a distinct kind of blurring of the image and
hence needs to be dealt with. Typically there are two origins of aberrations: external
aberrations, which are caused by the nonuniformity of the ambient medium, for
example imaging through a biomedical tissue sample or a turbulent atmosphere,
and internal aberrations, which are often caused by vibration, contamination or
heating during operation.

One method to deal with the aberrations is to use adaptive optics, which has
been studied excessively in astronomical and biomedical imaging. In this method
the error of the wavefront at the pupil of the imaging system is measured and
then compensated by an active device, e.g. a deformable mirror (DM) or a spatial
light modulator (SLM). It is common to use wavefront sensing techniques such as
interferometry [1, 2] or a wavefront sensor [3] to measure the wavefront error.

These techniques require a point source for providing the ideal wavefront as
reference and an additional imaging system for mapping the actual wavefront onto
a detector. The accuracy of these techniques thus relies on the quality of the ref
erence. The additional imaging system also has its own wavefront error that mixes
with the wavefront error of the imaging system that is to be measured. This is usu
ally known as the noncommon path error, i.e. the imaging and the measurement
of the aberrations do not share one common path.

In astronomy [4], either a natural star or an artificial laser guide star is used as
a point source. When imaging the eye using scanning laser ophthalmoscopy, it is
possible to regard the light scattered by retina cells as if emitted by a point source
[5]. In other applications, such a point source maynot be readily available.

Combining an active device and a camera provides a possibility for measuring
the wavefront error which differs from the conventional methods mentioned above.
This modal approach was proposed by Martin Booth in [6] for confocal microscopy
and was later applied to a series of microscopic techniques [7–9]. It works in a
probeandtest manner: the original wavefront is perturbed by a particular mode
of aberration, and the information that this perturbation provides is measured in the
image. As a consequence, measuring 𝑁 aberration modes requires at least 2𝑁 + 1
images: each mode requires an original unbiased image and two perturbed images
(by opposite bias).

Alternative aberration retrieval methods are based on the propagation of light in
freespace. These methods solve the following problem: retrieve the phase of light
(the wavefront) in the pupil from the intensity of its Fourier transform, e.g. from
the intensity of the pointspread function (PSF), in the image plane. This method
was first reported by Gerchberg and Saxton in 1971 [10, 11] who additionally used
the distribution of light intensity in the pupil as constraint which had to be assumed
to be known. Further development of this method was proposed by Fienup [12, 13]
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who used only the support constraint of the light in the pupil.
Measuring the intensity distribution in several planes in the focal volume allows

the retrieval of the phase of the light in one of the throughfocus planes. There exist
two types of methods for achieving this goal. The deterministic methods [14–16]
search for the solution to the transportofintensity equation (TIE), which requires
measuring both the intensity distribution in the plane of interest and its derivative
along the direction of the optical axis. The nondeterministic methods [17, 18] aim
to find the phase in one plane by propagating backandforth among a series of
planes: in each plane, the phase is kept, while the amplitude is replaced by the
square root of the measured intensity.

In the case of incoherent imaging, the object consists of a collection of mutually
incoherent point sources. Most of the above mentioned techniques and methods
cannot be used (except for the probeandtest method [6–9]) in this case because
the wavefront in the pupil will be an incoherent superposition of the wavefronts
generated by all point sources. In 1992, Paxman et al. proposed to retrieve the
aberrations from the images of an unknown object using the phase diversity method
[19]. In addition to the original image, at least one more image is measured after
the phase of the pupil function has been perturbed in a known fashion. Defocus
variation, which is introduced by varying the location of the camera sensor on the
optical axis, is a commonly used phase diversity. The phase diversity method has
been implemented successfully in solar imaging [20, 21].

In contrast to other mentioned aberration measurement and retrieval methods,
the phase diversity method can be applied to incoherent imaging of an unknown ob
ject. By solving a minimization problem that is independent of the unknown object
with the phase diversity method, the aberrations are retrieved and corrected using
software instead of hardware. This feature makes it a costeffective method: it re
quires only a 1dimensional translation stage (along the optical axis perpendicular
to the image plane) on which the camera sensor is mounted.

In the phase diversity method, only the aberrations that blur the image are
retrieved from the image. In other methods, usually the wavefront of a point source
is measured and hence all aberrations can be determined in principle. However, the
accuracy is limited by the fact that the wavefront determined by a wavefront sensor
or by interferometry differs from the actual wavefront that causes the blurring of
the image, because the optical path of the wavefront measurement differs from the
optical path of imaging. Therefore, to deblur the image of a particular object, the
phase retrieval method is superior over other methods.

In this chapter, we investigate the phase diversity by performing a proofof
principle experiment using a microscope objective as imaging system. We study
how the choice of the algorithm, the regularization, and other factors can influence
the optimization, and we propose a method to calibrate the measurement settings.

2.2. The phase diversity method
For incoherent imaging, the object is considered to consist of a collection of mutually
incoherent point sources. As it is shown in Fig. 2.1, each point source in the object
plane generates an image in the image plane, which is known as the PSF. We
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Figure 2.1: Schematic plot of the incoherent imaging system: a microscope objective. Each point source
in the object plane generates a PSF in the image plane, whose shape is influenced by the aberrations of
this imaging system. The image intensity is the superposition of all individual PSF intensities. Varying
the location of the image plane along the optical axis varies the image intensity, which is due to the
variation of PSF due to defocus aberration.

assume that the imaging system is shiftinvariant (also known as isoplanatic). Then
the PSF is independent of the location of the point source in the field of view (FOV).
Commercial imaging systems are usually designed to be shiftinvariant in the entire
FOV (often referred to as the isoplanatic patch), while others are only shiftinvariant
in a sufficiently small subregion of the FOV. We will stick to the shiftinvariant
assumption in the present chapter.

We can express the image formation formula by

𝐼(r𝑖) = ∫𝐻(r𝑖 − r𝑜)𝑂(r𝑜)dr𝑜 , (2.1)

where r𝑜 and r𝑖 are 2dimensional coordinates of the object and image plane, 𝑂(r𝑖)
and 𝐼(r𝑜) are intensities in the object and image plane, respectively, and 𝐻(r𝑖− r𝑜)
is the intensity of the shiftinvariant PSF. In this formula, r𝑜 and r𝑖 are related by
r𝑖 = 𝜎r𝑜, where 𝜎 = 𝛼𝑜/𝛼𝑖 is a constant scaling factor given by the ratio between
the numerical apertures (NAs) of the object space 𝛼𝑜 and the image space 𝛼𝑖.

By Fourier transforming both sides of Eq. (2.1), we obtain:

̂𝐼(k) = �̂�(k)�̂�(k), (2.2)

where ̂ represents the Fourier transform, and k denotes the pupil plane coordi
nate, which can also be referred to as the spatial frequency. �̂�(k) and ̂𝐼(k) are the
object and image spectrum, respectively, and �̂�(k) is the PSF spectrum, which is
also called the optical transfer function (OTF). Suppose that the wavelength of illu
mination is 𝜆. Then the sampling of k should satisfy the ShannonNyquist sampling
theorem with respect to the normalized image plane coordinate r𝑖/(𝜆/𝛼𝑖).

Usually, in the phase diversity method defocus variation is used by varying the
image plane along the optical axis. We denote the image plane location by 𝑧 and
set the origin 𝑧 = 0 to be at the location of the nominal best image plane (the
plane in which the image quality is the best in absence of aberrations except for
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the defocus). In the image plane at 𝑧, the OTF is given by
�̂�𝑧(k; 𝑃) = ℱ {𝐻𝑧(r; 𝑃)} , (2.3)

where ℱ denotes the Fourier transform operator, 𝑃(k) is the pupil function, and
𝐻𝑧(r; 𝑃) is the PSF intensity, which is given by

𝐻𝑧(r; 𝑃) = |ℱ {𝑃(k) exp(−𝑖𝑧|k|2)}|
2 , (2.4)

where r = r𝑖/(𝜆/𝛼𝑖) and 𝑧 = 𝑧0/[𝜆/(𝜋𝛼𝑖)2], where 𝑧0 is the actual axial coordinate,
are the normalized lateral and axial coordinate, respectively. The image spectrum
in the image plane at 𝑧 is given by

̂𝐼𝑧(k) = �̂�𝑧(k; 𝑃)�̂�(k). (2.5)

Both k and 𝑧 are dimensionless because of the normalization. Eq. (2.5) implies that
for fixed object spectrum �̂�(k) and pupil function 𝑃(k), varying the image plane
location 𝑧 varies the image spectrum ̂𝐼𝑧(k) due to the defocus aberration in the OTF
�̂�𝑧(k; 𝑃). The pupil function describes the properties of the imaging system. For
example, the deviation of its phase from a constant represents the aberrations of
the imaging system.

By capturing images in a series of image planes and subsequently computing
their 2dimensional Fourier transforms, we can obtain a system of equations, which
depends linearly on the unknown object spectrum �̂�(k) and nonlinearly on the
unknown pupil function 𝑃(k):

̂𝐼𝑧1(k) = �̂�𝑧1(k; 𝑃)�̂�(k),
̂𝐼𝑧2(k) = �̂�𝑧2(k; 𝑃)�̂�(k),
⋮ = ⋮

̂𝐼𝑧𝓁(k) = �̂�𝑧𝓁(k; 𝑃)�̂�(k),

(2.6)

where 𝑧1, 𝑧2, ⋯ 𝑧𝓁 are the locations of the image planes. The image spectrum ̂𝐼𝑧(k)
is obtained by taking the Fourier transform of the measured intensity distribution
and the OTF �̂�𝑧(k; 𝑃) is computed based on the pupil function 𝑃(k) and the coor
dinates (r and 𝑧) of the planes in which the image is measured. In order to solve
for the two unknowns, we need a system consisting of at least two equations: two
images measured at two different locations but generated by the same object, i.e.
using the same imaging system. Usually, we take one focal image in the nominal
best image plane at 𝑧 = 0, which is supposed to be the clearest, and one additional
blurred defocused image in an image plane at 𝑧 ≠ 0.

In the phase diversity method the minimum is computed of an error function
which is the L2 norm of the difference between ̂𝐼𝑧(k), as obtained by taking the
Fourier transform of the measured image, and the predicted �̂�𝑧(k, 𝑃)�̂�(k):

ℒ (�̂�, 𝑃) =∑
𝑧
‖ ̂𝐼𝑧(k) − �̂�𝑧(k; 𝑃)�̂�(k)‖

2
2

=∑
𝑧
∫| ̂𝐼𝑧(k) − �̂�𝑧(k; 𝑃)�̂�(k)|

2
dk,

(2.7)
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In case the exact �̂�(k) and 𝑃(k) are known and are substituted in Eq. (2.7), this
difference actually gives the L2 norm of the noise over every measurement plane.
By defining the error function in Eq. (2.7) as the squared sum of the differences, we
implicitly assume that the dominating noise obeys a zero mean Gaussian distribution
in [19]. In other situations, the dominating noise may obey a Poisson distribution
which depends on the distribution of image intensity, and hence the justification of
using Eq. (2.7) is not valid. The key factor here is the level of the light intensity.
Thermal noise (Gaussian distributed noise) is dominating in most situations, while
shot noise (Poisson distributed noise) is dominating when the light intensity is very
low, e.g. equal to the energy of relatively low number of photons.

As is seen in Eq. (2.6), the image spectrum depends linearly on �̂�(k) but very
nonlinearly on 𝑃(k) through the OTF. Therefore, in the phase diversity method
first a closedform expression is derived for the object spectrum in terms of ̂𝐼𝑧(k)
and �̂�𝑧(k; 𝑃) in which a pupil function is assumed. By substituting the closedform
expression into Eq. (2.7), the unknown object spectrum �̂�(k) is eliminated and a
problem for only the pupil function 𝑃(k) remains. After solving the corresponding
problem for 𝑃(k) by iterative optimization, the object spectrum is finally recon
structed using the closedform expression.

2.2.1. The expression for the object spectrum
Our goal is to derive an expression for the object spectrum �̂�(k) in terms of the im
age spectrum ̂𝐼𝑧(k) and the OTF �̂�𝑧(k; 𝑃) in all measurement planes. We temporar
ily treat the pupil function 𝑃(k) as if known and hence �̂�(k) is the only unknown.
Because the expression for �̂�(k) should minimizes the error function Eq. (2.7):

�̂�(k) =min
�̂�(k)

ℒ (�̂�) , (2.8)

we should set the functional derivative of the error function with respect to �̂�(k)
equal to zero. Notice that �̂�(k) is a complexvalued function, which is given by

�̂�(k) = �̂�ℜ(k) + 𝑖�̂�ℑ(k), (2.9)

where �̂�ℜ(k) and �̂�ℑ(k) are the real and imaginary part, respectively. We can derive
the derivative of the error function with respect to the real and imaginary parts:

𝜕ℒ (�̂�)
𝜕�̂�ℜ

= lim
𝜖→0

ℒ (�̂� + 𝜖�̂�ℜ) − ℒ (�̂�)
𝜖

= lim
𝜖→0

∑𝑧 ‖( ̂𝐼𝑧 − �̂�𝑧�̂�) − 𝜖�̂�𝑧�̂�ℜ‖
2
2 − ∑𝑧 ‖ ̂𝐼𝑧 − �̂�𝑧�̂�‖

2
2

𝜖
≈∑

𝑧
∫−2ℜ{�̂�𝑧(k)�̂�ℜ(k) [ ̂𝐼𝑧(k) − �̂�𝑧(k)�̂�(k)]

∗}dk,

(2.10)
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and

𝜕ℒ (�̂�)
𝜕�̂�ℑ

= lim
𝜖→0

ℒ (�̂� + 𝑖𝜖�̂�ℑ) − ℒ (�̂�)
𝜖

= lim
𝜖→0

∑𝑧 ‖( ̂𝐼𝑧 − �̂�𝑧�̂�) − 𝑖𝜖�̂�𝑧�̂�ℑ‖
2
2 − ∑𝑧 ‖ ̂𝐼𝑧 − �̂�𝑧�̂�‖

2
2

𝜖
≈∑

𝑧
∫−2ℜ{𝑖�̂�𝑧(k)�̂�ℑ(k) [ ̂𝐼𝑧(k) − �̂�𝑧(k)�̂�(k)]

∗}dk.

(2.11)

As a result, the derivative of the error function with respect to the object spectrum
is

𝜕ℒ (�̂�)
𝜕�̂�(k) =

𝜕ℒ (�̂�)
𝜕�̂�ℜ(k)

+ 𝑖 𝜕ℒ (�̂�)𝜕�̂�ℑ(k)

=∑
𝑧
∫−2ℜ{�̂�𝑧(k) [�̂�ℜ(k) − �̂�ℑ(k)] [ ̂𝐼𝑧(k) − �̂�𝑧(k)�̂�(k)]

∗}dk

=∑
𝑧
∫−2ℜ {�̂�(k)∗ [�̂�𝑧(k) ̂𝐼𝑧(k)∗ − |�̂�𝑧(k)|2�̂�(k)∗]}dk,

(2.12)

where
�̂�ℜ(k) − �̂�ℑ(k) = �̂�(k)∗. (2.13)

In order to make this integral equal to zero, we must have

∑
𝑧
[�̂�𝑧(k) ̂𝐼𝑧(k)∗ − |�̂�𝑧(k)|2�̂�(k)∗] = 0. (2.14)

Finally, we derive the expression for the object spectrum as follows

�̂�(k) =
∑𝑧 ̂𝐼𝑧(k)�̂�𝑧(k; 𝑃)∗
∑𝑧′ |�̂�𝑧′(k; 𝑃)|2

, (2.15)

where 𝑧 and 𝑧′ are summation indices in the numerator and denominator, respec
tively. Eq. (2.15) indicates that provided the pupil function 𝑃(k) is known, we can
reconstruct the object spectrum �̂�(k) using the image spectrum ̂𝐼𝑧(k) and the OTF
�̂�𝑧[k; 𝑃(k)] in all measurement planes. In this reconstruction, ̂𝐼𝑧(k) is obtained by
taking the Fourier transform of the measured intensity distribution and �̂�𝑧[k; 𝑃(k)]
is computed based on the known pupil function 𝑃(k) and the coordinates (r and 𝑧)
of the planes in which the images are measured.

2.2.2. The optimization scheme for the pupil function
Now we eliminate the unknown object spectrum �̂�(k) from the original error func
tion to derive an error function in which the pupil function 𝑃(k) is the only remaining
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unknown. For this purpose, we substitute the expression of the object spectrum
Eq. (2.15) into the original error function Eq. (2.7) and we obtain

ℒ (𝑃) = ∫∑
𝑧
| ̂𝐼𝑧(k) − �̂�𝑧(k; 𝑃)

∑𝑧″ ̂𝐼𝑧″(k)�̂�𝑧″(k; 𝑃)∗

∑𝑧′ |�̂�𝑧′(k; 𝑃)|
2 |

2

dk, (2.16)

where 𝑧, 𝑧′ and 𝑧″ summation indices. Note that ℒ is now a functional of P whereas
previously it was a functional of both O and P. This should not cause confusion
however. By computing the squared modulus we get (see Appendix I)

ℒ (𝑃) = ∫{∑
𝑧
| ̂𝐼𝑧(k)|

2 − |
∑𝑧″ ̂𝐼𝑧″(k)�̂�𝑧″(k)∗|

2

∑𝑧′ |�̂�𝑧′(k)|
2 }dk

= ∫{𝐴(k) − |𝐶(k)|
2

𝐵(k) }dk,

(2.17)

where

𝐴(k) =∑
𝑧
| ̂𝐼𝑧(k)|

2 , 𝐵(k) =∑
𝑧
|�̂�𝑧(k)|

2 , and 𝐶(k) =∑
𝑧

̂𝐼𝑧(k)�̂�𝑧(k)∗.

Eq. (2.17) shows that computation of the error function requires the computation
of only 3 quantities, namely 𝐴, 𝐵, and 𝐶. In this computation we do not need to
know the object spectrum �̂�(k), so Eq. (2.17) only depends on the pupil function
𝑃(k). The lateral and axial coordinates (r and 𝑧) of the measurement planes are
referred to as hyperparameters, which will also affect the value of the error function
and hence need to be known a priori. Namely, the sampling of k depends on the
sampling of r and the method for computing the Fourier transform. �̂�𝑧(k) should
be computed for the location 𝑧 of the plane in which the image whose Fourier
transform is ̂𝐼𝑧(k) is measured.

It is customary to express the pupil function as

𝑃(k) = |𝑃(k)| exp[𝑖2𝜋Φ(k)], (2.18)

where |𝑃(k)| represents the amplitude and Φ(k) is the phase. The amplitude is
often assumed to be everywhere 1 inside the pupil, i.e. 𝑃(k) = 1 if |k| ≤ 1, and 0
elsewhere. The fact that the pupil radius being k = 1 is due to the normalization
of the image plane coordinate r by 𝜆/𝛼𝑖. The phase represents the wavefront error
at the pupil, which is described by a weighted sum of Zernike polynomials:

Φ(k) =∑
𝑚,𝑛

𝜁𝑚𝑛 𝑍𝑚𝑛 (k), (2.19)

where 𝑍𝑚𝑛 (k) and 𝜁𝑚𝑛 are the Zernike polynomials and the associated weights with
radial order 𝑛 and azimuthal order 𝑚, respectively. In practice, we use the weights
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of a set of 15 (𝑛 = 1,⋯ , 4) or 37 (𝑛 = 1,⋯ , 6) Zernike polynomials as unknowns.
Therefore, we can significantly reduce the number of unknowns, which previously
was the value of the pupil function at every sampling point. Now the unknowns
are the weights of Zernike polynomials. We remark that every Zernike polynomial
corresponds to a specific type of aberration. Representing the wavefront error by
a limited number of Zernike polynomials already made use of a priori information
about the aberrations.

Now the error function depends on a vector 𝜁𝜁𝜁 of aberration coefficients instead
of the entire pupil function 𝑃(k) as function of k. We can observe that the depen
dence of ℒ(𝜁𝜁𝜁) on 𝜁𝜁𝜁 is very nonlinear. So, 𝜁𝜁𝜁 can only be determined via optimization.
Typical optimization algorithms start with an initial guess of 𝜁𝜁𝜁 and update 𝜁𝜁𝜁 itera
tively until a certain stopping criterion is met, e.g. the error function ℒ(𝜁𝜁𝜁) or its
variation is sufficiently small. The scheme for updating 𝜁𝜁𝜁 can be written as

𝜁𝜁𝜁𝑘+1 = 𝜁𝜁𝜁𝑘 + Δ𝜁𝜁𝜁𝑘 , (2.20)

where the subscript 𝑘 denotes the index of iteration, and Δ𝜁𝜁𝜁𝑘 is the update of 𝜁𝜁𝜁𝑘.
In order to guarantee that the error function at 𝜁𝜁𝜁𝑘+1 is not larger than at 𝜁𝜁𝜁𝑘, the
convergence constraint must be fulfilled:

ℒ(𝜁𝜁𝜁𝑘+1) ≤ ℒ(𝜁𝜁𝜁𝑘). (2.21)

Eq. (2.21) guarantees that 𝜁𝜁𝜁 converges to a local minimum, which is in the neigh
borhood of the initial guess of 𝜁𝜁𝜁. The essence of an optimization algorithm is to
determine the update Δ𝜁𝜁𝜁𝑘 of 𝜁𝜁𝜁𝑘 in each iteration 𝑘.

In most optimization algorithms, e.g. quasiNewton methods, the determination
of the update is based on the gradient vector of the error function with respect to
the unknown 𝜁𝜁𝜁. Each element of the gradient vector is a derivative with respect
to an aberration coefficient 𝜁𝓁, where 𝓁 is the Noll’s index of the corresponding
aberration (Zernike polynomial) [22]. This derivative is given by

𝜕ℒ(𝜁𝜁𝜁)
𝜕𝜁𝓁

= 𝜕
𝜕𝜁𝓁

∫{𝐴(k) − |𝐶(k)|
2

𝐵(k) }dk

= −∫ 1
𝐵(k)2 {2𝐵(k)ℜ {𝐶(k)

∗ 𝜕𝐶(k)
𝜕𝜁𝓁

} − |𝐶(k)|2 𝜕𝐵(k)𝜕𝜁𝓁
}dk,

(2.22)

where
𝜕𝐵(k)
𝜕𝜁𝓁

=∑
𝑧
2ℜ{�̂�𝑧(k)∗

𝜕�̂�𝑧(k)
𝜕𝜁𝓁

} , (2.23)

and
𝜕𝐶(k)
𝜕𝜁𝓁

=∑
𝑧
2ℜ{ ̂𝐼𝑧(k)∗

𝜕�̂�𝑧(k)
𝜕𝜁𝓁

} . (2.24)

In the plane located at 𝑧, the OTF �̂�𝑧(k) is given by the Fourier transform of the
intensity 𝐻𝑧(r) of the PSF, which depends on the pupil function 𝑃(k), whose phase
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Figure 2.2: Schematic plot of the experimental setup. We introduce defocus aberration to the microscope
objective (object side NA 𝛼𝑜 = 0.12, magnification 4×, and operating wavelength at 625 nm) by moving
the resolution target away from the nominal object plane. The solid and the dashed line show the imaging
with and without defocus aberration. We measure images of the resolution target in the focal plane at
𝑧 = 0 µm (nominal best image plane) and a defocused plane at distance 𝑧 = 500 µm (about 0.72𝜋 in
normalized axial coordinate).

is a function of the aberration coefficient 𝜁𝓁. Using the chain rule, we can derive
that

𝜕�̂�𝑧(k; 𝜁𝜁𝜁)
𝜕𝜁𝓁

= 𝜕
𝜕𝜁𝓁

ℱ {𝐻𝑧(r; 𝜁𝜁𝜁)} = ℱ {
𝜕𝐻𝑧(r; 𝜁𝜁𝜁)
𝜕𝜁𝓁

} , (2.25)

and

𝜕𝐻𝑧(r; 𝜁𝜁𝜁)
𝜕𝜁𝓁

= 𝜕
𝜕𝜁𝓁

|ℱ {𝑃(k) exp(−𝑖𝑧′|k|2)}|2

= 2ℜ{ℱ {𝑃(k) exp(−𝑖𝑧′|k|2)}∗ ℱ {𝜕𝑃(k)𝜕𝜁𝓁
exp(−𝑖𝑧′|k|2)}} ,

(2.26)

where
𝜕𝑃(k)
𝜕𝜁𝓁

= 𝜕
𝜕𝜁𝓁

exp [𝑖2𝜋∑
𝓁
𝜁𝓁𝑍𝓁(k)] = 𝑖2𝜋𝑍𝓁(k)𝑃(k). (2.27)

In each iteration of the optimization, computing the gradient vector using Eq. (2.22)
 (2.27) is the most timeconsuming step. The computational load is proportional
to the length of the vector 𝜁𝜁𝜁. A possible way for accelerating the optimization is to
parallelize the computation of the elements of the gradient vector.

2.2.3. Experimental setup
We validate the phase diversity method by a proofofprinciple experiment. The
experimental setup is shown in Fig. 2.2. We use a 4× magnification microscope
objective operating at wavelength 𝜆 = 625 nm with object side NA 𝛼𝑜 = 0.12
and image side NA 𝛼𝑖 = 0.03. As a result, this microscope objective can achieve
resolution 𝜆/(2𝛼𝑜) = 2.61 µm and 𝜆/(2𝛼𝑖) = 10.42 µm in the object and image
side, respectively. Kohler illumination is implemented in the experimental setup.
The illumination source is a narrow band collimated LED light source (Thorlabs
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Figure 2.3: Resolution target and measurements of two throughfocus images in spatial domain and
spatial frequency domain. Group 6 and gourp 7 of the resolution target are imaged by a CCD camera
located in the nominal image plane at 𝑧 = 0 and a defocused plane at distance 𝑧 = 500 µm.

M625L4C2 at 625 nm 490 mW). The size of the illumination source is sufficiently
large to guarantee incoherent imaging of the object on the camera detector.

