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Abstract—This paper discusses a fusion framework with 

data from multiple, distributed radar sensors based on 

conventional classifiers, and transfer learning with pre-trained 

deep networks. The application considered is the classification 

of gait styles and the detection of critical accidents such as falls. 

The data were collected from a network comprised of one 

Ancortek frequency modulated continuous wave radar and 

three ultra wide-band Xethru radars. The radar systems within 

the network  were placed in three different locations, notably, in 

front of participants, on the ceiling, and on the right-hand side 

of the monitored area. The proposed information fusion 

framework compares feature level fusion, soft fusion with the 

classifier confidence level, and hard fusion with Naïve Bayes 

combiner (NBC). Regarding the classifier, linear SVM, 

Random-Forest Bagging Trees, and five pre-trained neural 

networks are introduced to the fusion algorithm, where the 

VGG-16 network yields the best performance (about 84%) with 

the help of NBC. Compared to the best cases with conventional 

classifiers, it is reported that 20% and 16% subsequent 

improvement are achieved for individual usage of single radar 

and fusion. 

Keywords— radar network, information fusion, multiple radar 

sensing, machine learning, transfer learning 

I. INTRODUCTION  

The growing aging population [1] in western countries and 
Asia creates significant challenges in providing 
comprehensive medical care to elderly people with underlying 
health conditions and timely support after a critical accident 
such as fall and stroke. Falls usually cause physical injuries 
[2], [3] including head trauma, face, and hip fracture. These 
lead to further psychological problems [2], [4] like loss of 
interest in exercise and fear of being alone. In the UK, the 
National Health Service spent more than 4 million pounds per 
day to hospitalize the elderly over 65 years that experienced 
an accidental fall [5], and this budget has to increase year-by-
year because fall may trigger other chronic issues. Researchers 
found that the life expectancy [6] of the elderly is highly 
related to the waiting time to receive assistance after the 
accidents. Thus, a fast-responding and reliable fall detection 
system [7] can notify the emergency department in the 
hospital or personal caregivers to provide prompt help.  
Furthermore, increased fall risk and health anomalies in older 
people have been correlated with changes in their gait patterns 
[6], [8]–[10], and related metrics such as asymmetries, slower 
and less continuous gait, and shorter stride. 

Radar is irreplaceable as a contactless sensing technology 
in many outdoor applications in defense and security. 
Recently radar has also gained much interest in the context of 
indoor ambient assisted living [11]. Compared to wearable 
devices [12], [13] and image/video sensors [14], radar can 
avoid issues of users’ compliance and acceptance due to 
privacy (no plain images of people or private environments 
are collected) and/or comfort (no devices to wear, carry, 
recharge). Radar can also work in through-wall conditions in 
indoor environments [15] and can provide an estimate of the 
physical distance and velocity (measured by the Doppler 
effect) over time for the monitored subjects [16].  

Given the many different types and styles of gaits people 
can show while they move, developing radar-based capable 
classification algorithms is a fundamental challenge. 
Convolutional Neural Networks (CNN) [17] have shown 
higher potential than conventional classifiers in terms of their 
classification accuracy. However, those improvements come 
at a price. They require large amounts of data and 
computational load as more layers are added, which in turn 
increase the number of hyper-parameters to tune [18].Transfer 
learning frameworks have been applied to address this issue. 
Pre-trained networks such as AlexNet (2012)[19], GoogLeNet 
(2014)[19], VGG-16 (2016) [20] and ResNet family (2018) 
have been utilized in classifying radar spectrograms and 
cepstrum maps, exploiting the deep classification capabilities 
they gained from prior pre-training with hundred thousands of 
optical images. This transfer learning method suits a small 
experimental radar dataset that would not be enough for 
feeding and training from scratch a traditional CNN.  

