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Abstract
We present a reservoir simulation framework for coupled thermal-compositional-mechanics processes. We use finite-volume
methods to discretize the mass and energy conservation equations and finite-element methods for the mechanics problem.
We use the first-order backward Euler for time. We solve the resulting set of nonlinear algebraic equations using fully
implicit (FI) and sequential-implicit (SI) solution schemes. The FI approach is attractive for general-purpose simulation
due to its unconditional stability. However, the FI method requires the development of a complex thermo-compositional-
mechanics framework for the nonlinear problems of interest, and that includes the construction of the full Jacobian matrix
for the coupled multi-physics discrete system of equations. On the other hand, SI-based solution schemes allow for relatively
fast development because different simulation modules can be coupled more easily. The challenge with SI schemes is
that the nonlinear convergence rate depends strongly on the coupling strength across the physical mechanisms and on the
details of the sequential updating strategy across the different physics modules. The flexible automatic differentiation-based
framework described here allows for detailed assessment of the robustness and computational efficiency of different coupling
schemes for a wide range of multi-physics subsurface problems.

Keywords Geomechanics · Thermal-compositional-mechanics · Reservoir simulation · Multiphase flow · Multi-physics
coupling

1 Introduction

The simulation of complex subsurface processes entails
solving the governing equations that describe multiphase
flow, multi-component transport, thermal effects, and
geomechanics. Enhanced oil recovery (EOR) processes,
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such as the near-miscible gas injection and thermal recov-
ery methods, are a primary target for reservoir simulation.
Such EOR processes are characterized by complex multi-
component interactions that lead to multiple phase changes
when coupled with the flow. The evolution of the pressure,
saturations, and temperature can be highly nonlinear and
quite complex for large-scale reservoirs. Changes in the pres-
sure, temperature, and saturations can induce complex inter-
actions with the solid structure and lead to changes in the
stress and strain fields within the reservoir and its surround-
ing formations. The nonlinear interactions among different
physical mechanisms impose very strict requirements on
the discretization and solution schemes. Detailed assess-
ment of the truncation errors and the numerical stability of
the discrete scheme are critically important. In order for
the simulation framework to be useful, it is important to
ensure robust and efficient performance, and this depends
very strongly on the nonlinear convergence behavior and the
computational efficiency of the solution strategy across the
parameter space of practical interest.

The fully implicit (FI) approach is attractive for general-
purpose simulation due to its unconditional stability. The FI

http://crossmark.crossref.org/dialog/?doi=10.1007/s10596-018-9737-5&domain=pdf
mailto:tgaripov@stanford.edu
mailto:ptomin@stanford.edu
mailto:tchelepi@stanford.edu
mailto:iskhakov@stanford.edu
mailto:D.V.Voskov@tudelft.nl


1040 Comput Geosci (2018) 22:1039–1057

scheme is also referred to as the “simultaneous solution” or
monolithic strategy. However, FI approaches are computa-
tionally expensive and require the development of a unified
flow–energy–geomechanics simulation framework [23, 66].
In addition, the domain for the mechanics problem is usually
significantly larger than the target reservoir (oil, gas, water).
Consequently, fully coupled solutions that include the full
mechanics problem can become quite expensive. Another
disadvantage of the FI approach is that the resulting linear
systems are nonsymmetric with mixed character (e.g., ellip-
tic, parabolic, hyperbolic); dealing with such linear systems
in a robust and efficient manner requires the development
of sophisticated multi-stage preconditioning techniques [8,
71].

The development and application of sequential-implicit
(SI) methods are motivated by the desire to avoid developing
a framework for fully coupled multi-physics problems
and the associated requirement of specialized multi-stage
linear solvers. In the computational geoscience community,
different types of sequential coupling between the flow and
mechanics problems are used. Iterative coupling schemes
can be explicit, loosely coupled, or sequential implicit [15].
In iterative coupling, the system of governing equations is
divided into several physics sub-problems, each of which
can be solved by a different method, including dedicated
nonlinear and linear solvers. For example, a general class of
multigrid methods [18, 57] is known to be effective for the
flow and mechanical parts, whereas a simple factorization
strategy (e.g., incomplete LU factorization) is quite efficient
for the transport problem [62].

The coupled flow and geomechanics problem was
implemented in an explicitly coupled fashion [47, 72],
where each physical process was solved separately with
a partial update of the solution between steps. In this
approach, the convergence of the full system of the
governing equations often was not checked. Although this
method can be efficient and accurate in some situations, it
does not guarantee the correctness of the solution. Later, a
loosely coupled scheme was proposed for the solution of
flow and geomechanics problems [5, 55]. This approach is
similar to the explicitly coupled scheme, with an occasional
resolution of the coupling between the different physical
systems. In some cases, the loosely coupled scheme
can produce results in reasonable agreement with the FI
approach along with good computational performance [43,
54].

In the last few years, several SI schemes have been
proposed and analyzed [20, 49, 55, 58, 59, 63]. SI
schemes have several advantages. They allow for using
separate modules for each physical process, use of advanced
single-physics linear solvers (e.g., multigrid for the near-
elliptic pressure), and separate discretization of the different
physics in different spatial domains [38]. Moreover, for a

few coupled problems, specific SI splitting strategies can
yield unconditionally stable and computationally scalable
solutions [3, 31, 41].

Developing fast, robust, and general-purpose simulation
platforms capable of solving a wide range of problems,
such as multiphase flow, energy transport, and mechanical
deformation, is of strong interest and poses significant and
exciting challenges. General-purpose simulators capable
of solving challenging problems employ either FI or a
specific SI scheme. Many research simulators employ
sequentially iterative strategies (e.g., Subsurface Transport
Over Multiple Phases (STOMP) [65], TOUGHT+FLAC
[53], IPARS-JAS3D [42], and OpenGeoSys [33]. However,
without fully implicit reference solutions, it is often
unclear whether the solutions are accurate, and it is nearly
impossible to ascertain where in the parameter space can
these simulators be used. These concerns are addressed in
fully coupled multi-physics simulators, such as DuMuX
[19] and MRST [27, 37]. However, the published results
are limited to relatively simple multi-physics problems and
small reservoir models. None of the available multi-physics
simulators is capable of running both fully implicit and
sequential-implicit approaches within the same platform,
and there is a clear lack of accurate and systematic studies
of different coupling strategies. One available comparison
[40], performed in PANDAS [17], is limited to simplified
flow-mechanics physics without nonlinear effects.