The object is a resolution test target (Thorlabs 1951 USAF Resolution Test Target
Φ1″) with transmissive pattern (bright) on a reflective background (dark), which is
made by plating chrome on a soda lime glass substrate. The resolution test target
has 6 groups (from −2 to +7) of patterns: each consisting of 6 elements with 3
vertical bars and 3 horizontal bars. The smallest bar in group 7 element 6 is about
4.4 µm (equivalent to 288 pairs of lines per millimeter). Because the microscope
objective is corrected for spherical aberration induced by the glass coverslip, we
introduce spherical aberration by removing the glass coverslip. We furthermore
introduce defocus aberration to the microscope objective by moving the object away
from the nominal object plane.

A 16bit CCD camera (SVSVISTEK eco204MVGE) with pixel size 4.65 × 4.65
µm and pixel number 1024 × 776 is placed at a distance 𝐿 = 160 mm, which
equals the standard tube length, away from the microscope objective to measure
the image. The CCD camera is mounted on a linear precision translation stage
(Physik Instrumente M126.GC1) with step size 100 nm and range 25 mm. The
accuracy in the entire range is 2.5 µm. We measure the first image in a defocused
plane and the second image in an additional defocused plane at distance 𝑧 = 500
µm (about 0.72𝜋 normalized defocus distance) away from the first defocused plane.
The direction of defocus is chosen such that the second image is more blurred than
the first image.

In the experiment, we introduce 5 settings of defocus aberration by placing
the object at 5 defocus positions on the optical axis. For each setting of defocus
aberration, we take 2 measurements of images. In total we take 10 images for this
proofofprinciple experiment.

2.3. Image filtering using a window function
Image filtering is an inevitable operation of any optimization algorithm that relies on
the Fourier transforms of images. In principle, the function of an imaging system
is to perform a mapping from the object plane to the image plane, whose sizes
are related by the magnification/demagnification of the imaging system. Usually,
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Figure 2.4: An image as measured by the camera sensor. We crop a region (marked by the white box)
of the original image to demonstrate the filtering effect,

this image is much larger than the camera sensor, and hence in the measurement
process only a small part of this image can be captured. Therefore, measuring an
image is equivalent to crop the original image using a window function as shown in
Fig. 2.4. We can describe the measurement process by

𝐼(r) = 𝐼′(r)𝑊(r), (2.28)

where 𝐼(r) and 𝐼′(r) are the measured and the original images respectively, and
𝑊(r) is the window function. Fourier transforming both sides of Eq. (2.28) yields

̂𝐼(k) = ̂𝐼′(k) ∗ �̂�(k), (2.29)

where ∗ denotes the convolution operator. Eq. (2.29) indicates that the spectrum of
the measured image ̂𝐼(k) is the spectrum of the original image ̂𝐼′(k) convoluted by
the spectrum of the window function �̂�(k). As a consequence, the measurement
process can be regarded as filtering the original image by the window function in
the spatial domain (ordinary domain).

Note that the size of the Fourier transform of the window function, which has
a finite size, is infinite. Therefore, although the spectrum of the original image
̂𝐼′(k) is limited by the cutoff spatial frequency of the OTF �̂�(k), the spectrum of
the measured image ̂𝐼(k) is not limited due to the filtering by �̂�(k). This effect is
referred to as the spectrum leakage. In order to make

̂𝐼(k) = [�̂�(k)�̂�(k)] ∗ �̂�(k) ≈ �̂�(k)�̂�(k) (2.30)

so that Eq. (2.5) holds, we need to use a window function whose spectrum is
sufficiently narrow. The spectrum of the optimal window function should be a Dirac
delta function, which, however, cannot be achieved. The default window function
corresponding to using a rectangular camera sensor is rectangular, but we can
always apply an additional window function to the measured image in the post
processing step so that the spectrum of the combined window function becomes
sufficiently narrow, i.e. having a high ratio between the main lobe and side lobes.
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Figure 2.5: Comparison between the focal plane image and its spectrum without (left) and with (right)
Chebyshev window. The sizes of the original and the cropped images are 1024 × 768 and 512 × 512
respectively.
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Figure 2.6: Flowchart of applying and removing the window function for the phase diversity method.
In order to use the phase diversity algorithm, we need to apply the window function to the measured
image and remove it from the reconstructed object (restored image). The removal is regularized by
adding a small constant to the window function to avoid noise amplification.

In this work, we use the Chebyshev window as the extra window function. In
the spatial frequency domain, it is optimal in that it minimizes the width of the
mainlobe for a given attenuation of the sidelobes.

Fig. 2.5 shows the measured image (in the focal plane) and its spectrum with
and without Chebyshev window. We can observe that the Chebyshev window can
significantly reduce the leakage of the Fourier transform of the image caused by the
cropping of the image due to the camera sensor. However, because the Chebyshev
window decreases from the center to the edge of the FOV, the information of the
object will be lost at places where the value of Chebyshev window is very small (near
the edge of the FOV). In the phase diversity method, we first apply the Chebyshev
window to the measured image and then remove it from the reconstructed object.
The flowchart of this process is shown in Fig. 2.6.

2.4. The Optimization algorithm
The optimization algorithm is the core of the phase diversity method. Here we
consider two groups of optimization algorithms: Newton type methods which use
the Hessian matrix, and quasiNewton type methods use a proper update scheme
to avoid the use of the Hessian matrix. Typically computing the Hessian matrix is
very time consuming, but it provides a quadratic approximation of the landscape of
the error function ℒ(𝜁𝜁𝜁) in the vicinity of the current guess of 𝜁𝜁𝜁 and hence it allows
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the derivation of the update Δ𝜁𝜁𝜁 directly (the updated guess 𝜁𝜁𝜁+Δ𝜁𝜁𝜁 is at the minimum
of the quadratic approximation).

Suppose that 𝜁𝜁𝜁0 and 𝜁𝜁𝜁 are vectors before and after the update, respectively.
Both are 1 × 𝑁 vectors consisting of 𝑁 aberration coefficients. For 𝜁𝜁𝜁 in the vicinity
of 𝜁𝜁𝜁0, we approximate the error function at 𝜁𝜁𝜁0 by expanding it using a Taylor series.
The error function at 𝜁𝜁𝜁 is then approximately given by

ℒ𝑎𝑝𝑝(𝜁𝜁𝜁) ≈ ℒ(𝜁𝜁𝜁0) + (𝜁𝜁𝜁 − 𝜁𝜁𝜁0)Tℒ′(𝜁𝜁𝜁0) +
1
2(𝜁𝜁𝜁 − 𝜁𝜁𝜁0)

Tℒ″(𝜁𝜁𝜁0)(𝜁𝜁𝜁 − 𝜁𝜁𝜁0), (2.31)

where ℒ′(𝜁𝜁𝜁0) = [𝜕ℒ(𝜁𝜁𝜁0)/𝜕𝜁𝓁] is the 1 × 𝑁 gradient vector (first derivative) and
ℒ″(𝜁𝜁𝜁0) = [𝜕2ℒ(𝜁𝜁𝜁0)/𝜕𝜁𝓁𝜕𝜁𝓁′] is the 𝑁 × 𝑁 Hessian matrix (second derivative).

Because the approximated error function Eq. (2.31) is quadratic, it has a unique
extreme (stationary point), which satisfies

ℒ′𝑎𝑝𝑝(𝜁𝜁𝜁) ≈ ℒ′(𝜁𝜁𝜁0) + ℒ″(𝜁𝜁𝜁0)(𝜁𝜁𝜁 − 𝜁𝜁𝜁0) = 0. (2.32)

Therefore, the optimal update vector can be determined by solving Eq. (2.32):

Δ𝜁𝜁𝜁0 = 𝜁𝜁𝜁 − 𝜁𝜁𝜁0 = − [ℒ″(𝜁𝜁𝜁0)]
−1 ℒ′(𝜁𝜁𝜁0). (2.33)

However, the location of the stationary point of the quadratic error function 𝜁𝜁𝜁 may
not necessarily be in the vicinity of 𝜁𝜁𝜁0 where the approximation by the first three
terms of the Taylor series expansion is accurate. Therefore, the update vector is
often defined by

Δ𝜁𝜁𝜁0 = 𝑙d, (2.34)

where the vector d and the number 𝑙 are the direction (a unit vector) and the length
of (a scalar) the update vector, respectively.

In the Newton and quasiNewton type method the update direction d is chosen
to be in the direction pointing to the stationary point of the quadratic error function:

d = −
[ℒ″(𝜁𝜁𝜁0)]

−1 ℒ′(𝜁𝜁𝜁0)
‖ [ℒ″(𝜁𝜁𝜁0)]

−1 ℒ′(𝜁𝜁𝜁0)‖
, (2.35)

Depending on the initial guess of 𝜁𝜁𝜁, both Newton and quasiNewton type methods
can lead to a stationary point, which can be

• a local minimum, where for all directions in 𝜁𝜁𝜁 space there is a minimum.

• a local maximum, where for all directions in 𝜁𝜁𝜁 space there is a maximum.

• a saddle point, where for some directions in 𝜁𝜁𝜁 space there is a minimum
whereas for other directions there is a maximum..

In Eq. (2.35), the time to compute the gradient vector ℒ′(𝜁𝜁𝜁0) and the Hessian
matrix ℒ″(𝜁𝜁𝜁0) is proportional to 𝑁 and 𝑁2, respectively. Therefore, computing
ℒ″(𝜁𝜁𝜁0) directly either using an analytical formula or via numerical estimation (e.g.
finite difference) is timeconsuming. Alternatively, direct computation of ℒ″(𝜁𝜁𝜁0) can
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be avoided by using a proper update scheme. The most effective update scheme
was developed by Broyden [23], Fletcher [24], Goldfarb [25], and Shanno [26]
(BFGS), which requires computation of only the gradient vector ℒ′(𝜁𝜁𝜁0). In order
to guarantee that 𝜁𝜁𝜁 converges to a local minimum, the update scheme of BFGS
ensures that ℒ″(𝜁𝜁𝜁0) is positivedefinite in every iteration.

The variation of the error function at 𝜁𝜁𝜁0 in the limit of the update length 𝑙 → 0
is given by

lim
𝑙→0

ℒ(𝜁𝜁𝜁0 + 𝑙d) − ℒ(𝜁𝜁𝜁0)
𝑙 ≈ lim

𝑙→0
2𝑙dTℒ(𝜁𝜁𝜁0)′ − 𝑙2dTℒ(𝜁𝜁𝜁0)″d

2𝑙 = dTℒ′(𝜁𝜁𝜁0). (2.36)

Eq. (2.36) indicates that the steepest descent direction of the error function is

d = − ℒ′(𝜁𝜁𝜁0)
‖ℒ′(𝜁𝜁𝜁0)‖

. (2.37)

The optimization algorithm with Eq. (2.37) as the update direction is referred to
as the steepest descent method or the gradient descent method. We remark that
the BFGS direction Eq. (2.35) is not the steepest descent direction Eq. (2.37). As
𝜁𝜁𝜁 approaches closer a local minimum, the BFGS direction becomes more accurate
than the steepest descent direction, particularly when the local minimum is located
in a long and narrow valley.

The update length 𝑙 can be found by performing a line search along the update
direction d subject to the Wolfe conditions [27]:

ℒ(𝜁𝜁𝜁0 + 𝑙d) ≤ ℒ(𝜁𝜁𝜁0) + 𝑐1𝑙dTℒ′(𝜁𝜁𝜁0), (2.38)

−dTℒ′(𝜁𝜁𝜁0 + 𝑙d) ≤ −𝑐2dTℒ′(𝜁𝜁𝜁0), (2.39)

where 𝑐1 and 𝑐2 are constants satisfying 0 < 𝑐1 < 𝑐2 < 1. Typical values (e.g.
the values used by Matlab) are 𝑐1 = 10−4 and 𝑐2 = 0.9. The first and the second
condition guarantee sufficient descent of the error function ℒ(𝜁𝜁𝜁) and its variation
dTℒ′(𝜁𝜁𝜁), respectively. Therefore, 𝜁𝜁𝜁 always converges to a minimum of ℒ(𝜁𝜁𝜁), where
dTℒ′(𝜁𝜁𝜁) = 0.

In Fig. (2.7), we compare results obtained using the BFGS and the steepest
descent method for 15 and 37 aberration coefficients, respectively. We observe
in Fig. (2.7)(a) and (b) that compared to the steepest descent method, the BFGS
method not only converges much faster but also finds a local minimum where the
values of both the error function ℒ and its variation dTℒ′ are much lower. Fig. (2.7)
also shows that the set of 𝜁𝜁𝜁 found by the two methods are the same when 𝑁 = 15
but are different when 𝑁 = 37. By observing Fig. (2.7)(e) and (f), we can see
that the performance of the steepest descent method is better, while the BFGS
method performs well when 𝑁 is small but poorly when 𝑁 is large. This may be
because that the Hessian matrix for the current guess of 𝜁𝜁𝜁, which is not necessarily
positive definite, is now forced to be positive definite by BFGS method. Besides, the
accuracy of computing the inverse of the Hessian matrix decreases as the length of
𝜁𝜁𝜁 increases.
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Figure 2.7: Comparison between the optimization for the aberration coefficient vector 𝜁𝜁𝜁 consisting of 15
and 37 terms using the BFGS method and the steepest descent method. This comparison is done for the
images shown in Fig. 2.3. In (a) and (b) values of the error function ℒ(𝜁𝜁𝜁) and its variance dTℒ(𝜁𝜁𝜁) are
shown. (c) and (d) show the retrieved aberration coefficient vector 𝜁𝜁𝜁 and (e) and (f) show the object
reconstructed using the retrieved aberration coefficient vector 𝜁𝜁𝜁 .

2.5. Regularization of the phase diversitymethod
In the phase diversity method, the object spectrum �̂�(k) is reconstructed by solving
an inverse problem given the image spectrum ̂𝐼𝑧(k) and the estimated OTF �̂�𝑧(k)
in a every throughfocus measurement plane. However, it is wellknown that the
reconstruction of �̂�(k) is illposed because dividing ̂𝐼𝑧(r) by �̂�𝑧(k) is extremely
unstable. Recall that the formula of image formation in the spatial frequency domain
is given by

̂𝐼𝑧(k) = �̂�(k)�̂�𝑧(k) + �̂�𝑧(k), (2.40)

where �̂�𝑧(k) is the Fourier transform (the spectrum) of the noise 𝑁𝑧(r). A naive
solution to this inverse problem is

�̂�naive(k) = ̂𝐼𝑧(k)/�̂�𝑧(k) = �̂�(k) + �̂�𝑧(k)/�̂�𝑧(k). (2.41)
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Eq. (2.41) shows that dividing the noise spectrum �̂�𝑧(k) by the OTF �̂�𝑧(k) will
amplify �̂�𝑧(k) at places where �̂�𝑧(k) is small, in particular where it vanishes. This
amplification of �̂�𝑧(k) usually occurs on the edge of a disc with radius given by the
cutoff spatial frequency. Because an arbitrary small component of �̂�𝑧(k) can be
amplified to an arbitrary large value, �̂�(k) is very sensitive to the fluctuations of
�̂�𝑧(k).

It is customary to deal with illposed inverse problem using Tikhonov regular
ization when Gaussian noise is the dominant noise. In this case, the error function
equals the L2 norm of the noise for the object spectrum �̂�(k) that is the exact so
lution. The Tikhonov regularization modifies this original error function by adding
a term proportional to the L2 norm of the object spectrum:

ℒ𝛾 (�̂�) =∑
𝑧
‖ ̂𝐼𝑧(k) − �̂�𝑧(k; 𝜁𝜁𝜁)�̂�(k)‖22 + 𝛾‖�̂�(k)‖22, (2.42)

where ‖⋯‖22 denotes the L2 norm, ‖�̂�(k)‖22 is the regularization term and 𝛾 is the
regularization parameter. We aim to find �̂�(k) that minimize not only the original
error function but also the regularization term, which can be regarded as ”the total
energy” of �̂�(k). By minimizing ”the total energy”, Tikhonov regularization guaran
tees that the value of �̂�(k) is bounded and hence will not be significantly affected
by the fluctuations of the noise spectrum �̂�(k).

We can derive the regularized expression for the object spectrum by setting the
derivative of 𝐿𝛾 with respect to �̂�(k) to zero:

�̂�𝛾(k) =
∑𝑧 ̂𝐼𝑧(k)�̂�𝑧(k)∗
∑𝑧′ |�̂�𝑧′(k)|2 + 𝛾

= 𝐶(k)
𝐵(k) + 𝛾 . (2.43)

Comparing Eq. (2.43) with Eq. (2.15), we see that the regularization parameter 𝛾
works as an offset to the denominator. When the regularization parameter 𝛾 is too
small, the resulting object spectrum shows artefacts, while when 𝛾 is too large, the
object spectrum does not resemble the actual object spectrum anymore and hence
the fitting accuracy is poor. Therefore, the optimal value of 𝛾 should balance the
effect of regularization and fitting accuracy.

We remark that during the optimization, we do not find the optimal 𝛾 in each
iteration, which would be very timeconsuming, but instead use a small value for
gamma that is kept constant during the optimization, to prevent dividing by zero.
It is shown by both simulations and experiments that the exact value of this small
constant does not influence the final result significantly. However, the value of
regularization parameter 𝛾 does significantly influence the reconstructed object.
Therefore, after the optimization we need to determine the optimal 𝛾 for the re
construction of the object spectrum.

We determine this optimal value for 𝛾 using the Lcurve method [28]. The L
curve is a plot of the values of the error function versus the regularization term as
shown at the left of Fig. 2.8. Both values can be parametrized by the regularization
parameter 𝛾, and hence the Lcurve is given by the set of points:

(𝜉(𝛾) =∑
𝑧
‖ ̂𝐼𝑧(k) − �̂�𝑧(k)�̂�𝛾(k)‖

2
2 , 𝜂(𝛾) = ‖�̂�𝛾(k)‖

2
2) . (2.44)
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Figure 2.8: Illustration of the Lcurve (left) and its curvature (right). The data is based on an optimization
using BFGS method for 15 coefficients of aberrations.

Along the Lcurve, 𝛾 increases monotonically from left to right. The Lcurve is
separated into two parts by a sharp corner. We can observe that as 𝛾 increases,
𝜂(𝛾) (the reconstruction error) decreases on the vertical part, whereas 𝜉(𝛾) (the
fitting error) increases on the horizontal part. So, the optimum value of 𝛾, which
optimally balances the reconstruction error and the fitting error, can be found at
the location of the corner of the Lcurve.

To determine the location of the corner, we need to calculate the curvature of
the Lcurve which is given by

𝜅(𝛾) = 2�̃�
′(𝛾)�̃�″(𝛾) − �̃�″(𝛾)�̃�′(𝛾)

3√�̃�′(𝛾)2 + �̃�′(𝛾)2
, (2.45)

where ′ and ″ are the first and second derivative, respectively, and

⎧⎪
⎨⎪⎩

�̃�′(𝛾) = 𝜂′(𝛾)
𝜂(𝛾)

�̃�′(𝛾) = 𝜉′(𝛾)
𝜉(𝛾)

, (2.46)

and

⎧⎪
⎨⎪⎩

�̃�″(𝛾) = 𝜂″(𝛾)𝜂(𝛾) − 𝜂′(𝛾)2
𝜂(𝛾)2

�̃�″(𝛾) = 𝜉″(𝛾)𝜉(𝛾) − 𝜉′(𝛾)2
𝜉(𝛾)2

, (2.47)
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Figure 2.9: Object reconstruction results versus regularization parameter values. Reconstructed object
(top) and its Fourier transform (bottom). This plot shows that the reconstructed object will be too noisy
when 𝛾 is too small and too blurred when 𝛾 is too large. The balance is achieved when 𝛾 corresponds
to the corner of the Lcurve where its curvature is maximum (see Fig. 2.8).

where the first and second derivatives of 𝜂(𝛾) are

𝜂′(𝛾) = d
d𝛾 ∫ |�̂�𝛾(k)|

2
dk = ∫ | 𝐶(k)

𝐵(k) + 𝛾 |
2
dk

= ∫2ℜ {− [ 𝐶(k)
𝐵(k) + 𝛾 ]

∗ 𝐶(k)
[𝐵(k) + 𝛾]2 }dk,

𝜂″(𝛾) = ∫2ℜ {| 𝐶(k)
[𝐵(k) + 𝛾]2 |

2
+ [ 𝐶(k)
𝐵(k) + 𝛾 ]

∗ 2𝐶(k)
[𝐵(k) + 𝛾]3 }dk,

and the first and second derivatives of 𝜉(𝛾) are

𝜉′(𝛾) = d
d𝛾 ∑

𝑧
∫| ̂𝐼𝑧(k) − �̂�𝑧(k)�̂�𝛾(k)|

2
dk

=∑
𝑧
∫2ℜ{− [ ̂𝐼𝑧(k) −

�̂�𝑧(k)𝐶(k)
𝐵(k) + 𝛾 ]

∗ �̂�𝑧(k)𝐶(k)
[𝐵(k) + 𝛾]2 }dk,

𝜉″(𝛾) =∑
𝑧
∫2ℜ{| �̂�𝑧(k)𝐶(k)[𝐵(k) + 𝛾]2 |

2

+ [ ̂𝐼𝑧(k) −
�̂�𝑧(k)𝐶(k)
𝐵(k) + 𝛾 ]

∗ 2�̂�𝑧(k)𝐶(k)
[𝐵(k) + 𝛾]3 }dk.

We plot the curvature 𝜅(𝛾) as a function of regularization parameter 𝛾 at the
right panel of Fig. 2.8. A distinct peak corresponding to the corner of the Lcurve
can be observed. To find the location of this peak, we formulate an optimization
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Figure 2.10: Aberration coefficients versus defocus settings. For each defocus setting we retrieve a set
of 15 aberration coefficients from the focal image and a defocused image. This image plot shows a
linear relation between the defocus aberration and defocus setting. We keep other aberrations constant
while varying the defocus aberration.

problem as follows:
𝛾 = argmin

𝛾
{−𝜅(𝛾)}. (2.48)

Because 𝛾 is the only variable of this optimization problem, we do not need to
compute the gradient of −𝜅(𝛾) with respect to 𝛾. This optimization problem can
be solved in a few seconds on a desktop, depending on the size and the number of
the measured images.

2.6. Experimental Results
In the experiment, we use a 4× magnification microscope objective operating at
wavelength 𝜆 = 625 nm with object side NA 𝛼𝑜 = 0.12 and image side NA 𝛼𝑖 = 0.03.
The object is a resolution test target with the smallest bar in group 7 element 6
equal to about 4.4 µm (equivalent to 288 pairs of lines per millimeter). We introduce
a fixed amount of spherical aberration and various amounts of defocus aberration
to the measured images to validate the phase diversity method.

Because it is difficult to locate the nominal object plane, we first move the object
away from the nominal object plane to introduce a sensible amount of defocus
aberration and then move the object towards both directions along the optical axis
by 2 steps with 0.2 mm interval. At each object location, we measure two images:
one in the nominal image plane at 𝑧 = 0 and another in a defocused plane at
distance 𝑧 = 500 µm. We choose the direction of defocusing such that the focal
image is clearer than the defocused image. In total 10 images are measured in this
experiment for 5 positions of the object.

We plot the retrieval results for the aberration coefficients versus the defocus
settings in Fig. 2.10. It is seen that the defocus aberration is much larger than the
other aberrations. While we vary the defocus aberration, we keep other aberrations
almost constant. Most importantly, we can observe a distinct linear relation between
the defocus aberration and defocus setting as expected.
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In Fig. 2.11, images measured in the focal and defocused planes and the re
stored image (by reconstructing the object) are shown for each of the five object
positions. This figure shows that both focal and defocused images become more
blurred when the object is further away from the nominal object plane, while the
reconstructed object, whose resolution is much higher than that of not only the
defocused image but also the focal image, is always equally accurate. The smallest
feature of the resolution target, whose size is about 4.38 µm, can clearly be seen
in all cases.

It is shown in Fig. 2.12 that the shape of the PSF intensity is consistent with the
way how the resolution of the test target changed. The information of the PSF pro
vides essential information for the diagnosis of the imaging system. The work flow
of the phase diversity method should be to first retrieve the aberration coefficient
vector 𝜁𝜁𝜁, which determines the wavefront error, then compute the PSF intensity of
each of the throughfocus blurred images, and finally obtain a clear image by regu
larized deconvolution, in which the regularization parameter 𝛾 is found by using the
Lcurve method. In this work flow, information about the wavefront error allows us
to compensate the aberrations by hardware, while image restoration allows us to
obtain a diffractionlimited image by software.

2.7. Conclusion
In this chapter we have demonstrated that we can retrieve aberrations of imaging
systems and perform image restoration using the phase diversity method. We have
shown that the retrieved defocus aberration depends linearly on the defocus setting
as expected. Furthermore, we showed that the reconstructed object is in all cases
less blurred than the measured blurred images. The successful implementation of
the phase diversity method relies on many factors. The most important factor is the
sampling grid of the measured images. The sampling grid should cover the entire
area of the OTF in the spatial frequency domain, so that the complete information
about both the object and the aberrations can be acquired. This sampling should be
equal to the half size of the diffractionlimited PSF intensity of the imaging system,
which is determined by the wavelength and the NA.

In most situations, the information about the images appears in an area much
smaller than that of the OTF due to noise and aberrations. Here we need to distin
guish the effects due to noise (noisy) and aberrations (blurry): images blurred by
aberrations can be restored while those blurred by noise cannot. Usually a more
blurred image has lower signaltonoise ratio. This suggests that we should find a
balance between hardware and software aberration correction. Namely, we should
perform rough correction by hardware and fine correction by software.

For the phase diversity method and all other imagebased methods, the object
influences the accuracy of retrieving certain types of aberrations. In the spatial
frequency domain, the image spectrum equals the OTF multiplied by the object
spectrum. When the object spectrum cannot fill the entire area of the OTF, e.g.
when the object is not a point source, the OTF cannot be recovered in areas where
the object spectrum is zero. As a result, there will then be higher inaccuracies in
the retrieval of certain types of aberrations. It is also challenging to determine the
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best object for the retrieval of certain types of aberrations. We remark that the
final accuracy of the resolution of the reconstructed object is mainly affected by
the noise. In fact, for low noise levels, the aberrations that are important for the
accurate reconstruction of the object can always be retrieved accurately.

Finally, the optimization algorithm also plays a significant role here. Depending
on the algorithm and the parameters of the algorithm, we may be trapped in one of
the local minima, because the dependence on the aberrations of the error function
is highly nonlinear and hence there will be more than one minimum. Another issue
is the number of aberrations. In this chapter, we have observed crosstalk between
aberrations. This implies that the values of the lower order aberration coefficients
will depend on the total number of aberrations coefficients.

