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SUMMARY

We study the acceleration of the finite element method (FEM) simulations using ma-
chine learning (ML) models. Specifically, we replace computationally expensive (parts
of) FEM models with efficient ML surrogates.

We develop three methods to speed up FEM simulations. The primary difference
between these models is their degree of intrusion into the FEM source code. Here, we
enumerate them from the most to the least intrusive.

In the first contribution, we tackle two bottlenecks of a FEM model equipped with
a viscoplastic constitutive equation namely, solving the linear system of equations and
evaluating the force vector. To tackle the former, we use a proper orthogonal decom-
position (POD) method. And we tackle the latter with a discrete empirical interpolation
method (DEIM). We observe that DEIM does not effectively speed up such a highly non-
linear FEM model. As a remedy, we divide the time domain into subdomains using a
clustering algorithm. Then we construct a set of DEIM points for each cluster. By doing
so, we manage to increase the efficiency of the POD-DEIM scheme. We, however, ob-
serve that the POD-DEIM scheme is sometimes unstable. The source of this instability
is, to the extent of our knowledge, an open question.

In the second contribution, we consider a FE2 scheme. The micro model is a FEM
model equipped with a viscoplastic constitutive equation. The evaluation of the micro
model is the computational bottleneck in this framework. Therefore, we develop a re-
current neural network as a surrogate for the micro model. In this contribution, we also
propose a simple but effective sampling technique to collect stress-strain data points.
The RNN model is trained based on this data. We also discuss how the RNN model be-
comes inaccurate when extrapolating. For these scenarios, we discuss how to improve
the RNN by collecting more data and retraining.

In the third contribution, we develop a surrogate for the entire FEM simulation of a
multi-physics problem. Specifically, we consider the FEM simulation of the
electrochemical-mechanical interactions in a Li-ion battery. We propose a variant of
the convolutional neural network (CNN), namely the HydraNet. The HydraNet takes
the geometry of the battery and predicts all solution fields of the FEM model. Solution
fields are either output of the solver or that of the post-processing. The HydraNet accepts
inputs in the form of image-like fields. We discuss how to encode the geometry of the
battery into a set of image-like fields.

We argue that the degree of intrusion of these methods to the FEM source code is
inversely related to their industrial applicability. As a result, we believe that the first
method (POD-DEIM) will mostly remain an academic contribution, while the other two
could have potential industrial applications.

The central use case of these methods is in a multi-query application such as uncer-
tainty quantification, design, and real-time simulations.
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SAMENVATTING

We bestuderen de versnelling van de finite element method (FEM) simulaties met be-
hulp van machine learning (ML) modellen. We vervangen vooral numeriek dure (delen
van) FEM-modellen door efficiënte ML-surrogaten.

We ontwikkelen drie methoden om FEM-simulaties te versnellen. Het belangrijk-
ste verschil tussen deze modellen is hun mate van ingrijpen in de FEM-broncode. Hier
noemen we ze aflopend van de meest tot de minst ingrijpende.

In de eerste bijdrage pakken we twee knelpunten aan van een FEM-model uitgerust
met een viscoplastische constitutieve vergelijking. Deze knelpunten zijn het oplossen
van het lineare systeem van vergelijkingen en de evaluatie van de krachtenvector. Om
het eerste aan te pakken, gebruiken we een proper orthogonal decomposition (POD)
-methode. En het tweede knelpunt pakken we aan met een discrete empirical interpo-
lation (DEIM). We stellen vast dat DEIM zo’n sterk niet-lineair FEM-model, niet effec-
tief versnelt. Als remedie verdelen we het tijdsdomein in subdomeinen met behulp van
een clusteralgoritme. Vervolgens construeren we een set DEIM-punten voor elk clus-
ter. Daarmee slagen we erin om de efficiëntie van het POD-DEIM-schema te verhogen.
We merken echter op dat het POD-DEIM-schema soms instabiel is. De bron van deze
instabiliteit is, voor zover wij weten, een open vraag.

In de tweede bijdrage overwegen we een FE 2-schema. In de tweede bijdrage be-
schouwen we een FE 2-schema. Het micromodel is een FEM-model uitgerust met een
viscoplastische constitutieve vergelijking. De evaluatie van het micromodel in dit ver-
band, is het numeriek knelpunt. Daarom ontwikkelen we een recurrent neural network
(RNN) als surrogaat voor het micromodel. In deze bijdrage stellen we ook een eenvou-
dige maar effectieve bemonsteringstechniek voor om spanning-rek datapunten te ver-
zamelen. Op basis van deze data wordt het RNN-model getraind. We bespreken ook hoe
het RNN-model onnauwkeurig wordt bij extrapolatie. Voor deze scenario’s bespreken we
hoe we de RNN kunnen verbeteren door meer data te verzamelen en opnieuw te trainen.

In de derde bijdrage ontwikkelen we een surrogaat voor de volledige FEM-simulatie
van een multifysica probleem. We kijken specifiek naar de FEM-simulatie van
de elektrochemische-mechanische interacties in een Li-ion-batterij. We stellen een va-
riant van het convolutional neural network (CNN) voor, namelijk het HydraNet. Het Hy-
draNet neemt de geometrie aan van de batterij en voorspelt alle oplossingsvelden van
het FEM-model. Oplossingsvelden zijn ofwel het resultaat van de solver ofwel die van
de nabewerking. Het HydraNet accepteert input in de vorm van image-like velden. We
bespreken hoe de geometrie van de batterij in een reeks image-like velden kan worden
gecodeerd.

Wij betogen dat de mate waarin deze methoden ingrijpen in de FEM-broncode om-
gekeerd gerelateerd is aan hun industriële toepasbaarheid. Als gevolg hiervan, denken
we dat de eerste methode (POD-DEIM) vooral een academische bijdrage zal blijven, ter-
wijl de andere twee potentiële industriële toepassingen zouden kunnen hebben.
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xii SAMENVATTING

In het algemeen worden deze methoden gebruikt in een multi-query-applicatie zoals
onzekerheidskwantificering, ontwerp en real-time simulaties.



1
INTRODUCTION

A computer simulation is the process of mathematical modeling of a physical phenomenon
in computers [1]. Physical phenomena are oftentimes modeled as a (set of) differential
equations. The most widely used method to numerically solving these differential equa-
tions is the finite element method (FEM). For a brief history of FEM, we refer the reader
to the inspiring talk of Strang [2].

Even though the application of FEM has been a success story, the yearing to use FEM
models in multi-query applications is largely unsatisfied. The reason is that the speed
of FEM simulations leaves much to be desired. In a multi-query application, one needs
to execute the FEM model many times, and each time with a perturbation. Design, un-
certainty quantification, and real-time simulation are examples of multi-query applica-
tions.

There are several classical methodologies to reduce the computational expense of
FEM simulations. Let us briefly go through a number of them.

Solving the linear system of equations is a computational bottleneck in a FEM model.
Advanced solvers, such as [3–5], significantly reduce this computational cost.

There are other contributions that aim at reducing the size of the system of equations
through a generalized finite element method. Among many contribution, we refer to [6–
8].

The evaluation of constitutive equations at each element is another computational
bottleneck that is classically alleviated using parallel computing [9]. The central idea is
to divide the domain of the problem into several subdomains and allocate a separate
computer to each of them.

Even though the aforementioned methodologies manage to speed up FEM simula-
tions, the speed gain is mostly not enough to enable multi-query applications.

In this study, we investigate another class of methodologies, namely machine learn-
ing (ML). An ML model is built based on sample data and oftentimes it is used for the
purpose of interpolation. An interpolation problem is closely related to the approxima-
tion of computationally inefficient functions with efficient ones [10]. We make use of
ML models in a similar fashion. Specifically, we investigate the possibility of using ML

1
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models as efficient surrogates for (parts of) FEM models. In the literature, this technique
is also referred to as model order reduction (MOR).

In Chapter 2, we speed up the FEM simulation of viscoplastic deformation. To reduce
the size of the system of equations, we employ the proper orthogonal decomposition
method (POD). And to approximate the force vector we make use of the discrete empir-
ical interpolation method (DEIM). We realize that DEIM cannot effectively speed up a
highly nonlinear FEM model, such as the one equipped with a viscoplastic constitutive
law. As a remedy, we divide the time domain of the FEM simulation into subdomains and
we find a set of DEIM points for each one of them. In this manner, we manage to dramat-
ically speed up the FEM simulation. Nevertheless, the POD-DEIM procedure remains
unstable. This instability is a well-known phenomenon, but its source has not been con-
cretely found. Nevertheless, several methods are proposed to alleviate it. Among these
methods, we refer to choosing smarter DEIM points [11] and a different scheme to ap-
proximate the force vector namely, the energy-conserving sampling and weighting [12].
We, however, conjecture that POD and DEIM methods are not suited for highly non-
linear FEM models. The reason is that both POD and DEIM methods are based on the
assumption that solution and force vectors can be defined in a lower-dimensional linear
subspace. In the problem at hand, through observing the singular values of solution and
force vectors, we realize that this assumption does not hold.

Additionally, the implementation of the POD-DEIM method requires deep intrusion
into the FEM source code. One needs to modify the solver and the procedure that com-
putes element contributions to the stiffness matrix and the force vector. The more intru-
sive a MOR technique is, the less appealing it is for an industrial application.

For these reasons, in chapters 3 and 4, we investigate less intrusive approaches that
also use highly nonlinear ML models.

In chapter 3, we study accelerating a multi-scale FEM model. A multi-scale model
consists of a macro and a micro model. The micro model serves as the constitutive equa-
tion of the macro model. For micro model we consider a FEM model equipped with
a viscoplastic constitutive equation and it is executed at each integration point of the
macro model. Incidentally, this is the main contributor to the computation expense of
the multi-scale framework. To tackle this bottleneck, we develop a recurrent neural net-
work (RNN) and use it as a surrogate for the micro model. Execution of the RNN model
does not include computationally expensive operations such as the matrix inversion and
the evaluation of constitutive equation. Therefore, in principle, it is considerably more
efficient than a FEM model. At the same time, the RNN is a highly nonlinear ML model
and can easily approximate the nonlinear behavior in a FEM simulation of viscoplastic
deformation.

The scheme that we develop in chapter 3 is far less intrusive than POD-DEIM. To
implement the RNN model, one needs to modify the interface between the macro and
the micro models.

Development of the RNN however, requires more upfront investment than POD-
DEIM. And that is due to the training cost of the RNN model.

In chapter 4, we investigate speeding up a multi-physics FEM model. Specifically,
we consider a FEM model simulating electrochemical-mechanical interactions in a Li-
ion battery. Our main purpose is to eliminate the need to intrude the FEM source code.
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For that, we develop a variant of the convolutional neural network (CNN) that takes the
geometry of the Li-ion battery and predicts all solution fields of the FEM model. Solu-
tion fields are outputs of the solver and the post-processing scheme. It is noteworthy
to mention that the CNN model does not require the geometry of the battery to be de-
scribed as mesh. It requires the geometry of the battery to be encoded into image-like
fields. As a result, the computation cost due to mesh generation vanishes. We discuss
how to encode the geometry of the battery into image-like fields.

The training cost of the HydraNet is also more than that of the POD-DEIM.
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2
POD-DEIM MODEL ORDER REDUCTION

FOR STRAIN SOFTENING VISCOPLASTICITY

Premature optimization is the root of all evil.

Donald Knuth

We demonstrate a Model Order Reduction technique for a system of nonlinear equations
arising from the Finite Element Method (FEM) discretization of the three-dimensional
quasistatic equilibrium equation equipped with a Perzyna viscoplasticity constitutive
model. The procedure employs the Proper Orthogonal Decomposition-Galerkin (POD-
G) in conjunction with the Discrete Empirical Interpolation Method (DEIM). For this
purpose, we collect samples from a standard full order FEM analysis in the offline phase
and cluster them using a novel k-means clustering algorithm. The POD and the DEIM
algorithms are then employed to construct a corresponding reduced order model. In
the online phase, a sample from the current state of the system is passed, at each time
step, to a nearest neighbor classifier in which the cluster that best describes it is iden-
tified. The force vector and its derivative with respect to the displacement vector are
approximated using DEIM, and the system of nonlinear equations is projected onto a
lower dimensional subspace using the POD-G. The constructed reduced order model is
applied to two typical solid mechanics problems showing strain localization (a tensile
bar and a wall under compression) and a three-dimensional square-footing problem.

2.1. INTRODUCTION
In spite of constant advances in theoretical development and computing power, there
are regularly applied many-query procedures, such as parameter sensitivity analysis or
parameter estimation for inverse problems, that require many computationally expen-
sive simulations. Model Order Reduction (MOR) techniques aim to reduce the computa-
tional cost of these procedures by breaking them into a two-phase procedure commonly

This chapter have been published in Computer Methods in Applied Mechanics and Engineering [1].
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known as the offline-online decomposition. A reduced order model is first trained in the
computationally expensive offline phase and then used in the online phase to efficiently
carry out a many-query procedure. Successful examples can be found in structural dy-
namics [2], computational fluid dynamics [3, 4] and control systems [5]. Here we employ
a set of machine learning techniques that can significantly improve the computational
efficiency of a reduced order model.

The main hypothesis of any MOR technique can be put forth as follows [6]:

“For a particular system, the solution space is often attracted to a low-dimensional
manifold.”

This hypothesis being true, it is in principle possible to build a set of basis vectors for a
lower-dimensional subspace of the solution space, in which solution vectors can be ap-
proximated with acceptable accuracy, and therefore reduce the computational cost. The
lower-dimensional subspace is built by means of samples collected from the solution
space and the application of a Principal Component Analysis [7].

Many MOR techniques (Proper Orthogonal Decomposition-Galerkin (POD-G) [8],
Balanced Truncation [9] and Moment Matching [10] to cite a few examples) have proven
effective in reducing the computational cost of a linear model. However, they all fail
to effectively reduce the computational cost of a nonlinear model [6], as the cost of
the evaluation of the nonlinear contribution scales to the size of the full order system.
To overcome this inefficiency, hyper-reduction methods, such as Missing Point Estima-
tion [11], Gappy Proper Orthogonal Decomposition [12] and Discrete Empirical Interpo-
lation Method (DEIM) [6], have been proposed to approximate the nonlinear contribu-
tions.

In the field of solid mechanics, MOR techniques such as POD-G [13, 14], Karhunen
Loeve Expansion [15, 16], and Proper Generalized Decomposition (PGD) [17, 18] are em-
ployed to reduce the dimension of the system of equations. Nevertheless, the complex-
ity of the evaluation of the constitutive equation remains a computational bottleneck.
At variance with these models, in the hyper-reduction technique proposed in Refer-
ence [19] the integration of the constitutive equation is performed in a reduced integra-
tion domain. In Reference [20], an FE efficient unassembled variant of DEIM (UDEIM) is
proposed and applied to geometrically nonlinear structural dynamics problems. In [21],
UDEIM is further enhanced to reduce the associated offline cost. Apart from PGD, which
is an a-priori method, these contributions focus only on the MOR technique itself, pre-
suming that the underlying samples are fully capable of constructing an efficient re-
duced order model. We show that this is not necessarily always a valid assumption for
the class of problems we are tackling here.

In this contribution we demonstrate an application of a MOR technique –POD-G,
Section 2.3.1– in conjunction with a hyper-reduction method –DEIM, Section 2.3.2– to
build a reduced order model for a boundary value problem –quasistatic equilibrium
equation– with a nonlinear and path-dependent constitutive law –Perzyna viscoplastic-
ity [22], Section 4.2. We observe that the singular values of the collected samples, which
we wish had a fast decay as a proof of the central hypothesis of the MOR techniques, de-
crease at a slow rate. As a result, the efficiency of the reduced order model is diminished.
To overcome this issue, Peherstorfer et al. [23] and Haasdonk et al. [24] divide the time
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domain and the parameter space into several local regions and construct a reduced or-
der model for each one of them individually. Following a similar logic, we employ a set of
Machine Learning techniques, such as the k-means clustering algorithm, Section 2.3.3,
and the nearest neighbor classifier, Section 2.3.3, as suggested in [23]. As novel contri-
butions, (i) we modify the distance definition in the k-means clustering algorithm to in-
crease the consistency of the clustering procedure and, consequently, the effectiveness
of DEIM; (ii) we modify the distance metric in the k-means clustering algorithm and the
nearest neighbor classifier, which we heuristically show to be vital for a consistent clas-
sification; and (iii) we propose a trivial initial clustering in k-means clustering algorithm
that exploits the path-dependent characteristic of the problem. The merits of the pro-
posed MOR technique are demonstrated by three typical solid mechanics problems in
Section 3.8.