In this paper, we describe a reservoir simulation frame-
work implemented in the Automatic Differentiation General
Purpose Research Simulator (AD-GPRS) [2]. We solve the
system of nonlinear governing equations in fully implicit
mode and in a variety of SI strategies. The framework
employs the Automatically Differentiable Expression Tem-
plates Library (ADETL) to compute the Jacobian [67]; this
library helps us obtain exact derivatives for complicated set-
tings, such as when the phase equilibrium calculations [61]
or the plastic nature of the deformation [21] are involved
in the nonlinear evolution of the solution. All the cou-
pling schemes are implemented in a unified manner, and the
choice of the solution strategy can be easily made in the
input “deck” [51, 52]. We use five test problems to demon-
strate the performance of fully and sequentially implicit
coupling approaches for complex processes that involve
geomechanics. We show that the framework allows for
modeling nonlinear multi-physics problems using different
solution schemes.

2 Governing equations andmathematical
models

In this section, we present the mathematical model that
describes the flow and transport of mass and energy coupled



Comput Geosci (2018) 22:1039–1057 1041

with mechanical deformation in heterogeneous geological
formations. In the description, we follow a macroscale
continuum representation of the physical processes, where
the flow is described by Darcy’s law and geomechanical
interactions follow the generalized Biot’s theory [12].

2.1 Mass and energy conservation equations

The governing equations describing a thermal multiphase
multi-component flow in porous media contain conservation
equations of mass, energy, and associated constraints. The
mass conservation equations can be written as:

∂

∂t

⎛
⎝φ

np∑
j=1

xijρjSj

⎞
⎠ + ∇ ·

⎛
⎝

np∑
j=1

xijρjvj

⎞
⎠

+
np∑

j=1

xijρjqj = 0, i = 1 . . . nc, (1)

where i and j indicate a component and a phase,
respectively, and nc and np are the total number of
components and phases, respectively; φ is the porosity; Sj ,
xij, pj , and ρj are the phase saturations, compositions,
phase pressures, and densities, respectively; qj is the source
term. The phase velocity vj is represented by Darcy’s law:

vj = −k
krj

μj

(∇pj − ρjg
)
, (2)

where k is the absolute-permeability tensor, krj is the phase
relative permeability, μj is the phase viscosity, and g is
gravity acceleration.

We assume thermal equilibrium between the fluids and
the solid skeleton; as a result, the overall energy balance can
be written as:

∂

∂t

⎛
⎝φ

np∑
j=1

UjρjSj + (1 − φ)Ur

⎞
⎠

+∇ ·
⎛
⎝

np∑
j=1

hjρjvj

⎞
⎠ − ∇ · (κ∇T )

+
np∑

j=1

hjρjqj = 0, (3)

where T is the temperature (thermal equilibrium between
fluids and solid skeleton is assumed), κ is the thermal
conduction coefficient, Uj and Ur are the phase and rock
internal energies, respectively, and hj is the phase enthalpy.
Here we define Uj = hj − pj/ρj and Ur = Cr(T − Tref),
where Cr is the rock volumetric heat capacity coefficient
and Tref is the reference temperature.

Additional local constraints are required to close
the system of governing equations 1–3. Based on the

assumption of instantaneous thermodynamic equilibrium of
the fluid mixtures, we can write

fij(p, T , xij) − fik(p, T , xik) = 0,

∀j �= k = 1 . . . np, i = 1 . . . nc. (4)

Here, we assume that all components can dissolve in all
fluid phases, and that the capillary pressure has a negligible
impact on the phase behavior [60, 68].

The system is supplemented with linear constraints for
the phase compositions and the phase saturations, namely

np∑
j=1

Sj = 1, (5)

nc∑
i=1

xij = 1, j = 1 . . . np. (6)

Equations 1–6 describe the multiphase thermal-
compositional flow problem. We use a generalized natural
variables formulation [11] and base the phase behavior
on the volume-translated Soave–Redlich–Kwong equation
of state (EOS) [48]. Accurate determination of the phase
state in a control volume (gridblock) is critical for efficient
compositional simulation, and for that purpose, we use the
multiphase bypassing strategy [69].

2.2 Mechanical deformation

We use the term thermo-poro-plasticity to refer to
macroscale models of fluid-structure interactions in the
plastic regime in the presence of thermal gradients; specif-
ically, we consider locally homogeneous aggregates of the
solid skeleton and the pore fluids [44]. We assume that in
the liquid phase the average stress is identical to the pres-
sure; the concept of the equivalent pressure is described in
[12]. The second part of the total stress is the effective stress,
which transmits forces between grain contacts. A quasi-
static momentum conservation equation for an aggregate
(skeleton plus pore fluids) can be written as:

∇ · σ + ρg = 0, (7)

where ρ = ρs (1 − φ) + ρf φ is the overall mass density.
Here, ρs is the density of the solid skeleton and ρf is the
average fluid density. The symmetric total stress tensor σ

contains the contributions of both the fluid and the solid
skeleton [12]:

σ = Cεe − bP . (8)

Here, C is the fourth-order elasticity-moduli tensor, εe is
the second-order elasticity strain tensor, and b1, where b is
Biot’s coefficient. The average fluid pressure is defined as

P =
np∑

j=1
Sjpj .
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We follow the “small deformation” theory and assume
that the total strain tensor, ε, can be decomposed into three
parts: elastic, plastic, and thermal, which we write as

ε = εe + εp + εθ , (9)

The elastic strain can be expressed as

εe = ε − εp − εθ . (10)

We assume that the dilation induced by temperature is
isotropic, i.e.,

εθ = αT 1 (11)

where α is the skeleton linear thermal expansion/dilation
coefficient [12]. Combining Eq. 9 and Eq. 8, we obtain

σ = C · (
ε − εp

) − aT − bP, (12)

where a = αC1.
To complete the description, we define the total strain as

ε = 1

2

(
∇u + ∇T u

)
, (13)

where u is the displacement vector. We use the Drucker–
Prager [16] model to describe the stress–strain response
in Eq. 12. To describe the plastic behavior, the classic
Drucker–Prager model employs the following yield surface
F :

F = √
J2 + B · I1 + A, (14)

where I1 and J2 are the volumetric and deviatoric invariants
of the effective stress, respectively, andA andB are material
parameters. We assume that the Drucker–Prager model
circumscribes the Mohr-Coulomb yield surface, and we
consequently express A and B as

A = 6c cosψ√
3(3 − sinψ)

, B = 2 sinψ√
3(3 − sinψ)

, (15)

where ψ is the internal friction angle, and c is the cohesion.
This model is intended to capture plastic dilation, and the
size of the yield surface is controlled by “internal state”
variables, such as softening and hardening parameters. In
this paper, we employ an isotropic softening/hardening rule
which is given in rate form and reflects the change of the
cohesion as a function of the volumetric plastic strain and
temperature changes (see A for details):

ċ = Hvε̇
p
v − Ht Ṫ . (16)

Here, Hv and Ht are two material parameters, εp
v = tr (εp)

is the volumetric plastic strain. The Drucker–Prager model
belongs to a class of “time-independent” plasticity models,
and that the dot denotes the rate, i.e., change between
loading steps. Specifically, the dot indicates a derivative
with respect to a pseudo-time variable that characterizes
the deformation rate. The first term on the right-hand side
of Eq. 16 allows the yield surface to grow with plastic

volumetric compaction (hardening) and shrink with plastic
dilation (softening). The second term controls the shrinking
of the yield surface caused by a temperature increase.