Appendix I: Derivation of the object free error
function
Let us submit the expression for object spectrum Eq. (2.15)

�̂�(k) =
∑𝑧 ̂𝐼𝑧(k)�̂�𝑧[k; 𝑃(k)]∗
∑𝑧′ |�̂�𝑧′[k; 𝑃(k)]|2

(2.49)

into Error function Eq. (2.7)

ℒ (�̂�, 𝑃) = ∫∑
𝑧
| ̂𝐼𝑧(k) − �̂�𝑧[k; 𝑃(k)]�̂�(k)|

2
dk. (2.50)

As a result, we obtain

ℒ (𝑃) = ∫∑
𝑧
| ̂𝐼𝑧(k) − �̂�𝑧(k)

∑𝑧″ ̂𝐼𝑧″(k)�̂�𝑧″(k)∗
∑𝑧′ |�̂�𝑧′(k)|2

|
2

dk

= ∫∑
𝑧
|
̂𝐼𝑧(k) (∑𝑧′ |�̂�𝑧′(k)|

2) − �̂�𝑧(k) [∑𝑧″ ̂𝐼𝑧″(k)�̂�𝑧″(k)∗]
∑𝑧′ |�̂�𝑧′(k)|2

|

2

dk.

(2.51)

We now expand the brackets in the numerator by resorting the summation index
𝑧, 𝑧′, and 𝑧″:

∑𝑧 | ̂𝐼𝑧 (∑𝑧′ |�̂�𝑧′ |
2) − �̂�𝑧 (∑𝑧″ ̂𝐼𝑧″�̂�∗𝑧″)|

2

=∑𝑧 [| ̂𝐼𝑧|
2 (∑𝑧′ |�̂�𝑧′ |

2)
2
+ |�̂�𝑧|

2 |∑𝑧″ ̂𝐼𝑧″�̂�∗𝑧″ |
2 − 2 ( ̂𝐼𝑧�̂�∗𝑧) (∑𝑧″ ̂𝐼∗𝑧″�̂�𝑧″) (∑𝑧′ |�̂�𝑧′ |

2)]

= (∑𝑧 | ̂𝐼𝑧|
2) (∑𝑧′ |�̂�𝑧′ |

2)
2
+ (∑𝑧 |�̂�𝑧|

2) |∑𝑧″ ̂𝐼𝑧″�̂�∗𝑧″ |
2 − 2(∑𝑧′ |�̂�𝑧′ |

2) |∑𝑧 ̂𝐼𝑧�̂�∗𝑧|
2

=(∑𝑧 | ̂𝐼𝑧|
2) (∑𝑧′ |�̂�𝑧′ |

2)
2
− (∑𝑧′ |�̂�𝑧′ |

2) |∑𝑧 ̂𝐼𝑧�̂�∗𝑧|
2 .
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Dividing the numerator by the denominator leads to

(∑𝑧 | ̂𝐼𝑧|
2) (∑𝑧′ |�̂�𝑧′ |

2)
2
− (∑𝑧′ |�̂�𝑧′ |

2) |∑𝑧 ̂𝐼𝑧�̂�∗𝑧|
2

(∑𝑧′ |�̂�𝑧′ |
2)
2 =∑

𝑧
| ̂𝐼𝑧|

2 − |
∑𝑧 ̂𝐼𝑧�̂�∗𝑧|

2

∑𝑧′ |�̂�𝑧′ |
2 .

The objectfree error function is thus given by

ℒ (𝑃) = ∫{∑
𝑧
| ̂𝐼𝑧(k)|

2 − |
∑𝑧 ̂𝐼𝑧(k)�̂�𝑧(k)∗|

2

∑𝑧′ |�̂�𝑧′(k)|
2 }dk. (2.52)
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3. Spatiallyvarying Aberrations Retrieval Using a Pair of Periodic Pinhole

Array Masks

3.1. Background
The function of an imaging system is to generate a perfect image (an Airy disc)
for every point source in its fieldofview (FOV). However, the wavefront errors in
the pupil of the imaging system blur these images by producing various types of
aberrations. Imaging systems with large FOV are particularly important for sev
eral essential industrial applications, e.g. 3D printing and optical lithography for
semiconductor manufacturing.

Optical lithography uses an imaging system to image the mask pattern, which is
a magnified version of the image that has to be realized on the wafer, in the pho
toresist that has been spun on the wafer. In the the regions that are illuminated, a
chemical reaction takes place in the photoresist, while in the other regions the pho
toresist remains unchanged. As a result, a demagnified resist pattern is formed and
a semiconductor device, for example a logic or memory device, is manufactured.

The efficiency of optical lithography grows with the size of the FOV. In this
chapter, we report experiments performed on a lithography system (a stepper) at
Liteq B.V.. The projection lens has to produce a critical dimension ≤ 2 µm for iline
illumination at 355 nm uniformly in a rectangular FOV with size of 52 mm × 33 mm
in one exposure.

To compare with, a normal microscope objective may have resolution 1 µm in
a rectangular FOV with size of 1 mm ×1 mm. As a result, the wavefront errors
of the imaging system vary more significantly over the FOV in lithography than in
microscopy and hence the calibration of spatiallyvarying wavefront errors of the
lithographic projection lens is important for maintaining a uniform imaging perfor
mance.

Our goal in this chapter is to develop a method for calibrating the spatial variation
of every type of aberration of an imaging system. This will give very valuable
information for restoring the functionality of the imaging system. In a commercial
lithographic projection lens, there are possibilities for adjusting the lens elements (6
degrees of freedom for positions and tilts). Active devices like deformable mirrors
can be used to correct aberrations.

Traditional methods, such as interferometry [3, 4] and wavefront sensing [5]
with e.g. a ShackHartmann sensor, require a point source in the object plane
to provide an ideal reference wavefront (either planar or spherical) and an addi
tional imaging system to map the wavefront in the pupil onto a detector. However,
this additional imaging system has its own wavefront errors that will mix with the
wavefront errors of the imaging system that is to be calibrated.

To measure the spatial variation of the wavefront errors, interferometry and
wavefront sensing methods must be combined with varying the position of the
point source. The wavefront errors can only be performed for one position at a
time. Thus, the calibration will be timeconsuming and may further be influenced
by the positioning error introduced during this measurement process.

Alternative methods [6–13] are based on the fact that because wavefront errors
lead to blurring of the image, one can in principle infer the wavefront errors from
the amount of blurring. In most situations, more than one image is required, and
these images should differ from each other in a known fashion [9–13]. A common
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choice of diversity is the variation of the defocus setting. These images, of the
same object, are blurred by the original wavefront error plus different amounts of
extra defocus aberrations. As described in previous chapters, each of these blurred
images should be sampled by sufficiently small and sufficiently many pixels. This
is automatically guaranteed in imaging systems for image acquisition purpose, e.g.
microscopes.

For lithography systems, the smallest feature size of importance for the pattern
printed on the wafer (the image) is usually much smaller than the pixel size of
any commercially available camera. As a result, one needs to first extract certain
features from the image of a periodic object (e.g. a grating), for example the critical
dimensions, using a wafer metrology technique called scatterometry [14], and then
use the features to retrieve the wavefront errors [15].

An aerial image sensor [16–18] compares the image of a grating with a reference
grating image and it measures the lateral and axial image translations caused by
the odd and even order aberrations, respectively. By repeating the measurement
for several gratings with various pitches and orientations (each combination of pitch
and orientation corresponds to a sampling point in the pupil), one can determine
the wavefront error in the pupil.

However, because both scatterometry and an aerial image sensor are difficult
to be implemented in parallel, the calibration of spatiallyvarying wavefront errors
will be very slow with these two techniques.

It has also been reported in the literature that a scanning electron microscope
(SEM) can be used to acquire a high resolution image of the pattern printed in
photoresist [19]. However, the mechanism of SEM imaging may bring artifacts of
various kinds to this image. For example, electron scattering is stronger by edges
and corners than by flat areas. The nonlinear property of the photoresist also plays
an role because the printed pattern is not exactly equal to the aerial image on the
wafer. Although images in multiple regions can be acquired simultaneously using a
multibeam SEM, the image acquisition time in the entire FOV is still too long to be
practical.

3.2. Introduction of our method
In this chapter, we propose a fast, accurate and robust method for calibrating
the spatiallyvarying aberrations of an anisoplanatic imaging system. Our method
is based on the assumption that the spatiallyvarying aberrations can always be
considered to be spatiallyinvariant in a sufficiently small subregion of the FOV
(which is often referred to as the isoplanatic patch). As a result, we implemented a
measurement system that divides the FOV into a sufficiently large number of such
(partially overlapping) subregions.

Here the FOV is defined as the object plane area and the corresponding image
of this area, imaged through the projection lens, in the image space. A subregion
is defined as an area of the FOV that is imaged onto a pixel of the camera sensor
through the camera lens.

We place two periodic pinhole array masks in the object plane (mask 1) and in
the image plane (mask 2). We guarantee that the image of mask 1 and mask 2
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Figure 3.1: Plot of the lithography system and the measurement system. The lithography system consists
of a illumination system and a projection lens. The measurement system consists of a camera lens and
a camera sensor. Every camera pixel measures the total intensity in the corresponding subregion in the
FOV of the projection lens (one such subregion is shown in green). So the total number of subregions
is equal to the number of camera pixels.

have identical pitches. As a result, we can use the pinholes in mask 2 to sample
the images of the pinholes in mask 1.

We remark that although the image of mask 1 is not periodic in the entire FOV,
because of the spatiallyvarying aberrations, it is approximately periodic in each
subregion, where the aberrations can be regarded as spatiallyinvariant (but differ
in different subregions).

A schematic plot of the lithography system and the measurement system is
shown in Fig. 3.1. The lithography system consists of a Köhler illumination system,
which uses a planar uniform incoherent monochromatic source, and a telecentric
imaging system (e.g. a projection lens). The measurement system consists of an
additional imaging system, referred to as the camera lens, and a camera sensor.

The coordinates of the object plane r𝑜, the image plane r𝑖, and the detector
plane r𝑑 are conjugated in this configuration as seen in Fig. 3.1 and are related
by magnifications that are constant over the FOV. Furthermore, r𝑜, r𝑖, and r𝑑 are
scaled Fourier transform (FT) related variables of the pupil coordinates 𝜌𝜌𝜌𝑝 and the
source coordinates 𝜌𝜌𝜌𝑠 of the planar source in Köhler illumination. For a pair of FT
related variables, the ShannonNyquist sampling theorem must be fulfilled.

3.2.1. Interpretation of the measurement scheme
Our method uses a pair of periodic transmissive pinhole array masks, which are
placed in the object and the image plane, respectively. The transmission function
of the two masks are 𝑡(r𝑜) and 𝜏(r𝑖), respectively. We define the image plane as
the plane at location Δ𝑧 on the optical axis, with the nominal best image plane
located at Δ𝑧 = 0.

Consider a point source at 𝜌𝜌𝜌𝑠 in the source plane which provides a plane wave
for illumination in the object plane:

𝐸𝑜(r𝑜 , 𝜌𝜌𝜌𝑠) = 𝑆(𝜌𝜌𝜌𝑠) exp(𝑖
2𝜋
𝜆𝑓 r𝑜 ⋅ 𝜌𝜌𝜌𝑠), (3.1)

where 𝜆 is the wavelength, 𝑓 is the focal length of the illumination lens, and 𝑆(𝜌𝜌𝜌𝑠)
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Figure 3.2: Schematic plot of the definition of the subregions. For every point r𝑑 in the detector plane,
we can define a subregion Ω𝑖(r𝑑) in the image plane (the deep blue circle) and a subregion Ω𝑜(r𝑑) in
the object plane (the deep orange circle). The size of Ω𝑖(r𝑑) is exactly equal to the size of the PSF of
the camera lens (the light blue disc), while the size of Ω𝑜(r𝑑) depends on the sizes of both the region
Ω𝑖(r𝑑) and the PSF of the projection lens (the light orange disc).

is the square root of the source intensity. For mask 1 in the object plane, the field
in the image plane at Δ𝑧 is given by

𝐸Δ𝑧𝑖 (r𝑖 , 𝜌𝜌𝜌𝑠) = ∬ℎΔ𝑧𝑝 (r𝑖 , 𝑀𝑝r𝑜)𝑡(𝑀𝑝r𝑜)𝐸𝑜(𝑀𝑝r𝑜 , 𝜌𝜌𝜌𝑠)dr𝑜 , (3.2)

where ℎΔ𝑧𝑝 (r𝑖 , 𝑀𝑝r𝑜) is the PSF, 𝑀𝑝 is the magnification, and the subscript 𝑝 refers
to the projection lens. We place mask 2 in the image plane. The resulting field in
the detector plane is

𝐸Δ𝑧𝑑 (r𝑑 , 𝜌𝜌𝜌𝑠) = ∬ℎΔ𝑧𝑐 (r𝑑 , 𝑀𝑐r𝑖)𝜏(𝑀𝑐r𝑖)𝐸Δ𝑧𝑖 (𝑀𝑐r𝑖 , 𝜌𝜌𝜌𝑠)dr𝑖 , (3.3)

where ℎΔ𝑧𝑐 (r𝑑 , 𝑀𝑐r𝑖) is the PSF, 𝑀𝑐 is the magnification, and the subscript 𝑐 refers
to the camera lens. Finally, the intensity distribution in the detector plane due to
one source point at 𝜌𝜌𝜌𝑠 in the source plane is given by

𝐼Δ𝑧𝑑 (r𝑑 , 𝜌𝜌𝜌𝑠) = |𝐸Δ𝑧𝑑 (r𝑑 , 𝜌𝜌𝜌𝑠)|
2 . (3.4)

We remark that both PSFs are fields instead of intensities and Eq.3.4 considers only
coherent imaging.

For the definition of the subregion, we look at the imaging process reversely
from the detector plane to the source plane. Suppose we place a point source at r𝑑
in the detector plane. We denote the region of its image in the image plane, imaged
through the camera lens, as Ω𝑖(r𝑑) and its image in the object plane, imaged
through the projection lens, as Ω𝑜(r𝑑). Finally, we define that Ω𝑖(r𝑑) and Ω𝑜(r𝑑)
are subregion of the FOV for point r𝑑.

Notice that both regions Ω𝑖(r𝑑) and Ω𝑜(r𝑑) have finite size because the PSFs
of both imaging system eventually attenuate to zero at finite distance. The size of
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Figure 3.3: Schematic plot of the region of a given pixel in the detector plane, bounded by the gray rect
angle, and the region of its image in the image plane, bounded by the deep blue rounded square, and in
the object plane, bounded by the deep orange rounded square. The light blue and the light orange discs
are the PSF intensity of the camera lens |ℎΔ𝑧𝑐 (r𝑑 , 𝑀𝑐r𝑖)|2 and of the projection lens |ℎΔ𝑧𝑝 (r𝑖 , 𝑀𝑝r𝑜)|2,
respectively.

Ω𝑖(r𝑑) is exactly equal to the size of the PSF of the camera lens ℎΔ𝑧𝑐 (r𝑑 , 𝑀𝑐r𝑖), while
the size of Ω𝑜(r𝑑) depends on the sizes of both the region Ω𝑖(r𝑑) and the PSF of
the projection lens ℎΔ𝑧𝑝 (r𝑖 , 𝑀𝑝r𝑜).

We can observe in Fig. 3.2 that the point r𝑑 has a substantial contribution to
all points in Ω𝑖(r𝑑). Moreover, because at least one point in Ω𝑖(r𝑑) has substantial
contribution to some points in Ω𝑜(r𝑑), the point r𝑑 also has substantial contributions
to all points in Ω𝑜(r𝑑). In this way both subregions are defined.

We remark that the PSF of the camera lens and of the projection lens are both
infinitely large by definition. However, we only need to consider a finitely large area
in which the intensity of the PSF is above the threshold defined by the noise. When
the lens is free of aberrations, it is customary to take the circular region between
the center and the first zeros of the Airy disc as the region of both PSFs (illustrated
by the blue and the orange disc). Therefore, both Ω𝑜(r𝑑) and Ω𝑖(r𝑑) also have a
circular shape (illustrated by the blue and the orange circle).

Now we consider the intensity measured by the pixel, indexed by vector 𝜈𝜈𝜈, on
the camera. Let Ω𝜈𝜈𝜈𝑑 be the region occupied by a pixel. As a result, Ω𝜈𝜈𝜈𝑜 and Ω𝜈𝜈𝜈𝑖
are the union of Ω𝑜(r𝑑) and Ω𝑖(r𝑑), respectively, where r𝑑 runs through Ω𝜈𝑑. We
illustrate these three regions in green in Fig. 3.1.

In Fig. 3.3, the rectangular region bounded by the gray curve is Ω𝜈𝜈𝜈𝑑 defined
by the pixel 𝜈𝜈𝜈 in the detector plane, while the regions bounded by the blue curve
and by the orange curve are Ω𝜈𝜈𝜈𝑖 in the image plane and Ω𝜈𝜈𝜈𝑜 in the object plane,
respectively.

For a particular pixel 𝜈𝜈𝜈 in the detector plane, we can consider only a subregion
of the FOV, i.e. Ω𝜈𝜈𝜈𝑖 and Ω𝜈𝜈𝜈𝑜, in which the aberrations are spatiallyinvariant, although
the aberrations are spatiallyvarying in the entire FOV.

Because the PSF of the projection lens is very small compared to the size of
the PSF of the camera lens, we can assume that Ω𝜈𝜈𝜈𝑜 = Ω𝜈𝜈𝜈𝑖 . In Fig. 3.3 the regions
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bounded by the blue and the orange curve thus have identical size and overlap
with each other. Notice that if the pixel is very small, we will arrive at the situation
depicted in Fig. 3.2. However, if the pixel is very large, both PSFs become very
small compared to the size of Ω𝜈𝜈𝜈𝑑. So, all three regions, after being rescaled by the
magnifications, respectively, are identical overlapping rectangles.

In the experiment, the FOV of the projection lens of size 52 × 33 mm is sampled
by a camera sensor of size 500 × 320 pixel and pixel size 9.9 × 9.9 µm. Because
the camera lens has a magnification 𝑀𝑐 = 1/9.9, and the projection lens has a unit
magnification 𝑀𝑝 = 1, the sizes of Ω𝜈𝜈𝜈𝑖 and Ω𝜈𝜈𝜈𝑜 are both 98.1 × 98.1 µm. As a result,
neighboring subregions have considerable overlap with each other.

As mask 1 and mask 2 have pitches of 4.5 × 4.5 µm, each subregion contains
more than 20 ×20 pitch. Consider that the camera pixel measures the total intensity
in each subregion. It measures the signal due to more than 400 pitches, which is
equivalent to 400 times the signal of 1 pitch, because both the image of mask 1
and mask 2 are periodic in each subregion.

For wavelength 𝜆 = 355 nm and NA on both side of the projection lens being
NA = 0.12, the size of the PSF, i.e. the region between the center and the first zeros
of the Airy disc, of the projection lens is about 𝜆/(2NA) ≈ 1.5 µm. Every subregion
Ω𝜈𝜈𝜈𝑖 and Ω𝜈𝜈𝜈𝑜 thus have a size of about 66 × 66 Airy discs of the projection lens.

The camera lens is operated at F number 𝐹 = 22, which means that the nominal
size of the PSF of the camera lens in the image plane is approximately 7.8 µm. Every
subregion thus has a size of about 12 × 12 Airy discs of the camera lens.

As a consequence, we can fairly assume that the PSFs of both the camera lens
and the projection lens are translationinvariant in every subregion Ω𝜈𝜈𝜈𝑖 and Ω𝜈𝜈𝜈𝑜.
However, we remark that the projection lens is designed to be isoplanatic for both
high resolution and large FOV, while the camera lens is designed to be isoplanatic
only for only large FOV.

As a result, we have for the camera lens ℎΔ𝑧𝑐 (r𝑑 , 𝑀𝑐r𝑖) = ℎΔ𝑧𝑐 (r𝑑 −𝑀𝑐r𝑖), which
is the same translational PSF in different subregions. In the contrast, we have
ℎΔ𝑧𝑝 (r𝑖 , 𝑀𝑝r𝑜) = ℎ(𝜈𝜈𝜈,Δ𝑧)𝑝 (r𝑖 − 𝑀𝑝r𝑜) for the projection lens, which depends on not
only the defocus distance Δ𝑧 of the image plane but also the index 𝜈𝜈𝜈 of the pixel
that the subregion is imaged onto.

Finally, the intensity distribution measured by the pixel 𝜈𝜈𝜈 on the camera sensor
due to the point source at 𝜌𝜌𝜌𝑠 in the source plane is given by

𝐼(𝜈𝜈𝜈,Δ𝑧)𝑑 (𝜌𝜌𝜌𝑠) = ∬
Ω𝜈𝜈𝜈𝑑
|∬

Ω𝜈𝜈𝜈𝑖
∬
Ω𝜈𝜈𝜈𝑜
ℎΔ𝑧𝑐 (r𝑑 −𝑀𝑐r𝑖)𝜏(𝑀𝑐r𝑖)

× ℎ(𝜈𝜈𝜈,Δ𝑧)𝑝 (𝑀𝑐r𝑖 −𝑀𝑝r𝑜)𝑡(𝑀𝑝r𝑜)𝐸𝑜(𝑀𝑝r𝑜 , 𝜌𝜌𝜌𝑠)dr𝑜dr𝑖|
2
dr𝑑 .

(3.5)

By integrating over the source plane, we obtain the total intensity distribution:

𝐼(𝜈𝜈𝜈,Δ𝑧)𝑑 =∬
Ω𝑠
𝐼(𝜈𝜈𝜈,Δ𝑧)𝑑 (𝜌𝜌𝜌𝑠)d𝜌𝜌𝜌𝑠 =∬

Ω𝜈𝜈𝜈𝑑
∬
Ω𝑠
𝐽(𝜈𝜈𝜈,Δ𝑧)𝑑 (r𝑑 , 𝜌𝜌𝜌𝑠)d𝜌𝜌𝜌𝑠dr𝑑 . (3.6)

where 𝐽(𝜈𝜈𝜈,Δ𝑧)𝑑 (r𝑑 , 𝜌𝜌𝜌𝑠) is the intensity distribution generated by the point source at 𝜌𝜌𝜌𝑠
in the source plane and measured at r𝑑 in the detector plane.
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3.2.2. Discussion about the spatial coherence.
In the following paragraphs, for notation simplicity we will omit the magnification
of the projection lens 𝑀𝑝 and of the camera lens 𝑀𝑐. Exchanging the order of
integration in Eq. (3.6), we obtain

𝐼(𝜈𝜈𝜈,Δ𝑧)𝑑 =∬
Ω𝜈𝜈𝜈𝑖
∬
Ω𝜈𝜈𝜈𝑖
∬
Ω𝜈𝜈𝜈𝑜
∬
Ω𝜈𝜈𝜈𝑜
𝑊𝑖(r𝑖1, r𝑖2)𝜏(r𝑖1)𝜏(r𝑖2)∗

× ℎ(𝜈𝜈𝜈,Δ𝑧)𝑝 (r𝑖1 − r𝑜1)ℎ(𝜈𝜈𝜈,Δ𝑧)𝑝 (r𝑖2 − r𝑜2)∗𝑡(r𝑜1)𝑡(r𝑜2)∗𝑊𝑜(r𝑜1, r𝑜2)dr𝑜1dr𝑖1dr𝑜2dr𝑖2,
(3.7)

where
𝑊𝑖(r𝑖1, r𝑖2)∬

Ω𝜈𝜈𝜈𝑑
ℎΔ𝑧𝑐 (r𝑑 − r𝑖1)ℎΔ𝑧𝑐 (r𝑑 − r𝑖2)∗dr𝑑 , (3.8)

and
𝑊𝑜(r𝑜1, r𝑜2) = ∬

Ω𝑠
𝐸𝑜(r𝑜1, 𝜌𝜌𝜌𝑠)𝐸𝑜(r𝑜2, 𝜌𝜌𝜌𝑠)∗d𝜌𝜌𝜌𝑠 . (3.9)

We define 𝑊𝑜(r𝑜1, r𝑜2) and 𝑊𝑖(r𝑖1, r𝑖2) as the mutual coherence function (MCF)
in the object and the image plane, respectively. The MCF describes the correlation
between the fields at all combinations of pairs of locations in a plane.

Suppose that the illumination system uses a planar incoherent monochromatic
source. Due to the use of the Köhler illumination, each point of the source generates
a plane wave in the object plane for illumination. So the total illumination field is
the incoherent sum of the plane waves generated by all point sources. The MCF
𝑊𝑜(r𝑜1, r𝑜2) thus describes the spatial coherence of the total illumination field in
the object plane.

We focus on the case when the illumination field is fully spatially incoherent for
the purpose of measuring the aberrations. Therefore, we have

𝑊𝑜(r𝑜1, r𝑜2) = 𝐼𝑜(r𝑜1)𝛿(r𝑜1 − r𝑜2), (3.10)

where 𝐼𝑜(r𝑜) = ∬Ω𝑠 |𝐸𝑜(r𝑜 , 𝜌𝜌𝜌𝑠)|
2d𝜌𝜌𝜌𝑠 is the sum of the intensities of the plane waves

in the object plane. Usually, 𝐼𝑜(r𝑜) represents an uniform intensity distribution and
hence can be neglected.

For Köhler illumination, spatially incoherent imaging is achieved when the ratio
between the NA of the illumination lens and the projection lens is larger than two.
When the NA of the projection lens is larger than 0.5, designing an illumination
lens, of which the NA is larger than 1.0, is impossible. We remark that our method
will also work for spatially coherent and partially coherent imaging.

The MCF 𝑊(𝜈𝜈𝜈,Δ𝑧)
𝑖 (r𝑖1, r𝑖2) has the following interpretation: suppose that the de

tector is our source and we look at a part of our source that is made of one pixel
of the detector. The PSF of the camera lens ℎΔ𝑧𝑐 (r𝑑 − r𝑖) can thus be interpreted
as the field in the image plane generated by a point source in the detector plane.

