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Abstract—Perception systems for autonomous vehicles are
reliant on a comprehensive sensor suite to identify objects
in the environment. While object recognition systems in the
LiDAR and camera modalities are reaching maturity, recognition
models on sparse radar point measurements have remained
an open research challenge. An object recognition model is
here presented which imposes a graph structure on the radar
point-cloud by connecting spatially proximal points and extracts
local patterns by performing convolutional operations across the
graph’s edges. The model’s performance is evaluated by the
nuScenes benchmark and is the first radar object recognition
model evaluated on the dataset. The results show that end-to-
end deep learning solutions for object recognition in the radar
domain are viable but currently not competitive with solutions
based on LiDAR data.

Index Terms—object detection, object recognition, radar, geo-
metric deep learning, nuScenes

I. INTRODUCTION

Autonomous driving and advanced driver-assistance sys-
tems require the perception of the surrounding environment. A
subtask in perception is the detection and classification of ob-
jects in the environment, here referred to as object recognition
to avoid semantic ambiguity in the radar research domain with
regards to detection tasks. To aid in this task an autonomous
system is equipped with a sensor suite which commonly
includes camera, LiDAR and radar sensor modalities. Radar
is an attractive sensor type for object recognition because of
its robustness to weather and lighting conditions in addition
to providing information on target velocities.

Commercially available radar sensors output a marked
point-cloud consisting of radar detection points. The points are
specified in two spatial coordinates and are marked with radial
velocity u in relation to the sensor and radar cross-section σ.

A conventional object recognition pipeline for radar data
commonly involves clustering the radar detection points and
classifying the clusters based on the statistical attributes of its
members, as described in [1], [2] and [3]. In contrast, state
of the art object recognition models in the LiDAR domain
[4] and the camera domain [5] are end-to-end deep learning
models which leverage convolutional operations to extract
local patterns from the data.

Recently, end-to-end deep learning models developed in the
LiDAR domain have been adapted for radar data as explored
in [6]. The radar detection points are embedded by a PointNet

based pipeline, achieving encouraging results on a private
dataset. However, the development of end-to-end deep learning
models for object recognition in the radar domain remains an
open research challenge.

Graph neural networks (GNNs) have recently shown
promising results for object recognition task on LiDAR data
as explored in [7]. Their work explores graph construction
by connecting spatially proximal points. Local patterns are
then extracted by convolutional operations over the graph-
edges. The work explores a single shot detector which provides
competitive results for object recognition in the automotive
setting on the KITTI benchmark [8]. Other notable work
explores the classification [9] and segmentation [10] of point-
clouds using GNNs.

In this paper we propose an object recognition model for
radar data which draws from the LiDAR Point-GNN presented
in [7]. The model takes as input the radar detection points in
a graph representation and uses graph convolutions to embed
each radar detection point into a contextualized representation.
The model outputs an object proposal for each point in
the point-cloud. The proposals are thresholded based on a
predicted clutter-score1 and spatially overlapping proposals are
suppressed based on non-maximum suppression [11].

The proposed model is evaluated on the nuScenes dataset
[12] with the task of recognizing 10 classes of objects in
the automotive setting, a listing of these classes are found in
[12]. This model is one of the first published result on multi-
object recognition for radar data on a publicly available dataset
and is the only model evaluated on the nuScenes benchmark
exclusively using the radar modality. The proposed method is
evaluated in comparison to a PointNet++ encoder [13] and a
performance upper bound.

In summary, the contributions of this paper are:

• An object recognition model in the radar domain based
on graph convolutions.

• The first published method for multi-object recognition
for radar data evaluated on the public dataset nuScenes.

1The clutter-score is an analogue to the objectness-score introduced in [5].
The score differentiates objects of interests from background clutter and is
used in the non-maximum suppression algorithm as a proxy for prediction
confidence.
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II. PREVIOUS WORK

Some previous work explores object recognition in the radar
domain by clustering the radar detection points and classifies
the clusters based on the statistical attributes of its members,
as described in [1], [2] and [3]. Other work have aimed to
recognize objects by measuring how well the data coincides
with a pre-defined template as described in [14] and [15].