In this paper, we investigate the transfer learning 
framework combined with information fusion from a network 
consisting of four independent but synchronized radar sensors. 
The sensors are not clocked by the same reference, but they 
operate simultaneously and collect data at the same time 
allowing comparisons as a function of spatial position (three 
identical UWB X-band radar located at three different 
positions with respect to the subject), as well as of radar 
frequency (2 co-located radar sensors operating at different 
frequencies, namely X-band and K-band). In this initial study, 
we focus on comparing different pre-trained deep network 
architectures with information fusion schemes, including 
feature fusion [11], soft decision fusion, and hard decision 
fusion [21]. The dataset used for the analysis contains 12 
different types of gait performed by 14 volunteers, with more 
details given in the following sections. The initial performance 
results show that transfer learning can outperform 
conventional classifiers using manual features and that fusing 
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information from the distributed radar sensors in the network 
is also beneficial.  

The remainder of this paper is organized as follows. 
Section II introduces the radar network setup and describes the 
gait data collection. Section III discusses the data processing 
and classification using a conventional classifier and pre-
trained nets. Section IV presents the results of different 
information fusion approaches. Finally, section V concludes 
the paper and outlines possible directions for future work. 

II. EXPERIMENTAL SETUP 

TABLE I.  LIST OF THE DIFFERENT GAITS TO BE CLASSIFIED 

G1 Walking normally 

G2 Walking quickly 

G3 Walking slowly 

G4 Dragging one foot 

G5 Limping with an orthopedic cast 

G6 Small steps 

G7 Walking with a cane 

G8 Walking with a walker 

G9 Military walking 

G10 Bunny jump 

G11 Walking and direct fall 

G12 Walking and controlled fall 

The dataset was collected in the Computational 
Intelligence for Radar (CI4R) Lab at the University of 
Alabama; it contains 11 male and three female participants 
aged from 19 to 44. Table I lists twelve different gaits, 
including walking with different speed, dragging one foot 
while walking, moving with small steps, walking with aids, 
jumping back and forth, as well as some joint gaits (gaits 
followed by a fall event). In the experiment, the participants 
are asked to perform 20 s elliptical loops in the different gait 
styles (with the lab setup and the trajectory shown in Fig. 1), 
whereas in ‘G11’ and ‘G12’, two kinds of falling are following 
a short period of walking (12s approximately) to attempt to 
simulate the sudden loss of consciousness and progressive 
exhaustion and fall of elderly people, respectively.  

One Ancortek FMCW radar operating at 25 GHz and three 
Novelda Xethru UWB Doppler radars at 7.5 GHz are utilized 
to measure the gait patterns, simultaneously with three 
different spatial perspectives as in Fig. 1. The Ancortek radar 
and one of the Xethru radars (X1) are set on the table in front 
of the participants (red box in Fig. 1); the second Xethru (X2) 
is fixed on the ceiling with an elevation angle of about 45º to 
the center of the experimental zone (purple box in Fig. 1); the 
last Xethru (X3) is placed at the right-hand side of the 
participant (yellow box in Fig. 1).  The FMCW radar transmits 

a chirp signal with 2 GHz bandwidth and 1 kHz PRF (Pulse 
Repetition Frequency), whereas the Xethru pulse-Doppler 
radar has 1.5 GHz bandwidth with 500 kHz PRF.  

The radar network is constructed by connecting all the 
individual radar to a laptop via USB cables. It is synchronized 
by adding a delay function as the two types of radar have 
different waking up times to compensate. This allows 
recording simultaneous data from all four radars, although the 
radars are not coherently synchronized by the same clock. 
Furthermore, data from the pressure mattress on the floor in 
Fig. 1 is also collected and can be used as ground truth for the 
location of the subject and to examine the sequence of the 
steps in different gaits.  

The dataset is saved in a MATLAB cell array, whose 
dimension is m*n*q, where m  is the number of participants, 
n is the gait class and q is the number of the 20 s long 
repetitions of each gait; in our case, q equals to 3, hence, the 
total number of observation is 504 (14*12*3). 