Following [12], we introduce the porosity as the ratio of
the volume of the connected pore space to the total volume,
and we use the following relationship between the porosity
and stress/strain:

φ − φp = φo + (b − φo)(1 − b)

Kd

(P − Po)

+b
(
εv − εp

v

) − αφ (T − To) . (17)

Here, Kd is the local drainage bulk modulus, εv = tr (ε) is
the volumetric total strain, and αφ is the volumetric thermal
dilation coefficient related to the porosity. The reference
porosity, pressure, and temperature are denoted as φo, Po,
and To, respectively. Assuming that the irreversible porosity
is defined as φp = b ε

p
v , we obtain

φ = φo + (b − φo)(1 − b)

Kd

(P − Po)

+bεv − αφ (T − To) . (18)

We use a simple model for the permeability [14]:

k = ko

(
φ

φo

)m

. (19)

The permeability exponent, m, describes how the perme-
ability deviates from the reference value ko.

The coupled set of equations is supplemented with initial
and boundary conditions. The initial distribution of the
fluids, pressure, temperature, and stresses are specified to
fully define the initial state of the reservoir. Specification
of the boundary conditions for the coupled problem can
be quite challenging. Two types of boundary conditions
are normally used for the flow equations: the prescribed
pressure, temperature and prescribed flux. The mechanical-
equilibrium equations use stress and displacement boundary
conditions. Care is taken to ensure that the initial and
boundary conditions provide a consistent set for the
coupled flow-mechanics problem of interest. The Saint-
Venant’s principle is commonly used to correctly specify
the boundary conditions. The principle states that the
stress concentration is a relatively local phenomenon and
becomes small at sufficiently large distances from the
load. Consequently, mechanics boundary conditions must
be applied on sufficient distance from the reservoir to obtain
reasonably accurate results.

3 Solution strategy

We combine the finite-volume method, which is widely
used in the reservoir simulation community [4], and the
finite-element method, which is widely used in the civil
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and mechanical (geotechnical) engineering communities
[73]. The flow variables R = (p, T , x) (pressure p,
temperature T , and phase compositions x) are associated
with cell centers, and the mechanics variables U = (u, εp)

(incorporating displacement u and plastic strain εp) are
associated with vertices and integration points [26, 30]. This
combined finite-volume/finite-element formulation leads
to a set of coupled nonlinear equations that are solved
using either FI or SI methods. To determine the plasticity
component of the total deformation, we apply the general
closest point projection algorithm [56].

In the FI scheme, the mass, energy, and momentum
conservation equations (cast in residual form) are solved
simultaneously. The corresponding system of nonlinear
algebraic equations is solved using Newton’s method with
safeguarding; in the FI strategy, each Newton iteration
entails solving a linear system with the full Jacobian matrix.

The second approach is the SI method, in which
we partition the overall multi-physics problem into sub-
problems. The nonlinear sub-problems are then solved in
a particular sequence. The SI strategy entails prescribing
the specific solution sequence of the sub-problems and the
details of the nonlinear operator splitting.

We employ the fixed-stress scheme as the nonlinear
splitting SI strategy. This scheme enjoys unconditional
stability for nonlinear poro-elasticity and does not exhibit
oscillations in time [30]. The solution (R,U) is obtained
incrementally by performing a sequence, such as

Rk+1 = Rk + 
R (Rk,Uk) ,

Uk+1 = Uk + 
U (Rk+1,Uk) , (20)

where k and k + 1 are the iteration indices.
The core idea of the fixed-stress split is the assumption

that the mean total stress σm = tr (σ ) /3 does not change
between coupling iterations k and k + 1:

σm,k+1 − σm,k = 0. (21)

Furthermore, we assume that the total stress increment can
be expressed in terms of the primary variables as [29]:

σm,k+1−σm,k = Kd ·(εv,k+1−εv,k

)−b (Pk+1 − Pk) (22)

−Ad (Tk+1 − Tk) ,

where the coefficientsKd andAd have been introduced. The
remarks below explain the choice of Kd and Ad . Using Eq.
21, the increment of εv becomes a function of the pressure
and temperature change:

εv,k+1 − εv,k = b

Kd

(Pk+1 − Pk) + Ad

Kd

(Tk+1 − Tk) . (23)

Equation 18 at iteration k + 1 is

φk+1 = φo + (b − φo)(1 − b)

Kd

(Pk+1 − Po) (24)

+bεv,k+1 − αφ (Tk+1 − To) .

Substituting Eq. 23 into Eq. 24, we obtain

φk+1 = φo + (b − φo)(1 − b)

Kd

(Pk+1 − Po)

+bεv,k − αφ (Tk+1 − To)

+ b2

Kd

(Pk+1 − Pk) + b
Ad

Kd

(Tk+1 − Tk), (25)

where the last two members are the fixed-stress correction
terms. Details of the implementation of the FI and SI
schemes are given in the Appendix A. The specific choice
of the parameter, Kd , in Eq. 25 has an impact on the rate of
convergence.

For general three-dimensional elasticity problems, we
use the Voigt bulk modulus (see [9, 28] for other possible
choices):

Kd ≈ 1

9
1T

C1, (26)

Ad ≈ 3αKd, (27)

where α is the skeleton linear thermal expansion/dilation

coefficient [12], and Kd ≈ E

3 (1 − 2ν)
for isotropic linear

elastic material.
In elasto-plasticity simulations, Kd is obtained using the

elasto-plastic moduli, i.e., the tensor C in Eq. 26 is replaced
byCep. It has been shown that the moduli tensor,Cep, can be
taken from the previous sequential step [28]. The coefficient
Ad is calculated from the expression Ad = tr (aep) /3,
where the elasto-plastic thermal moduli, aep, are similarly
taken from the previous sequential step. This choice of Kd

and Ad greatly simplifies the overall algorithm, because it
enables us to avoid return-mapping steps during the solution
of the flow problem. Detailed derivations of Cep and aep are
given in Appendix A.

