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Abstract

Virtually all dynamic system control methods benefit from the availability of an accurate math-
ematical model of the system. This includes also methods like reinforcement learning, which can
be vastly sped up and made safer by using a dynamic system model. However, obtaining a suffi-
cient amount of informative data for constructing dynamic models can be difficult. Consequently,
standard data-driven model learning techniques yield models that are partly incorrect, for instance,
in terms of their steady-state characteristics or local behavior. However, often some knowledge
about the desired physical properties of the model is available. Therefore, this knowledge should
be incorporated into the model learning process to compensate for data insufficiency.

In this paper, we consider a multi-objective symbolic regression method that optimizes models
with respect to their training error and the measure of how well they comply with the desired phys-
ical properties. We propose an extension to the existing algorithm that helps generate a diverse
set of high-quality models. Further, we propose a method for selecting a single final model out of
the pool of candidate output models. We experimentally demonstrate the approach on three real
systems: the TurtleBot 2 mobile robot, the Parrot Bebop 2 drone and the magnetic manipulation
system. The results show that the proposed model-learning algorithm yields accurate models that
are physically justified. The improvement in terms of the model’s compliance with prior knowl-
edge over the models obtained when no prior knowledge was involved in the learning process is
of several orders of magnitude.

1. Introduction

This paper deals with data-driven approaches for learning models of dynamic systems. Meth-
ods proposed in this paper aim at learning models that in addition to a small training error also
exhibit high compliance with the physical properties of the given system.

Many data-driven model-learning approaches have been described in the literature: time-
varying linear models (Levine & Abbeel, 2014; Lioutikov et al., 2014), Gaussian processes (Deisen-
roth & Rasmussen, 2011; Boedecker et al., 2014) and other probabilistic models (Ng et al., 2006),
deep neural networks (de Bruin et al., 2016; Heess et al., 2015), and symbolic regression (Koza,
1992; Schmidt & Lipson, 2009; Derner et al., 2018a,b).

All of these methods have one common feature: they are trained using a set of data samples
by minimizing only a training error measure, such as the traditional mean squared error. These
methods sometimes yield models that are partially incorrect, for instance, in terms of their steady-
state characteristics, local or even global behavior, see (Kubalík et al., 2020). This is typically due
to insufficient information content of the identification data, when the data set does not sufficiently
cover the input space or when some parts of the input space are completely omitted in the data set.
In the system identification literature, this problem was recognized long time ago. It is typically
addressed by designing a data collection experiment that provides sufficiently long and informative
data sequence obtained by means of a proper excitation signal applied to the system (Goodwin &
Payne, 1977; Tulleken, 1990). However, for physical systems learning on the task, data-collection
experiments cannot often be designed in order to maximize the information context of the data,
as this would deteriorate its performance. On the other hand, domain-specific knowledge or prior
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knowledge about the desired properties of the modelled system is often available. This knowledge
can serve as complementary to the training data and help to drive the search process towards more
accurate and relevant models.

In this paper, we consider symbolic regression (SR), a method that generates models in the
form of analytic equations. Typically, SR is realized using genetic programming (GP). SR has
been used in nonlinear data-driven modeling with quite impressive results (Schmidt & Lipson,
2009; Vladislavleva et al., 2013; Staelens et al., 2013; Alibekov et al., 2016; Derner et al., 2018a,b,
2020). Moreover, contrary to data-hungry approaches such as neural networks, SR can construct
good models even from very small training data sets. SR is also a suitable candidate method for
dealing with prior knowledge. Validity checks can be incorporated into the fitness evaluation or as
an additional optimization objective (Kubalík et al., 2020). Other approaches dynamically change
the training data set through the course of the modeling process. In particular, counterexamples on
which otherwise promising models fail to be consistent with prior knowledge are generated on the
fly and used to drive the search towards valid models that comply with prior knowledge (Błądek
& Krawiec, 2019; Ashok et al., 2020).

We build on the SR approach introduced by Kubalík et al. (2020). This is a bi-objective SR
method that optimizes models to fit well the training data and at the same time to comply with
the prior knowledge about the given system. We further improve on this method in two ways and
experimentally evaluate it on three real physical systems. The main contributions of this paper are:

• Feature mixing phase. The original method evolves a population of models, each of them
being a linear combination of possibly nonlinear features. The features, evolved by means
of genetic programming, are combined using a multiple regression technique. Importantly,
each model in the final population is a result of its own mutation-based search trajectory.
The models do not combine with each other through the optimization process. We extend
the method in order to generate a more diverse set of well-performing models. This is
realized by the feature mixing phase added to the end of the algorithm. It operates on the set
of features collected from the models produced in the first mutation-based phase and evolves
new models as combinations of these features.

• Final model selection method. The method in (Kubalík et al., 2020) can generate realistic
models. However, the method produces a whole set of candidate output models, out of
which the final one has to be selected. The final model was selected mostly based on expert
knowledge about the ground truth reference model. So, the selection strategy that would
choose the final model without using any reference model remained an open issue. Here, we
propose a method to automatically select a single final model at the end of the algorithm’s
run.

• Experimental evaluation on real physical systems. The proposed method is experimentally
evaluated on three physical systems with different dynamics: the TurtleBot 2 mobile robot,
the Parrot Bebop 2 drone, and the magnetic manipulation system. The motion models are
constructed from collected data sequences, complemented by prior knowledge reflecting the
basic physics of the systems.
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The paper is organized as follows. Related work is surveyed in Section 2. Preliminaries
defining the context for the propose method are introduced in Section 3. The proposed two-phase
method and the final model selection method are described in Section 4. Section 5 describes the
experiments set up. Results obtained on the three physical systems are presented and discussed in
Section 6. Finally, Section 7 concludes the paper.

2. Related work

The combination of a priori knowledge with data-driven modeling is not new. Standard gray-
box modeling methods include a priori information typically in the form of constraints on the
model parameters and variables (Tulleken, 1993; Karny et al., 1995; Johansen, 1996; Timmons
et al., 1997). For instance, it is well known that the poles of a linear discrete-time model that
emerge from a properly sampled stable continuous-time system cannot be situated in the left half
complex plane. This knowledge can be translated into inequality constraints on the model param-
eters (Tulleken, 1993; Abonyi et al., 2000). However, these methods can only be applied to linear
models.