2.2. PROBLEM STATEMENT
A strain-softening Perzyna viscoplasticity constitutive model is employed as an archetype
of a class of constitutive models typically encountered in nonlinear solid mechanics. The
three-dimensional quasistatic equilibrium equation

LT σ = q in Ω, (2.1)

expressed using matrix notation, is defined in the bodyΩ that is bounded by the surface
Γ= Γu ∪Γt. A set of appropriate Dirichlet and Neumann boundary conditions is applied
on Γu and Γt, respectively. In (2.1),σ is an array containing the components of the stress
tensor in engineering notation, q the body force vector, u the displacement vector, and
the operator matrix L is defined as

LT =


∂x 0 0 ∂y 0 ∂z

0 ∂y 0 ∂x ∂z 0

0 0 ∂z 0 ∂y ∂x

 , (2.2)

in which ∂# = ∂
∂# is the partial derivative operator with respect to #. The equilibrium

equation is equipped with the stress-strain relationship

σ̇ = De (ε̇ − ε̇vp) (2.3)

in rate form, where #̇ = ∂#
∂t is the time derivative of #, De represents the elastic modulus

tensor, ε represents the strain tensor, and εvp the viscoplastic strain tensor. In a Perzyna
viscoplasticity constitutive model [22], the viscoplastic strain evolves following the flow
rule

ε̇vp = λ̇
∂θ

∂σ
(2.4)

with the rate of the plastic multiplier

λ̇ = η <φ(θ) >β, (2.5)

the yield function
θ = σvm −σY, (2.6)
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and the overstress function

φ(θ) = θ

σY
. (2.7)

In the above equations, < # > is the Macaulay bracket, η is the viscosity parameter, β is
a model parameter, σY is the current yield stress, and σvm is the von Mises stress. To
introduce a strain-softening response, we employ the relation

σY = σY0 ((1+a) e−b κ − a e−2b κ), (2.8)

where a and b are model parameters, σY0 is the initial yield stress, and the plastic strain

κ=λ. (2.9)

The strong form of the quasistatic equilibrium equation (2.1) is cast into its correspond-
ing weak form and the displacement field is discretized in space using the Finite Element
Method (FEM). Standard procedures yield the nonlinear discrete set of equations

r (a) = fint(a)− fext = 0, (2.10)

where

fint(a) =
∫
Ω

B Tσ(a) dΩ, and

fext =
∫
Γt

N T t̄ dΓ +
∫
Ω

N T q dΩ.
(2.11)

In (2.11), N ∈R3×N is a matrix that contains shape functions, B = L N ∈R6×N contains
derivatives of the shape functions, t̄ are the prescribed tractions on Γt, a ∈RN is a vector
of the nodal values of the displacement vector u, and N is the total number of degrees of
freedom (DOFs).

The system of equations (2.10) is then solved using a Newton-Raphson scheme ac-
cording to which

K j da j+1 = −r j , and

a j+1 = a j + da j+1,
(2.12)

where r j ∈RN is the residual vector at iteration j , K j ∈RN×N is the stiffness matrix at
iteration j , and da j+1 ∈RN is the increment of the displacement vector at iteration j +1.
From here onward, the iteration number j is dropped for the sake of readability. The
residual vector

r = K L a + f − fext (2.13)

consists of a nonlinear part, f , and a linear part, K L a − fext. In the linear part, the
matrix

K L =
∫
Ω

B T De B dΩ ∈RN×N (2.14)

is the linear elastic stiffness matrix, equal to the stiffness matrix K at the first iteration of
the first time step. In the nonlinear part, the vector f = f (a) ∈RN is referred to as the
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force vector. The derivative of the force vector, ∂ f
∂a ∈RN×N , generates the nonlinear part

of the stiffness matrix.
Strain softening viscoplasticity typically induces strongly localized strain fields. As a

result, a large number of degrees of freedom is required to resolve these gradients, thus
causing two computational bottlenecks:

1. the solution of an N ×N system (2.12.1), and

2. the evaluation of the force vector f and its derivative with respect to the displace-

ment vector ∂ f
∂a .

2.3. MODEL ORDER REDUCTION
Essentially, a Model Order Reduction technique decomposes a many-query procedure
into two parts: a computationally expensive offline phase, and a computationally effi-
cient online phase. In the offline phase, a set of samples is collected from a standard
analysis (in this context, this is done using FEM). This information is employed to con-
struct a reduced order model. In the online phase, the reduced order model is used to
carry out the many-query procedure. The MOR technique employed in this study is sum-
marized in Section 2.3.5 while the corresponding online/offline procedures are detailed
next.

The POD-G [6] is employed to project the nonlinear system of equations (2.10) onto a
lower-dimensional subspace. DEIM [6] is then used to approximate the force vector and
its derivative with respect to the displacement vector. In practice, the Proper Orthogonal
Decomposition [25] is applied to a set of samples collected from a full order FEM analysis
to compute a set of basis vectors. These basis vectors are later used in the POD-G and
the DEIM procedures. Finally, the Localized Discrete Empirical Interpolation Method
(LDEIM) [23] is employed to overcome a shortcoming of DEIM that occurs when the
collected samples of the force vector are not attracted to a sufficiently lower-dimensional
subspace. At variance with [23], we propose (i) a modified distance definition in the
k-means clustering algorithm that is tailored for DEIM, (ii) a modified distance metric
that is used in the k-means clustering algorithm and the nearest neighbor classifier, and
(iii) a trivial initial clustering in the k-means clustering algorithm that exploits the path-
dependent characteristic of the problem.

2.3.1. PROPER ORTHOGONAL DECOMPOSITION-GALERKIN

GALERKIN PROJECTION

To begin with, we attempt to project the nonlinear system of equations (2.10) onto a
lower-dimensional subspace. Suppose that the solution of (2.10) is attracted to a lower-
dimensional subspace Y ⊂RN . This solution can then be approximated by a weighted
linear combination of the set of orthonormal basis vectors {v1, . . . , vk } (k ¿ N ) spanning
Y as in

a ≈V ã, (2.15)

where ã ∈Rk is a set of scalar weights associated to the set of basis vectors V ∈RN×k .
Inserting (2.15) into (2.10) yields an overdetermined nonlinear system of N equations
in k unknowns. To compute an approximate value for ã, we construct an equivalent
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system of equations g = 0 that is determined. To find such a system, we search for a
set of k functions g in subspace Y such that, for any given value of ã, the L2 norm of
the difference between the residual r (V ã) and its counterpart in the lower-dimensional
subspace V g is minimized according to [26, Theorem 3.2]

arg min
g

‖ r (V ã) − V g ‖2. (2.16)

Owing to the choice of the L2 norm, it is straightforward to solve (2.16) for g . Conse-
quently, the equivalent system of equations g = 0 becomes

V T r (V ã) = 0. (2.17)

The system of equations (2.17) is then solved using a Newton-Raphson scheme ac-
cording to which

K̃ j dã j+1 = −r̃ j , and

ã j+1 = ã j + dã j+1,
(2.18)

where K̃ j = V TK j V ∈ Rk×k is the reduced stiffness matrix and r̃ j = V Tr j ∈ Rk is the
reduced residual vector. The set of basis vectors V is computed using the Proper Or-
thogonal Decomposition as explained in Section 2.3.1.

In spite of the system of equations (2.18) being of dimension k ¿ N , the complexity
of problem still depends on N when computing the nonlinear contributions. Efficient
reduction is achieved later in Sections 2.3.2 and 2.3.3 by approximating the force vector
and its derivative with respect to the displacement vector using DEIM.

PROPER ORTHOGONAL DECOMPOSITION

A set of orthonormal basis vector {v1, . . . , vk } is used to project the system of equations (2.10)
onto a lower-dimensional subspace as in (2.17). This set is computed by means of the
Proper Orthogonal Decomposition (POD) method [25, 27]. For this purpose, samples of
the displacement and the force vectors are collected from a standard full order FEM anal-
ysis and gathered in the sample matrices Asamp = [a1, . . . , ans ] and F samp = [ f1, . . . , fns ],
respectively. For the displacement samples (and similarly for the force samples), we
search for a subspace Y = span{v1, . . . , vk } ⊂RN in which the samples can be optimally
described. In other words, it is preferable that the error between samples and their pro-
jection on Y is minimized in a certain sense. Formally, the set of orthonormal basis
vectors spanning Y is computed by solving the optimization problem [6]

arg min
{v1,...,vk }

ns∑
i=1

‖ai −
k∑

j=1
(v T

j ai ) v j ‖2
2, (2.19)

subjected to v T
m vn =

{
1 m = n
0 m 6= n

, m,n = 1, . . . ,k.

In the equation above, the error between a sample ai and its projection
∑k

j=1(v T
j ai ) v j

onto the subspace Y is minimized in an L2 sense. Note that the norms in (2.19) are
squared to facilitate the derivation of (2.21). It can be shown [27] that the solution to (2.19)
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is a set of left singular vectors V obtained from the application of the Singular Value De-
composition (SVD) to the sample matrix Asamp such that

V ΣW T = Asamp, (2.20)

where V ∈RN×N is a set of left orthonormal singular basis vectors, W ns×ns is a set of right
orthonormal singular basis vectors, andΣ is a diagonal matrix that contains the singular
values in a descending manner σ1 > ... > σr , r = rank (Asamp). Therefore, by using an
SVD [27, Theorem 1.1.1], the residual of (2.19) becomes [6]

ns∑
i=1

‖ai −
k∑

j=1
(v T

j ai ) v j ‖2
2 =

r∑
i=k+1

σ2
i . (2.21)

From the equation above, it is possible to infer that the projection error scales to the sum
of the squares of the neglected (i = k +1 to r ) singular values (RHS of (2.21)). As a result
of this observation, a heuristic criterion to select the number of basis vectors k would
be to consider the ratio of the sum of the squares of the neglected singular values to the
sum of all the singular values as in ∑r

i=k+1σ
2
i∑r

i=1σ
2
i

≤ ε (2.22)

where ε ∈ [0 1] is a user-defined tolerance. As the value of ε deviates from one and tends
to zero, the number of neglected singular values decreases. Simultaneously, the number
of basis vectors which are taken into account increases, yielding a more accurate reduced
order model. The POD procedure is summarized in Algorithm 1.

Algorithm 1: POD procedure

input : Samples Asamp, a tolerance ε
output: Truncated basis vectors V ∈RN×k

Apply Singular Value Decomposition: Asamp = V ΣW T

Truncate V based on Σ and criterion (2.22)

2.3.2. DISCRETE EMPIRICAL INTERPOLATION METHOD
We now tackle the computational bottleneck related to the complexity of the evaluation
of the force vector and its derivative with respect to the displacement vector. This is done
by employing DEIM [6]. Suppose that the force vector f in (2.13) is attracted to a lower-
dimensional subspace U = span{u1, . . . ,um} ⊂RN , where m ¿ N . The force vector can
then be approximated using a weighted linear combination of the basis vectors spanning
U according to

f ≈ f̂ = U c , (2.23)

where c ∈Rm is a set of scalar weights associated to the set of basis vectors U . To find
these scalar weights, m rows of both sides of (2.23) are selected by means of a matrix
P ∈RN×m :

P T f ≈ P TU c . (2.24)
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Solving (2.24) for c and inserting it in (2.23) yield the approximated force vector

f̂ = U ( P TU )−1P T f = U ( P TU )−1 fDEIM. (2.25)

Here, fDEIM = P T f ∈Rm contains m entries of the force vector, and the matrix P is de-
fined with the aid of the DEIM algorithm listed in the next subsection. The complexity
of the evaluation of f is now reduced to that of f̂ ; thus, this consists of the evaluation of
fDEIM and a matrix multiplication (note that the computation of U ( P TU )−1 is carried
out in the offline phase).

To compute the derivative of the approximated force vector (2.25) with respect to
the displacement vector, several methods are suggested in [28]. Here we choose to uti-
lize the same set of basis vectors previously computed for the force vector, as originally
suggested in [6]:

∂ f̂

∂V ã
= U ( P TU )−1P T ∂ f

∂V ã
= U ( P TU )−1 KDEIM, (2.26)

where KDEIM = P T ∂ f
∂V ã ∈ Rm×N contains m rows of the nonlinear part of the stiffness

matrix. The procedure to assemble fDEIM and KDEIM is detailed in Algorithm 2.

Algorithm 2: Assembly of KDEIM and fDEIM

input : A set I N D = [I N D1, . . . , I N Dm] of entries selected by the DEIM
Algorithm 3

output: KDEIM and fDEIM

Set KDEIM and fDEIM to zero
for i = 1, . . . ,m do

Find elements E = {E1, . . . ,Ene } sharing the I N Di entry
for e = 1 . . . ne do

Compute the nonlinear part of element stiffness matrix and the force
vector: K E

e and f E
e

Find the local DOF j associated to the entry I N Di

fDEIM(i ) = fDEIM(i )+ f E
e ( j )

Define g Ind ex as the vector of global DOFs associated with element
e

KDEIM(i , g Ind ex) = KDEIM(i , g Ind ex)+K E
e ( j , :)

end
end

DISCRETE EMPIRICAL INTERPOLATION METHOD ALGORITHM

The error bound for the DEIM approximation f̂ of the force vector f is given by [6]

‖ f − f̂ ‖2 ≤ ‖(P TU )−1‖2 ‖(I −U U T) f ‖2. (2.27)

To increase the accuracy of the DEIM approximation, the value of ‖(I −U U T) f ‖2 should
be decreased while the value of ‖(P TU )−1‖2 is kept bounded [6, Lemma 3.2].
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The quantity ‖(I−U U T) f ‖2 is the projection error induced by POD (2.21). Therefore,
by increasing the number of basis vectors in U , according to (2.22), its value becomes
smaller. However, by increasing the number of basis vectors, the value of ‖(P TU )−1‖2

becomes larger, jeopardizing the accuracy of the DEIM approximation. According to
Chaturantabut and Sorensen [6, Lemma 3.2], the DEIM Algorithm 3 computes the matrix
P in a way that the growth of this term is bounded. Consequently, the accuracy of the
approximation can be improved by taking more and more basis vectors into account.

Algorithm 3: DEIM algorithm

input : Basis vectors U = [u1, . . . ,um]
output: Entries of the force vector selected by

DEIM I N D = [I N D1, . . . , I N Dm], and
the matrix P = [e I N D1 , . . . ,e I N Dm ]

Set I N D1 = index of the maximum entry of |u1|
Initiate matrices: W = [u1], P = [e I N D1 ], I N D = [I N D1]
for i = 2, . . . ,m do

Solve P TW c = P Tui for c
Compute residual r = ui −W c
Set I N Di = index of the maximum component of |r |
Augment W ← [W , ui ] , P ← [P , e I N Di ] and I N D ← [I N D , I N Di ]

end

In Algorithm 3, ei is the i th column of an identity matrix. The notation M ← [M , vi ]
indicates that the matrix M is augmented by adding the column vector vi .

2.3.3. LOCALIZED DISCRETE EMPIRICAL INTERPOLATION METHOD

DEIM succeeds in defining an efficient reduced order model, as in [6], only if the sin-
gular values of the force vector decay sufficiently fast –this effectively means that, when
a relatively small number of basis vectors are considered, the sum of the squares of the
singular values corresponding to the neglected basis vectors becomes negligibly small.
However, in the context of a viscoplasticity constitutive model this assumption is, ap-
parently, not valid. As it will be shown in Section 2.4.2, a considerably large number of
basis vectors are required to sufficiently reduce the projection error. Hence, an efficient
reduced order model cannot be constructed merely by applying the standard version of
DEIM.

We employ a Localized DEIM [23] to remedy the above shortcoming. The general
idea is to group samples, which are close to each other in a certain sense, into clusters.
We show that the decay of the singular values becomes significantly faster for each clus-
ter, implying that the samples are attracted to a considerably lower-dimensional sub-
space. In this work we only investigate the performance of DEIM in conjunction with
the clustered force samples. Nonetheless, the displacement samples could also be clus-
tered as suggested in [28]. For the purpose of clustering the samples, we make use of
machine learning techniques such as the k-means clustering algorithm (for clustering
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samples in the offline phase), and the nearest neighbor classifier (for finding the correct
cluster in the online phase).

MODIFIED k-MEANS CLUSTERING ALGORITHM

We now describe a procedure to divide a set of samples F samp, schematically shown in
Figure 2.1a, into nc clusters with the intention that samples in each cluster are close to
each other according to a certain distance definition. For this purpose, a k-means clus-
tering algorithm, informally explained in [29], is used. In this contribution the k-means
clustering algorithm is tailored for DEIM and the path-dependent nature of the problem.
More specifically, we will improve on the cluster initiation, the distance definition, and
the distance metric.

The strong path-dependency of the problem under consideration leads to a rather
straightforward choice of the initial guess for the clustering. In other words, since force
vectors from a certain part of the loading history are already “close” to each other, the
samples are simply divided into nc clusters without any permutation as an initial guess
for the k-means clustering algorithm.