Previous work in deep learning methods have explored the
use of PointNet [6] and PointNet++ [16] for multi-object
recognition and semantic segmentation respectively, achieving
strong results on private datasets of radar point-cloud mea-
surements.

In [17] the authors explored using a convolutional neural
network (CNN) to extract local patterns from the radar data
cube which are included as covariates to the radar detection
points. The patterns extracted from the radar data cube was
shown to increase the efficacy of a radar detection point
classifier. Other work such as [18] have explored using image
object recognition pipelines such as YOLO [5] on projections
of the radar data cube which showed encouraging results on
detecting static objects.

A. Feature extraction from sets.

Architectures here collectively referred to as PointNets are
able to extract features from unordered sets such as point-
clouds. The PointNet first proposed in [19] utilizes a shared
multi-layered perceptron (shared-MLP) to embed points in a
high-dimensional feature space. Global features are extracted
by taking the maximum element in each feature dimension
which are then concatenated to the pointwise feature vectors.
The PointNet++ model presented in [13] expands the architec-
ture by using a PointNet to pool the input features of points
in small spatial regions. Regions of various sizes are used to
capture differently sized structures. In addition, sampling and
grouping strategies are employed to reduce the computational
complexity – a necessity when considering highly dense point-
clouds as input.

B. Feature extraction from graphs.

Graph neural networks (GNNs) define a convolutional
operation along the edges of the input graph [20]. Node
embeddings are generated by aggregating features along the
graph-edges. The work in [7] proposes a one-shot object
recognition model based on embeddings generated by graph
convolutions and achieves competitive results on the KITTI
dataset [8]. A LiDAR point-cloud is first regularized into a
coarse three dimensional grid. A graph is then constructed
by connecting spatially proximal voxels. Graph convolutions
map the voxels to a contextualized embedding and a decoder
architecture generates one object proposal from each voxel.
Other notable works use GNNs to classify point-clouds [21]
and to perform a semantic segmentation [22].

III. PROPOSED METHOD

The model proposed by this work can be decomposed into
five steps: graph construction based on the spatial distance

between radar detection points, mapping the input features to
a non-contextual embedding, employing graph convolutions to
generate contextualized point embeddings and the generation
of object proposals which are then suppressed based on
prediction confidence and a predicted clutter-score. A diagram
of the model architecture is found in Fig. 1.

A. Pre-processing

Formally we define a point-cloud as a set P = {v1, . . . , vn}
where vi = (xi,mi) is a point with spatial coordinates
xi ∈ R2 marked with the state vector mi ∈ Rk representing
additional point properties. The mark m may include prop-
erties measured by a sensor such as radar cross-section or
embedding features generated by a neural network. A graph
G = (P, E) is constructed with the radar detection points
vi ∈ P as vertices and edges

E =
{

(i, j)| ‖xi − xj‖2 < r
}
, (1)

including self loops. In this work the radius r is set to 1 m.
To increase the density of the input point-cloud the radar

measurements from the previous five radar frames have been
translated and rotated to account for the movement of the
measurement vehicle and are included in the point-cloud. A
categorical covariate T ∈ {0, . . . , 5} is appended to the
radar detection points to indicate the age of the measurement,
providing the initial mark

mi = (σi, ui, Ti,deg(vi)), (2)

where σi denotes radar cross-section, ui ∈ R2 denotes the
measured range-rate in a Euclidean coordinate system shared
across the sensors, and deg(vi) denotes the number of edges
connected to vi serving as a proxy for point density.

B. Data augmentation

With the aim to mitigate overfitting, noise is added to the
samples drawn from the training dataset. The velocity u ∈ R2

is scaled by a factor α ∼ unif1(0.8, 1.2). The point coordinate
x ∈ R2 and radar cross-section σ are translated by ∆x ∼
unif2(−0.1, 0.1) and ∆σ ∼ unif1(−0.04, 0.04) respectively.

C. Graph convolution

In the main, this work follows the graph convolution defined
in [7]. Edge features are constructed as

ei,j ← f (xj − xi,mj) , (3)

which is a function of the embedding of the transmitting
point vj and the relative position xj − xi. The operation
is translationally invariant against global shift in the spatial
coordinates.