4 Numerical examples

In this section, we demonstrate the applicability of the
proposed framework to multi-physics problems of practical
interest. We use five test cases for this purpose . The
first three cases are used to compare our numerical results
with available analytical and numerical benchmarks. The
fourth case demonstrates that the sequential approach
can accurately solve a highly nonlinear flow-thermal-
geomechanics problem. The fifth case is designed to
compare the performance of SI and FI schemes for a set of
flow-geomechanics problems of different complexity.

4.1 Thermo-elastic consolidation of a sand column

We consider the thermo-elastic consolidation problem intro-
duced by [1], which has been widely used as a benchmark
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[34, 45]. In this example, a one-dimensional (1D) column
of height 7 m and width 2 m is subjected to a compres-
sive load force of 100 kPa on its top boundary (see Fig. 1).
The zero vertical displacement condition constrains the bot-
tom and side boundaries, which are impermeable (no-flow).
The pressure and temperature on the top boundary are fixed
and equal to 0 Pa and 323.15 K, respectively. The col-
umn is saturated with a single-phase fluid, and the fluid
pressure and temperature are equal to 1 Pa and 273.15 K,
respectively. Table 1 lists the parameters of this test case.
Following [45], the fluid compressibility, thermal expansiv-
ity, viscosity variation, and gravity effects are assumed to be
negligible.

Figure 2 shows the vertical displacement at
(x = 0, z = 0). The numerical solution obtained by FI
strategy is in close agreement with published reference (see
Fig 2). FI and SI schemes give the same results.

4.2 Mandel problem

The second case is the two-dimensional (2D) Mandel
consolidation problem [39]; the analytical solution of which
is widely used as an important benchmark for the numerical
solution of poromechanics problems. A more detailed
description may be found in [12]. The computational
domain is defined as  = [0, a] × [0, b] = [0, 20 m] ×
[0, 10 m]; the geometry represents a quarter of the original
Mandel problem (see Fig. 3). The domain is fully saturated
with a compressible single-phase fluid, and the initial
fluid pressure is pinit = 44.17 · 105 Pa. We impose
no-flow boundary conditions everywhere except on the
right boundary, where a constant pressure p|x=a = 0 is
prescribed. The main model parameters are given in Table 2.

We set the horizontal displacement on the left boundary
and the vertical displacement on the bottom boundary to
zero (ux |x=0 = 0, uz|z=0 = 0), and we apply uniform

Fig. 1 Geometry and boundary conditions of the thermo-elastic consoli-
dation problem

Table 1 Rock and fluid properties used for the thermo-elastic consolida-
tion problem

Property Value

Porosity φ, % 25

Hydraulic conductivity
(
kρf g/μf

)
a, m/s2 4 · 10−6

Young’s modulus E, Pa 6 · 103
Biot’s constant b 1

Poisson’s ratio ν 0.25

Linear thermal expansion α, 1/K 3 · 10−6

ak permeability, ρf fluid density, μf fluid viscosity, g gravitational
acceleration

loading conditions on the top boundary (F |z=b = 100 ·
105 Pa). The vertical displacement on the upper boundary
is constrained by the condition that uz|∀x=constant. The
undrained Poisson ratio is used to initialize the displacement
field, and the drained Poisson ratio is used for the transient
period.

The pressure evolution at (x = 0, z = 0) is shown in
Fig. 5. Both the SI and FI approaches accurately capture
the transient pressure behavior. This example shows that the
SI method has the same accuracy as the FI approach, and
that it converges within 3–20 iterations with a tolerance of
ε = 10−6 (Fig. 4). The convergence rate for the SI scheme
is consistent with published results [9], where the maximum
number of iterations per time step was estimated to be 10
for a tolerance of ε = 10−3.

4.3 Depletion of a box-shaped reservoir

Next, we study Dean’s test problem [15]. The simulation
domain is a box of size  = 18897.6 m × 9448.8 m ×
3429.0 m containing three layers: top layer (0–3048 m),
middle layer (3048–3124.2 m), and bottom layer (3124.2–
3429.0 m). The payzone of the reservoir, r = 6705.6 m
× 3352.8 m × 76.2 m, is located in the middle layer. The

Fig. 2 Thermo-elastic consolidation problem is top surface settlement.
Solid lines represent the numerical solution obtained by FI strategy;
circles show reference values



Comput Geosci (2018) 22:1039–1057 1045

Fig. 3 Geometry and boundary conditions of Mandel problem

payzone has the same thickness as the middle layer and is
surrounded by a stiff impermeable medium. Figure 6 shows
a geometrical configuration of the model, and Table 3 lists
the rock properties.

The “pay” and “non-pay”zones are fully saturated with a
single-phase liquid with a density of 1000 kg/m3 at 105 Pa,
a compressibility of 3 · 10−10 Pa−1, and a viscosity of
10−3 Pa s. The initial fluid pressure is 105 Pa at the surface
with a hydrostatic gradient of 0.98852022 · 105 Pa/m;
the initial vertical stress is 0 Pa at the surface with a
vertical stress gradient of 0.9869 · 105 Pa/m, and the
initial horizontal stresses are half of the vertical stress. The
bottom and side boundaries are constrained to have zero
normal displacement. The wellbore with a radius 0.0762 m
is located in the center of the domain and fully penetrates
the payzone. The well operates at a constant production rate
of 7949.365 m3/day for a period of 4000 days.

We plot the pressure behavior at the top boundary of the
reservoir (top right corner of the dark box in Fig. 7). We
also plot the subsidence at the top of the reservoir and at
the surface. We then compare the simulation results with the
published solution [15]. As Fig. 7 indicates, there is a good
match. Owing to the Mandel–Crayer effect, the pressure
increases in the early stages, reaches a maximum value,
and then monotonically decreases (see Fig. 7 (left)). Dean’s
results are reproduced using the FI and the SI schemes.

Table 2 Rock and fluid properties used for Mandel’s problem

Property Value

Reference porosity φo, % 20

Young’s modulus E, Pa 1 · 109
Biot’s constant b 1

Poisson ratio ν 0.25

Undrained Poisson ratio νu 0.47

Permeability k, mD 1

Fluid viscosity μf , Pa · s 9.81 · 10−5

Fluid compressibility Cf , Pa−1 2 · 10−10

Reference fluid density ρf , kg/m3 1000

Fig. 4 Mandel’s problem with the SI convergence profile after first
time step, δt = 0.00115 days. Within 15 coupling iterations, both the
L∞ and L2 errors decrease below the tolerance of ε = 10−7

4.4 Modeling of SAGDwith geomechanics

The steam-assisted gravity grainage (SAGD) process is a
widely used recovery technique for heavy oil (bitumen)
reservoirs [7, 35]. The process involves complex multi-
physics nonlinear interactions, such as fluid thermal
expansion, rock thermal dilation, and complex phase
behavior. Typical SAGD operations involve the location
of a pair of horizontal wells, one a few meters above the
other [7]. Steam is injected into the upper well to form a
steam chamber and mobilize the reservoir oil, which drains
into the lower production well. However, the significant
mechanical stresses associated with SAGD operations can
increase the risk of fracturing the reservoir or the caprock.
Numerical simulation of SAGD problems is extremely
difficult because the evolution entails large and highly
nonlinear variations in composition, phase state, densities,
and viscosities as a function of temperature and pressure.
In the SAGD process, the injected steam has much lower
viscosity and higher phase mobility than the resident heavy
oil, and we have to deal with severe temperature gradients.
Moreover, typical bitumen sandstone formations exhibit
nonlinear deformation characteristics, and that makes the
fluid-structure interactions quite complex. Here, we study
the behavior of both FI and SI-based solution schemes for a
SAGD problem that is broadly representative of Athabasca
sands [36, 50].