In contrast to the definition of the distance in the standard k-means clustering algo-
rithm, which is the distance between a sample and the center of clusters, the distance
is here defined between a sample and its DEIM approximation. For instance, consider
a sample fi and, for each cluster c = 1 . . . nc , a set of basis vectors Uc and a matrix Pc
(from here onward, the number of clusters is indicated by a subscript on the left-hand
side of the corresponding quantity). The distance measure used in the k-means clus-
tering algorithm is defined by the difference between fi and its DEIM approximation

f̂c i = Ac Pc
T fi for each cluster c = 1 . . . nc , where Ac = Uc ( Pc

T Uc )−1. In the stan-
dard k-means clustering algorithm, it is typical to consider a Euclidean distance metric.
Shortcomings of the Euclidean distance are further discussed in [30]. Here, a stricter
metric, based on the Euclidean distance and the cosine similarity, is defined:

d =
√

d 2
Euclidean +d 2

cosine, (2.28)

where

dEuclidean = ‖ fi − f̂c i‖2 /‖ fi‖2 and dcosine = 1−| f T
i f̂c i | /(‖ fi‖2 ‖ f̂c i‖2). (2.29)

Since ‖ fi − f̂c i‖2 < ‖ fi‖2, these two measures are comparable in terms of magnitude;
values of dEuclidean and dcosine fall between zeros and one, and it is therefore safe to take
their norm as in (2.28).

The proposed k-means clustering algorithm is detailed in Algorithm 4. The pro-
cedure initiates by dividing samples in F samp into nc clusters, as schematically shown
in Figure 2.1b, without permuting them. Additionally, a mapping (sampl eToC l us :
sample → cluster number) is initiated to keep track of samples and their corresponding
cluster number. In the k-means iterative scheme, the POD (Algorithm 1) and the DEIM
(Algorithm 3) procedures are applied to each one of the clusters, and a reduced set of ba-
sis vectors Uc , a matrix Pc , and a set of DEIM selected entries I N Dc are computed. The
distance between each sample fi and its DEIM approximation f̂c i = Ac Pc

T fi (2.28) is
saved in a matrix G ∈Nns×nc (ns being the number of samples).
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Next, each sample fi is checked to make sure that it belongs to its cluster. To do
so, f̂c i = Ac Pc

T fi is computed for each one of the clusters c = 1 . . . nc . Then, the
distance between fi and each one of the f̂c i is measured by means of (2.28). The clus-
ter that helps generating the most accurate DEIM approximation of fi , such that f̂c i is
closest to fi as shown in Figure 2.1c, is the cluster fi actually belongs to. To keep track
of samples in the clusters, when a sample is designated to another cluster, the mapping
sampl eToC l us is updated. The procedure continues until a maximum number of iter-
ations is reached or all the samples are (sub)optimally clustered.

unclustered

(a)

cluster #1

cluster #2

cluster #3

(b)

f̂1 i

f̂2 i

f̂3 i

fi

(c)

cluster #1

cluster #2

cluster #3

(d)

Figure 2.1: Modified k-means clustering algorithm: (a) unclustered samples; (b) initial clustering of samples;
(c) distance between a sample fi and its DEIM approximation using Ac and Pc of all clusters, c = 1 . . . nc .
The sample fi belongs to the cluster that generates the closest f̂c i = Ac Pc

T fi in the sense of (2.28); (d) final
form of clusters after convergence of the modified k-means clustering algorithm.

When an insufficient number of basis vectors is considered, the rate of convergence
of the k-means clustering algorithm becomes very slow and the quality of the clusters
diminishes. From the implementation point of view, to prevent division by zero in dcosine

and dEuclidean (2.29), it is vital to eliminate zero vectors from the matrix of force samples.
In order to check the validity of the proposed approach we can plot the singular val-



2

16 2. POD-DEIM FOR NONLINEAR FEM

ues associated with each cluster and observe their rate of decay. If their rate of decay is
not substantially faster than that of the singular values associated with all the samples,
the number of clusters needs to be increased at the cost of a more expensive k-means
clustering algorithm.

Algorithm 4: Modified k-means clustering algorithm

input : A set of force vector samples F samp = [ f1, . . . , fns ],
total number of clusters nc ,
maximum number of iterations maxI ter

output: sampl eToC l us : i → c, i ∈ 1, ...,ns , c ∈ 1, ...,nc

Cluster F samp without sorting into { F1 , . . . , Fnc
}

Initiate sampl eToC l us
conver g ed := 1
while conver g ed 6= 1 and maxI ter not reached do

for c = 1. . .nc do

Uc = POD ( Fc ) Algorithm 1

I N Dc , Pc = DEIM ( Uc ) Algorithm 3

Ac = Uc ( Pc
T Uc )−1

for i = 1 to ns do

f̂c i = Ac Pc
T fi

G(i ,c) := d Equation(2.28)

end
end
for i = 1 to ns do

cold := sampl eToC l us(i )
cnew := arg min G(i , :)
if cold = cnew then

conver g ed = 1
else

conver g ed := 0
sampl eToC l us(i ) := cnew

end
end

end

NEAREST NEIGHBOR CLASSIFIER

To find the cluster that best represents the current state of the system during the run-
time, we employ a nearest neighbor classifier and modify its distance metric according
to (2.28). At each time step, the nearest neighbor classifier computes distances (2.28) be-
tween the converged force vector f̂ and each one of the clustered samples fi , i = 1 . . . ns .



2.3. MODEL ORDER REDUCTION

2

17

The classifier then determines the sample with the least distance to the converged force
vector. The cluster that contains this sample best describes the current state of the sys-
tem.

To reduce the computational cost of the classification, the nearest neighbor classifier
uses a low-dimensional representation of the force vector. In this context, we employ the
DEIM-based feature extraction [23]

f̂FE = Pcold

T f̂ and fFE,i = Pcold

T fi , (2.30)

where f̂FE ∈ Rm and fFE,i ∈ Rm are a low-dimensional representation of f̂ and fi , re-
spectively, and Pcold

∈RN×m is the DEIM matrix from the previous time step. Distance
metric in (2.28) are computed as

dEuclidean = ‖ fFE,i − f̂FE‖2 /‖ fFE,i‖2 and dcosine = 1−| f T
FE,i f̂FE| /(‖ fFE,i‖2 ‖ f̂FE‖2).

(2.31)
.

Algorithm 5: Nearest neighbor classifier

input : A set of force vector samples F samp = [ f1, . . . , fns ],
sampl eToC l us : i → c, i ∈ 1, ...,ns , c ∈ 1, ...,nc ,
the force vector f̂ ∈RN at time step t ,
the current cluster cold

output: New cluster cnew

f̂FE := Pcold
T f̂

for i = 1. . .ns do
fFE,i := Pcold

T fi

d (i ) := d( f̂FE, fFE,i ) Equations (2.28) and (2.31)

end
imin := arg min(d )
cnew := sampl eToC l us(imin)

2.3.4. DISCUSSION ON THE COMPUTATIONAL COST
The computational cost of DEIM and LDEIM is already discussed in [6, 23]. For the sake
of completeness, this section is dedicated to a brief review of the key points. Moreover,
we also discuss some of our observations.

• In spite of the additional computational cost of the clustering, the cost of the of-
fline phase is still strongly dominated by the sample collection.

• For the online phase, the primary contributor to the computational cost is the
nearest neighbor classifier, Algorithm 5. Note that the computational complex-
ity of this procedure is independent of the number of dofs N , thanks to the feature
extraction concept (2.30). However, it strongly depends on the total number of
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samples ns . As ns becomes larger, the nearest neighbor classification loses its effi-
ciency. To tackle this problem, it is possible to either reduce the number of samples
through Redundancy Reduction methods such as the QR-SVD technique [31, 32],
or perform the classification based on a set of surrogate quantities instead of sam-
ples. For instance, the centroid of the clusters computed in classical k-means clus-
tering algorithm can be an adequate substitute. In this manner, the procedure be-
comes dependent on the number of clusters. However, hopefully, the number of
clusters are always significantly smaller than the number of samples.

• If, as a result of the POD and the DEIM approximations, the consistency of the lin-
earization of (2.17) is jeopardized, the number of iterations in the Newton-Raphson
scheme in the reduced order model will increase. Nevertheless, the iteration counts
could be kept the same by accepting a solution that is not fully converged. This
claim could be conjectured as follows. Consider the error between the full or-
der model and the outcome of the Newton-Raphson scheme in the reduced order
model, e = a −aNR. By adding and subtracting the exact solution of (2.17), aROM,
to the right hand side of the error expression and taking the L2 norm of both sides,
an upper bound to the error becomes

‖e‖2 ≤ ‖a −aROM‖2 +‖aROM −aNR‖2. (2.32)

From the equation above, it can be inferred that, regardless of how accurately (2.17)
is solved, even at the limit where ‖aROM −aNR‖2 becomes effectively zero, the er-
ror as a result of the MOR approximation ‖a − aROM‖2 remains untouched. As a
result, the bound on the error is, at most, as tight as ‖a −aROM‖2 permits. Hence,
a solution that is relatively accurate, considering the error as a result of MOR, but
not fully converged in the Newton-Raphson scheme should be considered as ac-
ceptable. Nevertheless, in Section 3.8, we always consider enough basis vectors to
ensure the consistency of the linearization and, consequently, quadratic conver-
gence rate of the Newton-Raphson scheme.

• In theory, as the number of clusters becomes larger, the computer memory occu-
pied by the basis vectors in the online phase grows dramatically. However, in prac-
tice, we experienced that by increasing the number of clusters, the number of basis
vectors in each cluster becomes significantly smaller. As a result, the cumulative
number of basis vectors does not increase dramatically, as shown in Section 2.4.3.

2.3.5. SUMMARY OF THE PROPOSED MODEL ORDER REDUCTION TECHNIQUE
Next, a step-by-step guide for the proposed MOR technique is outlined. The offline
phase (Algorithm 6) is run first and its output data are saved to a file. In the online phase
(Algorithm 7), the data are read and the reduced order model is employed to run the
simulation.

2.4. APPLICATIONS
We demonstrate the proposed MOR technique by means of three typical solid mechanics
problems. A specific set of parameters (η = 10−5 s−1, a = −1, b = 50, Y = 1 N / mm−2,
E = 1000 N / mm−2, ν= 0) is considered unless stated otherwise.
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Algorithm 6: Offline phase

1. Collect samples Asamp and F sampusing a FEM analysis.

2. V := POD(Asamp). Section 2.3.1

3. sampl eToC l us := k-means(F samp) Section 2.3.3

for c = 1 . . . nc :

3.1. let ic be such that sampl eToC l us(ic ) = c

3.1. Fc := F samp(ic )

3.1. Uc := POD ( Fc ), Section 2.3.1

3.2. I N Dc , Pc := DEIM( Uc ), Section 2.3.2

3.3. Ac := Uc ( Pc
T Uc )−1, and

3.4. Save Ac , Pc , I N Dc .

4. Save V ,F samp, sampl eToC l us.

2.4.1. TENSILE BAR: ONE-DIMENSIONAL STRAIN-LOCALIZATION

The tapered bar in Figure 2.2 is clamped at the left-hand side. The bar is subjected to a
monotonic tensile loading. The final displacement of 1 mm is applied at the free end in
200 steps with a constant rate of 0.66×10−4 mm / s. Figure 2.3 shows the results of a mesh
refinement study performed with uniform subdivisions of the bar domain along the axis.
The mesh refinement study identifies the solution related to the 71 eight-node regular
hexahedral element mesh as the reference solution for the development of a reduced
order model.

width = 10 mm

100 mm

8 mm

10 mm

z

x

y

Figure 2.2: The clamped end of the tapered bar has a smaller cross-section to trigger the initiation of plasticity
and consequent strain localization.
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Algorithm 7: Online phase

1. Initiate FEM code and load:

1.1. displacement basis vectors V , Algorithm 6

1.2. the sample matrix F samp, Algorithm 6

1.3. the mapping sampl eToC l us,

1.4. Ac , Pc , I N Dc for all clusters (c = 1 . . . nc ). Algorithm 6

2. Set the cluster cnew = 1.

3. For each time step t :

3.1. For each Newton-Raphson iteration j :

3.1.0. compute the linear part of the stiffness matrix K L, Equation (2.14)

3.1.1. f̂ := Acnew
fDEIM( I N Dcnew

), Section 2.3.2

3.1.2. K̂ := Acnew
KDEIM( I N Dcnew

), Section 2.3.2

3.1.3. r̃ j :=V T (K L a j + f̂ ), Section 2.3.1

3.1.4. K̃ j :=V T (K L + K̂ ) V , Section 2.3.1

3.1.5. solve K̃ j dã j+1 =−r̃ j , Equation (2.18.1)

3.1.6. ã j ← ã j +dã j+1, Equation (2.18.2)

3.1.7. check convergence: r̃ j < tol .

3.2. Set the cluster cold = cnew.

3.3. get cnewusing the nearest neighbor classifier Section 2.3.3

3.4. Go to the next time step.
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Figure 2.3: The regularizing properties of viscoplasticity are reflected in the mesh refinement study in terms of
the resultant force at the clamped end plotted against the displacement at the free end.

To test the MOR technique, we consider three different values of the b parameter
(b = [0,20,100]). According to (2.8), large positive values of b result in a fast decay of
σY as κ grows and characterize the softening branch of the load-displacement curve as
shown in Figure 2.3. A reference solution is computed for each value of b, and the corre-
sponding displacement and force samples are collected in matrices Asamp = [a1 . . . a200]
and F samp = [ f1 . . . f200].

A reduced order model is constructed using these samples for each value of the b
parameter. The result of the online computation, depicted in Figure 2.4, evidently show
the complexity reduction achieved by employing our MOR technique. For instance, for
the steepest strain softening curve, obtained with b = 100, the size of the system of equa-
tions is reduced, without apparent loss of accuracy, to 93×93 from 864×864 and, in the
light of DEIM, evaluation of the force vector is required to be carried out at 57 entries
rather than 864. A subdivision of the samples into three clusters allows to further re-
duce this number to 63-17-15 (the notation 63-17-15 indicates that we have considered
three clusters and that the first cluster requires the evaluation of 63 entries, the second
requires 17 entries, and the last only 15). For the other two curves, the size of the sys-
tem of equations is reduced to 115×115 (b = 20) and 94×94 (b = 0). The evaluation of
the force vector is carried out at 30 and 53 entries, respectively, when employing DEIM.
With LDEIM and three clusters, it is possible to further reduce the number of entries to
32-11-8 and 51-22-13, respectively.
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Figure 2.4: The MOR technique applied to the one-dimensional strain-localization problem. The reference
curves are obtained with the 71 eight-node regular hexahedral element mesh (864 DOFs) using different values
of the b parameter (2.8).

2.4.2. WALL UNDER COMPRESSION: SHEAR BAND FORMATION
This example is dedicated to a wall under compression that shows a localization zone
in form of a shear band. The lower and the left-hand side edges of the wall depicted in
Figure 2.5 are constrained in the x and y directions. The wall is subjected to a monotonic
compressive loading. The final displacement of 2 mm is applied at the upper edge in 400
steps with a constant rate of 1.33×10−4 mm / s. The parameter b in (2.8) is taken equal
to 100.

A mesh refinement study has been carried out considering uniform grids with one
element across the thickness. Figure 2.6 shows the results of the mesh refinement study.
The solution obtained with 196 (14×14) eight-node regular hexahedral elements is taken
as the reference solution.

thickness t = 10 mm

100 mm

100 mm

z
x

y

Figure 2.5: Geometry of the wall under compression with the dark shaded part indicating the weak region that
localizes the initiation of plasticity and triggers a shear band.
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Figure 2.6: The regularizing properties of viscoplasticity are reflected in the mesh refinement study in terms of
the resultant of the force in the vertical direction on the lower edge against the value of the displacement of the
upper edge; the inset shows the deformed wall with the shear band due to strain localization.