A new embedding for point vi is generated as

mi ← g (ρ ({ei,j | j : (i, j) ∈ E}) ,mi) +mi, (4)

where ρ(·) denotes the max-pool function which pools the
edge features ei. directed to node i, and g(·) is some function
which further embeds the pooled features. Note that a skip
connection for the previous embedding mi is included to
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Fig. 1. An illustration of the proposed object recognition model. Note that · · · signifies that multiple graph convolutions are performed in sequence. The
model generates one proposal from each radar detection point. These are then filtered based on a clutter-score threshold and non-maximum suppression.

improve gradient propagation. In this work the functions f(·)
and g(·) are chosen as multi-layered perceptrons (MLPs).

In summary, a radar detection point is embedded by using a
small neural network to extract features from radar detection
points found within 1 m of its spatial location.

D. Network

After the pre-processing step, the point-graph is passed
through a shared-MLP fnc(·) which maps the point covariates
(σi, ui, Ti,deg(vi)) to a high dimensional feature space which
is here referred to as the non-contextual embeddings. As
visualized in Fig. 1 the point embeddings are then passed
through a sequence of graph convolutions which extracts
local patterns from the input - generating contextualized point
embeddings. Lastly, a decoder consisting of three MLPs is
used to generate a two dimensional object proposal from each
embedded point.

An object proposal comprises a two-dimensional bounding
box which approximates the physical extent of the object, a
clutter-score which indicates if the object proposal is centered
on clutter or on an object of interest, and a probability
distribution over the object classes. The predicted bounding
boxes are parametrized as:

ĥ = h̄class + δh,

ŵ = w̄class + δw,

x̂center = xpoint + δx,

ŷcenter = ypoint + δx,

(5)

where δ. denotes the regressed scalar values output by the
decoder, h̄class denotes the median height for the predicted
class and (xcenter, ycenter) denotes the center of the predicted
bounding box. The object’s velocity û′i ∈ R+ is predicted
as squared scalar. It is assumed that the object’s velocity
coincides with the object’s orientation.

The bounding box orientation φ̂ is predicted as a probability
distribution over eight equisized bins. A probability distribu-

tion over the object-classes pi and a clutter-score p′i are also
generated for each proposal.

E. Objective function

If a radar detection point is found within an annotated
bounding box, the point is assigned the class label and box
parameters of the annotation. All other points are assigned the
Background class.

The network is trained on an objective function which
evaluates a set of proposals in terms of how well they
predict their respective class labels and how well the generated
bounding boxes coincides with their respective annotation. The
classification loss is defined as a sum of the cross-entropy loss
for the clutter prediction task and the class prediction task,

Lcls =
cobj
|P |

∑
(p′i,y

′
i)∈P

Lce(p′i, y′i) +
ccls
|B|

∑
(pi,yi)∈B

Lce(pi, yi),

where B is the set of points not annotated as Background.
A localization loss is calculated for any correct predictions

using the Huber loss [23] for scalar predictions and cross-
entropy for the orientation prediction defined as:

Lloc =
1

|C|
∑
vi∈C

∑
(q̂,q)∈Qi

cqLHuber(q̂, q) + cφLce(φ̂i, φi),

Qi = {(ĉ(x)i , c
(x)
i ), (ĉ

(y)
i , c

(y)
i ), (ĥi, hi), (ŵi, wi), (û′i, u

′
i)},

where C denotes the set of correct predictions.
With the aim to mitigate overfitting, L2 regularization is

added to the objective function formulation calculated over all
the parameters in the model as in,

L = Lcls + Lloc + γLreg. (6)

F. Optimization

The Adam optimization algorithm [24] was used to fit the
model parameters. The learning rate followed a half-sinoid
learning rate schedule.
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iou(·): The intersection over union of two bounding boxes.
Input: B = {b1, . . . , bn}, D = {d1, . . . , dn}, T
B is the set of bounding boxes
D is the corresponding clutter-scores
Tnms is the overlap threshold value

Output: M is the output set of filtered bounding boxes

1: function NMS(B : bounding boxes, D : scores)
2: M ← {}
3: while B 6= {} do
4: i ← argmin(D)
5: M ← M+ bi
6: for bj ∈ B do
7: if iou(bi, bj) > Tnms then
8: B ← B − bj
9: D ← D − dj

10: return M

Fig. 2. The non-maximum suppression algorithm used to filter out overlapping
bounding boxes.