III. DATA PROCESSING AND ANALYSIS 

A. Conventional Classifier 

The radar data can be mapped into three different domains, 
notably, Range-Time, Range-Doppler, and Doppler-Time, 
also known as a radar cube when combined [16]. The Range-
Time matrix is obtained by applying a 1st Fast Fourier 
Transform (FFT) on the raw amplitude and phase of the 
FMCW radar data, whereas the Range-Doppler maps are 
generated by using a 2nd FFT along the time axis of the Range-
Time matrix for each range bin. The Doppler-Time domain 
also referred as a spectrogram, is generated by adding the 
range bins together for each time bin and then using a Short-
Time Fourier Transform (STFT) successively to visualize the 
micro-Doppler signature, which is significant in 
characterizing periodic motions such as swinging of human 
legs and arms. Fig. 2 shows the radar spectrograms of different 
gaits, where the positive Doppler shift represents the stride 
towards the radar and vice versa. In this paper, we focus on 
the spectrogram analysis; the window function used in the 
STFT is a Hamming window with 0.2s length and 95% 
overlapping. 

Some statistical features are extracted to replace the whole 
spectrogram as the input of the classifier. The radar features 
inspired from [22], [23] are used in this paper and listed in 
Table II. They can be divided into physical features and 
transform-based features, where the physical features include 
upper envelope, lower envelope (shown in Fig. 2 with red and 
white lines), centroid and bandwidth of the Doppler 
spectrogram. Differently from those, transform-based features 
perform a mathematic transformation such as SVD (Singular 
Value Decomposition), DCT (Discrete Cosine Transform) 
and LPC (Linear Predictive Coding) on the spectrogram data 
to find more information on a specific dimension. Similar 
features are also generated from Cadence Velocity Diagram 
(CVD) and radar cepstrum.  

 Two robust conventional classifiers, notably, linear SVM 
and Random-Forest (RF) bagging with 200 trees are selected 
to train the prediction model and evaluate the classification 
performance. In this paper, a ‘Leaving one participant out’ 
(L1O) cross-validation method is used to partition the dataset 
into training and test part, where data from one participant is 
chosen to evaluate the classification performance, and the rest 
of the data is used to train the classifier. Every subject in the 

 
Fig. 1.   Experimental setup and walking trajectory. Red line: Ancortek 

and Xethru in front of the participants; purple line: Xethru on the ceiling; 

yellow line: Xethru on the right hand side; orange dots on the ground: 

elliptical trajectory performed by the subjects. 
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dataset is, in turn, the ‘test participant’, and the results are 
averaged from the 14 iterations. Compared to the conventional 
‘k-fold’ or simpler ‘holdout,’ L1O successfully simulates the 
more realistic scenario that the classifier cannot access all 
subjects’ data prior to the actual usage, i.e., the classifier needs 
to deal well with unknown new subjects.  

 

Fig. 2. Ancortek radar spectrograms. The spectrogram from (a) to (l) 

correspond to the gait from ‘G1’ to ‘G12’ in Table I. Red line: upper 

envelope, white line: lower envelope. 

TABLE II.  LIST OF THE RADAR MANUAL FEATURES 

Physical features 
No. of 

features 

Mean, standard deviation, skewness, and kurtosis of the 

centroid of the Doppler spectrogram 

4 

Mean, standard deviation, skewness, and kurtosis of the 
bandwidth of the Doppler spectrogram 

4 

Two-dimensional mean, standard deviation, skewness 

and kurtosis of the whole segment of the spectrogram 

4 

Mean, maximum and minimum of the upper envelope 3 

Mean, maximum and minimum of the lower envelope 3 

Difference between the mean of the upper and lower 

envelope 

1 

Transform-based features 
No. of 

features 

Mean and standard deviation of the first left and right 
eigenvector of the SVD decomposition of the 