We have previously reported on numerical simulation
of SAGD problems using the fully implicit scheme for
thermal-compositional problems [60, 68] and for thermo-
compositional-geomechanical problems [21]. Here, we
compare the performance for three coupling strategies FI,
SI, and what we refer to as single-pass SI, whereby one
outer iteration of the SI scheme is used. The single-pass SI
scheme is cheaper than FI and SI, and is often used because
it minimizes the data transfer operations when two different
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Fig. 5 Mandel’s problem with
the comparison of the analytical
and numerical solutions of the
pressure at (x = 2.5, z = 0) and
vertical settlement at
(x = 0, z = 100). The solid line
represents the analytical
solution, and the symbols
represent the FI and SI solutions

simulators (one for fluid flow, one for mechanics) are used
to solve the problem.

We use the description of the SAGD model provided
in [21, 60]. The simulation domain contains four layers
(Fig. 8): the first layer (0–155 m) represents a clear water
formation, the second layer (155–180 m) is caprock, the
third layer (180–205 m) is an oil sand reservoir, and the
fourth layer (205–350 m) is bedrock. The model dimension
in Y direction is 800 m. We assume that the caprock and the
bedrock are almost impermeable, and that the permeability
and porosity of the third layer is high, i.e., k = 2000 mD and
φ = 32%, respectively. The thermal conductivity is constant
for all layers. The production layer is fully saturated with
heavy oil and water containing four components: methane,
propane, heavy oil, and water. A detailed description of the
fluid properties and the phase behavior can be found in [60].

We use the Drucker–Prager model [16] to describe
the nonlinear mechanical properties of the bitumen-sand
formation. In this case, the caprock and the bedrock
are assumed to have elastic responses. The main model
parameters are given in Table 4.

The boundary conditions are shown in Fig. 8. The
displacements on the vertical and bottom sides are fixed,

whereas the top boundary is loaded by the atmospheric
pressure. All the boundaries are impermeable to flow. The
initial pressure and temperature distributions are shown in
Fig. 9.

Heavy oil (bitumen) is recovered from the production
well at a depth of 203 m, and the injection well is located
at a depth of 198 m. We consider two production stages.
The first stage is preheating and lasts for 180 days; electric
downhole heaters are used to deliver thermal energy to the
formation. The heaters operate at a constant temperature of
Tbhp = 485 K. The second stage is the injection stage, which
entails the injection of saturated steam of (quality 95%) at a
pressure of Pbhp = 20 · 105 Pa, and a temperature of Tbhp
= 485 K. The producer operates at a constant liquid rate of
48 m3/day.

Given the symmetry of the model, we simulate only half
of the reservoir. The computational domain is discretized
using 4930 hexahedral elements. The mesh is refined near
the production and injection wells. We use a simple timestep
control scheme [4] with maximum changes in pressure

P = 105 Pa and temperature 
T = 10 K per time
step. Note that the average Courant–Friedrichs–Lewy (CFL)
value for this problem is above 300, and this adds a

Fig. 6 Geometry of Dean’s
model



Comput Geosci (2018) 22:1039–1057 1047

Table 3 Rock properties for Dean’s model

Property Reservoir Nonpay zones

Porosity φ, % 25 25

Horizontal permeability kh, mD 100 0

Vertical permeability kv , mD 10 0

Young’s modulus E, Pa 0.0689476 · 109 6.89476 · 109
Biot’s constant b 1 1

Poisson ratio ν 0.25 0.25

Rock density ρr , kg/m3 2700 2700

“realistic” level of difficulty to the simulations. Because of
the highly nonlinear interactions, we start with analyzing
the FI approach results and use it as the reference solution
strategy.

During the preheating stage, the temperature increases
around the injection and production wells, leading to a
decrease in the bitumen viscosity in those regions. At
the end of the preheating period, the drop in bitumen
viscosity allows the injection of steam and the production
of the heated lower viscosity oil (see Fig. 10a,b). The
temperature propagation changes the pressure distribution
due—in part—to the thermal expansion of the fluids and
rock. The changes in the pressure extend beyond the
reservoir, and this is associated with the different thermal
expansion characteristics of the rock and the fluids in the
system. In general, the thermal energy injected into the
system leads to changes in the rock and liquid volumetric
responses and the pressure distribution in the reservoir;
however, the very-low permeability of the caprock and the
bedrock inhibits the propagation of the pressure leading to
an increase in pressure, especially in regions close to the
reservoir boundaries.

In our model, the bitumen-sand reservoir has a plastic
response, whereas the caprock and bedrock have an elastic
response. In addition, the caprock and bedrock are almost
impermeable. During the active injection-production second
stage, the overall pore pressure and the rock and oil
temperatures increase and that leads to dilation of the rock
skeleton (Fig. 10c). These changes can drive the system

Fig. 8 SAGDmodel geometry. Coordinates: injector (0, 203), producer
(0, 198)

toward the plastic regime in parts of the reservoir. The
simulation results show that plastic zones appear near
the well and close to the reservoir boundary (Fig. 10d).
Moreover, the Young’s modulus of the reservoir is smaller,
and lateral deformation of the reservoir is higher than the
deformation of the bedrock and the caprock. In our example,
lateral deformation is mostly driven by lateral pressure
gradients. This explains the appearance of excessive stresses
on the boundary, which, in turn, lead to the appearance of the
plastic zones (Fig. 10d). Note that the use of adaptive time
stepping strategies in the simulation of SAGD processes
[60] may lead to small differences between the results
obtained using different nonlinear solution schemes. We
avoid this by applying the following procedure: (1) run
the fully implicit simulation with the operation controls
described above, (2) extract the steam-injection rates and
the corresponding time steps, and (3) use this information as
inputs for all the other simulations using different coupling
strategies. Figure 11 shows the well controls.