G. Suppression

The network generates one object proposal per point in
the point-graph. Any predictions with a clutter-score higher
than Tobj are discarded. Spatially overlapping predictions are
filtered by the non-maximum suppression algorithm specified
in Fig. 2. Since intersecting objects are rarely found in the
dataset the non-maximum suppression threshold is set as
Tnms = 0.01.

IV. EXPERIMENTS

In this section we define the problem setting and the model
parameters used in the proposed method. The results are found
in Table I.

A. Dataset

The proposed method is evaluated on the nuScenes object
recognition benchmark [12]. The dataset contains annotations
for 10 object-classes where the two most populated classes
Car and Pedestrian with 493322 and 220194 annotations
respectively comprise approximately 70% of all annotations.
The annotations which are available at 2 Hz have in this
work been linearly interpolated in time to acquire continuous
annotations. Five FMCW radar units providing a full field of
view were used to record the dataset. However, the technical
specifications of the radar sensors are unavailable [12].

The dataset comprises 20 s driving sequences, 700 of which
are used to fit the model and 150 are used as a validation
set. The test set consists of 150 driving sequences without a
publicly available ground truth and is evaluated by a third party
[25]. The benchmark evaluates average precision (AP) over
the classes in the dataset averaged over a selection of match
distances. A number of localization metrics are also evaluated:
average translation error (ATE), average scale error (ASE),

average orientation error (AOE), average velocity error (AVE)
and the average attribute error (ATE) which are formally
defined in [12]. The average precision is calculated over recall
and precision values greater than 10%.

1) Performance bound: Under the assumption that it is not
possible to identify an object which has not generated a radar
detection point we can construct an upper bound on the AP.
Also, since the model predicts the object orientation as one of
eight discrete values one can also construct a lower bound for
the average orientation error. These bounds are calculated on
the validation set, presented in Table I and are valid for both
the PointNet and the R-PointGNN model.

B. Implementation details

In this work the non-contextualized embeddings are gener-
ated by an MLP with layer sizes (4, 32, 64, 128, 512) separated
by batch normalization and ReLU activation functions. The
remaining MLPs used in this work have a hidden size of 512,
have three layers and are separated by batch normalization
and ReLU activation functions. Eight graph convolutions as
defined in (3), (4) were used in the network.

Currently there are no other submissions to the nuScenes
benchmark using only radar data. Therefore the presented
method is benchmarked against a model where the graph
convolutions have been replaced by a PointNet++ encoder.
The MLPs used in the PointNet++ encoder have a depth of 3
and a hidden size of 512 and pools information at radii 0.2 m,
0.5 m and 1 m. In contrast to the original implementation
[13] the subsampling procedure has been removed to account
for the sparseness of a radar point-cloud. Besides the feature
extraction, the two models follow identical object recognition
pipelines.

The model was fit using a base learning rate of 2× 10−5

with loss constants cobj = 1, ccls = 2, and cq = 0.1, q ∈ Q
over 50 epochs using early stopping based on the epoch loss
evaluated on the validation set.

C. Results

The proposed method has been submitted to the nuScenes
object recognition benchmark [12] evaluated by [25]. In Table
I, II the proposed method is compared against the benchmark
model, a performance upper bound and a state of the art
LiDAR model.

Among the object recognition models which take radar
data as input, the proposed Radar-PointGNN has the highest
performance achieving an average precision of 10% for the
Car class. A visualization of objects recognized by the Radar-
PointGNN model on unseen data is found in Fig. 3.