spectrogram 

4 

Sum of pixels of the entire left and right matrices 2 

Mean of the diagonal of the left and right matrices 2 

Discrete DCT of the spectrogram 10 

First 10 coefficients of the LPC of the spectrogram 10 

Step repetition frequency 1 

Step repetition frequency band peak 2 

Intensity of the main peak in CVD 1 

Maximum of the main peak 1 

Energy of the main peak 1 

Most significant Doppler frequency in CVD 1 

Maximum, minimum and mean of the cepstrum 3 

Total number of features 57 

 The L1O classification results of using radar individually 

are summarized in Table III, where the Xethru radar in front 

of the participant outperforms the other radars with SVM, and 

the Xethru radar on the ceiling yields the best performance 

with RF Bagging Trees. There is not much difference in 

Ancortek and X1 using these two classifiers, whereas X2 and 

X3 share a 5% improvement. Fig. 3 shows in a confusion 

matrix the misclassification rates between each class, where 

the rows are output classes, and the columns represent target 

classes. The diagonal elements are the gaits that are correctly 

classified, whereas the non-diagonal elements denote the 

misclassified gaits. The sum of the elements in each column 

is equal to 100%. This confusion matrix reports high 

misclassification in ‘G1’, ‘G3’, ‘G5’, and ‘G7’, especially 

between ‘G1’ and ‘G3’. The walking speed for different 

people varies, and may cause the algorithm to classify ‘slow 

walking’ for some subjects as ‘normal walking’ for others. 

The same reason would explain the misclassifications 

between ‘G5’ and ‘G7’, as those gaits are carefully chosen to 

be similar in pairs for creating more classification challenges. 

For the last two joint gaits which contain a fall event, the 

correctly classified rate is not too low. However, there are 

some false alarms with other classes, and this affects a lot the 

capability of recognizing critical events like falls. 

TABLE III.  THE L1O CLASSIFICATION RESULTS FOR SINGLE RADAR 

SENSORS (MAX, MIN, MEAN AND STANDARD DEVIATION) 

 
B. Transfer Learning using Pre-trained Networks 

 Transfer learning [19], [20] has attracted a lot of interest 
in the field of image classification in applications such as face 
and gesture recognition. Fig. 4 illustrates the training and 
testing scheme of the transfer learning with a VGG-16 net 
taken as an example. It uses the output weights from a deep 
neural network pre-trained on numerous optical images, 
which enables the network to capture the common concepts 
among the edges, curves, and other properties of the figure 
patterns. This can lead to a potential application that makes 
this network capable of adapting to a new dataset by re-
training with a small amount of the new labeled data, radar 
data in this case, and fine-tuning the original weights. 

 Transfer learning uses a pre-trained network, and this 
solves specific issues of the classic Convolution Neural 
Networks (CNN). Notably, it does not require a large dataset 
to train, and as a result of that, it saves a lot of training time 
and computational load. In this paper, five pre-trained 
networks, notably AlexNet, GoogLeNet, VGG-16, ResNet18, 
and ResNet101, are empirically selected to re-train with radar 
spectrograms and compare the classification performance. 

 Table IV lists the classification performance of each radar 
using a pre-trained net in terms of mean, maximum, minimum, 

Linear 

SVM 
Ancortek X1 X2 X3 

Mean 58.53% 59.13% 58.33% 49.6% 

Max 80.56% 80.56% 72.22% 66.67% 

Min 36.11% 19.44% 38.89% 25% 

STD 0.1393 0.165 0.101 0.1293 

RF 

Bagging 
Ancortek X1 X2 X3 

Mean 59.52% 59.72% 63.49% 54.17% 

Max 75% 77.78% 83.33% 77.78% 

Min 38.89% 36.11% 44.44% 33.33% 

STD 0.1246 0.1241 0.1251 0.1172 
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and standard deviation across the leave one participant out 
(L1O) tests for the 14 subjects. From the perspective of 
average performance, VGG-16 outperforms the other pre-
trained networks, where the Xethru radar on the ceiling yields 
the best results among all the available radars. It is reported 
that Ancortek radar using ResNet101 provides better average 
performance than VGG-16, which seems to show that 
ResNet101 is more powerful in characterizing the features 
from Ancortek images. 