Combining SR with prior knowledge is rather a new research topic. There are only few such SR
approaches described in the literature that take into account information about the model sought
other than just the minimum training error. One of the most relevant is the Counterexample-Driven
Symbolic Regression (CDSR) (Błądek & Krawiec, 2019), which is based on the Counterexample-
Driven Genetic Programming (Krawiec et al., 2017). The domain knowledge is represented as a
set of constraints, with each constraint expressed in the form of a logical formula. GP is used to
synthesize regression models that not only comply with the training data set but also meet formal
constraints imposed on the model. A Satisfiability Modulo Theories (SMT) solver is used to verify
whether a given model meets the formal specification. If it does not, then a new counterexample
is generated and added to the set of test cases on which candidate models are evaluated. An
appropriate search gradient is adjusted automatically as the test set is gradually filled with new
relevant tests.

A similar approach called Logic Guided Genetic Algorithms (LGGA) was proposed by Ashok
et al. (2020). Here, the domain-specific knowledge is called auxiliary truths (AT) that are simple
mathematical facts known a priori about the unknown function sought. ATs are represented as
mathematical formulas. Similar to the previous approach, new counterexamples are generated and
used to augment the training data set during the course of the optimization process. Candidate
models are evaluated using a weighted sum of the classical training mean squared error and the
truth error, which is a measure of how much the model violates given ATs. Contrary to CDSR,
LGGA performs computationally light consistency checks via ATs’ formulas evaluations on the
data set.

Recently, several neural network-based methods have been proposed to address prior knowl-
edge. The AI Feynman algorithm first proposed by Udrescu & Tegmark (2020) and further im-
proved by Udrescu et al. (2020) builds on the fact that formulas appearing in physics and many
other scientific applications have simplifying properties such as symmetry, separability, composi-
tionality, physical units, etc. Neural networks and other techniques (e.g., polynomial fitting, brute
force search) are used to discover some of these properties in the training data that is further ex-
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ploited to break down the original SR problem into smaller problems, which can then be solved
separately. Importantly, models with the best accuracy for a given complexity are generated.

3. Preliminaries

In this section, preliminaries defining the context for the proposed two-phase bi-objective sym-
bolic regression method and the final model selection method are introduced. Firstly, the form of
models the method generates is defined. Then, the data used to learn the models, as well as the
two optimization objectives that guide the search process are described.

3.1. Model structure
The dynamic system model is described in discrete time by the following nonlinear difference

equation:
xk+1 = f(xk,uk) (1)

where f(xk,uk) is the function of n-dimensional state xk = (x1
k ,x

2
k , . . . ,x

n
k)
> and m-dimensional

input uk = (u1
k ,u

2
k , . . . ,u

m
k )
> and k denotes the discrete time step. While the actual process can be

stochastic (e.g., when the sensor readings are corrupted by noise), in this paper, we construct a
deterministic model.

For model learning, we define the model f(xk,uk) as a vector of models f j(xk,uk), each pro-
ducing a prediction of a single state variable x j

k+1, with j = 1, . . . ,n:

f(xk,uk) =
(

f 1(xk,uk), f 2(xk,uk), . . . , f n(xk,uk)
)>

. (2)

In the sequel, we drop the superscripts to simplify the notation. The generic term f (xk,uk) corre-
sponds to a model of a single state variable, while the model of the whole system is denoted by
f(xk,uk). Similarly, xk refers to a single generic state variable, whereas xk represents the full state
vector. We assume that the states are measured, but the method also applies to nonlinear input–
output models of the form yk+1 = g(yk,yk−1, . . . ,uk,uk−1, . . .), where the state is represented by
the vector of past inputs and outputs (Leonaritis & Billings, 1985).

3.2. Prior knowledge
The prior knowledge captures important high-level characteristics of the system’s physical

laws without requiring in-depth knowledge of the physical model. These characteristics are usually
independent of specific parameter values, which are generally unknown. Prior knowledge can be
expressed as constraints on the model parameters or function values, data representing steady-
state behavior of the system, velocity and acceleration trends under specific input, etc. In the
context of symbolic regression, the most straightforward and effective way is to represent prior
knowledge in the form of synthetic data samples describing the desired behavior. This allows for
direct quantification of the extent to which the candidate models comply with the prior knowledge.
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3.3. Data and optimization objectives
The problem of analytic process model construction has two equally important goals. The

model should (1) fit the training data as precisely as possible and (2) be consistent with the prior
knowledge about the system. The goals are formally defined by the following optimization objec-
tives:

• minimize Ct , where Ct is a root-mean-square error (RMSE) calculated over a training data
set. The training data set consists of data samples of the form dk = (xk,uk,xk+1).

• minimize Cc, where Cc is a measure of how well the analytic process model complies with
the prior knowledge. We assume that any type of prior knowledge can be written as nonlinear
inequality and equality constraints that the system must obey. In particular, synthetic data
samples (i.e., samples not measured on the system), called constraint samples, are generated
specifically for a given constraint and the desired inequality or equality relation is defined
on them. For each such constraint sample, we can calculate how much the model violates
the desired inequality or equality relation. Cc is then calculated as the RMSE calculated over
the whole constraint data set.

For more details on the formal definition of Ct and Cc refer to Kubalík et al. (2020). Besides
the training data set, validation and test data sets are generated to assess the quality of evolved
analytic process model. Contrary to the training data set, the validation and test data sets have the
form of sequences collected during the operation of the system.

In the sequel, we will use the term prior knowledge when referring to the characteristics the
evolved models should exhibit (e.g., the motion laws behind the studied system). The terms con-
straint and constraint sample refer to particular data samples used to evaluate the compliance of
the model with prior knowledge.

3.4. Base SNGP
The multi-objective symbolic regression algorithm that we build on here is based on the SNGP

variant presented in (Kubalík et al., 2017). It evolves nonlinear functions f (xk,uk) represented by

f (xk,uk) = β0 +
n f

∑
i=1

βiϕi(xk,uk) , (3)

where the nonlinear functions ϕi(xk,uk) are features constructed by means of tree-based genetic
programming. The coefficients βi are not evolved using genetic operators. Instead, they are es-
timated using a multiple regression technique, e.g., least squares. The complexity of the evolved
analytic models is controlled by two user-defined parameters: n f is the maximum number of fea-
tures the analytic model can be composed of, and δ is the maximal depth of the feature’s tree
representation. GP using this kind of compound regression models has recently been shown in
(Arnaldo et al., 2015; Searson, 2014) to outperform conventional GP that evolves models rep-
resented by a single-tree structure and has been successfully used for several SR tasks from the
reinforcement learning and robotics domains (Alibekov et al., 2016; Derner et al., 2018a,b, 2020).
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(a)

(b)

Figure 1: Forms of the evolved population. (a) A population structure of the single-model base SNGP. (b) A multi-
model population of multiple base SNGP populations.