In our interpretation, we propagate the light reversely from the detector plane
to the image plane. While in the Köhler illumination a point source is converted into
a plane wave by the illumination lens, here a point source is converted into its own
image (the PSF) by the camera lens.
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Because the ratio between the NA of the camera lens (about 0.022), which plays
the role as the illumination lens in our interpretation, and the projection lens (0.12)
is very small, we have

𝑊𝑖(r𝑖1, r𝑖2) = 𝐻Δ𝑧𝑐 (r𝑖1)𝛿(r𝑖1 − r𝑖2), (3.11)

where 𝐻Δ𝑧𝑐 (r𝑖) = ∬Ω𝜈𝜈𝜈𝑑 |ℎ
Δ𝑧
𝑐 (r𝑑 −𝑀𝑐r𝑖)|2dr𝑑.

We further guarantee the fulfillment of the condition of spatially incoherent
imaging by placing a groundglass diffuser in the image plane. The groundglass
diffuser introduces random fluctuations to the phase of the field in the image plane,
which kill the spatial correlation. The random fluctuations of the amplitude can be
regarded as a kind of noise and will be averaged out later.

Finally, substituting Eq. (3.10) and (3.11) into Eq. (3.7), we obtain

𝐼(𝜈𝜈𝜈,Δ𝑧)𝑑 =∬
Ω𝜈𝜈𝜈𝑖
∬
Ω𝜈𝜈𝜈𝑜
𝐻Δ𝑧𝑐 (r𝑖)𝐼𝜏(r𝑖)𝐻(𝜈𝜈𝜈,Δ𝑧)𝑝 (r𝑖 − r𝑜)𝐼𝑡(r𝑜)𝐼𝑜(r𝑜)dr𝑜dr𝑖 , (3.12)

where 𝐼𝜏(r𝑖) and 𝐼𝑡(r𝑜) are the intensity of mask 2 |𝜏(r𝑖)|2 and mask 1 |𝑡(r𝑜)|2,
respectively, and

𝐻(𝜈𝜈𝜈,Δ𝑧)𝑝 (r𝑖 −𝑀𝑝r𝑜) = |ℎ(𝜈𝜈𝜈,Δ𝑧)𝑝 (r𝑖 −𝑀𝑝r𝑜)|2

is the intensity of the PSF of the projection lens, which depends on the aberrations
in the subregion imaged onto pixel 𝜈𝜈𝜈. Recall that the spatial variance of the aber
rations (the anisoplanatism of the projection lens) is indicated by the dependence
on 𝜈𝜈𝜈. In the subregion (isoplanatism patch) for each 𝜈𝜈𝜈, the aberrations as well as
the PSF are shiftinvariant.

3.2.3. Measurement of the PSFlike image
We rewrite Eq. (3.12) as

𝐼(𝜈𝜈𝜈,Δ𝑧)𝑑 =∬
Ω𝜈𝜈𝜈𝑖
𝐻Δ𝑧𝑐 (r𝑖)𝐼𝜏(r𝑖) [∬

Ω𝜈𝜈𝜈𝑜
𝐻(𝜈𝜈𝜈,Δ𝑧)𝑝 (r𝑖 − r𝑜)𝐼𝑡(r𝑜)dr𝑜]dr𝑖 . (3.13)

Notice that Ω𝜈𝜈𝜈𝑜 and Ω𝜈𝜈𝜈𝑖 are the object and the image plane subregion that is imaged
onto the pixel 𝜈𝜈𝜈, respectively. Eq. (3.13) indicates that in the image plane at Δ𝑧,
the image of mask 1 is transmitted by mask 2 and then modulated by the PSF
intensity of the camera lens, and the total intensity is measured by the pixel 𝜈𝜈𝜈 that
the subregion Ω𝜈𝜈𝜈𝑜 and Ω𝜈𝜈𝜈𝑖 are imaged onto.

The measured total intensity thus depends on the PSF, and hence depends on
the aberrations, of the projection lens. Fig. 3.4 shows that the total intensity varies
spatially due to the spatial variation of the aberrations. We remark that the PSF of
the projection lens is related to the index 𝜈𝜈𝜈 while the PSF of the camera lens is not.

Our method is similar to the Moire methods [20–24], or the aerial image sensor
[16–18] in the sense that a blurred image (the image of mask 1) is transmitted by
a reference (mask 2). The key is that we use the pinholes in mask 2 to sample the
images of the pinholes in mask 1 as shown in Fig. 3.4.
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Mask 1 Mask 2Image of Mask 1 Transmitted Image Camera Measurement

Figure 3.4: The total intensity measured by the camera. The camera pixel 𝜈𝜈𝜈 measures the total intensity
in the subregion Ω𝜈𝜈𝜈𝑖 in the image plane at Δ𝑧. The total intensity is the sum of the image of mask 1 in
the subregion Ω𝜈𝜈𝜈𝑜 transmitted by mask 2. In the camera measurement, the total intensity varies due to
the variation of the aberrations. Pictures are experimental data.

The image of mask 1 and mask 2 are required to have identical pitches. So each
pinhole in mask 2 is aligned with, and hence samples an identical part of, the image
of a pinhole in mask 1. As a result, the total intensity in one subregion is equal to
the intensity of one pitch times the number of pitches in one subregion. Besides,
by taking the total intensity we also average out the noise.

Finally, a 2dimensional scan of mask 2 relative to the image of mask 1 allows the
acquisition of a 2dimensional highresolution image of mask 1. The total intensity
measured by the pixel 𝜈𝜈𝜈 for scanning position Δr𝑖 is given by

𝐼(𝜈𝜈𝜈,Δ𝑧)𝑑 =∬
Ω𝜈𝜈𝜈𝑖
𝐻Δ𝑧𝑐 (r𝑖)𝐼𝜏(r𝑖 − Δr𝑖) [∬

Ω𝜈𝜈𝜈𝑜
𝐻(𝜈𝜈𝜈,Δ𝑧)𝑝 (r𝑖 − r𝑜)𝐼𝑡(r𝑜)dr𝑜]dr𝑖 . (3.14)

Eq. (3.14) describes a 4dimensional dataset of both the pixel index 𝜈𝜈𝜈 (2dimensional)
and the scanning position Δr𝑖 (2dimensional). 𝐼(𝜈𝜈𝜈,Δ𝑧)𝑑 (Δr𝑖) represents the image as
a function of Δr𝑖 for the subregion that is imaged onto the pixel 𝜈𝜈𝜈.

The sampling of 𝜈𝜈𝜈 (the sampling of the FOV) depends on the magnification of
the camera lens and the sampling given by the camera sensor. The sampling of Δr𝑖
depends on the scanning process and must satisfy the ShannonNyquist sampling
theorem with respect to the pupil coordinate k𝑝 of the projection lens.

Suppose that both mask 1 and mask 2 are periodic arrays of rectangular pin
holes. We can write the transmission function of both masks as

𝐼𝑡(r) = 𝐼𝜏(r) =∑
𝜇𝜇𝜇
rect(r−𝜇𝜇𝜇), (3.15)

where 𝜇𝜇𝜇 denotes the location of the rectangular pinholes in the periodic array. We
thus obtain that

𝐼(𝜈𝜈𝜈,Δ𝑧)𝑑 (Δr𝑖) =∑
𝜇𝜇𝜇1

∑
𝜇𝜇𝜇2

∬
Ω𝜈𝜈𝜈𝑖
𝐻Δ𝑧𝑐 (r𝑖)rect(r𝑖 −𝜇𝜇𝜇2 − Δr𝑖)𝐼(𝜈𝜈𝜈,Δ𝑧)rect (r𝑖 −𝜇𝜇𝜇1)dr𝑖 , (3.16)

where 𝜇𝜇𝜇1 and 𝜇𝜇𝜇2 are the locations in mask 1 and mask 2, respectively, and

𝐼(𝜈𝜈𝜈,𝑧)rect (r𝑖 −𝜇𝜇𝜇1) = ∬
Ω𝜈𝜈𝜈𝑜
𝐻(𝜈𝜈𝜈,Δ𝑧)𝑝 (r𝑖 − r𝑜)rect(r𝑜 −𝜇𝜇𝜇1)dr𝑜 . (3.17)
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PSF-like ImageCamera Measurement

Scanning Series

Figure 3.5: A scanning series of camera measurement (left) and the PSFlike image obtained by com
bining the total intensity measured by one camera pixel for all scanning positions (right). The values at
the squares in the PSFlike image (right) are given by the values at the squares in the corresponding
camera measurements (left).

We remark that in Eq. (3.16) and (3.17) we only need to consider 𝜇𝜇𝜇2 in the neigh
borhood of 𝜇𝜇𝜇1 that makes that the product rect(r𝑖 −𝜇𝜇𝜇2 − Δr𝑖)𝐼

(𝜈𝜈𝜈,Δ𝑧)
rect (r𝑖 −𝜇𝜇𝜇1) does

not vanish for all Δr𝑖. In our method, we scan over one period area and hence Δr𝑖
can only take values in one unit cell.

When the PSF of the projection lens 𝐻(𝜈𝜈𝜈,Δ𝑧)𝑝 (r𝑖−r𝑜) is infinitely small (equivalent
to a delta function), and hence 𝐼(𝜈𝜈𝜈,𝑧)rect (r𝑖−𝜇𝜇𝜇1) = rect(r𝑖−𝜇𝜇𝜇1), the condition requires
𝜇𝜇𝜇1 and 𝜇𝜇𝜇2 to be identical. The number of 𝜇𝜇𝜇2 positions that needs to be considered
for every 𝜇𝜇𝜇1 increases as the size of 𝐻(𝜈𝜈𝜈,Δ𝑧)𝑝 (r𝑖 − r𝑜) increases.

As a result, we can approximate the total intensity measured by the pixel 𝜈𝜈𝜈 via
scanning as

𝐼(𝜈𝜈𝜈,Δ𝑧)𝑑 (Δr𝑖) ≈ rect(Δr𝑖) ⋆ [𝐻(𝜈𝜈𝜈,Δ𝑧)𝑝 (Δr𝑖) ∗ rect(Δr𝑖)] , (3.18)

where ⋆ and ∗ are the operator symbol of correlation and convolution, respectively,
and 𝐻Δ𝑧𝑐 (Δr𝑖) has been neglected. Eq. (3.18) can be interpreted as the PSF intensity
of the projection lens, in the subregion that is imaged onto pixel 𝜈𝜈𝜈, first convoluted
with a pinhole in mask 1 and then correlated with a pinhole in mask 2.

Eq. (3.16) and (3.17) describe an image that is analogous to the PSF intensity,
which is obtained by combining the total intensities measured by one camera pixel
at all scanning positions. We illustrate this process in Fig. 3.5. The PSFlike image
carries sufficient information about the aberrations in each subregion. We remark
that one scanning process allows the measurement of the PSFlike images for all
subregions in parallel.

The PSFlike images are used to retrieve the defocus, tilt, and telecentricity,
and the wavefront errors, in terms of the Zernike polynomials, in each subregion.
Retrieving the former requires estimating the relative shift and peaktovalley value
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of the PSFlike image, while retrieving the latter requires an optimization based on
a model which describes the process of illumination, imaging, and measurement.

For both tasks, image acquisition should be performed not only in the nominal
best image plane but also in several (at least one) defocused planes to obtain
sufficient information. It is worth to mention that the retrieval of the aberrations,
like the acquisition of the PSFlike images, can be performed simultaneously for
all subregions. Therefore, our method is extremely efficient in comparison with
existing methods [15–18].

In this chapter, we split our problem into two parts: the retrieval of only the
defocus, tilt, and telecentricity (fast but rough), and of the wavefront aberrations
in terms of the Zernike polynomials (slow but accurate).

3.3. Description of the experiment∗
We validate our method by performing an experiment on a realistic lithography tool
(a prototype of the lithography system developed by Liteq B.V.). The projection lens
of the this lithography system has unit magnification, NA 0.128 and is designed for
an operating wavelength 355 nm. This lithography system allows imaging with ≤ 2
µm critical dimension in a rectangular FOV with size of 52 mm × 33 mm.

Mask 1 and mask 2 are identical periodic arrays consisting of squared pinholes
with pinhole width 𝑤 = 2.5 µm and pitch 𝑝 = 4.5 µm. Incident light is transmitted at
the pinholes but reflected at other places. Both masks are fabricated in chrome on
a fused silica substrate using ebeam lithography with ≤ 25 nm position accuracy
in a rectangular area with size 55 mm × 35 mm.

The projection lens is illuminated by a Köhler illumination system with as the
source a Qswitched pulsed laser operating at a wavelength of 355 nm, a bandwidth
of 25 nm, and a repetition rate of 200 kHz. The laser beam is expanded to a
diameter of 2 inch and scattered by a 20∘ engineered diffuser. The scattered laser
beam acts like an effective source.

A condenser lens with focal length 200 mm is used to perform an optical Fourier
transform between the effective source and mask 1, which are placed in the front
and the back focal planes of the condenser lens, respectively. The effective source
is large enough to overfill the pupil of the projection lens and hence guarantees a
spatially incoherent imaging of mask 1.

The degree of spatial coherence of the imaging process can be tuned by varying
the diameter of the expanded laser beam on the diffuser. The scattering angle of
the diffuser guarantees that mask 1 is entirely covered by the illuminating light.

During the scanning process, mask 1 is fixed and mask 2 is movable. We mount
mask 2 on a piezo stage (Physikinstrumente Plnano XYZ Piezo System) and place it
in the image plane of the projection lens. A half inch size CCD camera equipped with
a camera lens with 25 mm focal length is used to measure the intensity distribution
in the image plane at each scanning position. The magnification of the camera lens
is 1/9.9 (demagnified by by 9.9×).
∗ The experiment is performed by Mikhail Loktev independently at Liteq B.V. on one of its prototype
lithography systems.
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Figure 3.6: Plot of the experimental setup (a test model by Liteq BV). The lithography system is placed
reversely in this setup such that the object plane (mask 1) is at the bottom and the image plane is at
the top (mask 2). The illumination system is folded by 90 degrees with respect to the projection lens by
a planar mirror. The beam expander controls the spatial coherence of the illumination on the object and
the scattering angle of the engineered diffuser guarantees that the entire object can be illuminated.

We scan mask 2 with respect to the image of mask 1 in one image plane over
one pitch area of 4.5 µm × 4.5 µm. As a result, every pixel of the camera measures
a 2dimensional highresolution PSFlike image with size of 25 pixel × 25 pixel. The
pixel size of the PSFlike image is given by the step size of the scanning process,
which is 180 nm. The piezo stage offers nanometer accuracy.

We repeat the scanning process at 10 z locations (125 scanning positions in
one image plane and 1250 scanning positions in total), located symmetrically on
both sides of the nominally best image plane, with maximum defocus distance 25
µm and separation distance 5.56 µm which is equal to 0.26𝜋𝜆/(𝜋NA)2. Therefore,
every camera pixel measures 10 PSFlike images by repeating the scanning process
at 10 z locations, respectively.

The FOV of the projection lens is divided into a number of subregions that is
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Figure 3.7: Schematic plot of the wavefronts at the exit pupil. The blue curve is the reference wavefront,
which is a spherical wavefront with center at the geometrical image of the point source. The dashed
and solid orange curves are the wavefronts affected by only tilt and defocus and by all aberrations,
respectively.

equal to the number of the camera pixels. Because the optimization algorithm is
nonlinear and timeconsuming, which takes few minutes to complete on a standard
personal computer, retrieving the aberrations for all subregions is not feasible. We
downsample the measurements from 320 pixel × 500 pixel to 16 pixel × 32 pixel.
The result of the optimizaton algorithm will be 15 matrices, corresponding to the
first 15 coefficients of aberrations, with size 16×32. Now we only need to perform
retrieval using the optimization algorithm in 16 × 32 = 512 subregions, instead of
in 320 × 500 = 160, 000 subregions.

3.4. The retrieval of distortion, field curvature,
and telecentricity∗

A projection lens converts a diverging spherical wave with center at a point source
in the object plane to a converging spherical wave with center at the geometrical
image of this point source in the nominal best image plane. Assuming a perfect
wavefront in the entrance pupil, we can describe the ”error” of the projection lens
by only the wavefront error in the exit pupil.

It is customary to decompose the wavefront errors by the Zernike polynomials,
which are orthogonal polynomials defined on the unit disc that form a complete set.
Each Zernike polynomial describes a particular type of aberration. Here we adopt
the Noll’s ordering of the Zernike polynomial [25]. In this section, we discuss the
retrieval of the 2nd and 3rd term, the x and y tilt, and the 4th term, the defocus. In
later sections, we will discuss the retrieval of all terms of the Zernike polynomial.

In Fig. 3.7 we illustrate a reference wavefront, which is a spherical wavefront
with center at the geometrical image of the point source (blue curve), and the wave
fronts affected by the aberrations (orange curves). Tilt and defocus only translate
the spherical wavefront center with respect to the geometrical image, while other
aberrations further deviate the wavefront from the spherical shape. In Fig. 3.7,
∗ This section is based on the publication in the proceding of Metrology, Inspection, and Process Control
for Microlithography XXXI, 10145, 101452S [1], mainly contributed by Mikhail Loktev at Liteq B.V..
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Figure 3.8: Interpretation of the PSFlike image measured by every camera pixel via scanning in one
image plane. The value of every pixel is given by the total intensity of the image of mask 1 transmitted
by mask 2 in one subregion for one scanning position. The locations of the maximum pixel value and
the image contrast determine the tilt and the defocus, respectively. Pictures are experimental data.
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Figure 3.9: The x and y crosssection of the PSFlike images measured by the same camera pixel (in
the same subregion) by performing scanning in different image planes. Both amplitude and phase of
these sinusoidal curves depend on the location 𝑧 of the image plane on the optical axis. Dots and lines
are the raw data and the fitted sinusoidal curve, respectively. Pictures are experimental data.

wavefronts affected by only tilt and defocus and by all aberrations are depicted by
the dashed and the solid orange curve, respectively.

We define the chief ray as the ray connecting the exit pupil center and the
spherical wavefront center. Fig. 3.7 shows that its slope and the intersect with the
nominal best image plane gives the telecentricity and the tilt, respectively. For a
lithographic projection lens, the chief rays in each subregion should be all parallel
to the optical axis (perpendicular to the image plane) and intersect with the nominal
best image plane at the geometrical image. The defocus is given by the distance
between the nominal best image plane and the image plane where the spherical
wavefront center locates. Spatial variations of the tilt and the defocus in each sub
region are known as distortion and field curvature, respectively.

3.4.1. Description of retrieval method
We illustrate in Fig. 3.8 the PSFlike image measured by the camera pixel indexed
by 𝜈𝜈𝜈 via scanning in one image plane on the optical axis. The value of the pixel at
r𝑠 in the PSFlike image is given by the total intensity of the image of mask 1 and
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transmitted by mask 2 for one scanning position r𝑠 in the subregion that is imaged
onto the pixel 𝜈𝜈𝜈.

The pixel value of the PSFlike image has a maximum when the image of mask
1 and mask 2 are aligned. So we can find the intersection of the chief ray with
each image plane by finding the maximal pixel value in each PSFlike image and
hence determine the tilt. The image contrast (the ratio between the maximum and
minimum pixel value) depends on the relative distance between the image plane in
which the scanning is performed and the best nominal image plane. We can find
the location of the best nominal image plane by finding the maximal image contrast,
which allows us to determine the defocus.

We use the x and y crosssection of the PSFlike image shown in Fig. 3.8 to
determine both the location of the maximum pixel value and the image contrast.

We express the x and y crosssection respectively by

𝐼𝑥(𝑦) = ∫ 𝐼(𝑥, 𝑦)d𝑥,
𝐼𝑦(𝑥) = ∫ 𝐼(𝑥, 𝑦)d𝑦,

(3.19)

where 𝐼(𝑥, 𝑦) is the intensity distribution of the PSFlike image in a subregion. In
order to take the crosssection along one direction, we integrate the PSFlike image
along the other direction as seen in Eq. 3.19, instead of taking the crosssection at
any particular pixel, e.g. at the pixel whose value is the maximum. This approach
helps to stabilize the retrieval method against noise and other aberrations. The
resulting crosssections are sinusoidal curves because both the image of mask 1
(only in the subregion) and mask 2 have identical periodicities.

We fit the x and y crosssections respectively by

𝐼𝑥(𝑦) = 𝐴𝑥 sin(𝐵𝑥𝑦 + 𝐶𝑥) + 𝐷𝑥 ,
𝐼𝑦(𝑥) = 𝐴𝑦 sin(𝐵𝑦𝑥 + 𝐶𝑦) + 𝐷𝑦 ,

(3.20)

where 𝐴, 𝐵, 𝐶, 𝐷 are fitting parameters. The fitting is performed using the ”fit” func
tion in Matlab with the default 95% confidence and with the initial values of the
fitting parameters being chosen empirically. We demonstrate an example of the
fitting in Fig. 3.9, in which dots and lines are the raw data and the fitted sinusoidal
curve, respectively. The image contrast and the maximal pixel value location are
given by the amplitude and the phase, respectively.

Fig. 3.9 shows that the amplitude and the phase of the x and y crosssection
vary with respect to the location 𝑧 of the image plane on the optical axis. Variations
of the former and the latter give the location of best nominal image plane (defocus)
and the chief ray in terms of the slope (telecentricity) and the intersect with the
nominal best image plane (tilt), respectively.

We can observe in Fig. 3.10 a quadratic curve of the image contrast versus the
location 𝑧. The image contrast is the maximum (thus the image is the sharpest) in
the nominal best image plane and decreases as the distance between the nominal
best image plane and the image plane of measurement, in which the scanning
is performed, increases. In Fig. 3.10, we fit the image contrast curve versus the
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Figure 3.10: The variations of the image contrast and the maximal pixel value location with respect
to the image plane location 𝑧. The location of the maximum of the image contrast curve (left) gives
the location of the nominal best image plane, which gives the defocus, and the maximal pixel value
location gives the intersect of chief ray with each image plane (right). The slop of this curve gives the
telecentricity and the intersect of this curve with the nominal best image plane gives the tilt aberration.
Pictures are experimental data.

location 𝑧 by a quadratic function defined as
𝐴𝑥(𝑧) = 𝑎𝑥(𝑧 − 𝑧0,𝑥)2 + 𝑏𝑥 ,
𝐴𝑦(𝑧) = 𝑎𝑦(𝑧 − 𝑧0,𝑦)2 + 𝑏𝑦 ,

(3.21)

where 𝑎, 𝑏, 𝑧0 are fitting parameters. 𝑧0𝑥 and 𝑧0𝑦 give the location of the nominal
best image plane according to the x and the y crosssection, respectively. Notice
that 𝑧0𝑥 and 𝑧0𝑦 may not be identical as shown in Fig. 3.10. So we use the geometric
mean √𝑧0,𝑥𝑧0,𝑦 to determine the defocus.

The location of the maximal image pixel value gives the intersect of the chief
ray with each image plane. Fig. 3.10 shows that the chief ray is a linear function of
the location 𝑧 as expected. Therefore, we fit the chief ray by

𝐶𝑥(𝑧) = 𝑐𝑥𝑧 + 𝑑𝑥 ,
𝐶𝑦(𝑧) = 𝑐𝑦𝑧 + 𝑑𝑦 ,

(3.22)

where 𝑐 and 𝑑 are the fitting parameters. 𝑑𝑥 and 𝑑𝑦 give the x and the y coordinate
of the intersect of the chief ray with the nominal best image plane (at 𝑧 = 0),
respectably. 𝑐𝑥 and 𝑐𝑦 give the slope of the chief ray in the x and the y direction,
respectively. In each subregion of a perfect telecentric lithographic projection lens,
𝑑𝑥 and 𝑑𝑦 should be identical, while 𝑐𝑥 and 𝑐𝑦 should be identically zero.

We remark that the tilt (the deviation of the chief ray intersection) depends on
the initial scanning position: the location of the maximum image pixel value may
not necessarily be at the center of each image. Because all images are measured
simultaneously by one scanning process, we can select the tilt in one subregion,
usually the subregion corresponding to the pixel at the center of the camera (at
the center of the FOV of the projection lens), to be the reference. We thus further
determine the tilt in other subregions with respect to the reference.
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In summary, in order to determine the tilt and the defocus in each subregion,
we need to do the following analysis:

1. Measuring PSFlike images by performing scanning in a series of image planes
at various 𝑧 locations on the optical axis.

2. Fitting the crosssections of each PSFlike image by sinusoidal curves to de
termine the image contrast (amplitude) and the intersect of chief ray with the
image plane in which the scanning is performed (phase).

3. Fitting the variations (with respect to the location 𝑧) of the image contrast
and the chief ray intersection by quadratic curve and linear curve, respectively
(Fig. 3.10).

4. Retrieving the location of the nominal best image plane (defocus), the slope
of the chief ray (telecentricity) and the intersection of the chief ray with the
nominal best image plane (tilt).

5. Finally, combining the retrieved tilt and defocus aberration for each subregion
to obtain the distortion and field curvature in the entire FOV. The telecentricity
in the entire FOV can also be obtained.

3.4.2. Experimental Validation
The first step of experimental validation is to align the two masks because misalign
ment can introduce additional aberrations (mainly distortion) to the aberrations of
the projection lens. The effect of the additional distortions is visible in every image
measured by the camera and exhibits distinctive patterns associating with particular
types of misalignment errors, which allows us to minimize the additional distortions
by alignment.

There are 3 typical types of additional distortions caused by misalignment:

• Magnification Error: caused by the mismatch between the pitches of the
image of mask 1 and mask 2.

• Rotation Error: caused by the relative rotation (around the optical axis)
between the image of mask 1 and mask 2.

• Higher Order Distortion: caused by the misuse of conjugation planes (the
pair of object and image planes).

Because the alignment uses visible effects of the additional distortions, the scanning
process is not needed during alignment. As a result, our method provides a very
useful realtime tool for 3dimensional alignment of the object plane (mask 1) and
the image plane (mask 2).

Fig. 3.11 shows the camera measurement for each step of alignment in the
experiment. As seen in Fig. 3.11 (1), we started with severe misalignment that
leads to a mixture of magnification error (the rectangular grid pattern), rotation
error (rotation with respect to horizontal and vertical directions) and higher order
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Figure 3.11: Camera measurements for steps (14) of masks alignment in the experiment. Effect of
each type of distortion (magnification, rotation, and higher order distortion) can be observed visually in
each camera measurement. The magnitudes of distortions are described by S (small) and L (large) in
the brackets. The zoom settings for step (3) and step (4) are referred to as ”zoom 1” and ”zoom 2”,
respectively.
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Figure 3.12: Retrieved distortions in zoom 1 and zoom 2 configuration. Left: the total distortion of
both magnification error and other distortions. Right: only the contribution by other distortions. The
magnitude of distortion in each plot is given by the maximum displacement.