The quality of the numerical solutions is analyzed using
the spatial distribution of the errors for the flow and

Fig. 7 Comparison of the
simulations with Dean’s
solution. Left: pressure at cell
(6, 11, 6). Right: settlement at
(0, 0) m (top curve) and (0,
3048) m (bottom curve). The
solid line represents the
reference solution [15], and
symbols represent the FI and SI
results
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Table 4 SAGD model
parameters used in numerical
simulations

Parameter Layer 1 Layer 2 Layer 3 Layer 4

Porosity φ, % 0.4 0.1 0.32 0.1

Permeability (vertical) kh, mD 0.01 0.1 2000 0.01

Permeability (horizontal) kv , mD 0.01 0.1 1000 0.01

Thermal conductivity κ , W/ (m · K) 1.37 1.37 1.37 1.37

Volumetric heat capacity Cr , kJ/
(
m3 · K)

2000 2000 2000 2000

Biot’s coefficient b 1 1 1 1

Young’s modulus E, 109 Pa 0.5 1.2 0.8 5

Poisson’s ratio ν 0.13 0.15 0.3 0.3

Cohesion c, Pa — — 0 —

Friction angle ψ , deg — — 32 —

Rock density ρr , kg/m3 2250 2250 2250 2250

Linear thermal expansion α, 10−5 1/K 2 2 2 2

Pore thermal expansion αφ , 10−5 1/K 5.4 5.4 4.08 3.6

Thermal softening Ht , Pa/K — — 0 —

Plastic hardening Hv , Pa — — 0.25 K∗a —

aK∗ = E/ (3 (1 − 2ν))

mechanics parts (Fig. 12). Obviously, compared with SI, the
single-pass SI strategy has larger errors for both the flow and
mechanics variables. Interestingly, the distribution of errors
is not localized with significant differences throughout the
computational domain.

It is important to note that the average CFL value for this
problem is greater than 300, and the coupling strength τ for
the layer with the highest error is estimated to be around
25. Nevertheless, the SI scheme shows good agreement
with the FI scheme, and nonlinear convergence is achieved
in 4–7 iterations with a tolerance of

(
εf , εm

) ≤ 10−4.

Fig. 9 SAGD problem initial pressure and temperature profiles

However, 12–15 iterations are needed to achieve a tighter
tolerance of 10−7. The single-pass SI scheme has errors
of up to 12%. Similar convergence behaviors have been
observed in the thermo-hydro-mechanical simulations of
source-rock thermal maturation in [22]. For the problem
considered here, it is clear that the SI approach is much more
accurate than the single-pass SI scheme after an acceptable
number of coupling iterations. As this problem involves
many components, such as multiphase flash, temperature
dependent properties, and nonlinear mechanics, it is quite
demanding to implement the FI scheme, and the SI approach
appears to be quite attractive.

4.5Water flooding problem

The previous subsection demonstrated that the SI approach
is able to converge for highly nonlinear problems, although
many coupling iterations are required between the sub-
problems (see Algorithm 3 in A). The question then arises:
how expensive are these iterations? The main purpose of
this subsection is to compare the computational cost of the
FI and SI solution strategies.

To demonstrate the applicability of the proposed
framework to solve problems of practical interest and
assess the performance of the sequential-implicit scheme,
we consider a modified SPE 10 problem. This problem
was originally designed to test and compare upscaling
techniques [10]; however, the model means has been used
to compare the robustness and efficiency of a wide range
of reservoir simulation schemes. Usually, the most time-
consuming part of the simulation involves solving the
linear system. As mentioned above, the FI approach for
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Fig. 10 SAGD problem solution
at t = 3 years. The results
obtained by FI strategy are
shown

coupled geomechanical problems requires sophisticated
linear solvers [64], and the choice of efficient solvers
for large-scale problems is limited. For the following
comparison, we employ our in-house iterative linear solver
[32], which allows us to deal with the coupled problem in
a fully implicit manner and enables a “fair” comparison of
the FI and SI approaches within one platform.

The solver applies a multi-stage preconditioning strategy
combining the generalized Constrained Pressure Residual
(CPR) approach [70] with a fixed-stress strategy [64]. For
the sequential scheme, we employ a CPR-preconditioned
generalized minimal residual (GMRES) solver [70] to solve
the flow problem, and an algebraic multigrid preconditioned
GMRES solver to solve the geomechanical problem. We
use the same convergence tolerance values for the FI and SI
approaches.

In this study, we use the original SPE 10 dataset, includ-
ing relative permeability curves, porosity and permeability
distributions, fluid properties, and the well controls. The
simulation domain = 365.8 m× 670.6 m× 51.8 m is dis-
cretized using a regular Cartesian grid into 60 × 220 × 85
cells. The top 35 layers represent a formation with a per-
meability field that has a Gaussian distribution, and the
bottom 50 layers are characterized by a channelized per-
meability field with high-contrast features. We generate a
set of coarsened models, containing 24 960–399 360 cells
(see Table 5), and we upscale the properties using a simple
volume-averaging approach.

The original SPE 10 benchmark is a two-phase flow prob-
lem. We extend the model and define the geomechanical
parameters. The extended model is supplemented by bound-
ary conditions and parameters for the pore-mechanical

Fig. 11 Well-operation controls
for SAGD problem: steam
(cold-water equivalent) injection
rate (left), water, and oil
production rates (right)



1050 Comput Geosci (2018) 22:1039–1057

Fig. 12 SAGD problem:
comparison of the SI (left) and
single-pass SI (right) numerical
solutions

problem. We set zero normal displacement on the side
boundaries, zero vertical displacement on the bottom
boundary, and uniform loading conditions on the top bound-
ary, Ftop = 900 · 105 Pa. The Biot’s coefficient is set to 1.0,
and the Poisson ratio is 0.2.

We use three different settings with different coupling
strengths to study the performance of the sequential scheme.
A detailed description of the coupling strength can be found
in [31] and [9]. The baseline case uses the original rock
compressibility value cr = 1.45 · 10−10 Pa−1 to estimate
the average Young’s modulus Eav = 3 (1 − 2ν) /cr . The
Young’s modulus values are then distributed on the grid
using the following correlation:

E1.0(x) = Eav · (a · φ(x) + b), (28)

where φ is the initial porosity and a, b are parameters cho-
sen to obtain min (E1.0) = E1.0 (max(φ)) = 0.2Eav and
max (E1.0) = E1.0 (min(φ)) = 5Eav. Figure 13a illustrates
the distribution of the Young’s modulus. The second and
third cases use softer and stiffer moduli:E0.1 = 0.1E1.0 and

E10.0 = 10E1.0. The E0.1 case corresponds to stronger cou-
pling and the E10.0 case corresponds to weaker coupling
(when compared with the baseline). Figure 13b shows an
example of the distribution of the coupling strength τ for the
softer moduli case, E0.1. As can be seen, τ reaches a fairly
high value (∼ 150), and consequently the SI strategy may
require a high number of coupling iterations to converge.
This test set allows us to investigate the performance of the
sequential scheme for 15 different combinations ofmodel reso-
lution and coupling strength. In addition to the effect of the
coupling strength between the flow and mechanics, we also
investigate how the nonlinearities impact the overall perfor-
mance. The simulation results are summarized in Table 6.