SNGP is a graph-based genetic programming technique that evolves a population of individu-
als, i.e., program nodes, organized in an ordered linear array structure, see Figure 1(a). A program
node can be either a terminal, i.e., a constant or a variable, or some function chosen from the set of
elementary functions, F , defined by a user for the problem at hand. Nodes are interconnected in a
left-to-right manner, meaning that a node can act as an input operand only of the nodes positioned
to its right in the population. Thus, the whole population represents a graph structure with multiple
tree expressions rooted in the function nodes that represent nonlinear analytic functions. One such
population, see Figure 1(a), represents a single analytic model (3) whose features, ϕ(x), are rooted
in so-called identity nodes, where each identity node points to some non-constant-output node in
the population. The population is evolved through a first-improvement iterative local search proce-
dure using a simple mutation operator, which varies inputs of the function nodes while minimizing
the RMSE on the training data set.

3.5. Bi-objective SNGP
The multi-objective SNGP works with a population of models represented by separate base

SNGP populations, see Figure 1(b). The population of models is evolved using the NSGA-II
algorithm (Deb et al., 2002), which is a representative of domination-based multi-objective evo-
lutionary algorithms. The domination principle is defined as follows: A solution s(1) is said to
dominate another solution s(2), if s(1) is not worse than s(2) in any objective and s(1) is strictly
better than s(2) in at least one objective.

The workflow of the algorithm is sketched in Algorithm 1, on lines 1 through 21. It is a
standard evolutionary algorithm with several specifics related to the multi-objective nature of the
symbolic regression problem considered:

• Model evaluation – Each time a newly created model is to be evaluated, coefficients βi are
determined first. Here, we use the local search procedure proposed by Kubalík et al. (2020)
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which has been shown to outperform the standard least squares method. It uses the concept
of domination when tuning the coefficients in order for the final model to be optimal w.r.t.
both optimization objectives. Then, both performance metrics, Ct and Cc, are calculated for
the model.

• Model acceptance – Newly created child model is accepted if and only if it is not dominated
by the original parent nor by the current child, lines 17–18.

• Population update – In each generation, an intermediate population of new models, interPop,
is created and then merged with the current population population_I, lines 7–20, resulting
in a new population. While merging the populations, non-dominated models are preferred
to the dominated ones and among models of the same non-dominated front the more unique
ones are preferred. For more details, please refer to (Deb et al., 2002).

An important aspect of this algorithm relates to the way new models are generated. When
a model is selected to produce its child, line 9, its base SNGP population undergoes a standard
perturbation through a sequence of mutations, line 15. A newly created model is always ‘just’ a
modified version of its single ancestor. No information from the other models is utilized. There
is no way to share or mix their features. In its current form, this algorithm is good at generating
fine-tuned high-quality models. On the other hand, it happens very often that at the end of each
run, all models in the population are derivatives of the same distant ancestor, a single member of
the initial population (line 1). Effectively this means that the algorithm’s search scope shrinks to
just a single-root tree-based exploration, despite there are multiple seeds in the initial population.
This is deemed a limitation, as some portions of the solution space might be omitted.

To remedy this issue, a new parameter A is introduced in the NSGAII_merge procedure, which
defines the maximum number of models in the population having a common distant ancestor. This
way, multiple evolution paths are enforced. In particular, the final population of the mutation-
based phase contains descendants of at least M/A different models of the initial population. We
will refer to this method in the sequel by the name ‘one-phase bi-objective SNGP’ and its acronym
BOSNGP-1p.

4. Proposed method

In this section, the proposed two-phase bi-objective symbolic regression method and the final
model selection method are described.

4.1. Two-phase bi-objective SNGP
The proposed extension to the one-phase bi-objective SNGP algorithm focuses on a generation

of a more diverse set of high-quality models. This is attained by adding a new phase to the
algorithm after the first mutation-based one, lines 22–39. It takes as its input all features evolved
in the first phase and tries to combine them into new well-performing models. A similar idea is
also behind the approach proposed in (Cheng & Zhong, 2020).
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Algorithm 1: two-phase bi-objective symbolic regression algorithm
Input: M . . . size of the population of models

n f . . . maximum number of features a model can be
composed of

δ . . . maximum feature depth
A . . . maximum number of models in the population with

a common distant ancestor
D . . . training data set
C . . . set of constraint samples
GI , GII . . . maximum number of generations in phases I

and II
I . . . maximum number of iterations carried out to produce

an offspring model from the parent one
Output: Set of all final models produced in phases I and II

/* phase I – mutation-based */
1 population_I.init(M, n f , δ)
2 for ∀model ∈ population_I do
3 model.evaluate(D, C)

4 generation← 0
5 while generation < GI do
6 generation← generation + 1
7 interPop← {}
8 while interPop.size() < M do
9 parent ← selectTournament(population_I)

10 child ← parent.clone()
11 i← 0
12 while i < I do
13 i← i+1
14 temp← child.clone()
15 temp.applyMutations()
16 temp.evaluate(D, C)
17 if !parent.dominates(temp) ∧ !child.dominates(temp) then
18 child ← temp

19 interPop.add(child)

20 population_I ← NSGAII_merge(population_I, interPop, A)

21 S ← population_I
/* phase II – features mixing */

22 f eatures← S .extractFeatures()
23 population_II.init(population_I)
24 generation← 0
25 while generation < GII do
26 generation← generation + 1
27 interPop← {}
28 while interPop.size() < M do
29 parent_1← selectTournament(population_II)
30 parent_2← selectRandom(population_II)
31 children← parent_1.crossWith(parent_2)
32 children← children ∪ parent_1.addFeature( f eatures)
33 children← children ∪ parent_1.replaceFeature( f eatures)
34 children← children ∪ parent_1.removeFeature()

35 for ∀model ∈ interPop do
36 model.evaluate(D, C)

37 population_II ← NSGAII_merge(population_II, interPop)

38 S ← S ∪ population_II
39 return S
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(a)

(b)

Figure 2: (a) A population of models evolved in the feature mixing phase. Models are composed of encapsulated
features, ϕ̂i, j, that are immutable during this phase. (b) An illustration of the crossover operator used to create a new
model as a combination of features of two parental models. The offspring model is composed of two features, ϕ̂1,1
and ϕ̂1,3, inherited from the first parental model and one feature, ϕ̂2,3, inherited from the second parental model.