Generally, the object recognition models based only on radar
data perform poorly. The classification of many classes does
not exceed the 10% recall threshold needed to calculate a
meaningful average-precision in accordance with the nuScenes
benchmark [12]. As indicated by the performance bound, a
significant portion of the annotated objects have not provided
strong enough reflections to generate a radar detection point
which makes it difficult for the recognition model to reach the
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Fig. 3. Objects recognized are visualized with annotated objects , radar detection points and the measurement vehicle . The measured range-rate
of a radar detection point is visualized with the vector with length proportional to the magnitude of the velocity.

TABLE I
THE PERFORMANCE METRICS EVALUATED ON THE

NUSCENES TEST SET 1

True positive metrics

AP% ATE ASE AOE AVE

R-PointGNN (Ours)
Car 10.1 0.69 0.20 0.38 0.95

PointNet
Car 5.2 1.11 0.20 0.72 1.16

Performance bound 2

Car 58.0 - - 0.01 -
Pedestrian 21.0 - - 0.13 -

Barrier 29.0 - - 0.14 -
Truck 69.0 - - 0.29 -

1 Class metrics with an AP lower than 1% are omitted.
2 AP bound is calculated by observing the ratio of anno-

tated objects that have generated any radar detection..

10% recall threshold for some classes. However, the model
also performs poorly on uncommon classes like Truck which
have a high performance bound.

Annotations and predictions are matched based on the
distance of the bounding boxes’ center position. In accordance
with the nuScenes benchmark the AP metric is averaged
over four maximum match-distances. The performance of
the Radar-PointGNN model at different match distances is
visualized in Fig. 4. The model shows poor performance on
low maximum match-distances indicating that increasing the
model’s efficacy on the localization task would significantly
increase the AP metric.

The performance of the state of the art LiDAR object
recognition model MEGVII is shown in Table II. The radar
based object recognition models are not yet competitive with
the LiDAR based object recognition pipeline.

TABLE II
THE PERFORMANCE METRICS FOR A STATE OF THE ART

LiDAR MODEL 1

True positive metrics

AP% ATE ASE AOE AVE

MEGVII
Car 81.1 0.18 0.16 0.10 0.19

Pedestrian 80.1 0.14 0.30 0.42 0.22
Truck 48.5 0.36 0.19 0.08 0.23

Barrier 66.0 0.24 0.26 0.03 -
1 Only a selection of the object-classes evaluated on the

nuScenes test set are displayed for the MEGVII [26]
model.

V. CONCLUSION

This paper presents an viable end-to-end deep learning
object recognition pipeline for radar point-cloud data. A graph
representation is used to define a parametrized convolutional
operation which maps the radar points to a contextualized
representation capable of generating object proposals with
more efficacy than other point-cloud encoders. However, the
presented method is not competitive with LiDAR based object
recognition models, in part as a consequence of the sparsity of
the point-cloud generated by automotive radars in comparison
to those generated by LiDAR sensors.

Nevertheless, this work brings object recognition methods
for radar in line with mature methodologies from the LiDAR
and camera domain. The trend of automotive radar technol-
ogy is moving in the direction of an increasing number of
channels and an utilization of broader frequency bands. These
changes entail an increased density of the produced radar
detection point-cloud more similar to point-clouds generated
by a LiDAR sensor. One may speculate that the method here
presented would benefit from such changes as similar methods
show strong results in the LiDAR domain.

The presented model has been evaluated on the nuScenes
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Fig. 4. The precision-recall curves for the Car class as predicted by the Radar-PointGNN model on the validation set. Note that the performance increases
with the match-distance, indicating a poor localization of the predictions.

benchmark and is the first radar object recognition model
evaluated on a public dataset. To gain a stronger understanding
of the performance of this model it would be useful to evaluate
conventional clustering-based object recognition pipelines on
the nuScenes dataset. One may also consider to include
low level sensor data as covariates to the presented object
recognition model. These are topics for future work.
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[1] O. Schumann, C. Wöhler, M. Hahn, and J. Dickmann, “Comparison of
random forest and long short-term memory network performances in
classification tasks using radar,” in 2017 Sensor Data Fusion: Trends,
Solutions, Applications (SDF). IEEE, 2017, pp. 1–6.

[2] R. Prophet, M. Hoffmann, M. Vossiek, C. Sturm, A. Ossowska, W. Ma-
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