Fig. 3.   Confusion matrix of  Xethru P2 using RF Bagging Trees 

TABLE IV.  THE L1O CLASSIFICATION RESULTS USING PRE-TRAINED 

NETWORKS ON DATA FROM SINGLE RADAR SENSORS 

Alexnet Ancortek X1 X2 X3 

Mean 67.86% 71.83% 71.83% 64.88% 

Max 83.33% 86.11% 91.67% 86.11% 

Min 50% 47.22% 44.44% 38.89% 

STD 0.1179 0.1308 0.1517 0.1483 

VGG-16 Ancortek X1 X2 X3 

Mean 73.41% 75.2% 79.96% 71.23% 

Max 91.67% 91.67% 94.44% 83.33% 

Min 47.22% 47.22% 63.89% 50% 

STD 0.1202 0.1372 0.1069 0.1236 

GoogLeNet Ancortek X1 X2 X3 

Mean 66.47% 60.52% 62.9% 55.95% 

Max 80.56% 83.33% 80.56% 75% 

Min 47.22% 44.44% 47.22% 38.89% 

STD 0.1114 0.1199 0.1048 0.1050 

ResNet18 Ancortek X1 X2 X3 

Mean 71.83% 63.89% 66.27% 60.52% 

Max 86.11% 80.56% 80.56% 72.22% 

Min 58.33% 52.78% 55.56% 47.22% 

STD 0.0936 0.0844 0.0864 0.0845 

ResNet101 Ancortek X1 X2 X3 

Mean 76.19% 68.85% 66.87% 60.32% 

Max 88.89% 83.33% 77.78% 77.78% 

Min 55.56% 52.78% 52.78% 33.33% 

STD 0.1009 0.0831 0.0640 0.1244 

 

 

 
Fig. 4.  The training and testing scheme of transfer learning.

 

IV. INFORMATION FUSION  

In the circumstance that the participant is moving in a large 
angle with respect to the radar line-of-sight, the receiving 
signal strength is not optimal due to the well-known aspect 
angle problem. This may lead to possible misclassification 
and false alarms. However, the low classification performance 
of one radar at a certain time could be mitigated by using the 
data of other radars working at different frequency bands and 
placed at different locations in a radar network. 

 The fusion of radar data can take place at feature and 
decision level separately. Feature fusion physically cascades 
the feature subset from each radar to a feature pool, as in Eq. 
1, where ⌢ represents the concatenation of the feature 
matrices of individual radar sensors. 

𝐹𝐹𝑢𝑠𝑖𝑜𝑛 = 𝐹𝐴𝑛 ⌢ 𝐹𝑋1 ⌢ 𝐹𝑋2 ⌢ 𝐹𝑋3                  (1) 

Decision fusion is divided into soft fusion and hard fusion. 
Soft fusion uses the confidence level of the separate classifiers 
to generate the new prediction label. If a weighted index is 
introduced for each radar, then the approach becomes 
weighted soft fusion as in Eq. 2.  

𝑆𝑓𝑢𝑠𝑖𝑜𝑛(𝑛, 𝑐) = 𝑊𝐴𝑛 ∙ 𝑆𝐴𝑛(𝑛, 𝑐) +𝑊𝑋1 ∙ 𝑆𝑋1(𝑛, 𝑐) + 
(2) 

𝑊𝑋2 ∙ 𝑆𝑋2(𝑛, 𝑐) +𝑊𝑋3 ∙ 𝑆𝑋3(𝑛, 𝑐) 
 

In Eq. 2, S(n,c) refers to the confidence level for observation 
n and class c, WAn to WX3 denote the weight coefficients for 
each radar, respectively. Generally, the radar with high 
individual classification performance is associated to higher 
weights. Hard fusion relies on the posterior probability of the 
class of interest in the confusion matrix to make a new 
decision. Typical hard fusion methods include majority 
voting, weighted majority voting, recall combiner, and Naive-
Bayes (NB) combiner [24]. Voting system usually suffers 
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from decision clash when the number of classifiers is even in 
the fusion. The performance of the recall combiner is highly 
correlated with number of classifers, as small number of 
classifiers such as our case cannot fully exploit the potential 
of recall combiner. However, the influence of classifier 
numbers is much less on NB combiner approach.   