The whole two-phase bi-objective SNGP algorithm starts with the mutation-based first phase
that yields the first set of final models, S I . At the beginning of the second phase, a pool of features
is extracted out of the models in the set S I , line 22. By the extraction, we mean that the features are
encapsulated. Their structure, i.e., their tree form, is frozen; hence the features become immutable
for the rest of the run. Then, a starting population of models is initialized. Note, the models now
have the form of a set of encapsulated features, ϕ̂i, j, see Figure 2(a). Likewise in the first phase,
an intermediate population of models is created in each generation, which is afterward merged
with the current population of models. The interPop is filled in in the loop, lines 28–34, where
several models are added to it in each iteration. Two parental models are involved in the process
of creating new models. The first parent is chosen by a binary tournament selection method. The
other one is chosen randomly. This is to increase the exploration. The first new model is created by
mating two parental models. Up to three other models are created by mutation of the first parent.
Once the interPop has been completed, all of its models are evaluated. In the end, a set of final
models produced in both phases is returned.

The crossover operator, see Figure 2(b), used to mix features of two parental models, works in
three steps:

1. A collection B of features present in the two parents is created.

2. A number k is randomly chosen from the interval 〈1,n f 〉.

3. A new model is created using k features randomly selected from B .

The following three operators are used to produce a mutated version of the parental model:
10



• addFeature( f eatures) – If the number of features in the parental model is less than n f
then a new feature randomly chosen from f eatures is added to the model.

• replaceFeature( f eatures) – A randomly chosen feature of the parental model is replaced
with another feature randomly chosen from f eatures.

• removeFeature – If the number of features in the parental model is greater than 1 then a
randomly chosen feature of the model is removed from the model.

All of the crossover and mutation operators allow for the evolution of variable-size models in terms
of the number of features.

In the sequel, we will refer to this method by the name ‘two-phase bi-objective SNGP’ and its
acronym BOSNGP-2p.

4.2. Final model selection
The BOSNGP-2p algorithm outputs a large set of models, S , often many of them are non-

dominated. This is almost always the case when solving multi-objective optimization using domination-
based evolutionary algorithm. The question is how to choose the final model as the ultimate result
of the algorithm’s run. Without any other knowledge about the desired model’s properties, all of
the non-dominated models of the set S are equal.

Here, we propose a method that selects the final model based on two performance metrics – the
simulation RMSE calculated on the validation data set (i.e., validation sequence) and the validation
Cc calculated on the set of validation constraint samples. Given a sequence of l consecutive data
samples of the form dk = (xk,uk,xk+1), the simulation RMSE is calculated as

RMSEsim =

√√√√1
l

l

∑
k=1

( f (xk,uk)− xk+1)2 , (4)

where f (xk,uk) is an analytic model for a particular state variable x and the value of that x in xk is
set to the model’s response from the previous simulation step f (xk−1,uk−1) for all steps k = 2 . . . l.
The set of validation constraint samples is generated in the same way as the constraint samples
used in the model learning phase.

There are many possible ways to choose the final model. Some trade-off solution is typically
a right choice as the solutions with the best value of one performance criterion are doing very
poorly with respect to the other criteria. Still, the question is which of the trade-off solutions to
choose. Here, we propose a method that chooses a model with a small simulation RMSE and small
constraint violation at the same time.

The pseudo-code of the method is listed in Algorithm 2. It takes the whole pool of models S
as its input. First, the set of models is sorted according to the RMSEsim on the validation data set
in ascending order. Then, a median constraint violation value of the set S is found. Finally, the
models are searched starting from the one with the best RMSEsim value. The first model met that
has its constraint violation value smaller than the population median is chosen as the final model.

There are several nice properties of the method. First, it always selects a model on the non-
dominated front. Second, a position of the selected model is not explicitly bound to any specific

11



Algorithm 2: Final model selection
Input: S . . . Set of all final models produced in phases I and II
Output: Selected trade-off model

1 S ← S .sortBySimulationError()
2 m← S .getMedianConstraintViolation()
3 i← 0
4 while S [i].Cc > m do
5 i← i+1

6 return S [i]

(a) (b)

Figure 3: Final model selection. (a) shows the case the selected model is a trade-off solution. (b) shows the case the
selected model is an extreme solution. Both examples are from real experiments on the drone problem.

region of the non-domination front, like the middle of the front, etc. This is demonstrated in
Figure 3. Any of the non-dominated models can be selected. It just has to do well in terms of
the RMSEsim, which is the primary criterion and have the constraint violation no worse than the
population median.

The method uses the median statistic, so it should be given a sample as large as possible to
get a reliable estimate of that statistic. That is why it works with the whole set S even that only a
non-dominated model is to be delivered in the end. Note that the non-dominated front often covers
the whole set of models very unevenly. The front itself might fail to capture the real distribution of
the constraint violation values in S reliably. Thus, if only the models on the non-dominated front
were used, the selection process might be biased inappropriately.

5. Experiments

In this section, the experimental setup is described. Firstly, three real robotic systems – the
TurtleBot 2 mobile robot, the Parrot Bebop 2 drone, and the magnetic manipulation system –
chosen to demonstrate the performance of the methods are described, including the training, vali-
dation, and test data sets and the types of prior knowledge used in the BOSNGP-1p and BOSNGP-2p
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methods. Then, the compared algorithms are listed together with their configurations used in
the experiments. Finally, the evaluation scheme used to analyze the algorithms’ performance is
described.