3

62
3. Spatiallyvarying Aberrations Retrieval Using a Pair of Periodic Pinhole

Array Masks

distortion (irregular deformation). By correcting the locations of the conjugated
planes on the optical axis, we have reduced the level of higher order distortion
from ≥ 9 µm to ≤ 0.5 µm, leading to the camera measurement in Fig. 3.11 (2).

Further reduction of higher order distortion is difficult due to the difficulty of
distinguishing the irregular deformation. By correcting the relative rotation between
the two masks, we reduced the rotation error, which leads to a reduction of the
number of fringes in Fig. 3.11 (3). Finally, by correcting the zoom setting, we further
reduced the magnification error, thus reduce the number of fringes to a minimum,
and obtained a visually uniform camera measurement as shown by Fig. 3.11 (4).

In order to validate the alignment process, we applied our method to two zoom
settings of the projection lens, which are referred to as ”zoom 1” and ”zoom 2”,
respectively. The raw camera measurements in zoom 1 and zoom 2 can be seen in
Fig. 3.11 (3) and Fig. 3.11 (4), respectively. Actually, zoom 1 and zoom 2 are the
configuration before and after the zoom setting correction, which have the same
higher order distortion and rotation error, but different magnification error.

In each configuration, we measure a series of PSFlike images via scanning
and determine the distortion by combining the retrieved tilt in each subregion
(corresponding to each camera pixel).

Our goal is to verify that whether the zoom setting correction indeed corrects
only the magnification error. Notice that the distortion can be decomposed accord
ing to the polynomials proposed by Braat, et al in [26]. The decomposition allows
us to separate the magnification error (2nd order polynomial) from other distortions
(3rd to 10th polynomials). The rotation error, however, does not belong to any of
these polynomials, but is distributed in higher order distortions instead.

We present the distortions retrieved in the zoom 1 and zoom 2 configuration
in the top and bottom panel of Fig. 3.12. We can observe that the total distortion
has been reduced significantly from 9182 nm in zoom 1 to 342 nm in zoom 2
by correcting the zoom setting. In the former, the magnification error dominant,
while in the latter, it is not. Besides, the plots of higher order distortions in both
configurations show similar patterns and magnitudes. This is in agreement with our
expectation that the zoom setting has only a trivial effect on higher order distortion.

We demonstrate the retrieval results of telecentricity and field curvature in
Fig. 3.13 and Fig. 3.14, respectively. The 2 masks have been already aligned when
performing the retrieval. So the remaining aberrations should be equal to the aber
rations of the test projection lens. We can observe in Fig. 3.13 that the comparison
between the retrieved and the simulated (using a ray tracing model) results of tele
centricity matches each other. The field curvature result also matches the data
measured using interferometry as shown in Fig. 3.14. As a consequence, we can
finally verify that our method provides an efficient way for accurately retrieving
distortion, field curvature, and telecentricity of the projection lens.

3.5. Retrieving full wavefront aberrations∗

∗ This section is based on the publication in Optics Express 27,2 (2019) [2].
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non-telecentricity half-field

Figure 3.13: Results of telecentricity measurement. Left: experiment retrieval result. Right: ray tracing
model simulation result along the x direction. The magnitude of nontelecentricity in the experimental
retrieval result is given by the maximum chief ray angle.

 

Figure 3.14: Results of field curvature measurement. Left: Experiment retrieval result. Right: Inter
ferometry measurement result along the x direction. The magnitude of fieldcurvature is given by the
maximum defocus distance.

As we described in the previous section, the retrieval of distortion, field curvature
and telecentricity depends on the determination of the maximal pixel value loca
tion and the contrast of the PSFlike image measured by every camera pixel (Fig.
3.8). However, this determination may also be affected by other aberrations. For
example, odd and even order aberration causes lateral shift and blur of the PSF,
respectively, as discussed in [16–18]. Therefore, it is more appropriate to develop
a method that handles full wavefront aberrations (all terms of the expansion in
Zernike polynomials). This can be done using the same data but a different opti
mization approach.

We first need a model describing the PSFlike image in image plane at Δ𝑧 mea
sured by camera pixel 𝜈𝜈𝜈 as a function of the scanning position Δr𝑖. According to
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Eq. 3.14, we can express the PSFlike image by

𝐼(𝜈𝜈𝜈,Δ𝑧)𝑑 =∬
Ω𝜈𝜈𝜈𝑖
𝐼𝜏(r𝑖 − Δr𝑖)𝐻Δ𝑧𝑐 (r𝑖) [∬

Ω𝜈𝜈𝜈𝑜
𝐻(𝜈𝜈𝜈,Δ𝑧)𝑝 (r𝑖 − r𝑜)𝐼𝑡(r𝑜)dr𝑜]dr𝑖

= 𝐼𝜏(Δr𝑖) ⋆ [𝐻(𝜈𝜈𝜈,Δ𝑧)𝑝 (Δr𝑖) ∗ 𝐼𝑡(Δr𝑖)] ,
(3.23)

where 𝐻𝑐(Δr𝑖) has been neglected because it is much larger than one subregion
and hence it can be considered as a constant as the scanning covers only one
subregion. In Eq. (3.23), 𝐻(𝜈𝜈𝜈,Δ𝑧)𝑝 (Δr𝑖) is the PSF intensity of the projection lens
in the image plane at Δ𝑧 in the subregion that is imaged onto pixel 𝜈𝜈𝜈. Notice
that the resolution of 𝐻(𝜈𝜈𝜈,Δ𝑧)𝑝 (Δr𝑖) is given by the scanning interval. We remark
that Eq. (3.23) can be computed efficiently using the fast Fourier transform (FFT)
algorithm.

3.5.1. Computation of the pointspread function
We denote the spatiallyvarying wavefront error of the projection lens by Φ𝜈𝜈𝜈(𝜌𝜌𝜌𝑝),
which is a 4dimensional function of both the coordinate 𝜌𝜌𝜌𝑝 of the pupil plane and
the index 𝜈𝜈𝜈 of the camera pixel. Φ𝜈𝜈𝜈(𝜌𝜌𝜌𝑝) determines the spatiallyvarying PSFs in
the nominal image plane and the defocused planes, which can be computed using
the Debye diffraction integral [27, 28] as follows:

ℎ(𝜈𝜈𝜈,Δ𝑧)𝑝 (Δr𝑖) = ∬ exp [𝑖2𝜋Φ𝜈𝜈𝜈(𝜌𝜌𝜌𝑝)] exp [−𝑖Δ𝑧|𝜌𝜌𝜌𝑝|2] exp [−𝑖2𝜋 (Δr𝑖 ⋅ 𝜌𝜌𝜌𝑝)]d𝜌𝜌𝜌𝑝
= ℱ {exp [𝑖2𝜋Φ𝜈𝜈𝜈(𝜌𝜌𝜌𝑝)] exp [−𝑖Δ𝑧|𝜌𝜌𝜌𝑝|2]} (Δr𝑖),

(3.24)
where ℱ is the Fourier transform. Eq. (3.24) shows that Δr𝑖, the scanning position,
and 𝜌𝜌𝜌𝑝 are a pair of Fourier transform variables. The sampling of Δr𝑖 and 𝜌𝜌𝜌𝑝 should
satisfy the ShannonNyquist sampling theorem. Note that Eq. (3.24) describes a
purely scalar model that is valid for imaging system with a low NA, i.e. NA ≤ 0.6.
For imaging system with high NA, i.e. NA > 0.6, we need to use a vectorial model
which incorporates the polarization effect.

In Eq. (3.24), the term exp [𝑖2𝜋Φ𝜈𝜈𝜈(𝜌𝜌𝜌𝑝)] represents the pupil function of the
projection lens. The phase Φ𝜈𝜈𝜈(𝜌𝜌𝜌𝑝) represents the wavefront error with respect
to the ideal wavefront in the subregion imaged onto pixel 𝜈𝜈𝜈 and the amplitude
is assumed to be uniform, which implies that any vignetting effect as well as any
loss of light due to absorption or scattering are neglected in our model. The term
exp [−𝑖Δ𝑧|𝜌𝜌𝜌𝑝|2] is the defocus term, where Δ𝑧 is the normalized relative distance
between the image plane of measurement and the nominal image plane.

We can decompose the 4dimensional wavefront error as follows:

Φ𝜈𝜈𝜈(𝜌𝜌𝜌𝑝) =∑
𝑚,𝑛

𝜁𝑚𝑛 (𝜈𝜈𝜈)𝑍𝑚𝑛 (𝜌𝜌𝜌𝑝), (3.25)

where 𝜁𝑚𝑛 and 𝑍𝑚𝑛 are the aberration coefficients and the Zernike polynomials, re
spectively. For radial order 𝑛 and azimuthal order 𝑚, the coefficient 𝜁𝑚𝑛 represents
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Figure 3.15: PSFlike images measured by three camera pixels (in three subregions) via scanning in
three image planes. The FOV of the projection lens has a size of 32 mm × 55 mm. Three PSFlike
images, each with size of 4.5 µm × 4.5 µm, can be measured simultaneously via one scanning process.

the weight of the Zernike polynomial 𝑍𝑚𝑛 (𝜌𝜌𝜌𝑝). The wavefront error Φ𝜈𝜈𝜈(𝜌𝜌𝜌𝑝) in the
subregion imaged onto pixel 𝜈𝜈𝜈 is thus a weighted sum of all the aberrations.

We retrieve a set of coefficients 𝜁𝜁𝜁(𝜈𝜈𝜈) for each subregion. By combining 𝜁𝜁𝜁(𝜈𝜈𝜈) re
trieved in all subregions, we can thus determine the spatial variation of each aber
ration coefficient and retrieve the spatiallyvarying aberrations. Here the relation
between the Zernike polynomials and the primary Seidel aberrations is beneficial
for the diagnosis of projection lens.

3.5.2. Optimization for aberration coefficient retrieval
For each subregion indexed by 𝜈𝜈𝜈, we retrieve a set of coefficients 𝜁𝜁𝜁(𝜈𝜈𝜈) from a series
of PSFlike images 𝐼(𝜈𝜈𝜈,Δ𝑧)𝑑 (Δr𝑖) by solving an nonlinear optimization problem. We
will now temporarily omit the index 𝜈𝜈𝜈 and the subscript 𝑑 for the detector.

We formulate the optimization problem by defining an error function, which is
the sum of the squared differences between the measurements and the predictions
in all throughfocus image planes. We find the solution to this optimization problem
by updating the set of coefficients 𝜁𝜁𝜁 iteratively until the error function reaches a
minimum. The error function is defined as follows:

ℒ(𝜁𝜁𝜁) =∑
Δ𝑧
∬[𝐼Δ𝑧(Δr𝑖) − 𝐽Δ𝑧(Δr𝑖; 𝜁𝜁𝜁)]

2
dΔr𝑖 , (3.26)

where 𝐼Δ𝑧(Δr𝑖) and 𝐽Δ𝑧(Δr𝑖 , 𝜁𝜁𝜁) are the measurements and the predictions, respec
tively.

We remark that retrieving 𝜁𝜁𝜁 from only one image measured in the nominal image
plane (Δ𝑧 = 0) is not sufficient because the solution 𝜁𝜁𝜁 will not be unique. There
fore, at least one extra image should be measured in a defocused plane (Δ𝑧 ≠ 0).
Fig. 3.15 shows that the differences between the PSFlike images in different sub
regions indexed by 𝜈𝜈𝜈 are more significant in the defocused planes than in the nom
inal best image plane.

According to studies in [29, 30], the defocused planes are preferred to be lo
cated symmetrically on both sides of the nominal best image plane. They should be
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sufficiently far from the nominal best image plane so the correlation between the
PSFlike images are sufficiently small as mentioned in [31, 32]. However, they can
not be too far (further than 5𝜋𝜆/(𝜋NA)2) otherwise Eq. (3.24) the Debye diffraction
integral for computing the PSF will be invalid.

To minimize the error function, we need to derive an analytical expression for
the gradient of the error function with respect to 𝜁𝜁𝜁. Using the chain rule, we obtain:

𝜕ℒ(𝜁𝜁𝜁)
𝜕𝜁𝜁𝜁 = 2∑

Δ𝑧
∬[𝐽Δ𝑧(Δr𝑖; 𝜁𝜁𝜁) − 𝐼Δ𝑧(Δr𝑖)]

𝜕
𝜕𝜁𝜁𝜁 𝐽

Δ𝑧(Δr𝑖; 𝜁𝜁𝜁)dΔr𝑖 . (3.27)

The gradient of 𝐽Δ𝑧(Δr𝑖; 𝜁𝜁𝜁) with respect to 𝜁𝜁𝜁 is given by

𝜕
𝜕𝜁𝜁𝜁 𝐽

Δ𝑧(Δr𝑖; 𝜁𝜁𝜁) =
𝜕
𝜕𝜁𝜁𝜁 {𝐼𝜏(Δr𝑖) ⋆ [𝐻

Δ𝑧
𝑝 (Δr𝑖; 𝜁𝜁𝜁) ∗ 𝐼𝑡(Δr𝑖)]}

= 𝐼𝜏(Δr𝑖) ⋆ [
𝜕
𝜕𝜁𝜁𝜁𝐻

Δ𝑧
𝑝 (Δr𝑖; 𝜁𝜁𝜁) ∗ 𝐼𝑡(Δr𝑖)] ,

(3.28)

where the gradient of 𝐻Δ𝑧𝑝 (Δr𝑖; 𝜁𝜁𝜁) with respect to 𝜁𝜁𝜁 is given by

𝜕
𝜕𝜁𝜁𝜁𝐻

Δ𝑧
𝑝 (Δr𝑖; 𝜁𝜁𝜁) = 2ℜ{ℎΔ𝑧𝑝 (Δr𝑖; 𝜁𝜁𝜁)∗

𝜕
𝜕𝜁𝜁𝜁 ℎ

Δ𝑧
𝑝 (Δr𝑖; 𝜁𝜁𝜁)} . (3.29)

For each coefficient of aberration, we have

𝜕
𝜕𝜁𝑚𝑛

ℎΔ𝑧𝑝 (Δr𝑖; 𝜁𝜁𝜁) = ℱ {𝑖2𝜋𝑍𝑚𝑛 (𝜌𝜌𝜌𝑝) exp [𝑖2𝜋Φ(𝜌𝜌𝜌𝑝; 𝜁𝜁𝜁)] exp [−𝑖Δ𝑧|𝜌𝜌𝜌𝑝|2]} . (3.30)

In each iteration, the computation of the gradient of the error function with respect
to each coefficient is the most timeconsuming part in our method. We need to
compute Eq. (3.273.30) as many times as the number of the coefficients. Typically,
we need to consider the first 15 aberrations (the primary Seidel aberrations) for a
quick diagnosis or the first 37 aberrations for a more thorough diagnosis. We set
the initial guess of the coefficients to be all zeros (no aberrations), and we update
the coefficients using the ”fminunc” routine implemented in the Matlab.

3.5.3. Simulation results
In this section, we will perform qualitative analysis to determine the locations of
measurement planes and to optimize the design parameters of the pair of masks.
Our analysis is based on simulations.

For the simulations, we assume that both masks consist of identical periodic
squared pinhole arrays with pinhole width 𝑤 and pitch 𝑝. We use 37 aberration
coefficients at 9 locations in the FOV of the projection lens (based on the Zemax
ray tracing simulation data) to simulate the measurements (please see the table
of aberration coefficients in Appendix I). Each measurement is normalized to unity
and then converted to 16bit precision data type to mimic the use of a CCD/CMOS
camera.
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Figure 3.16: Plot of the residual wavefront error versus the locations of measurement planes. Gray curve
shows the original wavefront error for simulating the measurements. Blue and red curves show the
residual wavefront error corresponding to the aberration coefficients retrieved from 9 sets of simulated
measurements in three planes (at Δ𝑧 = 0, and ±Δ𝑧′) and in five planes (at Δ𝑧 = 0, ±0.8𝜋, and ±Δ𝑧′),
respectively. Lines and shadings represent the mean and standard deviation of corresponding data. This
simulation is noise free.

Determining the locations of measurement planes
In this part, we use masks with 𝑤 = 2.5 µm and 𝑝 = 7.5 µm. We scan mask 2
relative to the image of mask 1 in each measurement plane by 20 steps with step
size 375 nm in two orthogonal directions, and we repeat the scanning process in
a number of measurement planes with various defocus distance Δ𝑧 (normalized by
𝜆/(𝜋NA)2).

We define the residual wavefront error (WE) the squared difference between the
original WE, used to simulate the measurements, and retrieved WE, retrieved from
the simulated measurements. We evaluate the performance of the optimization
algorithm using the rootmeansquare (RMS) of the residual WE.

Suppose we take measurements in 3 planes in the focal region: one in the
nominal image plane at Δ𝑧 = 0 and the other two in two defocused planes located
symmetrically on both sides of the nominal image plane at Δ𝑧 = ±Δ𝑧′. We vary the
locations of both defocused planes by varying Δ𝑧′.

We calculate the RMS of the residual WE at each FOV location individually and
calculate the mean and the standard derivation (SD) for 9 FOV locations, which are
denoted by 𝜇(Δ𝑧′) and 𝜎(Δ𝑧′), respectively.

In Fig. 3.16, we plot 𝜇(Δ𝑧′) (blue line) and 𝜎(Δ𝑧′) (blue shading) for Δ𝑧′ ranging
from 0.1𝜋 to 1.5𝜋. We observe that the performance of the algorithm is the optimal,
namely both 𝜇(Δ𝑧′) and 𝜎(Δ𝑧′) are small, for Δ𝑧′ in the vicinity of 0.8𝜋. Notice that
both 𝜇(Δ𝑧′) and 𝜎(Δ𝑧′) are slowlyvarying functions of Δ𝑧′. The optimal region is
broad and hence the optimization algorithm is not very sensitive to Δ𝑧′.

Next suppose we take measurements in 5 planes in the focal region: one in
the nominal image plane at Δ𝑧 = 0, and the other four in four defocused planes at
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Δ𝑧 = ±0.8𝜋 and Δ𝑧 = ±𝑧′, respectively. We aim to investigate that whether adding
two extra defocused planes to the two optimal defocused planes can improve the
performance of the optimization algorithm.

In Fig. 3.16 𝜇(Δ𝑧′) (red line) and 𝜎(Δ𝑧′) (red shading) are the mean and the
SD in the case of using 5 measurement planes. Both 𝜇(Δ𝑧′) and 𝜎(Δ𝑧′) are almost
independent of Δ𝑧′, which indicates that we cannot improve the performance of
the optimization algorithm by using more measurement planes, namely more than
3 measurement planes. However, we do observe that the region of optimal Δ𝑧′,
which is already broad, becomes broader. In summary, using 3 optimally chosen
measurement planes is sufficient.

Optimizing the mask design and sensitivity analysis
In this part, we investigate the influence of the mask design on the sensitivity of the
optimization algorithm with respect to each order of the aberration. Here we adopt
the Noll’s index to enumerate the coefficients of the aberrations. The mapping from
𝜁𝑚𝑛 with radial order 𝑛 and azimuthal order 𝑚 to 𝜁𝓁 with Noll’s index 𝓁 can be found
in [25]. We define the retrieval error of the coefficient as

Δ𝜁𝓁(𝜈𝜈𝜈) = [𝜁𝓁(𝜈𝜈𝜈) − 𝜁′𝓁(𝜈𝜈𝜈)]
2

(3.31)

where 𝜁𝓁(𝜈𝜈𝜈) and 𝜁′𝓁(𝜈𝜈𝜈) are the original and the retrieved coefficients respectively. In
Fig. 3.17 and 3.18, we plot the the mean (line) and the SD (shading) of Δ𝜁𝓁(𝜈𝜈𝜈) for
9 FOV locations. In both figures, we use 37 precalibrated coefficients to simulate
the measurements , which are then fitted by the first 15 coefficients (left panel)
and by the total number of 37 coefficients (right panel).

We introduce additive random noise, which follows a normal distribution with
zero mean and one thousandth variance, to the simulated measurements to in
vestigate the robustness of the optimization algorithm. In Fig. 3.17, we compare
the errors of the coefficients retrieved from the noisy (red) and noisefree (blue)
measurements. We find that the influence of normally distributed noise on the
optimization algorithm is negligible. In practice normally distributed noise is often
caused by thermal agitation of electrons in an electronic device, which is propor
tional to the temperature.

The design parameters of the masks are the pinhole width 𝑤 and the pitch 𝑝.
We compare the error of the retrieved coefficients for 𝑤 = 1.0 µm (red) and for
𝑤 = 2.5 µm (blue) in Fig. 3.18. We can observe that the error is independent of 𝑤
when using the first 15 coefficients (left panel) but depends on 𝑤 when using the
total number of 37 coefficients (right panel).

The left panels in both figures show that we can use only the first 15 coefficients
to fit the measurements simulated by 37 coefficients and obtain accurate results:
for each aberration, the retrieval error is at least 2 orders of magnitude smaller
than the original coefficient in terms of the mean and the SD. The right panels in
both figures show that when using the total number of 37 coefficients to fit the
measurements, we can obtain more accurate results for lower order (the first 15)
coefficients than for higher order (the rest of the total number of 37) coefficients.
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Figure 3.17: Comparison between the retrieval errors of the aberration coefficients with and without
noise. We simulate measurements using 37 coefficients, which are fitted by the first 15 coefficients (left
panel) and by the total number of 37 coefficients (right panel). The gray graph shows the original coef
ficients for simulating the measurements. The blue and the red graphs are the errors of the coefficients
retrieved from the simulated measurements without and with noise, respectively. Lines and shadings
are the mean and the SD of corresponding data.
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Figure 3.18: Comparison between the retrieval errors of the aberration coefficients as a function of
pinhole width. The measurements are simulated using 37 coefficients, which are then fitted by the first
15 coefficients (left panel) and by the total number of 37 coefficients (right panel). The gray graph
shows the original coefficients for simulating the measurements. The blue and red graphs are the errors
of coefficients retrieved from measurements simulated using periodic mask with pinhole width 𝑤 = 1.0
µm and 𝑤 = 2.5 µm, respectively. Lines and shadings are the mean and the SD of corresponding data.

3.5.4. Experiment results
To validate the optimization algorithm, we compare the measured and the predicted
(calculated using the retrieved coefficients of aberrations) PSFlike patterns in 6
throughfocus planes at Δ𝑧 = ±2.78 µm, ±13.89 µm, and ±25.00 µm respectively.
The comparison result is plotted in Fig. 3.19. It is worth to note that the pitches
of the masks used in the simulation (Section 3.5.3) and in the experiment (Section
3.3) are not identical.

Due to the telecentricity error, the PSFlike image measured in different planes
is centered at different positions. So the optical algorithm needs extra coefficients



3

70
3. Spatiallyvarying Aberrations Retrieval Using a Pair of Periodic Pinhole

Array Masks

+25-25 -13.89 +13.89-2.78 +2.78 

z (um)

M
e

a
s
u

re
d

0

Focal 

Plane

Defocus above

Focal Plane 

Defocus below

Focal Plane 

P
re

d
ic

te
d

Figure 3.19: Comparison between the measurements and the predictions calculated using the retrieved
15 coefficients of aberrations. Unboxed figures are used for optimization while the boxed figures are
not used.
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Figure 3.20: Comparison between the defocus aberration (field curvature) retrieved using our algorithm
and the reference data in full FOV. (a) and (b) are the reference data and the retrieved field curvature,
respectively. (c) and (d) are the x and y crosssections of the plots in (a) and (b), respectively.

corresponding to the tilt terms of the Zernike polynomials to describe this phe
nomenon. We need 𝑁𝓁 + 2(𝑁Δ𝑧 − 1) extra coefficients, where 𝑁𝓁 and 𝑁Δ𝑧 are
the number of the Zernike polynomials and the measurement planes, respectively.
Namely, two extra coefficients per measurement plane.
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In Fig. 3.19, four of the total six PSFlike patterns are used during the opti
mization (unboxed figures), while the other two are not used (boxed figures). The
comparison in Fig. 3.19 shows that the predictions and the measurements are in
good agreement in all six measurement planes. Therefore, we validate the retrieval
of the spatiallyinvariant aberrations in each subregion. By applying the optimiza
tion to all subregions, we can thus determine the spatiallyvarying aberrations in
the entire FOV.

In Fig. 3.20, we compare the defocus aberration retrieved using our algorithm
with the reference data [1], which is in agreement with interferometry data. The
defocus aberration is related to the location of the nominal image plane on the
optical axis (𝑧 axis). Due to the use of the piezo stage, the error of the location of
each measurement plane can be neglected. However, the retrieved defocus may be
biased (blue curve) because the nominal image plane may not be located exactly
at Δ𝑧 = 0.

As a result, we need to adjust the retrieved defocus to zero mean (red curve)
and the adjusted defocus is now in agreement with the reference data (black curve).
Fig. 3.20 also shows that for a lithography system, determining the defocus at a
large number of FOV locations, i.e. obtaining a high resolution measurement of the
field curvature, is necessary, because the spatial variation of the defocus can be
fast and drastic.

3.6. Conclusion
In this chapter, we developed and validated an efficient, accurate, and robust
method for measuring the spatiallyvarying aberrations of a lithography system.
Our method does not require complex equipments, instead, simply uses a pair of
periodic pinhole array masks, a 3dimensional precision translation stage, and a
CCD/CMOS camera. As a result, by taking hundreds of intensity measurements we
can measure coefficients of aberrations at millions of FOV locations. This drastic
difference between the magnitudes is the most attractive feature of our method.

Because our method uses only binary masks with transmission/reflection being
either 1 or 0, our method can be applied to any arbitrary wavelength. Although
only a low NA imaging system is considered in this chapter, our method also can be
applied to measure the spatiallyvarying aberrations of a high NA imaging system
by taking polarization effects into account. We recommend to use either spatially
coherent or incoherent illumination for the measurement due to the consideration
of computational efficiency. However, in principle, our method can also deal with
spatially partially coherent illumination and retrieve the source intensity distribution.