We start with modeling single-phase poromechanics.
The domain is fully saturated with water (Sinit

w = 1.0).
It has been shown [9] that the SI approach requires a
larger number of iterations when the coupling is stronger.
The case with E10.0 has weaker coupling and the SI
schemes converges in a relatively small number of iterations
(Fig. 14); as a result, the SI scheme outperforms the FI
scheme.

Table 5 Number of cells and
total number of degrees of
freedom (DOFs) for the
simulation cases

Case name 25k 50k 100k 200k 400k

Number of cells 24 960 49 920 99 840 199 680 399 360

DOFs 134 667 267 735 522 555 1 037 235 2 068 395



Comput Geosci (2018) 22:1039–1057 1051

Fig. 13 Extended SPE 10 model. Reservoir domain  = [0, 250] ×
[0, 500] × [−3650, −3800]m. The top part is characterized by
smoothly varying rock properties, whereas the bottom part has
channelized distributions of the properties with long-correlation and

high-contrast features. Young’s modulus distribution for the case E =
E1.0 · 1010 Pa (left) and the coupling strength τ distribution for the
second layer of the model and E = E0.1 (right)

Compared with the FI approach, the SI scheme performs
comparably well for E1.0 and is much slower for E0.1.
Overall, we have found that the convergence rate of FI is
much less sensitive to the coupling strength compared with
the SI approach. Since the nonlinearity in the problem is
quite mild, the FI method requires 1–2 Newton iterations
per time step to achieve convergence, and the overall
performance of the FI scheme depends strongly on linear
solver capabilities. Here, we employ a special-purpose
multi-stage linear solver that exhibits robust and scalable
performance; the details are described elsewhere [32]. On
the other hand, the overall performance of the SI strategy
depends strongly on the number of outer iterations (i.e., the

number of times we solve a flow problem followed by a
mechanics problem), which is quite sensitive to the coupling
strength. Not surprisingly, we observe that FI outperforms
SI when the number of SI iterations is large (see Fig. 17a).

Next, we consider two-phase problems (Fig. 15) using an
initial water saturation Sinit

w = 0.2. The porous medium still
has linear-elastic deformation characteristics, whereas the
flow problem is highly nonlinear. The FI approach requires
multiple Newton iterations for convergence. Thus, with
respect to the single-phase setup, the cost of the FI scheme
increases because of the increased number of nonlinear
(Newton) iterations. For the FI scheme, the average number
of Newton iterations per time step increases by a factor of

Table 6 Normalized
simulation time for the
extended SPE 10 model

E0.1 E1.0 E10.0

Case FI SI FI SI FI SI

Single-phase, elasticity

25k 1.38 2.11 1.00 0.97 0.95 0.79

50k 3.09 4.95 2.32 2.12 2.15 1.70

100k 6.64 10.44 4.89 4.58 4.55 3.52

200k 15.47 26.49 10.38 10.58 9.17 7.38

400k 40.78 60.00 26.84 24.99 23.18 18.60

Two-phase, elasticity

25k 1.21 1.31 1.00 0.54 1.00 0.40

50k 3.03 2.99 2.28 1.18 2.26 0.86

100k 6.79 5.75 5.40 2.60 5.48 1.86

200k 18.92 14.77 12.76 6.94 12.48 4.58

400k 57.01 43.12 33.23 16.41 31.75 10.54

Two-phase, plasticity

25k 1.33 3.47 1.06 1.23 1.01 0.75

50k 3.02 7.40 2.23 2.32 2.15 1.67

100k 7.20 11.39 5.14 5.57 5.40 3.28

The FI simulation time for the smallest problem (marked in italics) is used to normalize the simulation time



1052 Comput Geosci (2018) 22:1039–1057

Fig. 14 Comparison of FI (solid
color) and SI (dashed)
simulation times for
single-phase setup. Note the
logarithmic scale on the vertical
axis

more than eight compared with the single-phase flow case.
In contrast, the number of sequential iterations increases
by only a factor of 1.5. Moreover, the cost of solving of
two implicit sub-problems is lower than solving the full
problem. As a result (Fig. 17b), the SI approach is quite
effective for this problem setup.

Now, we consider a two-phase flow problem with plastic
mechanical deformation, so that both problems—flow and
mechanics—are highly nonlinear. Here, the FI approach
requires a similar number of nonlinear iterations as in the
previous two-phase elastic setup (see solid bars in Fig. 16).
However, the performance of the SI strategy is significantly
degraded (dashed bars in Fig. 16). This is because the two
nested nonlinear loops are performed for each coupling
step (see Algorithm 3). As the coupling strength increases,

the number of SI iterations increases dramatically, and
that leads to poor performance compared with FI. For
moderate and weak coupling, the sequential approach is
quite competitive with FI approach (see Fig. 17c).

5 Summary

We presented a computational framework for the simulation
of thermo-compositional-mechanics problems in subsurface
porous formations. The thermo-compositional problem
combines the nonlinear mass and energy conservation
equations and the equations of state for thermodynamic
equilibrium. We modeled the mechanical behavior of
the rock using quasi-static geomechanical equations with

Fig. 15 Comparison of FI (solid
color) and SI (dashed)
simulation times for two-phase
setup. Note the logarithmic scale
on the vertical axis
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Fig. 16 Comparison of FI
(solid) and SI (dashed)
simulation times for the
two-phase plastic setup. The
light part of the bars
corresponds to the increase in
the simulation times for the
elastic and plastic models

a plastic constitutive model. We used a finite-volume
approximation for the thermal multi-component flow and a
Galerkin finite-element approximation for the poro-thermo-
plasticity. The resulting set of nonlinear equations was
solved using FI and SI solution schemes. We studied
the robustness and efficiency of the different schemes
using available analytical and numerical benchmarks. In
particular, we performed a comparison study of the SAGD
recovery process. We showed that the model and the
numerical schemes resolve the nonlinear coupling and the
complex behavior related to steam-injection processes.