Displacement and force samples are collected at each time step in matrices Asamp =
[a1 . . . a400] and F samp = [ f1 . . . f400] . Figure 2.7a shows the convergence of DEIM to the
reference solution by a basis addition study. The number of the basis vectors is chosen
based on the sum of the square of the neglected singular values as explained in Sec-
tion 2.3.1. It is possible to make an analogy between adding the basis vectors associated
with the singular values shown in Figure 2.7b for a basis addition study and increasing
the number of elements for a mesh refinement study. By adding each subsequent basis
vector, the squared value of its associated singular value (say σm) is deducted from the
error defined in (2.21) –the error then becomes

∑r
i=m+1 σ

2
i in which the contribution of

σ2
m is missing thus yielding a smaller value.
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Figure 2.7: Performance of the DEIM approximation in the two-dimensional strain localization problem:
(a) basis addition study (reference solution: 1350 DOFs, 196 elements; reduced order model: 227 POD basis
vectors associated with the displacement field); (b) singular values of the force vector samples.
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Figure 2.7b evidently shows the slow rate of decay of the singular values. As a result,
a large number of basis vectors is required to decrease the projection error, that is the
sum of the square of the neglected singular values, to an acceptable value and render
the reduced order model sufficiently accurate. Figure 2.7a shows that at least 88 DEIM
entries (brown curve) are required to construct a reduced order model that is capable
of reproducing the reference solution (green curve). The black dashed line is to confirm
that we have reached the converged solution. Checking the difference between results
of two consecutive basis addition cases can be an adequate criterion to determine the
convergence of a reduced order model. It is also noteworthy to report a case where the
DEIM approximation results in an unstable reduced order model as shown by the red
curve in Figure 2.7a. The source of this instability is, to the best of our knowledge, still
unknown. The same type of behavior is reported in [32] and [33].

The force vector and the stiffness matrix associated with these 88 DOFs are com-
puted by evaluating all the elements shown in Figure 2.9a, clearly a major subset of the
elements in the mesh. As a result, significant reduction in computation cost can not be
achieved. To mitigate this issue, we cluster the samples of the force vector that are ‘close’
to each other and compute, for each cluster, a set of reduced basis vectors and a set of
DEIM selected entries as discussed in Section 2.3.3. As shown in Figure 2.8a, a basis addi-
tion study is carried out with 5 clusters. The reduced order model with 19-10-9-9-9 DEIM
entries (brown curve) accurately approximates the reference solution (green curve). The
singular values corresponding to the x component of the force vector samples are de-
picted in Figure 2.8b for each cluster of the reduced order model (those corresponding
to the y and the z components follow the same trend). It is clear that the singular values
associated with each cluster decay significantly faster than those of all samples.

The elements used in this case are depicted in Figure 2.9b. Due to the path-dependent
nature of the model, all elements depicted in this figure need to be updated for their his-
tory parameters. However, only a subset of them is used to compute the force vector and
the stiffness matrix at each Newton-Raphson iteration. Figures 2.9a and 2.9b show that
the online phase of LDEIM is computationally cheaper than that of DEIM.

As discussed in Section 2.3.3, a nearest neighbor classifier is executed at each time
step to find the cluster the current force vector belongs to. The classification is carried
out based on the m ¿ N DEIM-selected entries of the force vector. Due to the non-
periodic nature of the mechanical response in this class of problems, clusters do not get
repeated during the run time. For instance, if the first cluster is selected at a time step
close to the peak of the load-displacement curve, it will not be selected when the load-
displacement curve reaches a plateau at the end. Cluster selection being automatic, this
observation can be used to monitor the consistency of cluster switching. In other words,
repetition of a cluster during the simulation is an indication that either the clustering
procedure in the offline phase or the classification procedure in the online phase is in-
consistent with the nature of the path-dependent problem. Additionally, this observa-
tion can be used to increase the efficiency of the nearest neighbor classifier, Algorithm 5.
Indeed, by neglecting samples associated with previously selected clusters, the classifier
can compare the current state of the system to fewer number of samples.

To achieve consistency as explained in the previous paragraph, we modify the dis-
tance metric in the k-means clustering algorithm and the nearest neighbor classifier
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Figure 2.8: Performance of the LDEIM approximation in the two-dimensional strain localization problem:
(a) basis addition study (reference solution: 1350 DOFs, 196 elements; reduced order model: 227 POD basis
vectors associated with the displacement field); (b) singular values of the x component of the force vector
samples using unclustered and clustered samples (those corresponding to the y and the z components follow
the same trend).

(a) (b)

Figure 2.9: Elements used in the online phase in the two-dimensional strain localization problem: (a) DEIM
–brown line in Figure 2.7a; (b) LDEIM –brown line in Figure 2.8a.
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Figure 2.10: The effect of the distance metric on the load-displacement curves of the two-dimensional strain
localization problem (reference solution: 1350 DOFs, 196 element; reduced order model: 227 POD basis vec-
tors associated with the displacement field and LDEIM with 5 clusters and 19-10-9-9-9 DEIM entries in each
cluster).

algorithms. Figure 2.10 shows that the reduced order model based on the Euclidean
distance and the cosine similarity metric (2.28) (black curve) properly reproduces the
reference solution, whereas the reduced order model based on the standard Euclidean
distance definition alone fails to do so. For the Euclidean distance case, the cluster nun-
mber switches from 1 to 5 right before the peak load (note that cluster 5 is associated
with the plateau part of the load-displacement curve). This is not consistent and, as a
result, the blue curve deviates from the reference equilibrium path.

PARAMETER SENSITIVITY ANALYSIS

We now demonstrate an application of the reduced order model to a simple parameter
sensitivity analysis study. The goal is to construct a reduced order model response re-
lated to a set of parameters using samples obtained from two different parameter sets.
To this end, we run the standard FEM model for b = 80 and b = 120 (the other parameters
are defined at the beginning of Section 3.8). Samples are uniformly collected in matrices
Asamp

b80 , F samp
b80 , Asamp

b120 and F samp
b120 at each time step. These samples are combined into two

matrices Asamp and F samp. Since the k-means initial clustering uniformly divides sam-
ples into clusters, it is a good practice to combine F samp

b80 and F samp
b120 in a way that samples

from the peak load region are collected in the initial columns of F samp and samples from
plateau region are collected in the last columns as described in Algorithm 8.

A reduced order model is constructed using these samples. In Figure 2.12a, the re-
duced order model is employed to simulate the case with b = 100. To approximate the
standard FEM solution, 85 DEIM entries are required when the samples are not clus-
tered. However, when the samples are divided into 5 clusters, only 31-19-19-19-17 DEIM
entries are required. It is also shown that fewer DEIM entries are needed to reach an
acceptably accurate solution (black curve) when the number of clusters increases.

In Figure 2.12a we observe fluctuations in the load-displacement curves of the re-
duced order models, starting from a displacement equal to 0.4 mm. A possible explana-
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Algorithm 8: Construct F samp

input : Two sets of force vector samples for b = 80 and b = 120: F samp
b80 ∈RN×ns

and F samp
b120 ∈RN×ns

output: A mixed sample matrix F samp ∈RN×2ns

Initiate the mixed sample matrix: F samp = [Fb80(:,1) , Fb120(:,1)]
for i = 2. . .ns do

Append i th columns of Fb80 and Fb120 to F samp

end

tion could be related to the set of samples that underlies the construction of the basis
vectors for the cases with b = 80 and b = 120. According to (2.8), the nonlinear parts of
the stress related to these two cases, and the corresponding force vectors, differ slightly
at the beginning when the plastic strain κ is small; hence, the reduced subspaces cor-
responding to the two force vectors are close to one another. However, as κ grows, the
nonlinear part of the stress for b = 80 case decays slower than that for b = 120 and, as a re-
sult, their corresponding force vectors tend to deviate from one another. Consequently,
the corresponding reduced subspaces these two cases belong to are no longer as close as
they used to be. At this point, let us consider the case b = 100 with a reduced order model
constructed using samples collected from the cases with b = 80 and b = 120. Figure 2.12a
supports the hyphothesis just advanced. At the beginning, the load-displacement curves
of the reduced order models are fairly close to that of the reference curve (green curve),
suggesting that the force vectors for the b = 100 case are adequately approximated. Later
on, however, small fluctuations in the load-displacement curves of the reduced order
models become visible as κ grows.

To reduce these fluctuations, either the number of the basis vectors (and conse-
quently the DEIM entries) in each cluster should be increased or more clusters should
be taken into account. The first approach decreases the efficiency of the reduced order
model and is not considered. The second approach increases the accuracy of the re-
duced order model and permits the use of the same or even smaller number of DEIM
entries as shown in Figure 2.12a.

To quantify the impact of the fluctuations in the load-displacement curve of the re-
duced order model with 10 clusters (black line), we consider the points that coincide
with the 8th and 9th cluster change as shown in Figure 2.12b. These two points corre-
spond to the largest deviation from the reference solution (green curve) and are used
to compare their corresponding displacement fields with that of the reference solution
employing the relative error measurement

e = |uFEM −uLDEIM|
‖uFEM‖2

, (2.33)

where |Θ| is the component-wise absolute value of Θ. Figure 2.11 shows the deformed
specimen and the relative error corresponding to these two points. It can be observed
that the reduced order model is sufficiently accurate in the entire domain with maximum
relative error of 3×10−4.
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It is noteworthy that we do not enforce clusters to change consecutively. However, we
would expect them to change in this manner due to the special initial k-means clustering
discussed in Section 2.3.3.

(a) FEM: u = 1.685 mm (b) FEM: u = 1.800 mm

(c) LDEIM: u = 1.685 mm (d) LDEIM: u = 1.800 mm

(e) Relative error at u = 1.685 mm (f) Relative error at u = 1.800 mm

Figure 2.11: Two-dimensional strain localization problem: deformed configuration corresponding to the black
curve depicted in Figure 2.12a at displacement levels corresponding to the 8th and 9th cluster changes indi-
cated in Figure 2.12b. The reference FEM solution and reduced order model are depicted in the upper rows
and the error between them is depicted in the bottom row.
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Figure 2.12: Simple parameter sensitivity analysis for the two-dimensional strain localization problem:
(a) evaluation of the case with b = 100 using the reduced order model constructed from samples collected
from reference cases with b = 80 and b = 120 (reduced order model: 325 POD basis vectors associated with the
displacement field for DEIM and LDEIM); (b) enlargement of the boxed region in (a) with locations of cluster
change marked.

2.4.3. THREE-DIMENSIONAL SQUARE FOOTING
The footing depicted in Figure 2.13 is subjected to a monotonic compressive loading.
The final compressive displacement of 1 mm is applied at the dark shaded plate on the
upper surface in 1200 steps with a constant rate of 0.66×10−4 mm / s. The surface on
the left-hand side, bottom, and the front are constrained from moving in the x, the z and
the y directions, respectively.

100 mm

100 mm

100 mm

z
x

y

Figure 2.13: Geometry.

A mesh refinement study is carried out and the result is depicted in Figure 2.14. Load-
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displacement curves are associated with the resultant of the forces on the y plane at the
bottom and the vertical displacement of the loading plate. Here, we choose the load-
displacement curve obtained with 1331 eight-node hexahedral elements as the reference
solution. The numerical solution, although not yet converged, is sufficiently accurate for
the purpose of this study.
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Figure 2.14: Mesh refinement study.

In total, 1200 samples were uniformly collected from the reference solution to con-
struct a reduced order model. A large number of POD basis vectors (609), associated
with the displacement field, is considered to sufficiently reduce the POD-G projection
error. In this manner, it is possible to objectively study the performance of the DEIM
approximation.

As shown in Figure 2.15, at least 335 DEIM entries are required to almost reconstruct
the reference solution. Note that the load-displacement curve of the reduced order
model starts to deviate from the reference solution before reaching the final displace-
ment value. Nevertheless, it is possible to considerably reduce the number of the DEIM
entries by clustering samples. For instance, considering 20, 30, and 40 clusters at most,
as depicted in Figure 2.16, 117, 101, and 43 DEIM entries are required, respectively. This
observation implies that by increasing the number of clusters it is possible to construct
a significantly more efficient reduced order model.
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Figure 2.15: Footing: load-displacement curves associated with different number of clusters (reference solu-
tion: 5184 DOFs, 1331 elements; reduced order model: 609 POD basis vectors associated with the displacement
field for DEIM and LDEIM).

In practice, the amount of memory usage in the online phase is not necessarily pro-
portional to the number of clusters. As depicted in Figure 2.16, when considering only
one cluster, 335 basis vectors are required. Evidently, this number grows to 827 by in-
creasing the number of clusters to 30. However, when the number of clusters becomes
40, the cumulative number of basis vectors shrinks down to 564. The computer memory
usage not being necessarily proportional to the number of clusters, considering a large
number of clusters is a feasible option.
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LDEIM(20) - cumulative basis vectors = 724
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LDEIM(40) - cumulative basis vectors = 564

Figure 2.16: Footing: number of the DEIM entries in each cluster (reduced order model: 609 POD basis vectors
associated with the displacement field).

It is also noteworthy to realize the importance of the distance metric in achieving a
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consistent clustering. Load-displacement curves for the 40-cluster case (black dashed
line in Figure 2.15) associated with two distance metrics are depicted in Figure 2.17. It is
clear that the metric based on both the Euclidean distance and the cosine similarity def-
inition gives a proper result, whereas the metric based on the Euclidean distance alone
fails to do so.
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Figure 2.17: Footing: the effect of the distance definition on the load-displacement diagram (reference solu-
tion: 5184 DOFs, 1331 elements; reduced order model: 609 POD basis vectors associated with the displacement
field, LDEIM with 40 clusters).

2.5. CONCLUSIONS

Considering the slow decay of the singular values of the samples collected in the offline
phase, it is possible to infer that the hypothesis central to all the MOR techniques, re-
ported in Section 3.1, is not valid for the entire loading history of the class of problems
studied in this paper. To mitigate this issue, samples are divided into clusters such that
for each cluster the central hypothesis becomes valid. For this purpose, a potentially
computationally costly k-means clustering algorithm is added to the offline phase and,
employing feature extraction, an efficient nearest neighbor classifier is added to the on-
line phase.

We now identify a possible computational bottleneck pertinent to the reduced stiff-
ness matrix (step 3.1.2 in Algorithm 7) –note that this is merely a technical problem
and not a fundamental one as those described at the end of Section 4.2. The storage
of K = K L + K̂ could be quite memory consuming due to the structure of the DEIM ap-
proximated nonlinear part K̂ . Unlike the linear part of the stiffness matrix K L, its sparsity
could be considerably less than what is expected in a classical FEM analysis. Addition-
ally, standard procedures that take advantage of the sparsity of the stiffness matrix, such
as matrix assembly, might not be able to perform as efficiently as anticipated in a FEM
analysis. As a result, we suggest to avoid explicitly forming K̂ when computing the re-
duced stiffness matrix by employing an appropriate matrix chain multiplication.
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3
ACCELERATING MULTISCALE

FINITE ELEMENT SIMULATIONS

OF HISTORY-DEPENDENT MATERIALS

USING A RECURRENT NEURAL NETWORK

If there is a problem you can’t solve, then there is an easier problem you can solve: find it.

George Polya

FE2 multiscale simulations of history-dependent materials are accelerated by means of
a recurrent neural network (RNN) surrogate for the history-dependent micro level re-
sponse. We propose a simple strategy to efficiently collect stress-strain data from the
micro model, and we modify the RNN model such that it resembles a nonlinear finite
element analysis procedure during training. We then implement the trained RNN model
in the FE2 scheme and employ automatic differentiation to compute the consistent tan-
gent. The exceptional performance of the proposed model is demonstrated through a
number of academic examples using strain-softening Perzyna viscoplasticity as the non-
linear material model at the micro level.

3.1. INTRODUCTION
Direct numerical simulations of heterogeneous media are often computationally intractable.
To enable the simulation of these media, one can employ a computational multiscale ho-
mogenization scheme such as the multilevel finite element method (FE2) [2]. In spite of
constant advances in theoretical development and computing power, concurrent mul-
tiscale schemes are in most cases computationally too expensive to be employed in
many-query applications. The main computational bottleneck in concurrent multiscale
schemes is the evaluation of the micro model at each integration point in the macro

This chapter have been published in Computer Methods in Applied Mechanics and Engineering [1].
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model. To tackle this bottleneck, we propose an efficient surrogate model for the micro
model.

Since we are primarily interested in history-dependent material models for quasi-
brittle failure analysis, such as Perzyna’s strain-softening viscoplasticity, we choose a re-
current neural network (RNN) [3–5] as its surrogate at the micro level. An RNN model is
simply a function that maps the given input sequence to the desired output sequence.
To do so, it utilizes a set of history parameters. Therefore, it is inherently capable of han-
dling history dependency. Although demonstrated on a series of academic examples in
Section 3.8, this surrogate is capable of dramatically accelerating any FE2 scheme.

To the best of our knowledge, very few surrogate models have been proposed for
history-dependent constitutive laws. Among those, we refer to the work by Hambli et al. [6]
who develop a feed-forward neural network as a surrogate to the damage model intro-
duced by Chaboche [7]. Similarly, Lu et al. [8] introduce a feed-forward neural network
as a surrogate for a nonlinear effective electric constitutive law [9]. A feed-forward neural
network however is not capable of capturing history dependency in data.