For industrial applications such as lithography, whether choosing a direct method
or an image based method depends on practical situations. The direct method
usually provides instant and unambiguous measurement of the wavefront error,
while the image based method requires parameterization of the wavefront error and
an optimization procedure that is time consuming and sometimes yields nonunique
result. However, when the spatial variation of the aberrations becomes an issue,
the direct method cannot be parallelized for as many FOV locations as our method
and the speed turns out to be the bottleneck. In contrast, our method consumes
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identical time for optimization at one FOV location or at several FOV locations. The
speed can even be further accelerated by using deep learning techniques to avoid
optimization at all.

Appendix I: Simulation Data
In the table below we list the 7 sets of aberration coefficients for the simulation
in Subsection 3.5.3. These sets of aberration coefficients are the ray tracing data
obtained using Zemax software. The peaktovalley and the rootmeansquare take
the centroid of the PSF as the reference point and hence did not consider the piston
and the tilt.
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4.1. Introduction
Spatial coherence is among the fundamental properties of light, which describes the
statistical correlation between the light field at a pair of locations. The measurement
of spatial coherence plays an important role in a broad range of key applications
such as beam shaping [2, 3], freespace optical communication through turbulent
atmosphere [4], illumination for advanced imaging system (e.g. lithography) [5],
and superresolution imaging [6].

The spatial coherence of an arbitrary light beam can be completely characterized
by the complexvalued 4dimensional mutual coherence function (MCF). However,
the measurement of the MCF is remarkably challenging. The problem is particularly
severe for methods that measure either the intensityintensity correlation [2, 3] or
the interference pattern [7] between light field at all possible combination of pairs
of locations.

Other interference based methods methods measure fringe visibility along either
a single direction [8–10] or multiple directions [11, 12], which, however, rely on the
symmetry of the MCF. An alternative is to describe the MCF by an analytical model,
e.g. the GaussSchell model [13]. As a result, the MCF can be determined by fitting
a set of parameters.

The phase space methods [14–17] measure the diffraction pattern of the light
that propagates through a tiny window. It should be considered that the MCF is
a function of two twodimensional spatial coordinates (locations). This approach
is equivalent to measuring the Fourier transform with respect to one coordinate,
while setting the other coordinate to be at the location of the tiny window. As a
result, we only need to scan the tiny window, and take one measurement at each
location. However, both phase space methods [14–17] and the methods mentioned
in [2, 3, 11, 12] cannot measure both the amplitude and the phase of the MCF. The
phase has significant impact on the propagation of light beam and is essential for
phasesensitive applications.

For diffractive imaging, characterizing the spatial coherence of the illumination
light beam is essential. Diffractive imaging reconstructs the information of an object
from the diffracted farfield intensity pattern. In the xray and the electron regime,
diffractive imaging is particularly useful due to the lack of highquality and lowcost
optics. Because no spatially coherent illumination source like a laser is available in
this regime, the performance of diffractive imaging is severely degraded.

Experimentally, an illumination source that is almost spatially coherent can only
be obtained via spatial filtering, but at the cost of severe light loss. Typically, the
light generated by a synchrotron source needs to be propagated through a microm
eter sized pinhole and then propagated for about a hundred meter distance before
illuminating an object. After this process, a significant amount of beam flux is lost.

In order to use spatially partially coherent illumination for diffractive imaging,
several modifications to the current algorithms have been developed to take into
account the propagation of the MCF instead of the coherent light field. In [18, 19],
authors interpret the diffraction pattern as a convolution between a shiftinvariant
MCF and the coherent diffraction pattern. Alternatives decompose the shiftvariant
MCF by a set of coherent modes [20, 21] such that the diffraction pattern becomes
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r kz

Aperture

Plane

Camera

Plane

Figure 4.1: Schematic plot of the MCF measurement concept. An arbitrary beam illuminates an object in
the aperture plane. The incident beam is split into the object wave and a reference wave by perturbing
the light field at a particular ”point” in the aperture plane. These two waves interfere with each other
in the camera plane and the interference pattern (diffraction pattern) is measured.

a superposition of the diffraction pattern of each coherent mode. However, mode
decomposition is effective only when the degree of spatial coherence is rather high
and only a few number of modes is required. In the literature, to our knowledge,
none of the noniterative diffractive imaging algorithms, e.g. [22–24], have been
adapted to use spatially partially coherent illumination.

4.2. MCF measurement using holography
Here we present a method for measuring the complexvalued 4dimensional MCF of
an arbitrary light beam using holography. Our method neither uses prior knowledge
nor imposes any requirement on the structure of the MCF. The concept of our
method is sketched in Fig. 4.1. We let the target light beam be transmitted by an
aperture and measure the farfield diffraction pattern. Unlike any other methods,
our method requires perturbation to the transmission in the aperture plane at a
particular ”point”.

We can realize the point perturbation by using a spatial light modulator (SLM),
which can either switch the amplitude between 0 and 1 or varying the phase con
tinuously from −𝜋 to +𝜋. The point perturbation allows us to split the incident field
into two parts: the original transmitted wave and a reference wave.

Notice that the reference wave is generated by applying the point perturbation
to the incident field. The reference wave can be considered as being emitted by a
point source located at the perturbation point. As a result, the reference wave is a
spherical wave, which becomes a plane wave in the farfield.

We remark that in our method, the correlation between the reference wave and
the original transmitted wave is preserved. The diffraction pattern is thus given by
the interference pattern between both waves in the farfield.

Using holography, we retrieve the correlation function between the incident field
at the perturbation point (reference wave) and all the locations in the aperture
plane (original transmitted wave) from the diffraction pattern. We retrieve a 2
dimensional correlation function which can be regarded as a ”slice” of the complete
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4dimensional MCF. As a consequence, the 4dimensional MCF can be measured by
a 2dimensional scanning of the perturbation point.

Our method can be used for diffractive imaging by superposing the aperture with
a transmissive object. In this situation, we retrieve the product of the transmission
of the object and the correlation function of the illumination beam with respect to
the perturbation point, which plays a role as the modulation. By calibrating and
compensating the modulation, we can obtain the transmission of the object alone.

4.2.1. Description of the diffraction pattern
The concept of our method is illustrated schematically in Fig. 4.1. Let the coor
dinates in the aperture plane and the camera plane be denoted by r and k, re
spectively. We denote the field of the incident beam by 𝐸𝑖(r). The domain of the
aperture is denoted by Ω and the transmission function 𝑇(r) in the aperture plane
is given by

𝑇(r) = {1 r ∈ Ω
0 r ∉ Ω . (4.1)

The transmission function is 1 inside and 0 outside the aperture. When superpos
ing a transmissive object with the aperture for diffractive imaging, we can simply
multiply 𝑇(r) with the transmission function of the object 𝑂(r).

We perturb the original transmitted wave by varying the transmission function
𝑇(r) at a particular ”point” r = r𝑝 in the aperture plane. The point perturbation
is denoted by a Dirac delta function 𝐶𝛿(r − r𝑝), where 𝐶 is a complexvalued con
stant that represents the variation of 𝑇(r𝑝). The perturbed transmission function is
expressed as

𝑇𝑝(r) = [𝑇(r) − 𝑇(r)𝛿(r− r𝑝)] + 𝐶𝑇(r)𝛿(r− r𝑝)
= 𝑇(r) + 𝐶𝑝𝛿(r− r𝑝).

(4.2)

where 𝐶𝑝 = (𝐶 − 1)𝑇(r𝑝). Eq. (4.2) shows that at the perturbation point r = r𝑝,
the original transmission function 𝑇(r𝑝) is varied by 𝐶, while at other locations
𝑇(r) remains unchanged. Alternatively, we can also regard Eq. (4.2) as a sum of
the original transmission function 𝑇(r) at all locations and a Dirac delta function
𝐶𝑝𝛿(r − r𝑝) at r = r𝑝. As can be seen in Eq. (4.2)� the incident field will be
naturally split into an object wave and a reference wave, which propagates through
𝑇(r) and 𝐶𝑝𝛿(r− r𝑝), respectively.

The intensity distribution of the diffraction pattern (in the approximation of
Fraunhofer diffraction) in the camera plane is written as:

𝐼(k) =∬∬⟨𝐸𝑖(r1)𝐸𝑖(r2)∗⟩𝑇𝑝(r1)𝑇𝑝(r2)∗

× exp [−𝑖2𝜋k ⋅ (r1 − r2)]dr1dr2,
(4.3)

where ⟨⋅⟩ represents the ensemble averaging and

𝐽(r1, r2) = ⟨𝐸𝑖(r1)𝐸𝑖(r2)∗⟩, (4.4)
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is the MCF of the incident field, which describes the correlation between the incident
field at a pair of locations r1 and r2.

𝐽(r1, r2) is a constant for a spatially coherent beam, meaning that all combi
nations of locations have identical correlation. However, when the beam is only
spatially partially coherent, 𝐽(r1, r2) may have a certain distribution which can be
revealed by the farfield diffraction pattern.

Considering the split of the incident wave in the aperture plane, we can rewrite
the diffraction pattern as

𝐼(k) =∬∬𝑇𝑝(r1)𝑇𝑝(r2)∗𝐽(r1, r2) exp [−𝑖2𝜋k ⋅ (r1 − r2)]dr1dr2

=∬∬[𝑇(r1) + 𝐶𝑝𝛿(r1 − r𝑝)][𝑇(r2) + 𝐶𝑝𝛿(r2 − r𝑝)]∗

× 𝐽(r1, r2) exp [−𝑖2𝜋k ⋅ (r1 − r2)]dr1dr2.

(4.5)

Now we arrange Eq. (4.5) by grouping according to the dependence of each term
of 𝐼(k) on the object wave 𝑇(r) and the reference wave 𝐶𝑝𝛿(r−r𝑝). As a result, we
obtain 4 terms corresponding to the two quadratic terms and the two cross terms
in holography as follows:

𝐼(k) =∬∬𝑇(r1)𝑇(r2)∗𝐽(r1, r2) exp [−𝑖2𝜋k ⋅ (r1 − r2)]dr1dr2

+∬∬[𝐶𝑝𝛿(r1 − r𝑝)][𝐶𝑝𝛿(r2 − r𝑝)]∗𝐽(r1, r2) exp [−𝑖2𝜋k ⋅ (r1 − r2)]dr1dr2

+∬∬[𝐶𝑝𝛿(r2 − r𝑝)]∗𝑇(r1)𝐽(r1, r2) exp [−𝑖2𝜋k ⋅ (r1 − r2)]dr1dr2

+∬∬[𝐶𝑝𝛿(r1 − r𝑝)]𝑇(r2)∗𝐽(r1, r2) exp [−𝑖2𝜋k ⋅ (r1 − r2)]dr1dr2.
(4.6)

In analogy to holography, the first and the second term (quadratic terms) contain
either the object wave or the reference wave, while the third and the fourth term
(two cross terms) contain both the object wave and the reference wave. Our goal
is to separate and to extract the two cross terms from the diffraction pattern 𝐼(k).

4.2.2. Description of the measurement scheme
As can be seen in Eq. (4.6), the first term is the diffraction pattern for the unper
turbed aperture plane, which is generated by only the object wave (the original
transmitted wave) and hence shall be denoted by 𝐼0(k), while the second term is
the diffraction pattern generated by only the reference wave (the light transmitted
only at the perturbation point). In the camera plane, the second term, denoted by
𝐼𝑝(k), gives rise to a constant intensity distribution which equals to the intensity of
the incident beam at the perturbation point.
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We rewrite the cross terms of Eq. (4.6) as:

𝐼𝑐3(k) =∬∬[𝐶𝑝𝛿(r2 − r𝑝)]∗𝑇(r1)𝐽(r1, r2) exp [−𝑖2𝜋k ⋅ (r1 − r2)]dr1dr2

=∬𝐶∗𝑝𝑇(r1)𝐽(r1, r𝑝) exp[−𝑖2𝜋k ⋅ (r1 − r𝑝)]dr1,
(4.7)

𝐼𝑐4(k) =∬∬[𝐶𝑝𝛿(r1 − r𝑝)]𝑇(r2)∗𝐽(r1, r2) exp [−𝑖2𝜋k ⋅ (r1 − r2)]dr1dr2

=∬𝐶𝑝𝑇(r2)∗𝐽(r𝑝, r2) exp[−𝑖2𝜋k ⋅ (r𝑝 − r2)]dr2.
(4.8)

It should be noted that because 𝐽(r𝑝, r) = 𝐽(r, r𝑝)∗ (Hermitian property of the MCF),
the third term 𝐼𝑐3(k) and the fourth term 𝐼𝑐4(k) are complex conjugate of each other
and hence carry exactly identical information.

Inverse Fourier transforming the cross terms, we obtain:

̂𝐼𝑐3(r′) =∬[∬𝐶∗𝑝𝑇(r𝑝 + r)𝐽(r𝑝 + r, r𝑝) exp(−𝑖2𝜋k ⋅ r)dr] exp(+𝑖2𝜋k ⋅ r′)dk

=𝐶∗𝑝𝑇(r𝑝 + r′)𝐽(r𝑝 + r′, r𝑝),
(4.9)

̂𝐼𝑐4(r′) =∬[∬𝐶𝑝𝑇(r𝑝 − r)∗𝐽(r𝑝, r𝑝 − r) exp(−𝑖2𝜋k ⋅ r)dr] exp(+𝑖2𝜋k ⋅ r′)dk

=𝐶𝑝𝑇(r𝑝 − r′)∗𝐽(r𝑝 − r′r𝑝)∗.
(4.10)

In analogy to holography, ̂𝐼𝑐4(r) is referred to as the ”twin image” of ̂𝐼𝑐3(r). Both can
be obtained by applying different operations to the same function 𝐶∗𝑝𝑇(r)𝐽(r, r𝑝):

• ̂𝐼𝑐3(r):

– translation from origin to −r𝑝: 𝐶∗𝑝𝑇(r𝑝 + r)𝐽(r𝑝 + r, r𝑝).

• ̂𝐼𝑐4(r):

– taking complex conjugate: 𝐶𝑝𝑇(r)∗𝐽(r, r𝑝)∗

– translation from origin to +r𝑝: 𝐶𝑝𝑇(r− r𝑝)∗𝐽(r− r𝑝, r𝑝)∗.
– flipping over the center: 𝐶𝑝𝑇(r𝑝 − r)∗𝐽(r𝑝 − r, r𝑝)∗.

In our method, the translation that depends on the location of the perturbation
point r𝑝 and the finite size of the transmission function of the aperture 𝑇(r) are
crucial. Together they determine the spatial separation between the cross terms.

We remark that thanks to the linear dependence of the cross term on both the
transmission function 𝑇(r) and the correlation function 𝐽(r, r𝑝), using this exper
imental setup, we can either measure the MCF of the incident beam or perform
diffractive imaging on a transmissive object.

For MCF measurement, 𝑇(r) in the aperture plane needs to be provided, and
we can retrieve 𝐽(r, r𝑝), the correlation between field at the perturbation point r𝑝
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and all points r. 𝐽(r, r𝑝) is a 2dimensional crosssection of the 4dimensional MCF
𝐽(r1, r2) by setting one variable to be r2 = r𝑝 and the other variable to be r1 = r.
Therefore, in order to measure the complete 𝐽(r1, r2), we need to move r𝑝 to all
possible locations and retrieve the corresponding 𝐽(r, r𝑝) at each location.

For diffractive imaging, we retrieve the product of 𝑇(r)𝑂(r), instead of 𝑇(r), and
the correlation function 𝐽(r, r𝑝). 𝑇(r)𝑂(r) is a product of the transmission function
in the aperture plane and of the transmissive object. In order to obtain 𝑂(r) alone,
we need to perform two separate measurements: with and without the object,
and we divide the former, which yields 𝐽(r, r𝑝)𝑇(r)𝑂(r), by the latter, which yields
𝐽(r, r𝑝)𝑇(r).

4.2.3. Explanation of the retrieval process
In our method, the size of the aperture determines the size of each term after
inverse Fourier transforming the diffraction pattern. Both quadratic terms are cen
tered at the origin. ̂𝐼0(r) occupies an area twice as large as the aperture, and ̂𝐼𝑝(r)
occupies an area twice as large as the perturbation point. The two cross terms have
the same sizes but locate at different locations. ̂𝐼𝑐3 and ̂𝐼𝑐4 are located at r = +r𝑝
and r = −r𝑝, respectively.

In Fig. 4.2, we neglect the quadratic term 𝐼𝑝(r) whose size is very small, and
we illustrate the relation between the quadratic term 𝐼0(r) and the two cross terms.
Three overlap situations may occur depending on the locations of the cross terms,
which eventually depends on the location of the perturbation point r𝑝. We denote
the domain of the aperture and the quadratic term 𝐼0(r) by Ω and Ω0, respectively.
These three overlap situations are as follows:

a. r𝑝 ∈ Ω & r𝑝 ∈ Ω0:
The two cross terms overlap with each other and with 𝐼0(r);

b. r𝑝 ∉ Ω & r𝑝 ∈ Ω0:
The two cross terms overlap with 𝐼0(r) but not with each other;

c. r𝑝 ∉ Ω & r𝑝 ∉ Ω0:
The two cross terms overlap neither with each other nor with 𝐼0(r).

The approach for retrieving the two cross terms from the diffraction pattern differs
in different situations.

In situation (a), we need to measure three diffraction patterns 𝐼𝑛(k) correspond
ing to three perturbation constants 𝐶𝑛, where 𝑛 = 1, 2, 3, at the point r = r𝑝. As a
result, we can create a linear system of equations:

̂𝐼1(r) = ̂𝐼0(r) + 𝐶∗1 ̂𝐼𝑐3(r) + 𝐶1 ̂𝐼𝑐4(r)
̂𝐼2(r) = ̂𝐼0(r) + 𝐶∗2 ̂𝐼𝑐3(r) + 𝐶2 ̂𝐼𝑐4(r)
̂𝐼3(r) = ̂𝐼0(r) + 𝐶∗3 ̂𝐼𝑐3(r) + 𝐶3 ̂𝐼𝑐4(r)

, (4.11)

where ̂𝐼𝑐3(r) = [𝑇(r𝑝 + r)𝐽(r𝑝 + r, r𝑝)] and ̂𝐼𝑐4(r) = [𝑇(r𝑝 − r)𝐽(r𝑝 − r, r𝑝)]∗. By
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Figure 4.2: Schematic plot of the measurement scheme: The panda represents the object and the sur
rounding box represents the region of the aperture. The product of the transmission function 𝑇(r)𝑂(r)
is centered at the origin. The purple distribution represents the correlation function 𝐽(r, r𝑝) with respect
to the perturbation point. 𝐽(r, r𝑝) is centered at the perturbation point where the maximum correla
tion is 𝐽(r𝑃 , r𝑝). For ̂𝐼𝑐3(r), 𝑇(r)𝐽(r, r𝑝) is translated to become 𝑇(r𝑝 + r)𝐽(r𝑝 + r, r𝑝), and for ̂𝐼𝑐4(r),
𝑇(r)𝐽(r, r𝑝) is translated and flipped to become 𝑇(r𝑝 − r)𝐽(r𝑝 − r, r𝑝).
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Figure 4.3: Schematic plot of experimental setup. A coherent laser beam is focused onto a rotating
diffuser to create an effective incoherent source. The light generated by this source is collimated to
illuminate a reflective SLM, on which the effect of superposing a phase object with an aperture is sim
ulated. The farfield intensity distribution of the light reflected by the SLM is measured by the camera
using a Fourier transform (FT) lens. By varying the intensity distribution of the focal spot, the MCF of
the illumination beam can be varied.

solving the linear system of equations, we obtain

̂𝐼𝑐3(r) =
(𝐶2 − 𝐶1)∗ [ ̂𝐼3(r) − ̂𝐼1(r)] − (𝐶3 − 𝐶1)∗ [ ̂𝐼2(r) − ̂𝐼1(r)]

(𝐶2 − 𝐶1)∗(𝐶3 − 𝐶1) − (𝐶3 − 𝐶1)∗(𝐶2 − 𝐶1)
, (4.12)

and

̂𝐼𝑐4(r) =
(𝐶2 − 𝐶1) [ ̂𝐼3(r) − ̂𝐼1(r)] − (𝐶3 − 𝐶1) [ ̂𝐼2(r) − ̂𝐼1(r)]

(𝐶2 − 𝐶1)(𝐶3 − 𝐶1)∗ − (𝐶3 − 𝐶1)(𝐶2 − 𝐶1)∗
. (4.13)

In situation (b) we need to measure two diffraction patterns with and without the
point perturbation, respectively. By subtracting the later from the former, we can
remove the quadratic term ̂𝐼0(r) and obtain the two nonoverlapping cross terms.
Our approach in situation (b) is similar to the ”dOTF” approach in [25].

In situation (c) we can directly obtain the two nonoverlapping cross terms be
cause the quadratic term ̂𝐼0(r) does not pose an issue of overlap. Similar ap
proaches, usually known as the Fourier transform holography, can be found in [22–
24]. It should be noted that in this situation the total area of the camera sensor
was not used efficiently.

4.3. Experimental setup
The schematic plot of experimental setup is shown in Fig. 4.3. We focus a coherent
laser beam at a wavelength of 625 nm onto a diffuser. The focused light will then be
modulated by a random phase map and generates a speckle pattern. As we rotate
the diffuser, a series of speckle patterns (each corresponding to a distinct random
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phase map) add together incoherently during the acquisition time. Therefore, we
can reduce the degree of coherence of the focused light to zero, and hence create
an effective incoherent source, provided that the rotation speed is sufficient fast or
the acquisition time is sufficient long.

In the experimental environment, a fast rotation speed causes diffuser vibration
while a long acquisition time causes camera saturation. Therefore, finding a balance
between these two parameter is the key to a successful experiment. In the setup,
we mount the diffuser (a ground glass) on a optical chopper, which rotates at a
speed (in frequency) from 20 Hz to 1000 Hz, and we combine images measured at
various exposure times to avoid saturation by extending the dynamic range.

Because the light scattered by the diffuser is modulated by a random phase
that varies at different times and at different locations on the area illuminated by
the focused light, the effective incoherent source can be considered consisting of
a collection of independent point sources. The size of and the separation between
the point sources are determined by the roughness of the diffuser.

The light generated by the effective incoherent source is collimated to illuminate
the SLM. The MCF of the illumination light depends on the intensity distribution of
the focused spot (the effective incoherent source). In the experiment, we can obtain
two focal spots with two different intensity distributions and hence generate two
illumination beams with two different coherence structures: one is the Gaussian
correlated beam, also known as Gaussian Schellmodel (GSM) beam, and the other
is the GaussianAiry (GAC) correlated beam.

The difference between these two types of beams is whether the laser beam is
truncated by the focusing lens. The intensity distribution of the focal spot, acting
as the effective source, is the intensity of the Fourier transform of the field at the
focusing lens, which naturally exhibits a Gaussian profile for a normal laser beam.
So both the intensity distribution and the coherence structure of the generated
beam will exhibit a Gaussian profile without truncation, or a GaussianAiry profile
with truncation.

The GSM beam can be expressed by

𝐽(r1, r2) = exp(−
r21 + r22
𝑤2 ) exp(−(r1 − r2)2

𝜎2 ) , (4.14)

where 𝑤 is the width of the Gaussian intensity distribution and 𝜎 is the width of the
Gaussian coherence structure (degree of coherence). The GaussianAiry profile is
a result of truncating a Gaussian profile by a circular pupil and then performing an
optical Fourier transform. We can interpret the GaussianAiry profile by a convolu
tion between the Airy function (the Fourier transform of the circular aperture) and
the Gaussian function.

In the experiment, we can also vary the degree of coherence by simply varying
the size of the focal spot (while keeping its shape). This can be achieved by trans
lating the focal lens back and forth along the optical axis. In the case when the
focal spot size is smaller than the diffraction limit of the collimation lens, we can
consider the illumination beam to be spatially coherent. The degree of coherence
of the illumination beam decreases as the focal spot size increases.
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Figure 4.4: Picture of the SLM and the total transmission function of the phase object that is superposed
with the aperture. We assign an uniform amplitude and a binary phase in the shape of the panda to the
SLM.

In the experiment, we use a phase only reflective SLM (Holoeye PLUTO 2 with
size 1980 pixel × 1080 pixel and resolution 8.0 µm × 8.0 µm) to simulate the effect
of superposing a phase object with an aperture. The aperture is a square with size
of 240 pixel × 240 pixel on the SLM. By using two different phase tilting, we can
reflect incident light towards the direction of camera through a beam splitter if it
falls inside the aperture or towards another direction if it falls outside the aperture.

The SLM modulates the reflected light according to the phase object, which has
a uniform amplitude and a binary phase distribution between 0.1𝜋 and 0.9𝜋 in the
shape of a panda. The resulting phase of the SLM is thus the product of the tilt
and the panda. Although here we use a reflection geometry, the result will be also
valid for a transmission configuration.

In the experiment, we introduce point perturbation by varying the phase of the
incident light in a region of 10 pixel × 10 pixel on the SLM. The center of this region
is given by the location of the perturbation point r𝑝. When r𝑝 is located inside the
aperture, i.e. in situation (a), we change the phase in the region of perturbation by
certain constant values to create a linear system of equations. When r𝑝 is located
outside the aperture in situation (b) and (c), we change the phase tilt in the region
of perturbation to simulate the effect of ’opening’ (reflected towards the direction
of the camera) and ’closing’ (reflected towards another direction) a pinhole.

The propagation of the reflected light from the SLM to the camera can be ap
proximated by the Fourier transform. This can be achieved by using the Fraunhofer
propagation in freespace, which is particularly useful for short wavelengths, e.g.
in the Xray and the electron regime, where no lens is available. Alternatively this
can be achieved by using a Fourier transform (FT) lens with a focal length of 100
mm as we did here. For this purpose, the SLM and the camera should be placed in
the front and the back focal plane of the FT lens, respectively.
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Figure 4.5: Experimental results of varying the perturbation point location for the GSM beam illumination.
The gray square shows the aperture and the black dots show the perturbations points. In the phase plot,
the red and the blue panda are the phase of the original object and its complexconjugate, respectively.
The panda contour in the amplitude plot is due to abrupt phase transition. The amplitude plot is in
logarithmic scale. The quadratic term ̂𝐼0(r) has been removed in (a) and (b). (c) is the direct inverse
Fourier transform of the perturbed diffraction pattern.