5.1. Turtlebot
5.1.1. System description

The state of the two-wheel mobile robot (Fig. 4) is described by the state vector x=(xpos,ypos,φ)
>,

where xpos and ypos are the position coordinates of the robot and φ is the robot’s heading. The con-
trol input is u = (v f ,va)

>, with v f and va the desired forward and angular velocity, respectively.
Models for the three state variables have the following form

xpos,k+1 = f xpos(xpos,k,ypos,k,φk,v f,k,va,k) ,

ypos,k+1 = f ypos(xpos,k,ypos,k,φk,v f,k,va,k) ,

φk+1 = f φ(xpos,k,ypos,k,φk,v f,k,va,k) .

(a) (b)

Figure 4: TurtleBot mobile robot. A schematic (a) and a photo of the system (b).

5.1.2. Data sets
We used experimental data collected during an operation of the real robot. Five sequences

of samples starting from the initial state x0 = (0,0,0)> were generated with a sampling period
Ts = 0.2 s. In each sequence, we steered the robot by 30 different pairs of random inputs v f , va,
where we kept each pair of inputs constant for 5 samples. This yielded 150 samples per sequence.
The random inputs were drawn from the domain v f ∈ [0,0.3]m · s−1, va ∈ [−1,1] rad · s−1. Of
these five sequences, training, validation and test data sets were created for each state variable. A
randomly chosen sequence was used for the training data set, another one for the validation data
set and the remaining three sequences were used for the test data sets.

5.1.3. Prior knowledge
All the prior knowledge defined for the TurtleBot is of the invariant type. When a model for a

particular variable is evaluated on the relevant constraint sample, it should always output the value
equal to the original value of the variable. The following four types of prior knowledge about the
TurtleBot were used:
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a) Steady-state behavior: If the control inputs, v f and va, are set to zero, then the robot may
change neither its position nor its heading. This is represented by the following equality
constraints

xpos = f xpos(xpos,ypos,φ,0,0) and ypos = f ypos(xpos,ypos,φ,0,0) .

b) Axis-parallel moves: If the robot makes axis-parallel moves, then its xpos or ypos may not
change. This is represented by the following equality constraints

xpos = f xpos(xpos,ypos,−π/2,v f ,0) , xpos = f xpos(xpos,ypos,π/2,v f ,0)

and
ypos = f ypos(xpos,ypos,0,v f ,0) , ypos = f ypos(xpos,ypos,π,v f ,0) .

The former two cases are for the moves that are parallel to the y-axis and the latter two are
for the x-axis parallel moves.

c) Turning on the spot: If the forward velocity is zero, the robot may not change its position.
This is represented by the following equality constraints

xpos = f xpos(xpos,ypos,φ,0,va) and ypos = f ypos(xpos,ypos,φ,0,va) .

d) Straight forward moves: This prior knowledge states that the robot may not change its head-
ing if the angular velocity control input is zero. This is represented by the following equality
constraint

φ = f φ(xpos,ypos,φ,v f ,0) .

The values of the state variables xpos, ypos, φ, and of the control inputs v f and va were randomly
sampled within the same limits as for the training data. We generated 50 constraint samples for
each prior knowledge type, so 200 samples in total.

5.2. Drone
5.2.1. System description

The state of the drone is described by the state vector x = (vx,vy,vz,θ,ϕ,ψ)
>, where vx, vy and

vz are the translational velocities measured by the OptiTrack motion-capture system in the fixed
world frame and θ, ϕ and ψ are the body angles, denoting the pitch, roll and yaw, respectively.
The drone is controlled by the input vector u = (θc, ϕc, ωc, vzc)

>, which denotes the desired pitch,
roll, and yaw rates, respectively, and the vertical velocity. Figure 5 shows a schematic and a photo
of the drone.

While we have applied the method to build prediction models for all the measured variables,
here we present only the models for the translational velocities that are of the following form

vx,k+1 = f vx(vx,k,θk,ϕk,ψk) ,

vy,k+1 = f vy(vy,k,θk,ϕk,ψk) .
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(a) (b)

Figure 5: Parrot Bebop 2: A schematic (a) and a photo of the system (b).

The main reason is that the vertical velocity and the angles can be accurately predicted by using
linear models. Moreover, the experimental data have been recorded in experiments where the
vertical velocity and the yaw remained almost constant, which does not allow us to assess their
model accuracy. Note that the model for the given translational velocity does not take the other one
as its input since the model’s output is fully determined by the translational velocity in question
plus the drone angles (Zhu & Alonso-Mora, 2019).

5.2.2. Data sets
We have collected various data sets by teleoperating the drone:

• Training data set – A data sequence was collected while controlling the drone to follow
an 8-shape flight trajectory by using a model-predictive controller. The training data set is
composed of 160 consecutive data samples taken from this sequence that cover one flight
through the 8-shape trajectory.

• Validation data set – Similarly, the validation data set was composed of 160 samples col-
lected in another independent flight through the 8-shape trajectory.

• Test data sets – Three test data set were generated. The first one is a sequence of 250 samples
measured while controlling the drone to follow an approximately square flight trajectory by
using model-predictive control. In the sequel, we will refer to this test data set by the name
‘test-square’.

The other two data sequences were generated while heading the drone parallel to the x-
axis of the coordinate system and periodically changing a single control input, θc and ϕc,
respectively. The values of the control input alter between the maximum and minimum value
every 30 time steps and stay constant during the period. This way, a sequence is generated
where the drone moves sideways as the ϕc swaps between the maximum and minimum value
while θc is zero. The drone is supposed to make large moves in the y-axis and minimal
moves in the x-axis. Similarly, a sequence is generated for the drone tilting forth and back
as the θc swaps between the maximum and minimum value while ϕc is zero. This time, the
drone makes much larger moves in direction of the x-axis than in the y-axis. The test data set
denoted as ‘test-pitch’ consists of 200 samples spanning over several periods of altering the
pitch control input. Similarly, the test data set denoted as ‘test-roll’ consists of 150 samples
covering several periods of altering the roll control input.
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When collecting the experimental data, we used the sampling period Ts = 0.05 s. We have chosen
a shorter sampling period than for the mobile robot to capture the faster dynamics of the drone.