Other than employing a surrogate model, there have been several attempts [10–13]
to alleviate the aforementioned bottleneck by using dimensionality reduction modeling
techniques. These contributions employ a combination of proper orthogonal decom-
position (to reduce the size of the stiffness matrix) and a hyper-reduction technique (to
speed up evaluation of the stiffness matrix and the internal force vector). If a model’s
capacity is defined as its degree of capability to learn patterns in data, the higher the ca-
pacity, the more complex patterns the model can learn. In general, the capacity of these
reduced order modeling techniques is limited because they learn a linear subspace rep-
resentation from high-dimensional training data.

There have been several proposals to construct data-driven frameworks for material
analysis. For instance, Wang et al. [14] proposed a data-driven framework to link infor-
mation between multiple scales in a recursive homogenization scheme. Bessa et al. [15]
developed a self-consistent clustering analysis method to avoid the curse of dimension-
ality. These frameworks however cannot be implemented into an existing computer
code without major intrusion.

In contrast to the previously mentioned contributions, we are interested in develop-
ing a surrogate model that has high capacity, is capable of capturing history dependency
in data, and can be implemented into an existing FE2 multiscale computer program with
minimal intrusion. These objectives have been achieved thanks to the novel develop-
ments listed next. Since naively sampling the standalone micro model is computation-
ally intractable, we propose an effective and efficient sampling strategy in Section 3.3.1.
We then modify an RNN [16] model in Section 3.3.2 in such a way that it resembles a clas-
sical nonlinear finite element (FE) analysis procedure during training. In this manner the
RNN model learns how to distinguish between converged and not converged data in a
Newton-Raphson solution scheme. To use the RNN model in a multiscale scheme, one
needs to compute the consistent tangent. This is achieved by employing automatic dif-
ferentiation [17] as quickly described in Section 3.6.1—the consistent tangent is exact up
to the machine precision and, using a deep learning library such as Tensorflow [18], its
implementation takes exactly one line of code. And finally, we propose using the RNN
in place of the history- and rate-dependent micro model to speed up the FE2 scheme
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in Section 3.8. Importantly, we discuss how to boost the accuracy of the model through
retraining.

3.2. PROBLEM STATEMENT

3.2.1. MULTISCALE FINITE ELEMENT ANALYSIS

To begin with, let us consider a FE2 scheme. A FE2 scheme consists of two models: (1)
macro model in which the medium is modeled as a homogeneous material, and (2) mi-
cro model in which the medium’s heterogeneity is incorporated.

MACRO MODEL

The deformation of the macro model is governed by the equilibrium equation

∇∇∇·σM = 0 in ΩM, (3.1)

where ∇∇∇ is the differential operator,σM is the macro stress tensor, andΩM is the volume
of the macro model. For the sake of simplicity and without loss of generality we set the
body force vector to zero. The volume ΩM is bounded by the surface ΓM = Γu

M ∪Γt
M on

which Dirichlet (on Γu
M) and Neumann (on Γt

M) boundary conditions are applied.
The relation between the macro stress σM and the macro strain εM tensors,

(σM , ĥM ) =M (εM , ε̇M , hM ), (3.2)

is determined through the micro model M discussed in the next section. In the equation
above, hM is a set of history parameters for the macro model and ĥM is their updated
values.

Standard nonlinear finite element analysis procedures yield the weak form statement
of Equation 3.1. The weak form is then discretized in time using a standard time step-
ping scheme. At each time step, the discretized weak form is solved using the Newton-
Raphson method

KM daM = f ext
M − f int

M , aM ← aM + daM. (3.3)

In the equation above, KM = ∫
ΩM

B T
M DM BM dv is the macro stiffness matrix, aM is the

total displacement vector of the macro model with daM its incremental value, f int
M =∫

ΩM
B T

M σM dv is the macro internal force vector, f ext
M = ∫

Γt
M

N T
M tM ds is the macro ex-

ternal force vector, NM is the macro model’s shape function matrix, BM is its spatial
derivative, and DM is the macro model’s consistent tangent.

MICRO MODEL

The deformation of the micro model is also governed by the equilibrium equation

∇∇∇·σm = 0 in Ωm, (3.4)

where σm is the micro stress tensor, and Ωm is the volume of the micro model. The
volume Ωm is bounded by the surface Γm on which a specific set of Dirichlet boundary
conditions are applied. We specify these boundary conditions in the next section.



3

40 3. RECURRENT NEURAL NETWORK FOR MULTISCALE FEM

As an archetype of a class of history-dependent material models, we choose a Perzyna
viscoplasticity similar to the one employed in Reference [19]. The stress is related to the
strain through the constitutive relation expressed in rate form

σ̇m = De ( ε̇m − ε̇vp
m ), (3.5)

where #̇ is time derivative of #, De is the elastic modulus tensor, εm is the total micro
strain tensor, and εvp

m is the micro viscoplastic strain tensor.
The micro viscoplastic strain grows at the rate of

ε̇
vp
m = λ̇

∂θ

∂σm
(3.6)

where λ̇ = η < φ >β is the rate of plastic multiplier, <> is the Macaulay bracket, η is
the viscosity parameter, β is a model parameter, φ = θ

σY
is the overstress function, θ =

σvm −σY is the yield function, σvm is the von Mises stress, and σY is the current yield
stress.

To introduce a strain softening response we decrease the yield stress as the accumu-
lated plastic strain κ increases through

σY = σY0 ( (1+a )e−bκ − a e−2bκ ) (3.7)

where a and b are model parameters, σY0 is the initial yield stress, and the accumulated
plastic strain κ=λ.

Standard nonlinear finite element analysis procedures yield the weak form of Equa-
tion 3.4. At each time step and Newton-Raphson iteration for the macro model, and in
each integration point of the macro model, the weak form of Equation 3.4 is solved using
the Newton-Raphson method

Km dam = − f int
m , am ← am + dam. (3.8)

In the equation above Km = ∫
Ωm

B T
m Dm Bm dv is the micro stiffness matrix, am is the

micro total displacement vector and dam is its incremental value, f int
m = ∫

Ωm
B T

mσm dv is
the micro internal force vector, Nm is the micro shape function matrix, Bm is its spatial
derivative, and Dm is the micro model’s consistent tangent.

3.2.2. MICRO TO MACRO
At each integration point in the macro model, a strain tensor is passed to the micro
model. Considering first-order homogenization, the principle of separation of scales,
and the zero boundary fluctuations model [20], the macroscopic strain is imposed on
the boundary Γm of the micro model via

am = εM ∆x , (3.9)

where ∆x is the relative position vector on the micro model. The micro model is then
solved as a boundary value problem.
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To compute the macro stress tensor σM, the Hill-Mandel principle is used. As a con-
sequence of this principle, the macro stress tensor becomes the volumetric average of
the work done on the surface boundary of the micro model:

σM = 1

Ωm

n∑
i=1

f i
m ⊗ ui

m, (3.10)

where the sum is over the n boundary nodes of the micro model. The vectors f i
m and ui

m
are, respectively, the nodal internal force and displacement vectors of the micro model’s
boundary node i .

The macro-scale consistent tangent DM = ∂σM
∂εM

is computed using the probing method.
Details of the algorithm can be found in Reference [21, Box 2].

3.2.3. COMPUTATIONAL BOTTLENECK
The computational bottleneck in a multiscale scheme is due to the evaluation of the
micro model for each integration point of the macro model: specifically, the solution
of the system of equations (3.8), and the evaluation of the stiffness matrix Km and the
internal force vector f int

m .
In principle, there are two possible approaches to overcome this bottleneck: (1) a

reduction of the computational cost related to the solution of (3.8) and the evaluation of
Km and f int

m , and (2) a complete replacement of the micro model with a computationally
efficient surrogate. In this paper we consider the latter approach.

The rest of the paper is dedicated to the development of a surrogate model that serves
as a computationally efficient surrogate for the micro model.

3.3. SURROGATE FOR THE HISTORY-DEPENDENT MICRO MODEL
Before going any further, let us define the notation used in this work. First of all, for
the sake of readability, we refer to the macro strain and stress tensors as simply strain
and stress tensors. We also drop the subscript M from the symbols of such quantities.
We then indicate the i -th sequence by superscript (i ), the s-th step in a sequence by
superscript [s]. For example, we refer to the strain tensor at step s as ε[s], a strain tensor
sequence as E = (ε[1], ...,ε[s]...,ε[S]), the i -th strain tensor sequence sample as E (i ), and
the i -th strain tensor sequence sample and its corresponding stress tensor sequence as
{E ,Σ}(i ).

In a nonlinear FEM scheme, the micro model from Section 3.2.1 maps a sequence of
strain tensors E = (ε[1], ...,ε[S]) to a sequence of stress tensors Σ= (σ[1], ...,σ[S]):

M : E →Σ. (3.11)

Index s is the accumulated Newton-Raphson iteration number—s = 1 corresponds to
the first time step and the first Newton-Raphson iteration, while s = S corresponds to
the last Newton-Raphson iteration of the last time step.

The aforementioned mapping is the computational bottleneck. To tackle this bottle-
neck, we introduce a surrogate

D : E → Σ̂ (3.12)



3

42 3. RECURRENT NEURAL NETWORK FOR MULTISCALE FEM

ε(n)[s] σ(n)[s]

Figure 3.1: Collecting strain sequence E (n) and its corresponding strain sequence Σ(n) from the standalone
micro model. This is a computationally intractable task. The space of all possible strain sequences is extremely
large and sampling is computationally intractable.

for the micro model M where Σ̂ is the output of the surrogate model and essentially an
approximation of Σ.

The surrogate model D contains a number of parameters W . These parameters need
to be tuned such that the predictions of the surrogate become accurate. Concretely, the
parameters W are tuned such that the discrepancy

e = ‖Σ̂−Σ‖2 (3.13)

between the predictions of the surrogate Σ̂ and the micro model outputsΣ is small. This
process, discussed in Section 4.7, is referred to as training.

To train the surrogate, (3.13) clearly tells us that we not only require a strain tensor se-
quence E to compute the surrogate’s prediction Σ̂, but we also require the corresponding
stress tensor sequence Σ from the micro model. The collection of these data is referred
to as sampling. We further discuss our sampling strategy in the next section.

3.3.1. SAMPLING
To train the surrogate, one needs to collect a set of strain tensor sequences and their
corresponding stress tensor sequences from the micro model.

Naively, as depicted in Figure 3.1, one could apply several different strain sequences
E (n) to the standalone micro model, compute the corresponding stress sequences Σ(n),
and then collect the data {E ,Σ}(n), where n = 1, ..., N and N is the total number of sam-
ples. In practice however this exercise is not technically viable. The space of all pos-
sible strain sequences is extremely large and sampling is therefore computationally in-
tractable.

Due to the problem stated above, we employ a different strategy to collect the strain-
stress data. We essentially consider only a subspace of all possible strain sequences.
Specifically, in contrast with the naive approach, we assume that the data is generated
from a set of macro models (the strategy is detailed in the next paragraph). In this man-
ner, we only sample a small part of the space of all possible strain sequences. Hence,
the sampling procedure becomes computationally tractable. The downside, however, is
that the surrogate model that is trained on these data can only perform accurately in the
macro models that generated the data.

Let us concretely define our sampling strategy: we consider a set of macro models
with a set of configurations (boundary conditions, geometrical features, ...); we run the
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ε(n)[s] σ(n)[s]

Figure 3.2: Collecting strain sequence E (n) and its corresponding strain sequence Σ(n). In contrast to the
strategy depicted in Figure 3.1, here we collect these samples at integration points of an assumed macro model.
This is a computationally tractable task. However, the surrogate that is trained on this data set only performs
accurately when used in the assumed macro model.

FEM simulation, and at each integration point in the macro model we impose the macro
strain ε[s] on the micro model and compute the macro stressσ[s]; at the end of the simu-
lation we stack the macro strain tensors to form E (n) and the macro stress tensors to form
Σ(n) and collect {E ,Σ}(n). This procedure is repeated for several sets of macro model’s
configurations. Note that n unequivocally identifies a certain macro model, a certain
configuration, and a certain integration point of the macro model.

The sampling strategy is depicted in Figure 3.2 and the data structure is depicted in
Table 3.1.

In nonlinear FE analysis

time step: 1
Newton-Raphson iteration: 1 s=1
Newton-Raphson iteration: 2 s=2
Newton-Raphson iteration: 3 s=3

time step: 2
Newton-Raphson iteration: 1 s=4

time step: 3
Newton-Raphson iteration: 1 s=5
Newton-Raphson iteration: 2 s=6

Sample data from an integration point

E (n) = (ε(n)[1],ε(n)[2],ε(n)[3],ε(n)[4],ε(n)[5],ε(n)[6])

Σ(n) = (σ(n)[1],σ(n)[2],σ(n)[3],σ(n)[4],σ(n)[5],σ(n)[6])

b(n) = (b(n)[1],b(n)[2],b(n)[3],b(n)[4],b(n)[5],b(n)[6])

Table 3.1: Data collection method: data is collected at each Newton-Raphson iteration.

The data that we collect from the macro model, at each step s, could correspond to
a converged or a not converged Newton-Raphson iteration. We keep track of converged
Newton-Raphson iteration through the scalar b[s] and refer to it as the convergence indi-
cator. We set b[s] to one if the data at index s is converged or otherwise set it to zero. We
then collect these scalars in the convergence indicator sequence b = (b[1], ...,b[S]). Later,
in Section 3.3.2, b is used to treat converged and not converged data differently.

It is important that the data are collected from all Newton-Raphson iterations, con-
verged and not converged. To illustrate this matter, consider a scenario in which we
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iterations previous solution current solution

1 at−1 a1

2 a1 a2

3 a2 a3

Table 3.2: Newton-Raphson iterations of time step t .

train the surrogate only on the converged data. As a result, the surrogate would perform
poorly at the intermediate Newton-Raphson iterations. As an illustrative example, con-
sider the Newton-Raphson iterations in Table 3.2. Let us consider the scenario in which
the surrogate model is only trained on the data from the converged Newton-Raphson
iterations. At time step t , the Newton-Raphson scheme uses the converged solution at
time step t−1 to compute the solution of the first iteration a1, but it does so inaccurately.
Then it uses the solution of the first Newton-Raphson iteration a1 to compute that of the
second a2. The solution of the first Newton-Raphson iteration was already erroneous,
therefore the solution of the second iteration can only be worse. In this fashion, the er-
ror accumulates in the following Newton-Raphson iterations. Training the surrogate on
both converged and not converged steps circumvents this issue. When dealing with a
nonlinear problem, it is common practice to train the model on both converged and not
converged data as done for instance in Refereces [22, 23]. In practice, we observe that
the models that were trained on converged and not converged data are often numeri-
cally more stable than those that are only trained on converged data.

To summarize, using the sampling strategy depicted in Figure 3.2, we collect samples
{E ,Σ,b}(n), where n = 1, ..., N and N is the total number of sequences.

3.3.2. RECURRENT NEURAL NETWORK

We employ a recurrent neural network (RNN), which is a class of deep learning mod-
els, to map the strain sequence E = (ε[1], ...,ε[S]) and convegence indicator sequence
b = (b[1], ...,b[S]) to stress sequence Σ = (σ[1], ...,σ[S]). Different types of RNN models
are discussed in Reference [16]. Here, we propose the RNN model in Figure 3.3, which
essentially is a computational graph. It consists of several nodes (mLSTM, dropout, and
dense cells) that represent operations and a number of edges that represent operands
(ε[s], h[s], z [s], ẑ [s], σ[s]).

Let us break down the RNN graph in Figure 3.3 by walking through it. The graph
takes vectorized versions of strain ε and stress σ tensors. Then, at each step s, the mod-
ified Long-Short Term Memory (mLSTM) cell, further elaborated in Section 3.3.2, maps
the strain vector ε[s], the convergence indicator b[s], and the history vector h[s−1] to the
vector z [s] and the updated set of history vectors h[s]. Note that z [s] depends not only
on ε[s] but also on (ε[1], ...,ε[s−1]) through the set of history vectors h[s−1]. This attribute
resembles a history-dependent constitutive model. The output of the mLSTM cell z [s] is
then passed through the dropout cell [24]. The dropout cell sets some of z [s] entries to
zero and outputs z̃ [s]. How dropout works and its merits are further discussed in Sec-
tion 3.3.2. Finally, the dense cell, which is described in Section 3.3.2, maps z̃ [s] to the
output stress vector σ̂[s].
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mLSTM

ε[1] b[1]

h[0] h[1]

dropout

z [1]

dense

z̃ [1]

σ̂[1]

... mLSTM

ε[s] b[s]

h[s−1] h[s]

dropout

z [s]

dense

z̃ [s]

σ̂[s]

... mLSTM

ε[S] b[S]

h[S−1]

dropout

z [S]

dense

z̃ [S]

σ̂[S]

Figure 3.3: Recurrent neural network computational graph. It consists of several nodes (mLSTM, dropout, and
dense cells) that represent operations and a number of edges that represent operands (the strain vector ε[s], a
set of history vectors h[s], the output of the mLSTM cell z [s], the output of the dropout cell ẑ [s], and the output
stress vector σ[s])

In the following sections we elaborate on the mLSTM cell, discuss dropout and its
merits, and define the mapping from z [s] to σ̂[s] in the dense cell.