4.4. Experimental Results
In the experiment, we first focus on using the GSM beam for illumination. In this
case, we validate our measurement scheme for three overlap situations and the
retrieval of the correlation function for various degrees of coherence. We then
use the GAC beam for illumination. Due to the modulation effect of the correlation
function, which shows a ”oscillating” behavior in both amplitude and phase, we need
to perform two measurements with and without the object, respectively. Here we
aim to verify that dividing the former by the latter yields the object alone.

4.4.1. Results of varying the perturbation point location
for GSM beam illumination

Now we illuminate the phase object that is superposed with the aperture using a
GSM beam. The correlation function of the GSM beam has a Gaussian amplitude
and an uniform phase, while the object has an uniform amplitude and a phase in
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the shape of a panda. Therefore, the retrieved product of the correlation function
𝐽(r, r𝑝) and the transmission function 𝑇(r)𝑂(r) shows the Gaussian amplitude and
the panda phase as illustrated in Fig. 4.5.

The panda shape in the amplitude is due to the fact that at the places of abrupt
phase transition, the amplitude is zero. So the amplitude will have a panda contour
consisting of zeros. Because the diffraction pattern has limited size and hence its
inverse Fourier transform has limited resolution,this invisible contour (with infinitely
small width) becomes visible (with enlarged finite width). In the phase plot in
Fig. 4.5, the red and the blue panda represent the phase of the original object and
its complexconjugate, respectively.

In Fig. 4.5 we demonstrate experimentally that we can effectively vary the over
lap between the quadratic term ̂𝐼0(r) and the two cross terms by varying the location
r𝑝 of the perturbation point. The further the perturbation point is from the origin,
the more the two cross terms are separated. Contrarily, ̂𝐼0(r) always stays centered
at the origin.

Fig. 4.5 also demonstrates that we vary the correlation function 𝐽(r, r𝑝) when
varying the location r𝑝 of the perturbation point. This has two effects: (1) we vary
the shape of the correlation function 𝐽(r, r𝑝) and (2) we vary the part of 𝐽(r, r𝑝)
that is measured.

Notice that the MCF of a GSM beam is translationinvariant which depends on
only the relative distance r − r𝑝: 𝐽(r, r𝑝) = 𝐽(r − r𝑝). So the shape of 𝐽(r − r𝑝)
always keeps the same as 𝐽(r), except for a translation of its maximum from the
origin to r𝑝. Meanwhile, placing the perturbation point at different locations allows
us to measure different parts of 𝐽(r). The part of 𝐽(r) that can be measured is
defined by the domain of the aperture 𝑇(r), which always stays at the origin.

By inverse Fourier transforming the diffraction pattern, we observe in Fig. 4.5
that the maximum of the correlation function, 𝐽(r𝑝 − r, r𝑝) and 𝐽(r𝑝 + r, r𝑝), are
both at the origin, while the product of aperture and object, 𝑇(r𝑝− r)𝑂(r𝑝− r) and
𝑇(r𝑝 + r)𝑂(r𝑝 + r), are located at +r𝑝 and −r𝑝, respectively.

Finally, we can introduce more than one perturbation point in each situation,
as long as there is no overlap between the two cross terms generated by each
perturbation point. The larger the number of perturbation points we introduce, the
more parts of the correlation function we can measure simultaneously.

4.4.2. Results of varying the degree of coherence for GSM
beam illumination

We compare the results of using the GSM beam for two degrees of coherence in
Fig. 4.6. In the experiment, we vary the degree of coherence of the GSM beam by
varying the size of the focal spot while keeping the Gaussian shape. The perturba
tion point is placed at the two left corners of the aperture and as a result, the two
pairs of cross terms are connected but are not overlapped. Because the correlation
function is translationinvariant, we can easily observe its Gaussian profile.

As can be seen in Fig. 4.6, the blurring of the diffraction pattern increases as the
degree of coherence of the GSM beam decreases. Because the diffraction pattern
is the incoherent sum of the shifted coherent diffraction pattern generated by each
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Figure 4.6: The diffraction patterns for GSM beam illumination with two degrees of coherence. Two
regions of interest (ROI) marked by two square boxes are illustrated in detail.

point source, the coherent diffraction pattern is smeared due to the use of partially
coherent illumination. Because the shift depends on the location of the point source,
the blurring of the diffraction pattern is proportional to the size of the source.

Conventionally, the blurring is associated with information loss. It is believed
that the more blurred the diffraction pattern is, the more information of the object
is lost, especially for the iterative algorithm such as in [20, 21]. However, the results
illustrated in Fig. 4.7 show that the blurring influences only the fieldofview (FOV)
instead of the resolution.

We remark that we can only reconstruct the correlation function 𝐽(r, r𝑝)and the
total transmission function 𝑇(r)𝑂(r) at places where the amplitude of the inverse
Fourier transform of the diffraction pattern is not corrupted by the noise as shown
in Fig. 4.7. For GSM beam illumination, the size of the FOV is determined by both
the noise and the degree of spatial coherence 𝜎 defined in Eq. 4.14. For a given
noise level, the higher the 𝜎 is, the larger the FOV is.

We validate this by fitting the retrieved amplitude, which is contributed by only
the correlation function 𝐽(r, r𝑝), to a Gaussian distribution to determine the value
of 𝜎 (the points consisting of the panda contour are neglected). The fitting shows
that in the aperture plane, 𝜎 is 0.68 and 0.57 mm for the case of higher and lower
coherence, respectively.

By comparing the degree of coherence 𝜎 to the size of aperture, which is about
2.72 mm along the diagonal, we validate that our method can tolerate partially
coherent illumination that conventional iterative algorithms such as [20, 21] cannot.
To handle the reduction of the FOV, we can either place the perturbation point in
the vicinity of the origin, or place the perturbation point at different locations to
reconstruct different parts of the FOV.
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Figure 4.7: The diffraction patterns and the inverse Fourier transform for GSM beam illumination with
two degrees of coherence. The quadratic term has been removed. Dots and lines in the amplitude
profile plot show the raw data and the fitted curve, respectively.

4.4.3. Results of varying the degree of coherence for GAC
beam illumination

Now we consider using a GAC beam for illumination. The correlation function of
the GAC beam has a complicated phase, instead of a simple uniform phase that the
GSM beam has. Because we only retrieve the sum of the phases of the object and
the correlation function, we must calibrate and compensate the correlation function.

We illustrate the diffraction pattern for two degrees of coherence in the case
with and without the object in Fig. 4.8 and 4.9, respectively. We observe that just
like the GSM beam illumination, the diffraction pattern becomes more blurred as
the illumination beam becomes less coherent.

In Fig. 4.8, the amplitude plot is still contributed by only the correlation function
except for the panda contour. The amplitude consists of a number of rings and
hence shows an ”oscillating” behavior. Most importantly, the oscillation is faster
(more number of rings) when the coherence is lower (less degree of coherence).
Meanwhile, when the coherence is lower we also observe a faster decrease of the
correlation versus the increase of distance.

The phase plot in Fig. 4.8 is the sum of the phases of the correlation function
and the object. As a result, the panda shape in the phase of the former, although
still visible, is obscured by the spiral phase of latter. We also observe a 2𝜋 phase
jump at places where the corresponding amplitude vanishes. This phenomenon
suggests that the correlation function switches signs in between rings.

The obscuration of the object phase by the phase of the correlation function can
be calibrated and compensated by performing an extra measurement using only the
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Figure 4.8: Diffraction pattern and the inverse Fourier transform for GAC beam illumination with two
degrees of coherence. The transmissive object is superposed with the aperture.
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Figure 4.9: Diffraction pattern and the inverse Fourier transform for GAC beam illumination with two
degrees of coherence. The transmissive object is not superposed with the aperture.
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aperture. In both measurements, we need to place the two perturbation points at
the same locations so that we measure the same correlation function 𝐽(r, r𝑝). As
can be seen in Fig. 4.8 and 4.9, the spirals in the phase match each other.

In the two cases with and without the object, we can retrieve 𝐽(r, r𝑝)𝑇(r)𝑂(r)
(with object) and 𝐽(r, r𝑝)𝑇(r) (without object), respectively. Dividing the former
by the later allows us to obtain the object 𝑂(r) alone. Fig. 4.10 shows that the
resulting 𝑂(r) is almost perfect except for the places of 2𝜋 phase jump.

L
o

w
e

r 
C

o
h

e
re

n
c

e
H

ig
h

e
r 

C
o

h
e

re
n

c
e

With object Without object Difference

Figure 4.10: The phase of the inverse Fourier transform of the diffraction pattern with object, without
object, and their difference. In each plot, the right two pandas are the phase of the original object and
the left two pandas are the phase of its complexconjugate.

4.5. Discussion and Conclusion
In this chapter, we demonstrated that we can retrieve the correlation function
𝐽(r, r𝑝) between fields at the perturbation point r𝑝 and other locations r, and the
product of the transmission function of the aperture 𝑇(r) and the object 𝑂(r).

The key is the extraction of the two cross terms from the diffraction pattern. The
process is similar to holography, in which the two cross terms must be separated
from the two quadratic terms.

An essential feature that distinguishes our method from holography is that our
reference wave is created by perturbing the transmission/reflection function in the
aperture plane at a point and hence is correlated with the object wave that is
transmitted/reflected by the aperture. This feature cannot be preserved when using
a beam splitter to separate the reference wave and the object wave.

Conventionally, it is believed that spatially coherent illumination is required to
image a phase object because the phase information will be destroyed by the inco
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herent sum of the randomly fluctuating light fields. We demonstrated that for our
method the spatial coherence only affects the FOV instead of the resolution.

In the experimental results, the retrieved product of the transmission function
𝑇(r)𝑂(r) is modulated by the correlation function 𝐽(r, r𝑝). The size of the FOV is
determined by the amplitude of the modulation and the noise level.

The resolution is determined by the size of the perturbed region. In order to use
a sufficiently small perturbed region while making the energy of the perturbation
being sufficiently high, we need to balance the energies of the light incident on the
aperture and the perturbed region.

The signaltonoise ratio of the diffraction pattern is basically limited by the
dynamic range of the camera sensor. Most of the object/aperture generates a
diffraction pattern with a strong main peak and weak sidelobes. To reduce the
ratio between the mean peak and sidelobes, we can modulate the wavefront of
the incident light by using for example a diffuser, so that the diffraction pattern can
be measured properly using a limited number of grey levels.

In this chapter, we restrict our research to only monochromatic light. If chro
matic light is considered, the scaling of the diffraction pattern must be taken into
account. For Fresnel or Fraunhofer diffraction, the size of the diffraction pattern is
proportional to the reciprocal of the wavelength. Because the camera sensor has
a fixed size, the inverse Fourier transform of the diffraction pattern will have a dif
ferent resolution at different wavelength. When using optical elements, chromatic
aberration also plays a role.
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5.1. Background
Coherent diffractive imaging (CDI) is an important tool for the reconstruction of
the complexvalued transmission/reflection function of an object from the farfield
diffraction patterns. CDI has been widely applied in material and biological sciences
[2, 3]. In 1991, Miao et al. first experimentally realized imaging of a submicrometer
sized noncrystalline specimen using CDI [4].

Many CDI approaches have been developed in the past decades, which can be
divided into two types: the iterative methods [5–10] and the noniterative methods
[11–15]. These CDI approaches all require completely coherent illumination, and
hence have limited applications at short wavelengths, e.g. in the Xray and electron
regime, or in unstable experimental environments. For example, the degradation of
spatial coherence may be caused by the disturbance due to the mechanical vibration
or by the fluctuation of the ambient medium [16, 17].

Iterative algorithms retrieve the phase of the object by propagating the field
back and forth between the object plane and the farfield diffraction plane, and im
posing constraints on the field in both planes. Gerchberg and Saxton pioneered the
iterative algorithms in 1972 by proposing a method using two intensities measured
in the object plane and in the farfield respectively [5]. Iterative algorithms using
only one intensity measurement of the farfield diffraction pattern were proposed
by Fienup [6, 7], which require prior knowledge e.g. the object support.

Recently, ptychographic algorithms have become an essential technique for
imaging nanoscale objects using short wavelength sources [9]. Ptychographic al
gorithms scan the illumination probe over the sample and take a measurement at
each scanning position. The key feature is the overlap between the illuminated ar
eas at the neighboring scanning positions. The overlap improves the convergence
of the ptychographic algorithms [8].

For spatially partially coherent (SPC) illumination, the propagation of light is
described using the mutual coherence function (MCF) instead of the field. The
first modification of the iterative algorithm was reported by Whitehead, et al.[16].
Later Thibault, et al. demonstrated that the ptychographic algorithms can also be
modified to work for SPC illumination [17]. In both works, the MCF is decomposed
by a weighted sum of coherent modes. The accuracy of mode decomposition relies
on the number of modes for accurately representing the MCF. The number increases
as the spatial coherence of the illumination decreases.

Compared to iterative methods, noniterative methods [11, 12] do not suffer
from issues such as stagnation or nonuniqueness of the solution to the problem of
phase retrieval [18, 19]. For example, in holography, the field transmitted by the
object is perturbed such that the object’s transmission/reflection function can be
directly extracted from the inverse Fourier transform of the diffraction pattern. This
perturbation can be achieved by introducing a pinhole e.g. in the Fourier transform
holography (FTH) [20–22] or by changing the transmission/reflection function at
a particular point of the object, e.g. with socalled the Zernike quantitative phase
imaging [23]. Alternative methods extract the object information from the auto
correlation, which is obtained by inverse Fourier transforming a threedimensional
data set (e.g. the data set measured by varying focus [13] or any other optical
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Figure 5.1: Schematic plot of the conceptual experimental setup. A pinhole array mask (PAM) is placed
in between the object and the camera. The PAM is specially designed, consisting of a periodic array of
measurement pinholes and a reference pinhole. The camera measures the interference pattern between
the light transmitted by the measurement pinholes and by the reference pinhole. The design allows us
to retrieve the correlation function of the incident light between fields at the measurement pinholes and
at the reference pinhole. The object can be reconstructed by reversely propagating the reconstructed
correlation function from the PAM to the object.

parameter [14]).
The above mentioned noniterative methods [13–15] can be used when the

illumination is spatially partially coherent. Compared to iterative methods, using
noniterative methods can avoid errors due to the truncation of the number of
modes for representing the MCF. However, for noniterative methods, the field
ofview (FOV) of the reconstructed object is limited by the degree of the spatial
coherence of the illumination.

To be precise, what is reconstructed is the product of the transmission func
tion of the object and the correlation function of the illumination with respect to
the perturbation point, which attenuates more rapidly as a function of the object
coordinate if the degree of spatial coherence is lower.

In FTH [15], the inverse Fourier transform of the diffraction pattern consists of
four terms. To reconstruct the object using only one measurement, the location of
the perturbation point should be sufficiently far from the object to ensure a spatial
separation between the two cross terms and the two quadratic terms are separated.
This results in a rather small FOV because the correlation of the fields at the object
and at the perturbation point is low.

5.2. Introduction to the method
A schematic plot of the conceptual experimental setup for our method is shown
in Fig. 5.1. In this chapter, we consider diffraction imaging in transmission mode.
We illuminate a transmissive object by SPC light and measure the farfield diffrac
tion pattern using a camera sensor. Unlike traditional configuration for diffractive
imaging, we insert a pinhole array mask (PAM) in between the object plane and
the camera plane. Its location is chosen such that the propagation from the object
to the PAM and from the PAM to camera obey the approximation of Fresnel and
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Figure 5.2: Layout of the PAM mask (left) and the inverse Fourier transform of the diffraction pattern
(right). Left: The periodic array of measurement pinholes (white) and the reference pinhole (gray).
Right: The quadratic term (gray), and the two cross terms (red and blue).

Fraunhofer propagation, respectively.
As can be seen in Fig. 5.1, the coordinates of the object, PAM, and camera plane

are 𝜌𝜌𝜌, r, and k, respectively. Our method consists of two steps:

1. We adopt a special design of the PAM which consists of a periodic array of
measurement pinholes and a reference pinhole. In the PAM plane we retrieve
the correlation function of the incident light 𝑊𝑀(r𝑚𝑛 , r0) between the fields
transmitted by the measurement pinholes at r𝑚𝑛 and by the reference pinhole
at r0 from the diffraction pattern 𝐼𝑘(k) measured in the camera plane.

2. We use a differential method, which requires two diffraction patterns with
and without perturbation to the transmission function 𝑂(r) of the object at a
particular point 𝜌𝜌𝜌0. In the object plane we reconstruct the product of 𝑂(𝜌𝜌𝜌)
and the correlation function 𝑊𝑂(𝜌𝜌𝜌,𝜌𝜌𝜌0) between the fields at any location 𝜌𝜌𝜌
and at the location of the point perturbation 𝜌𝜌𝜌0 from 𝑊𝑀(r𝑚 , r0) retrieved in
the PAM plane.

We remark that the sampling in the PAM plane is determined by r𝑚𝑛, for which
the interval and the range of the sampling are given by the pitch and the size of
the PAM, respectively. Due to the Fresnel propagation, the sampling interval in the
object plane is decreased compared to the sampling interval in the PAM plane. The
propagation distance 𝑧 determines the decrease of the sampling interval.

5.2.1. Step 1: Retrieval of the MCF in the PAM Plane
The specially designed PAM is illustrated in Fig. 5.2, in which the gray square and
the white squares represent the reference pinhole and the measurement pinholes,
respectively. We can write the transmission function of the PAM as

𝑀(r) = 𝛿(r− r0) +∑
𝑚𝑛
𝛿(r− r𝑚𝑛), (5.1)
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where r0 = (𝑥0, 𝑦0) is the location of the reference pinhole and r𝑚𝑛 = (𝑚𝑝𝑥 , 𝑛𝑝𝑦)
is location of the measurement pinhole in the periodic array, where 𝑚, 𝑛 are the
indices of the measurement pinhole and 𝑝𝑥 , 𝑝𝑦 are the pitches of the 2dimensional
periodic array. The width of the reference pinhole and the measurement pinholes
are identical and are given by 𝑤𝑥 , 𝑤𝑦.

The incident light is transmitted by the PAM and then generates a diffraction
pattern in the camera plane. We denote the MCF of the light in the PMA plane by
𝑊𝑀(r1, r2), which describes the correlation between the fields at r1 and r2. Because
the propagation from the PMA to the camera satisfies the condition of Fraunhofer
propagation, we can express the diffraction pattern as:

𝐼(k) = ∬∬𝑊𝑀(r1, r2)𝑀(r1)𝑀(r2)∗ exp[−𝑖2𝜋k ⋅ (r1 − r2)]dr1dr2. (5.2)

Eq. (5.2) consists of four terms:

𝐼(k) = 𝑊𝑀(r0, r0)

+ ∑
𝑚1𝑛1

∑
𝑚2𝑛2

𝑊𝑀(r𝑚1𝑛1 , r𝑚2𝑛2) exp[−𝑖2𝜋k ⋅ (r𝑚1𝑛1 − r𝑚2𝑛2)]

+∑
𝑚𝑛
𝑊𝑀(r𝑚𝑛 , r0) exp [−𝑖2𝜋k ⋅ (r𝑚𝑛 − r0)]

+∑
𝑚𝑛
𝑊𝑀(r0, r𝑚𝑛) exp [+𝑖2𝜋k ⋅ (r𝑚𝑛 − r0)] .

(5.3)

Please note that when deriving Eq. (5.3) we have used the property of the Dirac
delta function. As a result, the continuous integration becomes a discrete sum.
In Eq. (5.3), 𝑊𝑀(r0, r0) represents a constant intensity distribution, which will be
neglected in the following derivations.

By inverse Fourier transforming the diffraction pattern Eq. (5.3), we obtain

ℱ−1[𝐼(k)](r) = ∑
𝑚1𝑛1

∑
𝑚2𝑛2

𝑊𝑀(r𝑚1𝑛1 , r𝑚2𝑛2)𝛿[r− (r𝑚1𝑛1 − r𝑚2𝑛2)]

+∑
𝑚𝑛
𝑊𝑀(r𝑚𝑛 , r0)𝛿[r− (r𝑚𝑛 − r0)]

+∑
𝑚𝑛
𝑊𝑀(r0, r𝑚𝑛)𝛿[r+ (r𝑚𝑛 − r0)],

(5.4)

where 𝐹−1 denotes the operation of inverse Fourier transform. The three terms in
Eq. (5.4) are:

1. 𝑊𝑀(r𝑚1𝑛1 , r𝑚2𝑛2) locates on the periodic array defined by r = r𝑚1𝑛1−r𝑚2𝑛2 =
[(𝑚1−𝑚2)𝑝𝑥 , (𝑛1−𝑛2)𝑝𝑦] with pitch (𝑝𝑥 , 𝑝𝑦) and centered at the origin (0, 0),
shown by the gray squares in the right panel in Fig. 5.2.
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2. 𝑊𝑀(r𝑚𝑛 , r0) are points located on the periodic array defined by r = r𝑚𝑛−r0 =
[𝑚𝑝𝑥 −𝑥0, 𝑛𝑝𝑦 −𝑦0] with pitch (𝑝𝑥 , 𝑝𝑦) and centered at (−𝑥0, −𝑦0), shown by
the blue squares in the right panel of Fig. 5.2.

3. 𝑊𝑀(r0, r𝑚,𝑛) are points located on the periodic array defined by r = r0−r𝑚𝑛 =
[𝑥0 −𝑚𝑝𝑥 , 𝑦0 −𝑛𝑝𝑦] with pitch (𝑝𝑥 , 𝑝𝑦) and centered at (+𝑥0, +𝑦0), shown by
the red squares in the right panel of Fig. 5.2.

The role played by the reference pinhole of the PAM is in analogy to that by the
point perturbation in FTH [15], namely to create an interference between the light
transmitted by the reference pinhole and by the measurement pinholes.

In analogy to holography, the first term of Eq. (5.4), which represents the auto
correlation of the measurement pinholes, is referred to as the quadratic term, while
the other two terms are called the cross terms, which are due to the interference
of the light transmitted by the reference pinhole and the measurement pinholes.

We illustrate the three terms of Eq. (5.4) in Fig. 5.2, which represent three
periodic arrays with the same pitch but different center location. So the three
terms are spatially separated. The condition for spatial separation requires the
pitch (𝑝𝑥 , 𝑝𝑦) of the PAM to be at least three times larger than the width (𝑤𝑥 , 𝑤𝑦)
of the pinhole:

{
𝑝𝑥 ≥ 3𝑤𝑥
𝑝𝑦 ≥ 3𝑤𝑦

. (5.5)

In the case when the three terms are just separated spatially, the reference pinhole
should locate at the center of the periodic array of the measurement pinholes:

{
𝑥0 =

𝑝𝑥
2

𝑦0 =
𝑝𝑦
2
. (5.6)

The information about the correlation function of the incident light is carried by
the two cross terms. Due to the Hermitian property of the MCF, the two cross terms
are the complexconjugate of each other. In Fig. 5.2, the two cross terms are illus
trated by two periodic arrays located symmetrically about the origin. Take the cross
term 𝑊𝑀(r𝑚,𝑛 , r0) as an example. We can retrieve 𝑊𝑀(r𝑚,𝑛 , r0) by applying spa
tial filtering to the inverse Fourier transform of the diffraction pattern ℱ−1[𝐼(k)](r)
given by Eq. (5.4). The spatial filter is given by

𝐹𝑀(r) =∑
𝑚𝑛
𝛿(r− r𝑚𝑛 + r0). (5.7)

The other cross term𝑊𝑀(r0, r𝑚,𝑛) = 𝑊𝑀(r𝑚,𝑛 , r0)∗ can be retrieved by using 𝐹𝑀(−r)
as the spatial filter. We remark that 𝑊𝑀(r𝑚,𝑛 , r0) and 𝑊𝑀(r0, r𝑚,𝑛) contain exactly
identical information.

As a result, we retrieve the correlation function of the incident light𝑊𝑀(r𝑚𝑛 , r0)
in the PAM plane between the fields transmitted by the measurement pinholes at
r𝑚𝑛 and by the reference pinhole at r0. Notice that 𝑊(r𝑚𝑛 , r0) is sampled by the
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measurement pinholes. Therefore, the interval and the range of the sampling are
given by the pitch and the size of the periodic array of the measurement pinhole,
respectively.

We should not be confused about the sampling of r𝑚𝑛 and r. According to
the ShannonNyquist sampling theorem, the sampling of r is determined by the
diffraction pattern and hence is ultimately determined by the camera. However,
the sampling interval of r𝑚𝑛 is at least three times larger than the sampling interval
of r. Because the pinhole size cannot be smaller than the sampling interval of r. In
the extreme case when the pinhole width is equal to the sampling interval of r, all
three periodic arrays are connected but not overlapped.

5.2.2. Step 2: Reconstruction of object in the Object Plane
Now we consider the propagation of light from the object plane to the PAM plane
by distance 𝑧 in the Fresnel propagation approximation. We can write the relation
between the MCF in the object and PAM plane by

𝑊𝑀(r1, r2) = ∬∬𝑊𝑂(𝜌𝜌𝜌1, 𝜌𝜌𝜌2)𝑂(𝜌𝜌𝜌1)𝑂(𝜌𝜌𝜌2)∗

× exp {𝑖 𝜋𝜆𝑧 [(𝜌𝜌𝜌1 − r1)2 − (𝜌𝜌𝜌2 − r2)2]}d𝜌𝜌𝜌1d𝜌𝜌𝜌2
(5.8)

where 𝑊𝑂(𝜌𝜌𝜌1, 𝜌𝜌𝜌2) is the MCF of the illumination light beam. In Eq. (5.8), by setting
r1 = r𝑚𝑛 and r2 = r0, we can obtain the expression for the correlation function
𝑊(r𝑚𝑛 , r0) in the PAM plane:

𝑊𝑀(r𝑚𝑛 , r0) =∬∬𝑊𝑂(𝜌𝜌𝜌1, 𝜌𝜌𝜌2)𝑂(𝜌𝜌𝜌1)𝑂(𝜌𝜌𝜌2)∗

× exp {𝑖 𝜋𝜆𝑧 [(𝜌𝜌𝜌1 − r𝑚𝑛)2 − (𝜌𝜌𝜌2 − r0)2]}d𝜌𝜌𝜌1d𝜌𝜌𝜌2.
(5.9)

By integrating Eq. (5.9) sequentially first over 𝜌𝜌𝜌2 and then over 𝜌𝜌𝜌1, we obtain:

𝑊𝑀(r𝑚𝑛 , r0) = ∫𝑇(𝜌𝜌𝜌1, r0)𝑂(𝜌𝜌𝜌1) exp [𝑖
𝜋
𝜆𝑧 (𝜌𝜌𝜌1 − r𝑚𝑛)2]d2𝜌𝜌𝜌1, (5.10)

where
𝑇(𝜌𝜌𝜌1, r0) = ∫𝑊𝑂(𝜌𝜌𝜌1, 𝜌𝜌𝜌2)𝑂(𝜌𝜌𝜌2)∗ exp [−𝑖

𝜋
𝜆𝑧(𝜌𝜌𝜌2 − r0)2]d𝜌𝜌𝜌2. (5.11)

As can be seen in Eq. (5.10) that 𝑇(𝜌𝜌𝜌1, r0) represents a twodimensional function
that depends on the MCF 𝑊𝑂(𝜌𝜌𝜌1, 𝜌𝜌𝜌2) of the illumination and 𝑂(𝜌𝜌𝜌) of the object.