5.2.3. Prior knowledge
Similarly to the turtlebot, the invariant type of prior knowledge was defined for the drone. For

both translational velocities considered, the prior knowledge describes the situations in which one
of the translational velocities stays zero while the other one varies. The following two types of
prior knowledge were used:

a) Sideways moves: The drone is oriented parallel either to the x-axis or to the y-axis, it has
zero pitch (i.e., it does not move forward or backward), and the roll ϕ is sampled ran-
domly from the interval [−π/15,π/15] rad. This is represented by the following equality
constraints

0 = f vx(0,0,ϕ,0) , 0 = f vx(0,0,ϕ,π) ,
0 = f vy(0,0,ϕ,−π/2) , 0 = f vy(0,0,ϕ,π/2) .

b) Forward and backward moves: Again, the drone is oriented parallel either to the x-axis
or to the y-axis, it has zero roll, and the pitch θ is sampled randomly from the interval
[−π/15,π/15] rad. So, the drone moves in direction of the respective axis while its velocity
in the other axis is zero. This is represented by the following equality constraints

0 = f vx(0,θ,0,−π/2) , 0 = f vx(0,θ,0,π/2) ,
0 = f vy(0,θ,0,0) , 0 = f vy(0,θ,0,π) .

For each prior knowledge type, 100 samples were generated, resulting in 200 constraint samples
in total.

5.3. Magman
5.3.1. System description

The magnetic manipulation system (magman) consists of an iron ball moving along a rail with
four electromagnets under the rail. Here, we consider the scenario that only one of the four coils
can be activated at a time. The goal is to find a transition model in the form

yk+1 = f y(yk,vk) ,

where y is the distance between the iron ball and the activated coil and v is the current velocity of
the ball. Since a constant current through the coil is always applied, we do not include this control
input into the transition model. Figure 6 shows a schematic and a photo of the system.
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(a) (b)

Figure 6: Magman: A schematic (a) and a photo of the system (b).

(a) (b)

Figure 7: Training data for (a) y and (b) v extracted from the data sequence measured for the first coil. Red dots are
the samples with v < 0.1 m · s−1, which are not considered for training. Out of the remaining samples, half of them
are randomly selected for the training data set (the blue dots) leaving the other half unused (the black circles).

5.3.2. Data sets
Experimental data for each coil were measured using the following scenario. Firstly, the ball

is positioned within a certain distance from the respective coil. Then, the coil is activated with a
constant current of 0.6 A until the ball settles exactly above the activated coil and stays still there.
The data were collected using a sampling period of Ts = 0.02 s.

• Training data set – Here, we emulate a situation when only limited training data are avail-
able. This might happen for many reasons. For example, the data insufficiency can be
caused by a rather low resolution of the measurement equipment. Or it might be impossible
to excite the system in all regions of the state-action space. We prepared the training data
from a sequence measured when the third coil was activated. Out of the sequence, the sam-
ples with v < 0.1 m · s−1, which represent the “unavailable data”, were filtered out. From
the remaining data, samples chosen randomly with the probability of 0.5 were used in the
training data set, see Figure 7. The resulting training data set contains 52 samples.

• Validation data set – As the validation data set, another data sequence measured on the third
coil was used. This is a complete sequence of 425 samples.

17



• Test data sets – Three test data sets were used. These are complete sequences, each contain-
ing 421 samples, measured on the first, second, and fourth activated coil.

5.3.3. Prior knowledge
A single prior knowledge type was used in the magman experiments. It describes the steady-

state behavior that if the ball is located right above the activated coil, i.e., y = 0 m and its velocity
is v = 0 m · s−1, it should not change its position. This is represented by the following equality
constraint

0 = f y(0,0) .

5.4. Compared algorithms
Three methods were compared:

• Baseline – base SNGP described in Section 3.4 that minimizes only the RMSE on the
training data set.

• BOSNGP-1p – one-phase bi-objective SNGP described in Section 3.5 that carries out just the
mutation-based phase of Algorithm 1.

• BOSNGP-2p – the proposed two-phase bi-objective SNGP algorithm described in Section 4.1
that adds the model-mixing phase to the one-phase bi-objective SNGP algorithm.

The algorithms were tested with the following parameter setting:

• base SNGP population size 400, δ = 7, M = 50, A = 5, I = 50, n f = 10 (turtlebot),
n f = 5 (drone, magman), GI = 100 (Baseline, BOSNGP-1p), GI = 50 (BOSNGP-2p), GII = 0
(Baseline, BOSNGP-1p), GII = 50 (BOSNGP-2p)

• Elementary functions:

– turtlebot: F = {+,−, ∗, cube, sin, cos, sign}
– drone: F = {+,−, ∗, square, cube, sin, cos, tan}
– magman: F = {+,−, ∗, cube, sin, cos}

The values of the parameters were either adopted from (Kubalík et al., 2020) or chosen based
on our previous experience with the SNGP algorithm. All of the algorithms run for 100 generations
in total. That value has been chosen as it proved to be sufficient for all algorithms to converge on
all test problems. The number of features n f was set to 10 for the turtlebot problem and to 5 on
the other two problems to reflect the problem complexity. The elementary function sets F have
been chosen differently for each problem based on the problem’s nature and properties.

We did not use any parameter tuning technique to find optimal values of the parameters. Rather
than focusing on achieving the best possible results, we want to analyze the relative performance
of the three methods compared.
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5.5. Evaluation
Fifty independent runs were carried out with each method on each problem. Firstly, we analyze

the distribution of models produced by one-phase bi-objective SNGP and two-phase bi-objective
SNGP, respectively. This analysis is to show whether the proposed model mixing phase generates
different models than the mutation-based phase alone and leads to a richer pool of models produced
in one run.

Then, a set of final models is created for each method and each problem as a collection of
models selected using the method described in Section 4.2 from all of the fifty runs. Finally, the
median training RMSE, median RMSEsim on the validation data set, median RMSEsim on the test
data sets, and median validation Cc of the models in each final set are calculated. These values are
used to compare the methods w.r.t. the quality of selected final models.

For analyses of the drone experiments, another method called Gray-box was added to the set
of compared methods. Gray-box uses a discrete-time form of a simplified nonlinear physical
model of the drone (Zhu & Alonso-Mora, 2019):

vx,k+1 = axvx,k +bx(cosψk
tanθk

cosφk
+ sinψk tanφk)g (5)

vy,k+1 = ayvx,k +by(sinψk
tanθk

cosφk
− cosψk tanφk)g (6)

where g is the acceleration due to gravity and ax, ay, bx, by are coefficients estimated by ordinary
least squares, using the training data set. We refer to this model as Gray-box, as it is a combination
of approximate physical relations with parameters estimated from data. Unlike the SNGP-based
methods, the Gray-box method is deterministic and produces just a single solution.