MODIFIED LONG-SHORT TERM MEMORY WHICH RESEMBLE A NONLINEAR FINITE ELEMENT

ANALYSIS

Recurrent neural networks are known to suffer from vanishing gradients. The vanishing
gradient problem manifests itself while training RNN models with gradient-based opti-
mizers (refer to Hochreiter et al. [25, 26] for a detailed description). The consequence of
vanishing gradients is that the training takes too much time. To overcome this problem,
Hochreiter and Schmidhuber [27] suggest employing a specific cell called Long-Short
Term Memory (LSTM). A clear explanation of the LSTM cell is given by Olah [28]; here,
for the sake of completeness, we explain its algorithm. Note that, except for our modifi-
cation, we follow the standard formulation of the LSTM cell. Furthermore, it should be
noted that one should avoid endowing operands or operations in the LSTM cell with any
physical semantics as they are replaceable with other operands and operations, as done
for instance by Cho et al. [29].

A typical LSTM cell accepts an input vector ε[s] and a set of history vectors h[s−1] =
{d [s−1],c [s−1]}. The history vectors are commonly referred to as hidden state d [s−1] ∈
Rk and cell state c [s−1] ∈Rk , where k is the size of the LSTM cell. After processing the
input and history vectors, the LSTM cell produces the output z [s] and updates the history
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vectors h[s].
We modify a typical LSTM cell such that it resembles the stress update procedure in

a typical nonlinear FE analysis with a history-dependent constitutive model. We refer to
the modified LSTM cell as mLSTM. In such FE analysis, only the history parameters of
the converged Newton-Raphson step is passed to the next time step. In the mLSTM cell,
we enforce such behavior by only allowing the history vectors of the converged steps
to pass on. To this end, we modify the history vectors h[s] emission mechanism. We
pass in an additional input b[s] to the LSTM cell. If the value of b[s] is equal to one, we
emit the updated history vectors h[s]. Otherwise, we reset the history vectors to that
of the previous steps and emit them. In this manner, we only pass the history vectors
of the converged Newton-Raphson steps to the next step. Next, we describe the overall
mechanism of an mLSTM cell.

The mLSTM cell starts with updating the cell state

c [s] = f [s] ¯c [s−1] + i [s] ¯ ĉ [s], (3.14)

then it updates the hidden state

d [s] = o[s] ¯ tanh(c [s]), (3.15)

and finally it computes the output vector

z [s] = o[s] ¯ tanh(c [s]). (3.16)

The modification that we introduce is that we only update the history vectors h[s] =
{d [s],c [s]} if the value of b[s] is one. If b is equal zero, we keep using the previous his-
tory vectors h[s−1].

In the equations above, ¯ is the element-wise product operation, vectors

i [s] = sigmoid(W i
e ε

[s] +W i
d d [s−1] +bi ), (3.17)

f [s] = sigmoid(W f
e ε

[s] +W f
d d [s−1] +b f ), (3.18)

o[s] = sigmoid(W o
e ε

[s] +W o
d d [s−1] +bo), (3.19)

are the input, the forget, and the output gates, respectively, vector c [s−1] is the previous
step’s cell state, and vector

ĉ [s] = tanh(W c
e ε

[s] +W c
d d [s−1] +bc ), (3.20)

is the candidate for the updated cell state. The tanh and sigmoid functions are meant to
work element-wise across a vector.

In the mLSTM cell, there are in total four sets of trainable weight matrices W #
e ∈Rk×l ,

W #
d ∈Rk×k , and bias vectors b# ∈Rk , where # ∈ {i ,o,c, f }, k is the size of the mLSTM cell,

and l is the size of the strain and stress vectors. We discuss how to tune these trainable
parameters in Section 4.7.

The gates take values between zero and one and therefore they serve as filters. At one
extreme, if the input gate is zero and the forget gate is one, the model completely ignores
the history. And at another extreme, if the input gate is one and the forget gate is zero, the
model only uses the history and ignores the current step’s computations. This attribute
endows the model with the capability of capturing very long term dependencies and
simultaneously the ability of completely ignoring even very short term dependencies.
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REGULARIZATION VIA DROPOUT

We expect an RNN model not only to fit to the data that it is trained on, but also to learn
patterns in the data and therefore become capable of making accurate predictions on
the new data. This is however challenging. By simply increasing the size of the mLSTM
cell, the model overfits to the training data and fails to generalize. The standard way to
mitigate overfitting is to regularize the model. In this section we introduce an effective
regularization technique called dropout [24].

During training, the dropout cell takes the output of the mLSTM cell z [s] and ran-
domly zeros some of its entries through

ẑ [s] = 1

p
r ¯ z [s], (3.21)

where r is a vector of Bernoulli random numbers with probability p ∈ (0,1] where p
is the probability that each entry of z [s] is kept. In other words, p tunes the level of
reguralization—the lower the value of p, the higher the effect of reguralization. After
training is over, and when the model is used, the value of p is set to one, and the whole
network is used for prediction. Since p is less than one during training, it is possible to
to show that the average value of ẑ [s] becomes larger than z [s] [24]. To remedy this issue,
the right-hand side of (3.21) is multiplied by 1/p [30].

Training is an iterative procedure and is discussed further in Section 4.7. At each
training step, the dropout makes a part of the network inactive. In other words, it is as if
a smaller network is being trained at each training step. This can be regarded as ensem-
ble learning [24], an approach that regularizes the model and increase its generalization
capabilities.

COMPUTING THE PREDICTION OF THE MODEL

At the very top of the RNN model, in the dense cell, we map the output of the dropout
ẑ [s] to the model’s prediction of the stress vector according to

σ̂[s] =W z̃ [s] +b, (3.22)

where the weight matrix W ∈Rl×k and the bias vector b ∈Rl contain trainable parame-
ters, the size of the stress vector is l , and the size of the dense layer k is equal to the size
of the output of the mLSTM cell.

The sole purpose of the linear transformation is to map the output of the dropout
cell from the space of ẑ [s] to the space of σ̂[s].

3.4. TRAINING
Before training, the model predictions are erroneous. We employ a loss function to mea-
sure the error e between the predicted stress vector sequence Σ̂ and the sampled stress
vector sequence Σ. We further discuss the loss function in Section 3.4.1.

In Sections 3.3.2 and 3.3.2 we indicated the trainable parameters. The training con-
sists in the optimization of these parameters such that the aforementioned error be-
comes sufficiently small. The optimization technique that we employed is introduced in
Section 4.5.3. The training graph of the RNN model is depicted in Figure 3.4. The graph
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Figure 3.4: The training graph of the RNN model. The graph in Figure 3.4 is essentially the graph in Figure 3.3
plus the additional node on top, which we refer to as loss cell. The loss cell takes the output stress vector σ̂
together with the target stress vector σ and computes the error e using the loss function (3.23).

in Figure 3.4 is essentially the graph in Figure 3.3 plus the additional node on top, which
we refer to as the loss cell. The loss cell takes the output stress vector σ̂ together with the
target stress vector σ and computes the error e using the loss function (3.23).

3.4.1. LOSS FUNCTION

We measure the difference between the output of the RNN model and the target output
by computing the mean squared error

e = 1

N

N∑
n=1

E (n) with E (n) = 1

S(n)

S(n)∑
s=1

e[s] and e[s] = ‖σ[s] − σ̂[s]‖2
2, (3.23)

where N is the total number of training data sets and S(n) is the length of the n-th se-
quence. It is important to normalize the error with N and S(n) because one can then
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compare the magnitude of error across several models with different number of training
data and sequence lengths.

3.4.2. OPTIMIZATION OF TRAINABLE PARAMETERS
Trainable parameters in a deep learning model are commonly optimized using a gradient-
based optimizer. These parameters are initially set to random numbers and then are it-
eratively tuned until the value of the error (3.23) becomes small. To this end, we use a
specific gradient-based optimizer called Adam [31]. For further reference, Goh [32] ex-
plains how optimizers that include momentum, such as Adam, should be understood in
an amusingly interactive manner.

3.5. HYPERPARAMETERS
There are several parameters in the RNN model that we cannot train using a gradient-
based optimizer. These are commonly referred to as hyperparameters. These parame-
ters, however, have impact on the training process and performance of the trained model
and therefore we need to tune them. The hyperparameters that we tune are the size
of the mLSTM cell k and the dropout probability p. We consider typical values for the
rest of the hyperparameters. For instance, we accept the additional training cost and
do not truncate the input-output sequences, and we employ the recommendation of
Kingma et al. [31] for the parameters of the Adam optimizer.

Tuning these hyperparameters is essentially a trial-and-error exercise. We utilize a
mixture of manual trial-and-error attempts and Bayesian optimization method [33] to
tune them.

Due to the bias and variance trade-off [34], one should not expect the generalization
capability of the RNN model to monotonically increase by, for instance, increasing the
mLSTM cell size k. This is in contrast to a finite element analysis in which, for instance,
by increasing the resolution of the mesh the quality of the solution monotonically in-
creases.

3.6. SURROGATE INJECTION INTO THE MACRO MODEL
Up to this point the RNN model that is meant to serve as a surrogate for the micro model
is fully discussed. In this section, we discuss the injection of this surrogate into the macro
model.

Let us first consider the stress update procedure in the macro model. Figure 3.5 de-
picts this procedure. In each integration point, at each time step t , and Newton-Raphson
iteration i , we pass a strain tensor ε[t ,i ] and a strain increment ∆ε[t ,i ] = ε[t ,i ] − ε[t ,i−1]

to the micro model. We apply strain tensors to the micro model as a set of Dirichlet
boundary conditions, as defined in Section 3.8. We then evaluate the micro model and
compute the stress σ[t ,i ] and a set of history parameters. Should the Newton-Raphson
scheme converge, we update the history parameters h[t ]

m .
Let us inject the RNN model in the aforementioned stress update procedure. The

stress update procedure with the RNN model in place of the micro model is depicted
in Figure 3.6. There are a number of differences between the computational graph in
chapter-3/figures 3.5 and 3.6. First, the RNN model does not need the incremental
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Figure 3.5: Stress update procedure at each integration point in a macro model. The history parameters set hm
contains accumulated plastic strain κ and stress tensor σ of each integration point of the micro model.
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converged? h[t ] ← h[t ,i ]
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Figure 3.6: Stress update procedure at each integration point in a macro model when using the RNN model
as a surrogate for the micro model. The history parameters are that of the RNN model which are defined in
Section 3.3.2. We take the task of updating the history parameters to the macro model from the mLSTM cell by
setting b = 1 and delegate it to the macro model.

macro strain to predict the stress. Then, the hm set of history parameters of the mi-
cro model, which consists of the accumulated plastic strain κ and the stress vector σ of
each integration point of the micro model, is changed to the history vectors of the RNN
model h. Finally, since the control over updating history parameters is delegated to the
macro model, we trivially set the input b[t ,i ] to one. With b[t ,i ] being one, the mLSTM
cell always emits the updated value of history parameters.

From the implementation point of view, these changes can be incorporated into a
parent multiscale code with minimal intrusion.

3.6.1. COMPUTING THE CONSISTENT TANGENT USING AUTOMATIC DIFFER-
ENTIATION

Automatic differentiation is basically the application of chain rule to compute deriva-
tives of numerical functions in a computer program [17]. Unlike numerical differentia-
tion, it is exact up to the machine precision. And it differs from analytical differentiation
by not requiring a closed form derivative expression.

Any deep learning library, such Tensorflow [18] and Pytorch [35], contains an au-
tomatic differentiation functionality that can be leveraged to compute the consistent
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tangent

D [t ,i ] = ∂σ[t ,i ]

∂ε[t ,i ]
. (3.24)

Using a deep learning library’s automatic differentiation functionality, the consistent
tangent can be computed in exactly one line of code.

3.6.2. TECHNOLOGIES USED FOR IMPLEMENTATION
The entire framework is implemented in Python. In the implementation of the multi-
scale model we make use of the SciPy ecosystem [36]. We implement the RNN model
using the Tensorflow library [18].

In the Python environment, interfacing Tensorflow library and SciPy ecosystem is
readily possible. The output of the RNN model, the strain vector, in Tensorflow is a SciPy
object, and therefore this output can immediately be used in the macro model, which is
implemented using the SciPy ecosystem.

3.7. DISCUSSION ON COMPUTATIONAL COST
The computational cost of the RNN model is directly related to the size of the mLSTM
cell k. The larger the value k, the larger the computational cost becomes.

Objectively comparing the computational cost of a standard FE-based micro model
and that of an RNN model is very difficult. Nevertheless, based on the following remarks,
we deduce that the RNN model is to be preferred:

(1) the computational complexity of the RNN model is independent of the resolution
of the micro model’s mesh—one may liberally increase the FE mesh resolution and
sample more accurate data, but train the same RNN model that was used for the
data from the coarse mesh;

(2) the computational complexity of the RNN model is independent of that of the con-
stitutive model of the micro model—one may enrich the constitutive model of the
micro model, on the condition that patterns in the data do not completely change,
and collect more accurate data, but train the same RNN model as the surrogate;

(3) among matrix operations, matrix inversion has the largest contribution to the com-
putational cost in a micro model–luckily, there is no matrix inversion in an RNN
model; and

(4) the evaluation of the constitutive model of the micro model also has a major con-
tribution to the computational cost—the computational complexity of the RNN
model is independent of that of the constitutive model and is also independent of
the number of times the constitutive model has to be evaluated, i.e. the number
of integration points in the micro model.

In Section 3.8, we cautiously report the computational speed up. At the same time,
we acknowledge that the numbers that we report could vary significantly with different
implementations.
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Figure 3.7: The length of the specimen (a) is assumed to be significantly larger than its height and width,
therefore we model it as a one-dimensional macro model (b) and to incorporate the inclusions we consider
the micro model (c).

3.8. APPLICATION
The specimen depicted in Figure 3.7a is a bar with a rectangular cross-section. The bar
contains cylindrical inclusions along its length. We pull the bar by imposing a uniform
displacement at its ends. The material parameters are: Young’s modulus E = 1000 MPa;
Poisson’s ratio ν= 0.25; yield stress σY = 1 MPa; viscosity parameter η= 10−5 s−1. Other
model parameters are taken as β = 1, a =−1, and b = 100. The use of these parameters
is discussed in Section 4.2.

We assume that the length of the bar is considerably larger than its width and height.
Hence, we model it as a one-dimensional object. To incorporate the cylindrical inclu-
sions we employ a multiscale scheme. We consider a one-dimensional homogeneous
bar as the macro model and, due to symmetry, a two-dimensional plate with half a circle
cut out of its bottom edge as the micro model. The macro and micro models are depicted
in chapter-3/figures 3.7b and 3.7c, respectively.

At each integration point in the macro model, we impose the macro strain on the
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micro model as a set of Dirichlet boundary conditions. Since the macro strain is uniaxial,
the micro model deforms uniaxially as well. To this end, we impose the following sets of
boundary conditions on the micro model in Figure 3.7c:

uright
x = uleft

x +ε lm

ubottom
x = 0

u1
y = u1

x = u4
x = 0

u2
x = u3

x = ε lm

(3.25)

Note that the micro model in Figure 3.7c does not statistically represent the hetero-
geneity of the object in Figure 3.7a. To truly construct a representative volume element
(RVE), one needs to study the impact of considering more inclusions into the micro
model. The performance of our RNN model however is independent from the statis-
tical qualities of the micro model. We therefore employ the micro model in Figure 3.7c
to prove the concept.

In the following sections we reduce the computational cost of the multiscale model
by replacing the micro model with an RNN model.

3.8.1. USING AN RNN MODEL AS A SURROGATE FOR THE MICRO MODEL
In this section we show that, in principle, the RNN model from Section 4.7 can be trained
to serve as an efficient surrogate for the micro model.

We first conduct a mesh refinement study to identify a reasonable micro model dis-
cretization. For this example we consider the following measurements: length of the bar
l = 10 mm; width of the bar b = 0.8 mm; height of the bar h = 1 mm; radius of inclu-
sion r = 0.5 mm; length of the micro model lm = 2 mm. We pull one end of the bar at a
displacement rate u̇ of 1.33×10−5 mm/s until it is pulled 2 mm. We clamp the other end.