Eq. (5.10) shows that by propagating the correlation function 𝑊𝑀(r𝑚𝑛 , r0) re
versely from the PAM plane to the object plane using Fresnel propagation, we obtain
𝑇(𝜌𝜌𝜌, r0)𝑂(𝜌𝜌𝜌). Because both 𝑊𝑀(r𝑚𝑛 , r0) and 𝑇(𝜌𝜌𝜌, r0)𝑂(𝜌𝜌𝜌) are 2dimensional func
tions, the Fresnel propagation can be computed efficiently.

𝑇(𝜌𝜌𝜌, r0) acts as a modulation to the transmission function 𝑂(𝜌𝜌𝜌) of the object.
We remark that the modulation 𝑇(𝜌𝜌𝜌, r0) also depends on the object.

For spatially coherent illumination, the MCF 𝑊𝑂(𝜌𝜌𝜌1, 𝜌𝜌𝜌2) of the illumination is a
uniform and constant function and hence the modulation 𝑇(𝜌𝜌𝜌, r0), although still
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depending on the object, is also a constant. Therefore eliminating 𝑇(𝜌𝜌𝜌, r0) is not
necessary. However, for spatially partially coherent illumination, 𝑊𝑂(𝜌𝜌𝜌1, 𝜌𝜌𝜌2) is a
4dimensional function which yields a 2dimensional function 𝑇(𝜌𝜌𝜌, r0).

In our method, we use a differential approach to eliminate the modulation
𝑇(𝜌𝜌𝜌, r0). The differential approach needs two diffraction patterns with and with
out perturbation to the transmission function of the object at a particular point
𝜌𝜌𝜌 = 𝜌𝜌𝜌𝑝, respectively. The point perturbation is achieved by changing either the
amplitude or the phase of 𝑂(𝜌𝜌𝜌) in a small region in the vicinity of 𝜌𝜌𝜌𝑝. We expressed
the perturbed transmission function of the object as

𝑂𝑝(𝜌𝜌𝜌) = [𝑂(𝜌𝜌𝜌) − 𝑂(𝜌𝜌𝜌)𝛿(𝜌𝜌𝜌 −𝜌𝜌𝜌𝑝)] + 𝐶𝑂(𝜌𝜌𝜌)𝛿(𝜌𝜌𝜌 −𝜌𝜌𝜌𝑝)
= 𝑂(𝜌𝜌𝜌) + 𝐶𝑝𝛿(𝜌𝜌𝜌 −𝜌𝜌𝜌𝑝),

(5.12)

where 𝐶 is the complexvalued constant of perturbation and 𝐶𝑝 = [(𝐶 − 1)𝑂(𝜌𝜌𝜌𝑝).
Eq. (5.12) shows that at 𝜌𝜌𝜌 = 𝜌𝜌𝜌𝑝, the transmission function of the object 𝑂(𝜌𝜌𝜌𝑝)
is changed by a constant factor 𝐶 to obtain 𝐶𝑂(𝜌𝜌𝜌𝑝). Alternatively, we can also
interpret that 𝑂𝑝(𝜌𝜌𝜌) consists of the transmission function of the original object 𝑂(𝜌𝜌𝜌)
and an extra Dirac delta function 𝐶𝑝𝛿(𝜌𝜌𝜌 −𝜌𝜌𝜌𝑝)

Substituting 𝑂(𝜌𝜌𝜌) by the perturbed object 𝑂𝑝(𝜌𝜌𝜌) in Eq. (5.9), we obtain

𝑊𝑀,𝑝(r𝑚𝑛 , r0) = ∬∬[𝑂(𝜌𝜌𝜌1) + 𝐶𝑝𝛿(𝜌𝜌𝜌1 −𝜌𝜌𝜌𝑝)][𝑂(𝜌𝜌𝜌2) + 𝐶𝑝𝛿(𝜌𝜌𝜌2 −𝜌𝜌𝜌𝑝)]∗

×𝑊𝑂(𝜌𝜌𝜌1, 𝜌𝜌𝜌2) exp {𝑖
𝜋
𝜆𝑧 [(𝜌𝜌𝜌1 − r𝑚𝑛)2 − (𝜌𝜌𝜌2 − r0)2]}d𝜌𝜌𝜌1d𝜌𝜌𝜌2.

(5.13)
Expanding the brackets, we obtain:

𝑊𝑀,𝑝(r𝑚𝑛 , r0) = |𝐶𝑝|2𝑊𝑂(𝜌𝜌𝜌𝑝, 𝜌𝜌𝜌𝑝) +𝑊𝑀(r𝑚𝑛 , r0)

+∬[𝐶𝑝𝑊𝑂(𝜌𝜌𝜌𝑝, 𝜌𝜌𝜌)]𝑂(𝜌𝜌𝜌)∗ exp {𝑖
𝜋
𝜆𝑧 [(𝜌𝜌𝜌𝑝 − r𝑚𝑛)2 − (𝜌𝜌𝜌 − r0)2]}d𝜌𝜌𝜌

+∬[𝐶𝑝𝑊𝑂(𝜌𝜌𝜌𝑝, 𝜌𝜌𝜌)]∗𝑂(𝜌𝜌𝜌) exp {𝑖
𝜋
𝜆𝑧 [(𝜌𝜌𝜌 − r𝑚𝑛)2 − (𝜌𝜌𝜌𝑝 − r0)2]}d𝜌𝜌𝜌.

(5.14)

We can further derive that

𝑊𝑀,𝑝(r𝑚𝑛 , r0) = |𝐶𝑝|2𝑊𝑂(𝜌𝜌𝜌𝑝, 𝜌𝜌𝜌𝑝) +𝑊𝑀(r𝑚𝑛 , r0)

+ exp [𝑖 𝜋𝜆𝑧 (𝜌𝜌𝜌𝑝 − r𝑚𝑛)2]∬[𝐶𝑝𝑊𝑂(𝜌𝜌𝜌𝑃 , 𝜌𝜌𝜌)]𝑂(𝜌𝜌𝜌)∗ exp [−𝑖
𝜋
𝜆𝑧(𝜌𝜌𝜌 − r0)2]d𝜌𝜌𝜌

+ exp [−𝑖 𝜋𝜆𝑧(𝜌𝜌𝜌𝑝 − r0)2]∬[𝐶𝑝𝑊𝑂(𝜌𝜌𝜌𝑝, 𝜌𝜌𝜌)]∗𝑂(𝜌𝜌𝜌) exp [𝑖
𝜋
𝜆𝑧 (𝜌𝜌𝜌 − r𝑚𝑛)2]d𝜌𝜌𝜌.

(5.15)

Subtracting the unperturbed correlation function𝑊𝑀(r𝑚𝑛 , r0) from the perturbed
correlation function 𝑊𝑀,𝑝(r𝑚𝑛 , r0) yields

𝑊𝑀,𝑝(r𝑚𝑛 , r0) −𝑊𝑀(r𝑚𝑛 , r0) = |𝐶𝑝|2𝑊𝑂(𝜌𝜌𝜌𝑝, 𝜌𝜌𝜌𝑝) + 𝛼 exp [𝑖
𝜋
𝜆𝑧 (𝜌𝜌𝜌𝑝 − r𝑚𝑛)2]

+ 𝛽∬𝑊𝑂(𝜌𝜌𝜌,𝜌𝜌𝜌𝑝)𝑂(𝜌𝜌𝜌) exp [𝑖
𝜋
𝜆𝑧 (𝜌𝜌𝜌 − r𝑚𝑛)2]d2𝜌𝜌𝜌,

(5.16)



5.3. Results and Discussions

5

107

where
𝛼 =∬[𝐶𝑝𝑊𝑂(𝜌𝜌𝜌𝑃 , 𝜌𝜌𝜌)]𝑂(𝜌𝜌𝜌)∗ exp [−𝑖

𝜋
𝜆𝑧(𝜌𝜌𝜌 − r0)2]d𝜌𝜌𝜌, (5.17)

and
𝛽 = 𝐶∗𝑝 exp [−𝑖

𝜋
𝜆𝑧(𝜌𝜌𝜌𝑝 − r0)2] . (5.18)

As can be seen in Eq. (5.16), the first term is a constant, the second term can be
regarded generated by a point source located at 𝜌𝜌𝜌0 in the object plane, and the
third term is given by Fresnel propagating the product of 𝑂(𝜌𝜌𝜌) and 𝑊𝑂(𝜌𝜌𝜌,𝜌𝜌𝜌𝑝) from
the object plane to the PAM plane.

Finally, 𝑂(𝜌𝜌𝜌)𝑊𝑂(𝜌𝜌𝜌,𝜌𝜌𝜌𝑝) can be reconstructed by reversely Fresnel propagating
𝑊𝑀,𝑝(r𝑚𝑛 , r0) − 𝑊𝑀(r𝑚𝑛 , r0) from the PAM plane to the object plane. 𝑊𝑂(𝜌𝜌𝜌,𝜌𝜌𝜌𝑝)
represents the correlation function of the illumination in the object plane between
the fields at the perturbation point 𝜌𝜌𝜌𝑝 and all locations 𝜌𝜌𝜌. Notice that 𝑂(𝜌𝜌𝜌)𝑊𝑂(𝜌𝜌𝜌,𝜌𝜌𝜌𝑝)
at the location of the perturbation point 𝜌𝜌𝜌𝑝 cannot be reconstructed.

𝑊𝑂(𝜌𝜌𝜌,𝜌𝜌𝜌𝑝) is primarily determined by the illumination. However, the location
of the perturbation point 𝜌𝜌𝜌 = 𝜌𝜌𝜌0 also plays a role. Usually, 𝑊𝑂(𝜌𝜌𝜌,𝜌𝜌𝜌𝑝) is simply a
Gaussian function, for example when using the GaussianSchell model beam for
illumination. When the coherence structure of the illumination is complicated and
unknown, we need to calibrate 𝑊𝑂(𝜌𝜌𝜌,𝜌𝜌𝜌𝑝) by performing the reconstruction using
an empty window as the object, which allow us to reconstruct only𝑊𝑂(𝜌𝜌𝜌,𝜌𝜌𝜌𝑝). Then
we divide the reconstructed product 𝑊𝑂(𝜌𝜌𝜌,𝜌𝜌𝜌𝑝)𝑂(𝜌𝜌𝜌) by 𝑊𝑂(𝜌𝜌𝜌,𝜌𝜌𝜌𝑝) and finally obtain
the transmission function of the object 𝑂(𝜌𝜌𝜌) alone.

This means that in the worst scenario we need three measurements for recon
structing the object:

1. measurement with the nonperturbed object,

2. measurement with the perturbed object,

3. measurement without any object.

We remark that the main reason for propagating the MCF from the PAM plane to
the object plane is because the sampling interval in the PAM, given by the pitch
of the PAM, is too large. By Fresnel propagation we can scale MCF to achieve a
sufficiently small sampling interval in the object plane.

5.3. Results and Discussions
In the experiment we use SPC beams with two types of correlations for illumination:
the Gaussian Schellmodel (GSM) beam and the LaguerreGaussian Schellmodel
(LGSM) beam. We validate our method for each type of illumination.

The experimental setup for generating the GSM beam is shown in Fig. 5.3.
A coherent laser beam at a wavelength of 𝜆 = 523 nm is expanded by a beam
expander (BE) and then focused on a rotating groundglass disk (RGGD) by lens
L1. The light scattered by the RGGD is spatially partially coherent because the
RGGD introduces fluctuation of both amplitude and phase and hence destroys the
correlation between the fields at any pair of points.
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Figure 5.3: Experimental setup for Gaussian Schellmodel beam generation and for diffractive imaging.
BE: beam expander, RGGD: rough ground glass disc, GAF, Gaussian amplitude filter, BS: beam splitter,
SLM: spatial light modulator, PAM: pinhole array mask, and L1,L2,L3 are thin lenses.

The scattered light is collimated by lens L2 and then passed through a Gaussian
amplitude filter (GAF). Therefore, in the object plane, both the intensity distribution
and the structure of the correlation obey the Gaussian distribution. For GSM beam,
the MCF in the object plane is given by

𝑊𝑂(𝜌𝜌𝜌1, 𝜌𝜌𝜌2) = exp(−𝜌
𝜌𝜌21 +𝜌𝜌𝜌22
𝑤2 ) exp(−(𝜌

𝜌𝜌1 −𝜌𝜌𝜌2)2
2𝜎2 ), (5.19)

where 𝑤 and 𝜎 are the width of the Gaussian intensity distribution and the Gaussian
correlation function, respectively.

For the generation of the LGSM beam, we need to insert a spiral phase plate
between the BE and the focusing lens L1 in the experimental setup shown in Fig. 5.3.
The spiral phase plate produces a dark hollow focal spot on the RGGD. The order
𝑛 of the LGSM beam is determined by the topological charge of the spiral. When
𝑛 = 0, the spiral phase plate has a constant phase and the LGSM beam becomes
the GSM beam. When 𝑛 ≠ 0, the MCF of the LGSm beam and the GSM beam have
the same amplitude but different phase. We can express the MCF of the LGSM
beam in the object plane as

𝑊0(𝜌𝜌𝜌1, 𝜌𝜌𝜌2) = exp(−𝜌
𝜌𝜌21 +𝜌𝜌𝜌22
𝑤2 ) exp(−(𝜌

𝜌𝜌1 −𝜌𝜌𝜌2)2
2𝜎2 )𝐿0𝑛(

(𝜌𝜌𝜌1 −𝜌𝜌𝜌2)2
2𝜎2 ), (5.20)

where 𝐿0𝑛(𝜌𝜌𝜌) is the Laguerre polynomial of order 𝑛 and 𝑚 = 0. The experimental
generation of the LGSM beam has been reported in [24, 25].

The width 𝑤 of the Gaussian intensity distribution is determined by the GAF and
is set to be 0.85 mm, while the width 𝜎 of the Gaussian correlation function, also
known as the degree of coherence, is determined by the size of the focal spot on
the RGGD. We can control 𝜎 by translating backandforth the focusing lens L1. We
calibrate the degree of coherence 𝜎 using the method proposed in [26].

In the experiment for diffractive imaging, we use a phase object which has
uniform amplitude and binary phase (0.1𝜋 and 0.9𝜋) in the shape of a panda. The



5.3. Results and Discussions

5

109

(d3)(d1) (d2)

σ=0.34mmσ=0.50mm

R
e
co
n
st
ru
ct
e
d
 A
m
p
li
tu
d
e

R
e
co
n
st
ru
ct
e
d
 P
h
a
se

0

π

2π

σ=0.21mm

 

01

0.5

0 1
m
m

 

(a)

(b)

(c3)(c1) (c2)

Figure 5.4: The unperturbed and the perturbed object transmission function and the experimental
results using GSM beam illumination with various degree of spatial coherence 𝜎. (a,b): the phase of
the unperturbed (a) and the perturbed (b) object. The perturbation is at the head of the panda. (c,d):
the amplitude (c1c3) and the phase (d1d3) of the retrieved product of the transmission function of the
object and the correlation function of the illumination.

phase object is displayed on a reflective phase spatial light modulator (SLM). By
applying phase tilt to the SLM, we deviate the beam that is incident on the area
inside and outside the support of the object to the direction of the BS, which then
propagates to the PAM and the camera, and to another direction, respectively.

Finally, we measure the farfield diffraction pattern of the light transmitted by
the PAM using a CCD camera. The PAM and the CCD camera are placed in the front
and the back focal plane of the Fourier transform lens L3 with a focal length of 150
mm, respectively. We set the pitch of the PAM and the size of the pinhole to be
𝑝𝑥 = 𝑝𝑦 = 270 µm and 𝑤𝑥 = 𝑤𝑦 = 54 µm, respectively. The object on the SLM is
defined to be with a size 240 pixel × 240 pixel and with a resolution 8 µm × 8 µm.
The propagation distance between the object and the PAM is 𝑧 = 1170𝑚𝑚.

5.3.1. Experimental results using GSM beam illumination
As indicated by Eq. (5.16), our method requires two diffraction patterns for the
object with and without the perturbation, respectively. This is because the GSM
beam has a uniform phase. By inverse Fourier transform the two measurements,
we retrieve 𝑊𝑀,𝑝(r𝑚𝑛 , r0) and 𝑊𝑀(r𝑚𝑛 , r0), respectively. By reversely propagating
the difference from the PAM plane to the object plane, we retrieve the product
𝑂(𝜌𝜌𝜌)𝑊𝑂(𝜌𝜌𝜌,𝜌𝜌𝜌𝑝), where 𝑂(𝜌𝜌𝜌) is the transmission function of the object and𝑊𝑂(𝜌𝜌𝜌,𝜌𝜌𝜌𝑝)
is the correlation function with respect to 𝜌𝜌𝜌𝑝, the location of the perturbation point.

In Fig. 5.4, we illustrated the retrieved product 𝑂(𝜌𝜌𝜌)𝑊𝑂(𝜌𝜌𝜌,𝜌𝜌𝜌𝑝) for illumination
with various degrees of coherence. The perturbation point is placed on the head of
the panda and is shown by the gray square. Because for the GSM beam 𝑊𝑂(𝜌𝜌𝜌,𝜌𝜌𝜌𝑝)
has a uniform phase, the retrieved phase is contributed only by the phase object,
in which the panda shape is clearly visible. The retrieved amplitude follows the
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Figure 5.5: The experimental results using GSM beam illumination with the perturbation point at various
locations of the object. (af): The phase of the experimental reconstruction results. Each result shows a
reduced FOV in the vicinity of the location of the perturbation point. (g): The combination of the results
in (af), which shows a clear panda in the entire FOV.

Gaussian distribution given by the amplitude of 𝑊𝑂(𝜌𝜌𝜌,𝜌𝜌𝜌𝑝).
The panda shape in the amplitude is due to the discontinuity of the phase.

We can observe in Fig. 5.4 that for a lower degree of spatial coherence 𝜎, the
amplitude of the correlation function 𝑊0(𝜌𝜌𝜌,𝜌𝜌𝜌0) decreases faster as the distance
𝜌𝜌𝜌0−𝜌𝜌𝜌 increases, and hence the FOV of object’s transmission function 𝑂(𝜌𝜌𝜌) is smaller.

As can be seen in Fig. 5.4 that the degree of coherence 𝜎 determines the spread
of the amplitude and hence determines the FOV of the phase. We remark that the
phase is lost at locations where the amplitude is corrupted by noise.

Fig. 5.4 indicates that to increase the FOV, we can either increase the degree
of coherence 𝜎 or decrease the noise level. In Fig. 5.5 we demonstrate that by
placing the perturbation point at different locations, we can retrieve different parts
of 𝑂(𝜌𝜌𝜌). Therefore we can still retrieve 𝑂(𝜌𝜌𝜌) in the entire FOV in the case of lowest
degree of coherence (𝜎 = 0.21mm).

However, the approach requires repeating the measurement and the retrieval for
each location of the perturbation point. By combining the retrieved 𝑂(𝜌𝜌𝜌) using low
𝜎 illumination, we can obtain 𝑂(𝜌𝜌𝜌) in the entire FOV as if using high 𝜎 illumination.

5.3.2. Experimental results using LGSM beam illumination
In Fig. 5.4 and 5.5, the phase of the retrieved product 𝑂(𝜌𝜌𝜌)𝑊𝑂(𝜌𝜌𝜌,𝜌𝜌𝜌𝑝) is contributed
by only the phase object because the correlation function of the GSM beam has
uniform phase. However, for the LGSM beam, the phase of the correlation function
is not uniform. In Fig. 5.6(a) we show the retrieved product 𝑂(𝜌𝜌𝜌)𝑊𝑂(𝜌𝜌𝜌,𝜌𝜌𝜌𝑝) when
using the LGSM beam for illumination. We can observe that the panda shape is not
visible due to the modulation by the phase of 𝑊𝑂(𝜌𝜌𝜌,𝜌𝜌𝜌𝑝).

As a result, we need to calibrate 𝑊0(𝜌𝜌𝜌0, 𝜌𝜌𝜌). The calibration can be done by ap
plying our method to an empty window, which allows the retrieval of only𝑊𝑂(𝜌𝜌𝜌,𝜌𝜌𝜌𝑝)
as shown in Fig. 5.6(b).

Finally, in Fig. 5.6(c) we exhibit the transmission function of the object 𝑂(𝜌𝜌𝜌) ob
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Amplitude Phase

  

Amplitude Phase Amplitude Phase

    

(a) (b) (c)

Object’s transmission ×

Illumination’s correlation
Illumination’s correlation Object’s transmission

Figure 5.6: The experimental results using LGSM beam for illumination. (a): the reconstructed product
of the object’s transmission and the illumination’s correlation. (b): the calibration result of the the
illumination’s correlation using an empty window as object. (c): the object’s transmission obtained by
dividing the results in (a) by the result in (b).

tained by dividing the reconstructed product 𝑂(𝜌𝜌𝜌)𝑊0(𝜌𝜌𝜌0, 𝜌𝜌𝜌) by the calibrated corre
lation function 𝑊0(𝜌𝜌𝜌0, 𝜌𝜌𝜌) . Now the panda shape in the phase of the reconstructed
object is clearly visible. This example validates that our method can be applied to
object reconstruction in cases when the MCF of the illumination beam is unknown
a prior.

5.4. Conclusion
In summary, we developed and validated a noniterative method to reconstruct the
complexvalued transmission function of an object illuminated by spatially partially
coherent beam using a pinhole array mask placed in between the object and the
camera. Our method overcomes several challenges of conventional iterative CDI
algorithms and holographic methods. In particular, our method does not depend
on the mode decomposition of the MCF of the SPC beam, and can freely choose
the location of the perturbation point, which is beneficial for achieving a large FOV
when using a low degree of spatial coherence in the illumination.

Moreover, we demonstrate that our method can be used to calibrate the MCF of
an arbitrary SPC beam. On one hand, the calibration allows the reconstruction of
the object almost as accurate as if using complete spatially coherent illumination.
On the other hand, the calibration provides a novel approach for spatial coherence
property characterization, which is needed for applications like the measurement
of an optical coherence singularity [27, 28]. Finally, our method is wavelength
independent and hence can be applied to a wide range of wavelengths, from Xray
to infrared light.
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6
Conclusion

In this thesis we try to provide novel solutions to key problems related to imaging
and imaging system.

In chapter 2 we study the problem of aberration retrieval for spatially incoher
ent imaging system. Our approach is based on images with phase diversity. In
particular, we used images with defocus diversity in the experiment. Our approach
requires the imaging process to be spatially inchoerent. Nature scenes, for example
objects illuminated by nature light or objects in the sky such as stars, will satisfy
the requirement.

The phase diversity approach was first proposed by Paxman in 1992, which
is only a theoretical work. In chapter 2, we present the theoretical framework
for solving the inverse problem of aberration retrieval using iterative optimization.
Further, we discuss the implementation of the approach in detail. Techniques such
as window filtering and Tikhonov regularization are crucial for the image restoration.

We show that a blurred image can be restored to a diffractionlimited image
using our approach. Only the information of the diversity is required. In the visible
wavelength range, our approach offers an alternative to the existing methods such
as wavefront sensor and shearing interferometer. However, for applications like
scanning electron microscope (SEM), our approach exhibits the potential to become
the standard for aberration metrology.

In chapter 3 we study the problem of measuring the aberrations of a lithographic
imaging system, which has both high resolution and large FOV. The aberrations vary
spatially over its entire FOV.

We propose a novel measurement scheme using a pair of periodic masks. Our
method allows the measurement of the PSFlike images at as many FOV locations
as the number of the camera pixels in parallel. The aberrations at each FOV location
are then retrieved from the corresponding PSFlike image by iterative optimization.

Our method offers great ability of parallelizing the process of not only the mea
surement but also the retrieval. It can be further improved by accelerating the
retrieval using advanced computational techniques such as machine learning and
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neural network. Therefore, it is suitable for large FOV imaging applications e.g.
optical lithography.

There are three ways of using the proposed measurement scheme:

1. Realtime alignment.

2. Measurement of distortion, defocus (fieldcurvature), and telecentricity.

3. Measurement of the aberrations in terms of the Zernike polynomials.

1 and 2 have been implemented and validated by Mikhail Loktev at Liteq B.V. [1],
and 3 has been studied at TUDelft based on the experimental data used in [1].
The proposed measurement scheme provides a complete industrial level solution
for the measurement spatiallyvarying aberrations. A patent has been filed and we
are now looking for companies and institutions who are interested in acquiring it.

In chapter 4 and 5, we developed two methods for measuring the MCF of an ar
bitrary light beam, respectively. Both methods use the concept of holography. The
key is to split the light beam into two parts keeping the correlation. We guarantee
that the two parts of the light beam can form an interference pattern. The rest of
the story is to extract the two crossterms from the interference pattern.

Our method in chapter 4 is believed to be one of the most efficient method for
measuring the complete complexvalued MCF: we measure a 2dimensional slice of
the 4dimensional MCF at a time. Our method in chapter 5 is a noniterative method
for diffractive imaging. We validate that the transmission/reflection function of a
sample can be reconstructed (imaged) almost independent of the spatial coherence
of the illumination beam.
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