In order to assess the statistical significance of the differences among the methods, we analyze
them in a pair-wise manner using the Wilcoxon rank-sum test, which rejects the null hypothesis
that the compared results sets are sampled from continuous distributions with equal medians at the
5 % significance level.

6. Results

Firstly, we analyze the effect of the second phase introduced in Section 4.1. Figure 8 shows
a distribution of models generated for the variable xpos of the turtlebot problem by BOSNGP-1p
(the green dots) and by the second phase of BOSNGP-2p (the blue dots). The two sets of mod-
els have been accumulated over fifty runs of the algorithms. It clearly illustrates the difference
between the operation mode when only the mutation-based phase is run and the mode when the
second half of generations is replaced by the phase mixing the models found in the first phase.
In this case, the models produced in the second phase of BOSNGP-2p have better median statistics
than the BOSNGP-1p models. They are better in validation RMSEsim as well as in validation Cc.
Note, this does not hold generally for all problem-variable cases as shown in Table 1. However,
an important observation is that mixing the models can help to efficiently generate useful models
that may not be discovered just by the first mutation-based phase.
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Figure 8: A pool of all final models created for the state variable xpos of the turtlebot problem in 50 runs of
BOSNGP-1p and BOSNGP-2p. Green dots are models produced by BOSNGP-1p. Blue dots are models produced in the
second phase of BOSNGP-2p. The median-median model is marked with the red dot.

Table 1: Statistics of the pool of models produced by BOSNGP-1p and BOSNGP-2p. Median validation Cc and median
RMSEsim on validation data set over all final models created in fifty runs are presented. The best values are highlighted
in bold. Cells with significantly better values are colored in gray.

phase I phase II
problem var validation RMSEsim validation Cc validation RMSEsim validation Cc

turtlebot
xpos 5.06 ·10−1 8.14 ·10−3 1.52 ·10−1 2.91 ·10−3

ypos 3.53 ·10−1 8.91 ·10−3 1.05 ·10−1 1.42 ·10−3

φ 1.48 ·100 2.94 ·10−2 1.44 ·100 2.28 ·10−2

drone
vx 7.74 ·10−1 2.71 ·10−7 1.69 ·10−1 1.86 ·10−3

vy 6.95 ·10−1 6.57 ·10−5 2.03 ·10−1 1.22 ·10−3

magman y 2.58 ·10−3 9.01 ·10−10 3.57 ·10−3 1.1 ·10−8

6.1. Turtlebot
Results obtained on the turtlebot problem are summarized in Table 2. There are several

observations. The Baseline has the best training RMSE out of all compared methods. This is not
surprising as the Baseline focuses purely on the minimization of this measure while paying no
attention to other properties of the evolved models. Thus, the Baseline is by one up to two orders
of magnitude worse than BOSNGP methods in terms of the validation Cc. BOSNGP-2p is the best
and significantly better than BOSNGP-1p in terms of the validation RMSEsim for all variables. As
for the test performance, both BOSNGP methods are significantly better than Baseline on all test
data sets and all variables with the only exception of the second test data set and the variable xpos.
This is also illustrated in Figure 9 where the performance of models with median test RMSEsim is
shown. Clearly, the BOSNGP models are good at capturing the right shape of the measured sequence
trajectory throughout the whole 30-second long experiment while the Baseline models exhibit
large deviations from the measured data characteristics.
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Table 2: Comparison on the turtlebot problem. The best values are highlighted in bold. If one BOSNGP method is
significantly better than the other, then the respective cell of the better one is colored in gray.

training validation validation test 1 test 2 test 3
var method RMSE RMSEsim Cc RMSEsim RMSEsim RMSEsim

xpos

Baseline 1.56 ·10−3 9.38 ·10−2 1.86 ·10−2 9.43 ·10−1 1.44 ·10−1 2.74 ·100

BOSNGP-1p 2.62 ·10−3 5.06 ·10−2 2.39 ·10−3 1.04 ·10−1 1.21 ·10−1 9.79 ·10−2

BOSNGP-2p 2.87 ·10−3 3.79 ·10−2 2.04 ·10−3 9.38 ·10−2 1.44 ·10−1 1.27 ·10−1

ypos

Baseline 1.40 ·10−3 8.2 ·10−2 2.61 ·10−2 8.86 ·10−1 2.83 ·10−1 8.53 ·10−2

BOSNGP-1p 2.0 ·10−3 4.8 ·10−2 7.88 ·10−4 1.11 ·10−1 6.08 ·10−2 5.23 ·10−2

BOSNGP-2p 2.64 ·10−3 2.5 ·10−2 4.28 ·10−4 6.01 ·10−2 1.05 ·10−1 3.85 ·10−2

φ

Baseline 2.83 ·10−2 2.47 ·100 5.26 ·10−1 6.91 ·100 5.32 ·100 1.99 ·100

BOSNGP-1p 3.51 ·10−2 3.28 ·10−1 7.5 ·10−3 9.29 ·10−1 5.8 ·10−1 4.72 ·10−1

BOSNGP-2p 3.49 ·10−2 1.94 ·10−1 8.8 ·10−3 7.67 ·10−1 4.59 ·10−1 2.84 ·10−1

Figure 9: Simulations with selected models of state variables xpos, ypos, and φ on three test sequences of the turtlebot
problem. Models with the test RMSEsim value closest to the median value presented in Table 2 are selected for each
state variable. From left to right are simulations on test 1, test 2, and test 3 data set.
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Note that the compliance with the measured data in terms of the direction of change in the
model’s output value is an important indicator of the model’s performance.

6.2. Drone
Table 3 shows performance statistics obtained on the drone problem. They differ from the

turtlebot in the trend observed on the validation and test data. Here, the Baseline achieves
significantly better validation RMSEsim than the BOSNGP methods. It has also better test RMSEsim
for vx models on the test-square data and for vy models on the test-roll data. However, this comes
at the cost of large validation Cc values that are for the Baseline by several orders of magnitude
higher than for BOSNGP methods. This fact is also reflected in the results obtained on the test-roll
and test-pitch data. In particular, the case of vx models on test-roll data and the case of vy models
on test-pitch data, respectively. Note, in both cases the drone is oriented parallel to the x-axis. In
the former case, the control input is such that the roll is set to a large positive or negative value
while the pitch is kept close to zero making the drone move substantially in direction of y-axis
while moving significantly less in direction of the x-axis. The opposite holds for the latter case.
We can see, the BOSNGP models have significantly smaller error under these test scenarios. This
can be attributed to the type of prior knowledge used in the BOSNGP methods, see Section 5.2.3.
This prior knowledge reflects the fact that a drone oriented parallel to x-axis should move neither
forward/backward if the pitch is zero nor sideways if the roll is zero.