We discretize the macro model using five one-dimensional linear elements. For the
micro model, we employ three finite element models with increasing number of ele-
ments. In Figure 3.8a the reaction force at the left end of the macro model is plotted
against the imposed displacement at its right end. Given the closeness of the results, we
select the micro model with 192 linear triangular elements as the converged solution. To
illustrate the failure mode of the specimen, we plot the accumulated plastic strain of all
micro models in Figure 3.8b.

With the micro model chosen, as a sanity check, we reproduce the results of the mi-
cro model with the RNN model. To this end, we sample data using the strategy set forth
in Section 3.3.1. In each integration point, at each time step and Newton-Raphson it-
eration, we collect the strain and the corresponding stress tensors. In this manner, as
discussed in Section 3.3.1, we collect samples from both converged and not converged
Newton-Raphson iterations. We then train an RNN model on these data. Through pro-
cedures explained in Section 3.5, we consider the size of the mLSTM cell k = 200 and the
dropout probability p = 0.5.

We inject the trained RNN model in place of the micro model in the multiscale scheme.
The force-displacement curves of the macro model with RNN are compared against that
obtained with the micro model in Figure 3.9. The RNN is not only accurate, but is also
considerably faster than the micro model. Based on our implementation, we gain two
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Figure 3.7b against the imposed displacement u at the right
boundary.

(b1) 57 elements

(b2) 192 elements

(b3) 656 elements

(b) Accumulated plastic strain at the end of simulations:
(b1) blue curve, (b2) red curve, and (b3) black curve in
Figure 3.8a.

Figure 3.8: A uniform mesh refinement study for the micro model. The micro model with 192 triangular ele-
ments is selected for the study.

orders of magnitude speed up. Nevertheless, we acknowledge that this speed up could
significantly vary with a different implementation or a different micro model.

In this example we trained the RNN model on a set of stress-strain data collected
from the macro model. We then used the RNN model to predict exactly the same data.
This is a trivial exercise which serves as a sanity check. In practice we are interested in
an RNN model that can predict and not merely reproduce the data it was trained on. In
the next section we show that our RNN is capable of predicting data it did not previously
observe.

3.8.2. THE RNN MODEL FOR A RANGE OF PARAMETERS

Let us consider the macro model is Figure 3.7 again. We increase the imposed displace-
ment u linearly until it reaches a maximum value of umax and then reverse the impose
displacement until the imposed displacement goes back to zero. For this example we
consider the following: length of the bar l = 100 mm; width of the bar b = 0.8 mm;
height of the bar h = 1 mm; radius of inclusion r = 0.5 mm; length of the micro model
lm = 2 mm. The macro model is discretized with 50 linear elements and the micro model
with 192 linear triangular elements.

The goal is to build a multiscale scheme that runs fast and is accurate in the follow-
ing range of parameters: umax ∈ [0.5,1.0] mm, u̇ ∈ [1.33,6.67]× 10−4 mm/s. We follow
the sampling strategy explained in Section 3.3.1. For the sake of simplicity, we uniformly
sampled the parameters umax and u̇ in the aforementioned ranges. Specifically, we sam-
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Figure 3.9: A sanity check: we train an RNN model on data generated from one configuration of macro model
and plot the reaction force f at left boundary of the macro model in Figure 3.7b against the imposed displace-
ment u at the right boundary.

ple stress-strain data from the macro model with all possible permutations of the fol-
lowing set of parameters: umax ∈ {0.5,0.75,1.0} mm, u̇ ∈ {1.33,4,6.67}×10−4 mm/s. We
then train the RNN model in Section 4.7 with the following set of hyperparameters: the
size of the mLSTM cell k = 200, and the dropout rate p = 0.5. Again, these hyperparam-
eters are chosen through a trial-and-error procedure as explained in Section 3.5. To test
the performance of the RNN model, Figure 3.10 shows the force-displacement curves
of the macro model with four sets of parameters {umax, u̇} that were not observed dur-
ing training. Figure 3.10 shows that the RNN model performs accurately as long as the
parameters umax and u̇ are in the range of data that the RNN model is trained on. The
speed up for our implementation is three orders of magnitude. However, as soon as the
parameters leave this range, the RNN model loses its accuracy. For instance in chapter-
3/figures 3.11, the value of umax is outside of this range. Basically, an RNN model learns
the underlying patterns of the training samples. We collect training samples from a cer-
tain part of the parameter space related to umax and u̇. Consequently, the RNN model
only learns patterns which are specific to that part of the parameter space. As a result,
extrapolation is often inaccurate. Interestingly, in this specific case, the RNN model can
still follow the trend.

In such scenarios, where we are interested in increasing the range of parameters that
the RNN can perform accurately on, the RNN model should be retrained. We do so in
the next section.

3.8.3. RETRAINING THE RECURRENT NEURAL NETWORK WITH NEW TRAIN

DATA

In the previous application we showed that the RNN model is accurate when interpolat-
ing between training data but fails when extrapolating.

The straightforward solution to boost the accuracy of the RNN model is to retrain
it. To this end, we collect new data in proximity of the parameters that the model per-
forms poorly at, i.e. u̇ = 10.67×10−4 mm/s. Specifically, we extend the umax set to u̇ ∈
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Figure 3.10: A comparison between accuracy of the micro model and that of the RNN model: we plot the
reaction force f at left boundary of the macro model in Figure 3.7b against the imposed displacement u at the
right boundary. None of these four cases was used in the training process.
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Figure 3.11: The RNN model loses accuracy when the imposed displacement rate u̇ is out of the range of data
the RNN model is trained on, i.e. u̇ 6∈ [1.33,6.67]×10−4 mm/s. We show this by plotting the reaction force f at
left boundary of the macro model in Figure 3.7b against the imposed displacement u at the right boundary

{1.33,4,6.67,13.33}×10−4 mm/s. We intentionally make sure that u̇ = 10.67×10−4 mm/s
is not included during the training process to illustrate the predictive capability of the
RNN model. Unlike the procedure discussed in Section 4.5.3, where we initialized the
trainable parameters to random numbers, here we initialize them to their previously op-
timized values.

To show the enhanced performance of the retrained model, we plot the force-displacement
curves of the same cases as in previous example. chapter-3/figures 3.13 show that the
RNN-based multiscale model still performs accurately in all previous scenarios. And
thanks to retraining, it is also accurate when u̇ = 10.67× 10−4 mm/s as shown in Fig-
ure 3.12.

In practice, it has been observed that the performance, in terms of accuracy, of a neu-
ral network increases by enriching the data set and the size of the neural network [37].
Objectively comparing the impact of the size of the train set on the performance of a
neural network is however not a trivial task. One of the rare instances of such study can
be found in Reference [38].

Until this point the macro model exhibited a constant strain field. Therefore, the
prediction of the RNN model was the same at all integration points in the macro model.
In the next section we consider a FEM model in which the strain field localizes.

3.8.4. STRAIN LOCALIZATION IN A ONE-DIMENSIONAL BAR
To simulate strain localization, we introduce an imperfection at the center of the bar in
Figure 3.14. The width of the imperfection zone is 0.9 times the area of the rest of the bar
and its length is one tenth of the length of the bar. The other measurements are the same
as in the previous example. We pull one end of the bar at the rate of u̇ until it is pulled
by 2 mm; the other end is clamped. The bar is discretized with 50 linear finite elements
elements, five of which are in the weak zone.

We acknowledge that the response of the macro model, due to strain softening and
localization, is mesh dependent. Removing such pathological mesh dependence in a
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Figure 3.12: Comparing this figure with Figure 3.11, it is clear that considering an enriched set of data, i.e.
u̇ ∈ {1.33,4,6.67,13.33}×10−4 mm/s, boosts the accuracy of the RNN model.
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Figure 3.13: The RNN model trained on the enriched set of data performs as accurately as it used to do in
Figure 3.10.
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Figure 3.14: An imperfection of length L̄ = 0.9L is introduced at the center of the macro model in Figure 3.7b.
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Figure 3.15: The reaction force f at left boundary of the macro model in Figure 3.7b against the imposed
displacement u at the right boundary. The average response of the macro model in Figure 3.14 appears to be
accurate when using the RNN in place of the micro model.

multiscale method, to the extend of our knowledge, remains an open question if contin-
uum models are employed at both scales. In this example our goal is to build a multiscale
scheme that runs fast and is accurate for the previously specified parameters and all val-
ues of the imposed displacement rate u̇ in the range [1.33,6.67]×10−4 mm/s.

Following the strategy set forth in Section 3.3.1, we collect data from the macro model
with u̇ ∈ {1.33,4,6.67}×10−4 mm/s. Then we train the RNN model with size of the mL-
STM cell k = 200 and rate of dropout p = 0.5. Coincidentally, this RNN model is identical
to that of the preivous example. We reached these hyperparameters through hyperpa-
rameter tuning strategies mentioned in Section 3.5.

We test the accuracy of the model by testing it with imposed displacement rates that
were not observed during training, u̇ ∈ {2.67,5.33}×10−4 mm/s. The force-displacement
curves are depicted in Figure 3.15. It appears that the RNN model performs accurately
as the micro model surrogate in terms of structural response of the macro model. We
further zoom into strain fields and stress-strain response of the macro model to study its
response at the element level.

The strain fields in the macro model, depicted in chapter-3/figures 3.16, show strain
localization at the center of the bar. We observe that the strain field localizes more when
u̇ = 2.67× 10−4 mm/s (Figure 3.16a) than when u̇ = 5.33× 10−4 mm/s (Figure 3.16b).
We also observe that as the strain field localizes further, the discrepancy between the
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Figure 3.16: Evolution of the axial strain field. From Figure 3.16a it is apparent that the accuracy of predicted
strain field diminishes when the rate of imposed displacement u̇ = 2.67× 10−4 mm/s. In Section 3.8.4 we
remedy this issue by retraining the RNN model on an enriched training set.

RNN-based multiscale model and the classical one becomes greater. This discrepancy
can be resolved by retraining the RNN model in fashion similar to that discussed in Sec-
tion 3.8.3. We do so in the next section.

Let us now study the stress-strain curves, chapter-3/figures 3.17a and 3.17b, of an el-
ement inside the localization region, and another one outside it. We observe that when
the strain rate is smaller and strain localization is greater, the discrepancy between RNN
and micro model predictions become larger. In the next section we show that by retrain-
ing the RNN model on an enriched set of samples this discrepancy disappears.

3.8.5. STRAIN LOCALIZATION IN A ONE-DIMENSIONAL BAR: RETRAINING

In the previous example we observed that the RNN model is less accurate when the strain
rate is smaller. The straightforward way to increase the accuracy is to retrain the RNN
model with an enriched set of samples. Specifically, we expand the data set by collecting
data from the macro model with strain rates u̇ ∈ {1.33,2,3.33,4,6.67}×10−4 mm/s. Note
that we deliberately kept u̇ ∈ {2.67,5.33}×10−4 mm/s out of the data set that we use for
training to assess the predictive capability of the RNN model.

From Figure 3.18, we observe that the force-displacement curves are still accurate.
We observe a significant boost in the accuracy of the strain field when the strain rate is
2.67×10−4 mm/s by comparing Figure 3.19a and 3.16a. The accuracy of the stress-strain
curve in Figure 3.20a is slightly improved when comparing it with that of in Figure 3.17a.

Let us consider a classical constitutive model to create an analogy for retraining. One
tunes a constitutive model based on a set of experimental samples. The more experi-
mental samples one acquires, the more accurate the constitutive model becomes. The
computational complexity of evaluating a constitutive model is however independent of
the amount of experimental samples. A similar procedure is in order here. The more
samples we train the RNN model on, the more accurate the RNN model becomes. The
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Figure 3.17: Strain-strain response of an element in the middle of the macro model, depicted in Figure 3.14,
and the element adjacent to the clamped boundary.
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Figure 3.18: Reaction force f at left boundary of the macro model in Figure 3.14 against the imposed displace-
ment u at the right boundary. Comparing this figure with Figure 3.15, it appears that the average response of
the system remains accurate when the RNN model is trained on an enriched set of data.
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Figure 3.19: Evolution of the axial strain field. Comparing this figure with Figure 3.16 it is clear that, by training
the RNN model on an enriched set of data, the accuracy of the predicted strain field increases.

computational cost of training the RNN model inevitably becomes larger. The compu-
tational complexity of evaluating it however remains the same.

Up until this point we trained two RNN models. One which only works for the macro
model with no imperfection and the other for the macro model which exhibits strain
localization. In the next section we train one RNN model that works for both these macro
models at the same time.

3.9. A RECURRENT NEURAL NETWORK THAT WORKS FOR A SET

OF MACRO MODELS
The samples that we collected from the two macro models in the previous sections are
generated from an identical constitutive model, namely the micro model with Perzyna
viscoplasticity. The RNN model is essentially a surrogate for this constitutive model.
Therefore, it is reasonable to expect that one RNN model can be trained on both sets
of data simultaneously. In this section we put this hypothesis to a test. Specifically, we
collect the samples from Section 3.8.3 and 3.8.5 in one data set. We train the RNN model
with the same hyperparameters as in previous examples on this set.

We execute the simulations from chapter-3/figures 3.13a, 3.13b, 3.13c, 3.13d, 3.12,
3.15a, and 3.15b with the newly trained RNN model. We depict the result of these sim-
ulations in chapter-3/figures 3.21a, 3.21b, 3.21c, 3.21d, 3.21e, 3.22a, and 3.22b, respec-
tively. It is evident that the RNN model, which is trained on the data from both macro
models in the previous sections, performs accurately.

The sampling strategy put forth in Section 3.3.1, on the one hand, sacrifices the ver-
satility of the RNN model. For instance, in this example, the RNN model can only reliably
be used in the macro models depicted in chapter-3/figures 3.7b and 3.14. On the other
hand however, it dramatically simplifies the previously very difficult task of sampling.
And hence, it makes the application of the RNN model viable.
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Figure 3.20: Stress-strain response of an element in the middle of the macro model depicted in Figure 3.14 and
the element adjacent to the clamped boundary. Comparing Figure 3.17a with Figure 3.20a, it appears that the
accuracy of the stress-strain curve of the middle element (dashed black curve) is slightly increased. This is due
to the fact that the RNN model is trained on an enriched set of data.

3.10. CONCLUSIONS

In this contribution we introduced an RNN model that serves as an efficient surrogate
for the micro model in a multiscale finite element analysis. We trained the RNN model
on a set of data generated by a micro model. The data in the set are collected using an ef-
ficient sampling technique that we proposed. We also discussed how to implement the
RNN model in a multiscale scheme and how to compute the consistent tangent using
automatic differentiation. Finally, we assess the performance of the RNN model through
a series of academic tests, and we observe that its accuracy can be boosted through re-
training on an enriched data set.

In our experiments, the RNN model is remarkably faster than the FE-based micro
model (note that this is not a universal fact as one can easily construct an RNN model
that is computationally more expensive than a finite element model). Despite the run-
time speed improvements compared to classical FEM simulations, the training time of
the RNN model is considerable. A reasonable question is whether this efficient RNN
model is worth the time spent on its training. To answer this question one needs to
consider the application at hand. Assume for instance that the runtime of a multiscale
model is 10 hours, and it takes 1000 hours to train an RNN model. The runtime of the
RNN-enhanced multiscale model is only 1 hour. Then, the tenfold speed up becomes
only useful if we are interested in running more than 112 simulations (runtime of the
multiscale model for 112 simulations: 112 × 10 = 1,120 hours; runtime of the RNN-
enhanced multiscale model 1,000+112×1 = 1,112 hours).

In our experiments, the RNN model appears to be very accurate (it is to be noted
however that there exist no guarantee that this accuracy can always be achieved) and, if
needed, we have the means (by retraining) to boost its accuracy. However, the parame-
ters of the RNN model are non-physical. The question that arises here is whether a non-
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Figure 3.21: Reaction force f at left boundary of the macro model in Figure 3.7b against the imposed displace-
ment u at the right boundary. The RNN model still performs very accurately when trained on a set of data from
both macro models shown in chapter-3/figures 3.7b and 3.14.
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Figure 3.22: Reaction force f at left boundary of the macro model in Figure 3.14 against the imposed displace-
ment u at the right boundary. The RNN model still performs very accurately when trained on a set of data from
both macro models show in chapter-3/figures 3.7b and 3.14.

physical and completely data-driven model is reliable. The RNN model that is developed
in this work is physically-reliable as long as it is accurate. The RNN model is essentially a
surrogate for a physics-based micro model. As a result, this model approximates the re-
sponse of the physics-based micro model. Hence, it approximately satisfies its physical
features. The more accurate the RNN model, the more accurately the physical features
of the micro model are reproduced. In any case, it is also possible to measure the degree
of reliability of the RNN prediction by developing a prediction interval [39] (a prediction
interval is an estimate of an interval in which the predictions of the RNN model will fall,
with a certain probability).