The results show that the FI strategy performs very
well for coupled multiphase flow and geomechanics prob-
lems, but requires sophisticated development of the simu-
lation framework (e.g., construction of full Jacobian matri-
ces) and advanced multi-stage linear solvers. On the other

hand, the SI-based strategies can be a viable alterna-
tive to FI-based simulators. We demonstrated that the
sequential approach has predictable convergence behav-
ior for complex problems with strong nonlinearities,
whereby the cost is quite sensitive to the strength of cou-
pling between the sub-problems. The SI approach also
enables more freedom in the choice of linear and non-
linear solvers for each subproblem. Finally, the applica-
bility of the sequential method is not limited to thermo-
compositional-mechanical problems and can be extended
relatively easily to a wide range of applications and multi-
physics problems. Both FI and SI methods are imple-
mented in a unified framework within the AD-GPRS
research simulator, and that allows us to develop more com-
plex models for future studies of multi-physics coupling
strategies.

Fig. 17 Dependence of the normalized simulation time on the coupling strength. Smaller Young’s modulus multiplier values correspond to
stronger coupling between the flow and mechanical problems. Intermediate-size case 100k is chosen (see Table 5)
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Appendix A: Return-mapping algorithm

In this section, we describe the implementation of a return-
mapping algorithm for the proposed plasticity model. We
assume that the plastic flow potential function has the same
form as the plastic yield function (associative plasticity)
and consider isotropic hardening/softening behavior in
the material of the payzone. For the plasticity, we use
the Drucker–Prager model given by Eq. 14 with thermal
softening and mechanical hardening. We use the General
Closest Point Projection algorithm [56] to determine
the plasticity components of the total deformation. The
proposed thermo-plasticity model is given in terms of Biot’s
effective stresses σ ′′ = σ + bP . Alternatively, the response
can be formulated in terms of Terzaghi’s effective stresses
σ ′ = σ + P , and this formulation can be performed in the
developed framework without significant modifications.

Using the total stress definition given in Eq. 12 and
following [73], the plastic strain tensor rate is assumed to be
given as a solution of the following system of equations:

F
(
σ ′′, c

) = 0, (A.1a)

ε̇p = λ̇
∂F
∂σ ′′ , (A.1b)

σ̇ ′′ = C · (
ε̇ − ε̇p

) − aṪ . (A.1c)

where a dot denotes the rate, i.e., the change between
loading or time steps. Here, F is the yield function, λ is the

proportionality constant, and a = a+ ∂a
∂T

·T −∂C

∂T
·(ε − εp

)
.

The system of equations is supplemented by the cohesion
increment relationship given as:

ċ = Hvε̇
p
v − Ht Ṫ , (A.2)

where Hv and Ht are two material parameters, εp
v = tr(εp)

is the volumetric plastic strain.
As previously, the indices n + 1 and n refer to the

current and previous time steps, respectively. A discrete
representation of system Eq. A.1a can be written as [25]:

F
(
σ ′′

n+1, cn+1
) = 0, (A.3a)

−ε
p

n+1 + ε
p
n + 
λ

∂F
∂σ ′′

n+1
= 0, (A.3b)

σ ′′
n+1−σ ′′

n =C·(εn+1−εn−ε
p

n+1+ε
p
n

) − an+1 (Tn+1 − Tn) , (A.3c)

cn+1 = cn + Hv

(
ε
p

v,n+1 − ε
p
v,n

)
− Ht (Tn+1 − Tn) , (A.3d)

where 
λ = λn+1 − λn. The values Tn+1, εn+1 are
fixed during the return mapping step. System Eq. A.3d
is nonlinear and can be solved [24] using Newton’s
method with respect to the primary unknowns

(
σ ′′

n+1, 
λ
)
.

However, this requires the calculation of the Hessian of the
yield function, F , which is a challenging procedure because
of the need to compute the second derivatives of a complex
function.

The solution
(
σ ′′

n+1, 
λ
)
of system (A.3d) implicitly

depends on ε and T . Consequently, the plastic strain εp also
depends on ε and T . Thus, the incremental form of Eq. A.1c
may be written as [46]:

σ̇ ′′ = C
ep · ε̇ − aepṪ . (A.4)

To ensure a complete linearization of the global equations,

the derivatives

(
∂σ ′′

∂ε
,
∂σ ′′

∂T

)
must be derived, which is

equivalent to the calculation of consistent elasto-plastic
tensors (Cep, aep). This is a critical aspect of the plasticity
return-mapping algorithms [6, 13]. For this purpose, we
employ an inverse-theorem approach implemented in AD-
GPRS [61]. The system Eq. A.3d can be written in matrix
notation as:

R7 = M7×7 · X7 = 0, (A.5)

where X7 is the vector of unknowns (six components
of σ ′′

n+1 plus 
λ). After we obtain the solution X7, we
compute the matrix of derivatives J7×7 as follows:

J7×7 = ∂X7

∂Y7
=

(
∂R7

∂X7

)−1

· ∂R7

∂Y7
, (A.6)

where Y7 = (εn+1, Tn+1). Then, the elasto-plastic tensors
are simply the components of the matrix J7 × 7:

[
C
ep aep

] = J7×6 (A.7)

Next, we consider the solution procedure for a given time
interval (tn, tn+1). The state of the material is known at time
step tn, and we need to compute the stress σ n+1 and the
tensors an+1 and Cn+1 at time step tn+1. For this purpose,
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we use an implicit integration algorithm. The fundamental
idea relies on performing a predictor step in which the
loading increment is elastic (plastic increment is zero). This
allows us to estimate the current stress (trial solution) and
evaluate the yield function. If the resulting yield function is
less than zero, the trial solution is accepted and all internal
state variables are updated assuming elastic deformation;
otherwise, the trial state is incorrect and the material state
should be plastic. In this case, we iteratively project stresses
to the yield surface by solving Eq. A.3d. A high-level view
of the basic steps is outlined in Algorithm 1.

Appendix B: Solution strategies

In this section, we provide details of the implementation
of the FI and SI schemes. For FI, the mass, energy, and
momentum conservation equations are solved simultane-
ously, and the corresponding system of nonlinear equations
is solved using Newton’s method with a damped update.
For the SI method, we partition the problem and solve each
subproblem sequentially, iterating between the solutions. As
previously, we define the fluid variables R = (p, T , x)

(pressure p, temperature T , and phase compositions x)
and the mechanics variables U = (u, εp) (displacement
u and plastic strain εp). We use the backward Euler time-
integration scheme, where the simulation time step 
t is
defined by 
t = tn+1 − tn and the indices n + 1, n refer to
the current and previous time steps, respectively. We always
use the solution from the previous converged time step as
the initial guess for the current time step (Algorithm 21).

1The tolerance values εf , εm are used to ensure the convergence of
each set of equations separately. The L2 and L∞ norms are used
to control the tolerance values of “mechanics” and “flow/energy”
equations, respectively.
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