𝑃(𝐶𝑘|𝑑) = 𝑃(𝐶𝑘) ∙ ∏ 𝑝𝑚,𝑅𝑚,𝑘
𝑁
𝑚=1                (3) 

Eq. (3) shows the mathematical representation of an NB 
combiner, where k is the class of interest and d is a class set 
including all the classes to classify. P(Ck|d) is the probability 
that class k is chosen from the class set d to be the output class 
and P(Ck) is the classifier support rate. Rm denotes the 
prediction label of classifier m, whereas the output is the 
product of the support rate and the element p of the radar 
confusion matrix (classifier m, row Rm and column k). From 
the results in our previous work [21], NB combiner is chosen 
as the main information fusion approach. Feature level fusion 
and equal weighted soft fusion are also considered as 
alternatives for comparison with conventional classifier and 
transfer learning respectively.  

 

Fig. 5.  The statistical parameters (classification accuracy in percentage and 

standard deviation of the values) for individual radar sensors and different 

fusion techniques using classifier SVM. 

 

Fig. 6.  The statistical parameters (classification accuracy in percentage and 
standard deviation of the values) for individual radar sensors and different 

fusion techniques using classifier RF Bagging. 

 Fig. 5-6 illustrate the statistical parameters for the radar 
fusion (average accuracy and standard deviation of the 
classification accuracy) with SVM and RF Bagging Trees. 
Different combinations of different radars are considered. 
Note that in the figures, “feature fusion” and “NB combiner” 
cases included data from all the radar sensors in the network. 
For the SVM, fusion with all radars with NB combiner yields 
the best classification performance, approximately 4% and 
19% higher than the best and worst case in the single radar 

scenario. Additionally, significant improvement (about 6% 
and 7%) is reported by combining the Ancortek radar with X1 
and X2 at the feature level.  

 Fig. 7 shows the same performance parameters for fusion 
of all radar sensors using pre-trained networks. VGG-16 
surpasses the other networks in both hard and soft fusion, 
whereas ResNet101 is only 0.5% lower in hard fusion. The 
main benefit of transfer learning is increasing the minimum 
accuracy (i.e. worst case performance) to 64%, which is 12% 
higher than the same approach with RF Bagging Trees. At the 
same time, the standard deviations of transfer learning are 
lower than for conventional classifiers; in other words, the 
variation of performance based on the participants used as 
testing subjects is lower, and this leads to a more stable 
system.  

 Fig. 8 discusses the misclassification between classes 
using NB combiner hard fusion with a VGG-16 pre-trained 
network. Compared to Fig. 3, the classification accuracy rises 
to 83.73%, and most of the misclassified events are corrected, 
whereas the wrong classified gaits between ‘G1’ and ‘G3’ are 
still existing but less than before. The classification rates of 
‘G5’ and ‘G7’ are improved significantly by 43% and 46%, 
respectively. Additionally, the false alarms of falling in ‘G11’ 
and ‘G12’ are much lower than using X2 individually.  

Fig. 8.  Confusion matrix of Naïve Bayes combiner hard fusion with VGG-

16 network. 

 

Fig. 7.  The statistical parameters (classification accuracy in percentage and 

standard deviation of the values) of soft and hard fusion with all the radars in 

the network using transfer learning with different networks 
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V. CONCLUSION 

This paper presents an information fusion framework 
applied on radar data from a network of four coordinated 
sensors, namely three UWB Xethru radar and one FMCW 
Ancortek radar. Conventional classifiers and transfer learning 
approaches with five different pre-trained deep networks are 
compared, with the aim of recognizing different gait styles and 
identifying fall accidents.  

The data from four different radar systems are combined 
at feature and decision level to provide subsequent 
improvement of 4-20% compared with the best case of using 
radar individually. It is reported that Naïve Bayes combiner 
(NBC) based on the posterior probability of the class of 
interest outperforms other fusion techniques. In terms of the 
classifier, VGG-16 yields the best classification performance 
among SVM, RF Bagging Trees, and other pre-trained 
networks. Data fusion using NBC with VGG-16 indicates 
approximately 84% average classification accuracy after 
considering all the participants as test subjects.  

Future work will evaluate the information fusion method 
on a wider platform. This includes more participants, more 
aspect angles with the radar, and even multimodal approaches 
as seen in [25]. Regarding the neural network, a sequential 
classification task, as seen in [21] with continuous gaits and 
motion transitions will be considered, as well as the meta-
learning of the hyper-parameters and structure of the pre-
trained network.   
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