The Gray-box models are by far the best in terms of the validation Cc, which is in agree-
ment with our expectation. As for the training RMSE and validation RMSEsim, the Gray-box
performs comparably to BOSNGP methods. On test-roll and test-pitch data it is competitive with
other methods and is doing very well under the two scenarios described above, the vx on test-roll
and vy on test-pitch. Again, this can be attributed to its very good compliance with prior knowl-
edge. However, on the test-square data, the Gray-box performs the worst and the second to worst,
respectively, of all the methods.

Table 3: Comparison on the drone problem. The best values are highlighted in bold. If one BOSNGP method is
significantly better than the other, then the respective cell of the better one is colored in gray.

training validation validation test-square test-roll test-pitch
var method RMSE RMSEsim Cc RMSEsim RMSEsim RMSEsim

vx

Baseline 1.77 ·10−3 1.27 ·10−2 7.3 ·10−1 1.54 ·10−1 6.51 ·10−1 3.75 ·10−1

Gray-box 5.95 ·10−3 2.56 ·10−1 3.72 ·10−18 3.72 ·10−1 1.2 ·10−1 2.05 ·10−1

BOSNGP-1p 7.89 ·10−3 2.63 ·10−1 2.91 ·10−8 4.0 ·10−1 1.45 ·10−1 3.05 ·10−1

BOSNGP-2p 6.18 ·10−3 1.29 ·10−1 3.46 ·10−6 2.74 ·10−1 1.57 ·10−1 3.2 ·10−1

vy

Baseline 1.88 ·10−3 1.91 ·10−2 1.69 ·10−1 2.87 ·10−1 1.55 ·10−1 8.13 ·10−1

Gray-box 7.24 ·10−3 3.73 ·10−1 3.88 ·10−18 4.87 ·10−1 2.41 ·10−1 3.95 ·10−1

BOSNGP-1p 8.12 ·10−3 3.2 ·10−1 9.49 ·10−8 4.12 ·10−1 2.61 ·10−1 3.13 ·10−1

BOSNGP-2p 5.72 ·10−3 1.19 ·10−1 6.69 ·10−6 2.60 ·10−1 4.23 ·10−1 3.39 ·10−1
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Table 4: Comparison on the magman problem. The best values are highlighted in bold. If one BOSNGP method is
significantly better than the other, then the respective cell of the better one is colored in gray.

training validation validation test 1 test 2 test 3
var method RMSE RMSEsim Cc RMSEsim RMSEsim RMSEsim

y
Baseline 1.17 ·10−4 2.08 ·10−3 2.75 ·10−5 2.02 ·10−3 1.95 ·10−3 2.0 ·10−3

BOSNGP-1p 3.91 ·10−4 1.8 ·10−3 7.64 ·10−11 1.69 ·10−3 1.61 ·10−3 1.57 ·10−3

BOSNGP-2p 3.81 ·10−4 1.55 ·10−3 1.17 ·10−9 1.51 ·10−3 1.64 ·10−3 1.48 ·10−3

Figure 10: The end phase of simulations carried out on the three test sequences of the magman problem. The last 1.5 s
of the simulations are shown.

6.3. Magman
Results obtained on the magman problem are in Table 4. The observations are the same as for

the turtlebot problem. Baseline has the best training RMSE at the cost of inferior validation
Cc. BOSNGP methods outperform Baseline in terms of both the validation as well as the test
RMSEsim.

The positive effect of using the prior knowledge in the BOSNGP methods on the steady-state
behavior of the evolved models is clearly demonstrated in Figure 10. It shows the end phase, i.e.,
the last 1.5 s, of simulations carried out on the three test sequences. Models with the validation
RMSEsim value closest to the median value presented in Table 4 are used for each method. One
can see that models produced by the Baseline method are inaccurate when the ball gets stabilized
above the activated coil. The ball settles with a noticeable offset from the desired position y = 0.
On the contrary, models generated by the BOSNGP methods bring the ball precisely above the
activated coil. For all the three test sequences the median RMSEsim calculated over the last 1.5 s
for the Baseline is significantly worse than the error calculated for both BOSNGP methods.

7. Conclusions

We proposed an extension to the multi-objective symbolic regression algorithm that optimizes
models with respect to the training accuracy and the compliance with prior knowledge about the
properties of the sought model simultaneously. It adds to the original algorithm a phase that
generates models via mixing features of models produced in the first phase.
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Out of the whole set of candidate output models, the final one is then automatically chosen
using the proposed non-parametric selection method. This is an important feature as in multi-
objective optimization the final solution is typically selected with the use of some expert knowl-
edge. That is the case of the original algorithm as well.

The method has been experimentally evaluated on three real physical systems – the mobile
robot TurtleBot 2, the Parrot Bebop 2 drone, and the magnetic manipulation system, and compared
to the baseline method that is a conventional symbolic regression not using the prior knowledge.
The results clearly demonstrate its capability to produce a diverse set of high-quality models. On
the turtlebot and magman problems, the models produced by the multi-objective method achieve
significantly better simulation RMSE than the baseline models. On the drone problem, the baseline
models are better in terms of the simulation RMSE. However, the proposed method always pro-
duces models that are much more physically justified than the baseline models. The improvement
factor is one to seven orders of magnitude.

In our future research, we will investigate ways to automatically distill the prior knowledge
from a simple (approximate) physical model of the system. If the differential equations are known,
some solutions will be independent of the parameter values and can be used as prior knowledge.
This seems quite straightforward for mobile robots, both on the ground and in the air, and a little
more involved for manipulators or walking robots (the state variables are much more coupled in
that case). We will also investigate different fitness measures used in genetic programming. We
have observed that the RMSE of the one-step-ahead prediction on the training set does not lead to
robust process models. We will focus on simulation-based fitness functions.
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