A trained RNN model is at best capable of interpolating between the training data.
So, if the RNN model is trained on data from an uniaxial loading condition, it cannot
accurately predict bending. However, one may train the RNN model on data from both
uniaxial and bending conditions. The RNN model trained in this way will be accurate for
both uniaxial and bending loading conditions.

An interesting characteristic of an RNN model is that by training it on more data (for
instance, data from different loading conditions) and at the same time increasing the
size of the RNN (either size of each layer, or number of layers) its accuracy increases. This
characteristic suggests a fundamental trade-off between range of patterns the model can
learn and its computationally complexity. The more variety of loading conditions the
RNN model is trained on, the larger the RNN needs to be to maintain an acceptable
level of accuracy. However, the larger the RNN, the more computationally expensive it
becomes. Ultimately, it is possible to construct an RNN model that, in spite of being
accurate, is much more computationally demanding than a corresponding FEM model.

Can we construct an RNN model on a set of data collected from lab experiments? In
our opinion, such experimentally-trained RNN model would not perform well. One rea-
son is that the trained RNN model can only map a set of observable variables to another
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observable variable and it neglects other dependencies. For instance, if the experiments
measure uniaxial stress against the applied uniaxial strain, the RNN model only learns
how to map the uniaxial strain to the uniaxial stress, and it completely ignores the de-
pendency of the stress on other strain components. This implies that one would need a
very large experimental data set, with results related to all possible stress-strain combi-
nations. The other reason is that since there exist noise in experimental data, the trained
RNN model would most probably learn some patterns in the noise and therefore fail to
satisfy some physical laws. This is in contrast with what has been done in this contri-
bution where the data collected from a physical model are noiseless. As a consequence
of failing to satisfy some physical laws, even if the model performs accurately, serious
concerns arise regarding its reliability and generality.
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4
A CONVOLUTION NEURAL NETWORK SURROGATE

FOR FINITE ELEMENT ANALYSIS

OF MULTI-PHYSICS PROBLEMS

Artificial intelligence is the new electricity.

Andrew Ng

We propose HydraNet, a convolutional neural network (CNN), as an efficient surrogate
for finite element analysis of multi-physics problems. HydraNet is considerably more ef-
ficient than a FEM analysis because its evaluation does not require any matrix inversions
or evaluation of complex constitutive models. In this contribution, we demonstrate the
exceptional performance of HydraNet as a surrogate solver for the multi-physics FEM
analysis of a lithium-ion battery. We also discuss the impact of hyperparameters on the
accuracy of the surrogate.

4.1. INTRODUCTION
Multi-physics models enable a more realistic analysis of complex materials compared
to traditional single-physics models. These models are essentially a set of coupled par-
tial differential equations (PDE), each describing a different physics. The system of PDE
is usually solved using a numerical method such as the finite element method (FEM)
which, in most cases, is computationally too expensive to be used in multi-query ap-
plications (typical examples are multiscale analyses or shape optimization procedures).
In this contribution, we tackle this issue by proposing a convolutional neural network
(CNN) [1] variant as an efficient surrogate for multi-physics FEM analysis. The approach
is demonstrated on an academic problem of an all-solid-state micro-battery cell.

The need to speed up battery simulations has long been recognized, and neural net-
works are among the most promising approaches [2–8]. Here we consider convolutional
neural networks, which are a class of deep neural networks commonly used in the com-
puter vision field. In the past decade these techniques have revolutionized the image

71



4

72 4. CONVOLUTIONAL NEURAL NETWORK FOR MULTIPHYSICS FEM

understanding field and this success has not gone unnoticed in other research areas. In
the field of computational science and engineering most of the contributions revolve
around the replacement of computationally expensive numerical procedures with more
efficient CNN-based models. We refer for instance to Cecen et al. [9] and Li et al. [10]
who employ a CNN model to predict material properties of a specimen by processing
its geometry, Tompson et al. [11] and Winovich et al. [12] who exploit a CNN model to
replace the computational expensive matrix inversion in a FEM analysis, Jiang et al. [13]
who use a CNN model to quantify the mechanical degradation (active NMC particles-
carbon/binder domain detachment) of a charged battery electrode, Sasaki et al. [14] who
use a CNN model to replace an entire multi-query pipeline, and finally Khan et al. [15]
and Liang et al. [16] who propose CNN models that take the geometry and material prop-
erties of a specimen and predict a certain solution field. Our contribution falls into the
same category as that of Khan et al. [15] and Liang et al. [16]. At variance with [15], we
consider a multi-physics problem for which our CNN model takes the geometry of a
battery cell and predicts all fields associated with the set of PDEs. And at variance with
Liang et al. [16], we encode the geometry of the battery cell into a set of image-like fields
as detailed in Section 4.4.2.

We consider the simulation of the battery cell behavior as an archetype of a multi-
physics problem. In this work, the problem is fully characterized by means of the model
employed by Grazioli et al. [17], briefly summarized in Section 4.2, who studied the ef-
fect of mechanical stresses arising in solid polymer electrolytes on the electrochemical
performance of all-solid-state micro-batteries. The simulation results obtained with the
FEM implementation of that model are used to develop a CNN-based surrogate for this
type of FEM analysis. To the best of our knowledge, Hydranet is the first application of
neural network to accelerate multiphysics (electrochemical-mechanical) simulations of
battery cells.

A vanilla CNN model has one body and one head. The body takes in the input, here
the geometry, and the head predicts a set of outputs, here understood as outputs of the
FEM analysis. To use a vanilla CNN as a surrogate for multi-physics problems there ex-
ist two approaches: 1) employ one vanilla CNN model for each PDE or 2) employ one
CNN model for all PDEs. In the former scenario, the body of each CNN model performs
the same repeated task, thus rendering the surrogate model inefficient. In the latter sce-
nario, if one PDE is more complex than another, there is no possibility to increase the
capacity of the CNN model only for that specific PDE without unnecessarily increasing
the capacity of the CNN model for others. To tackle these issues, we propose the use
of HydraNet as discussed in Section 4.5. The peculiarity of HydraNet is its architecture:
HydraNet has one body and several heads, and each head could be associated with a spe-
cific PDE allowing for its parameters to be tuned independently. Features and compo-
nents of HydraNet are described in a progressive manner until the full model is applied
as a surrogate for the coupled electrochemical-mechanical battery cell model employed
by Grazioli et al. [17] in Section 4.7.

4.2. PROBLEM STATEMENT IN A FEM CONTEXT
We consider the steady-state version of the electrochemical-mechanical model used by
Grazioli et al. [17]. For brevity, we provide a summary of the formulation and refer the
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reader to Refs. [17, 18] for details. A representative slice of the all-solid-state micro-
battery with trench geometry under investigation is shown in Fig. 4.1. Subscripts Pos,
Neg and SPE identify quantities related to each cell component, i.e., positive and neg-
ative electrodes and solid polymer electrolyte, respectively. The model is formulated in
terms of three primary field variables: electrostatic potential φ, lithium concentration c,
and displacements u. Each field variable depends on location x ∈Vk , where Vk identifies
the domain of validity, i.e., k = Pos, Neg or SPE. The modeling of the electrodes is lim-
ited to the charge conservation equation for conductive materials and only involves field
variable φ. A two-way coupling between electrochemistry and mechanics is assumed in
the solid polymer electrolyte, whose model therefore involves field variables φ, c, and u.

Charge conservation in the electrodes obeys the relationship

∇· iel = 0, x ∈Vel, el = Pos,Neg, (4.1)

where i is the electric current density. The behavior of the SPE is described by the charge
conservation equation

∇· iSPE = 0, x ∈VSPE, (4.2)

the mass conservation equation in a steady-state regime

∇·hSPE = 0, x ∈VSPE, (4.3)

and the equilibrium equation without body forces

∇·σSPE = 0, x ∈VSPE. (4.4)

In the above equations, h and σ represent the mass flux vector and the stress tensor,
respectively.

The relationships between i , h, and σ, the primary field variables, and their gradi-
ents, are summarized by the following expressions:

iel = fiel

(∇φel
)

, el = Pos,Neg (4.5a)

iSPE = fiSPE

(
cSPE,∇φSPE,∇cSPE,∇εSPE

)
(4.5b)

hSPE = fhSPE (cSPE,∇cSPE,∇εSPE) (4.5c)

σSPE = fσSPE (cSPE,εSPE) (4.5d)

where εSPE is the symmetric part of the gradient of uSPE. Functions fiel , fiSPE , fhSPE ,
and fσSPE represent the constitutive equations used in the model, and are reported in
Refs. [17, 18].

Finally, we ensure that the lithium content in the SPE at steady state charge/discharge
conditions equals the lithium content at rest (i.e., the lithium content in the SPE is pre-
served during charge/discharge processes). To this end, we enforce

1

VSPE

∫
VSPE

cSPE dV = c0, (4.6)

where constant c0 is the (uniform) concentration of lithium in the SPE when no cur-
rent flows (salt concentration in the SPE, according to terminology used in Refs. [17,
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Target field name Field notation Unit Dimension
strain [εx x ,εy y ,εx y ] - n ×3
stress [σx x ,σy y ,σz z ,σx y ] MPa n ×4
electrostatic potential φ V n ×1
electric current density [ix , i y ] A m−2 n ×2
concentration c mol µm−3 n ×1
mass flux [hx ,hy ] mol m2 s n ×2

Table 4.1: The target fields. The last column lists the dimensions of the arrays used to store the fields listed in
the first column in a plane strain FE analysis. The number of nodes in the FE model is n.

VPos

VSPE

VNeg

ρ

b

h

w

b

b/2 w b/2

Figure 4.1: Schematic of a slice of the all-solid-state micro-battery with trench geometry.

18]). Constraint (4.6) guarantees the uniqueness of the solution of the system of equa-
tions (4.1-4.5). The description of boundary conditions and interactions between cell
components (that makes the governing equations of electrodes and SPE coupled) is pro-
vided in Ref. [17]. We stress that no external applied displacement have been considered
in this study (i.e., ∆u = 0, according to the notation used in Ref. [17, Eq. (32)]).

The set of coupled equations (4.1-4.5) is solved using a standard FEM (refer to [17,
Appendix A] for details about the time-dependent implementation). Considering a two
dimensional model and plane strain conditions, the outcome of the FEM analysis is a set
of fields defined at the nodes of the finite element mesh. The fields relevant for this study
are listed in Table 4.1. These fields are either primary or secondary solution fields, i.e.,
solutions of the coupled set of PDEs or generated through post-processing, respectively.
Since we are primarily interested in predicting these fields using an efficient surrogate,
we refer to them as ‘target fields’. The governing equations are solved using the material
properties reported in Table 3 of Grazioli et al. [17] by setting E = 500 MPa, and Ω =
1.5×10−4 m3mol−1. In this study we only allow geometric parameters of the specimen
in Fig. 4.1 to vary.
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4.3. TACKLING THE BOTTLENECKS OF A FEM ANALYSIS WITH A

DATA DRIVEN SURROGATE
We focus on the prediction of the target fields in Table 4.1 for a given battery cell ge-
ometry using an efficient surrogate model. The computational bottleneck of the afore-
mentioned FEM analysis is due to two processes: 1) the inversion of the system ma-
trix, and 2) the evaluation of nonlinear constitutive models at the integration points. To
overcome these bottlenecks, we propose replacing the FEM analysis with a data-driven
surrogate whose evaluation does not require a matrix inversion or computationally ex-
pensive nonlinear evaluations. Specifically, we propose a convolutional neural network
(CNN)-based surrogate. The CNN-based surrogate takes in the geometry of the battery
cell and generates an approximation of the target fields.

It is of interest to realize that the most computationally expensive operation in a CNN
model is a set of convolution operations. A convolution operation can be performed
as matrix multiplication [19], and its computational cost is therefore negligible when
compared to matrix inversion or the evaluation of a nonlinear constitutive model. Con-
cretely, the CNN model performs a pixel-to-pixel regression task in which a set of contin-
uous input fields on a structured grid is transformed to another set of continuous fields
on the same grid. Input fields should encode information about the battery cell geome-
try and output fields are an approximation of target fields. In the following sections, we
first propose a set of methods to encode the geometry of a battery cell into a set of con-
tinuous fields and then discuss the interpolation of solution fields from FE nodes onto
the same grid. Afterwards, we train the CNN-based surrogate using a supervised learn-
ing algorithm. In other words, we consider a set of battery cell specimens with different
geometries and we compute their respective solution fields through FEM as summarized
in the previous section. We then optimize the CNN-based surrogate parameters in or-
der to minimize the difference between the output of the surrogate and that of the FEM
analysis.

4.4. PREPROCESSING
As anticipated in the previous section, the CNN-based surrogate only accepts image-like
fields on a structured grid (this will be discussed in Section 4.5). We therefore need to de-
scribe the geometry of the battery cell in such a format. The geometry of a battery cell
consists of a set of attributes, i.e., domains and boundaries, defined at specific coordi-
nates. In Section 4.4.2, we encode these attributes into image-like fields, such that each
field describes a certain geometric attribute and its respective location.

The output of the CNN-based surrogate is also a set of image-like fields defined on
a structured grid. Target fields however are outputs of the FEM analysis and are defined
either on FE nodes or on Gauss points (and in the latter case the fields are, for conve-
nience, extrapolated to nodes). This poses a difficulty when training the CNN-based
surrogate. Training is essentially an iterative optimization procedure, where at each step
the error between surrogate outputs and target fields is evaluated. To evaluate this er-
ror, both surrogate outputs and target fields have to be defined on either FE nodes or
the structured grid. If FE nodes are chosen, the surrogate output should be interpolated
at every training iteration. Since such an interpolation is a computationally expensive



4

76 4. CONVOLUTIONAL NEURAL NETWORK FOR MULTIPHYSICS FEM

operation, as discussed in Section 4.4.1, the training phase will be severely affected in
terms of numerical efficiency. To overcome this issue, target fields are interpolated onto
the structured grid once, before the training starts, and reused during the training.

4.4.1. INTERPOLATING TARGET FIELDS FROM AN UNSTRUCTURED MESH ONTO

A STRUCTURED GRID

We consider an equidistant rectangular grid of width v and height h, with nx and ny

grid points in the horizontal and the vertical directions, respectively. Values of v and
h should be chosen such that the grid spans over the entire geometry of the battery
cell, as depicted in Fig. 4.1. The resolution of the grid, i.e., v/nx or h/ny (since the grid
is equidistant, v/nx and h/ny are equal), should be fine enough to capture details of
the geometry and target fields, but not unnecessarily too fine to avoid increasing the
computational cost of the CNN-based surrogate. As such, the resolution is a problem-
dependent parameter that could be defined by an automatic procedure. In this work a
simple heuristic approach (i.e., visual inspection) has been employed, resulting in the
use of a ny ×nx = 512×64 grid which is fine enough to capture all details across all target
fields.

After the definition of the grid, we interpolate target fields from FE nodes onto it. To
do so, we follow the procedure by Silva et. al. [20] that is briefly illustrated for complete-
ness using an example and with reference to a generic target field indicated by θ. Note
that this field indicates a quantity defined at FE nodes. Quantities evaluated at Gauss
points, such as the strain field, should be first extrapolated to FE nodes using standard
FEM procedures. To interpolate field θ from FE nodes onto a grid point g , we first iden-
tify the element e (in the FE mesh) in which the grid point g lies. For that we make use of
the find_simplex function from the SciPy library [21]. We then extract values θe at the
element nodes and evaluate the element e’s shape functions at the grid point g , N e (x g ),
where x g is the coordinate of the grid point g . The interpolated field at the grid point g
is finally given by θg = N e (x g ) θe . This procedure is computationally expensive and is
only carried out during preprocessing and before training the CNN-based surrogate, not
during its application in a multi-query application.

4.4.2. ENCODING THE GEOMETRY INTO A SET OF IMAGE-LIKE FIELDS

The geometry of a battery cell specimen, schematically depicted in Fig. 4.1, is encoded
into a set of image-like fields. We refer to these fields as ‘geometric fields’. Specifically,
we discuss three types of geometric fields: (1) the ‘distance-to-boundary’ field, which
contains information regarding the distance of a point to a certain boundary segment,
(2) the ‘is-on-boundary’ field, which indicates whether a point is located on a bound-
ary segment, and (3) the ‘is-in-domain’ field, which identifies the domain on which the
point is located. These three simple geometric fields, depicted in Fig. 4.2 and explained
next, have been selected to demonstrate the concept of geometric encoding. Their effec-
tiveness is demonstrated in Section 4.7.4, and other encodings could be easily defined to
improve the accuracy of the CNN surrogate.
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boundary
segments

(a)

distance-to-boundary er

(b) (c) (d)

in-on-boundary eb

(e) (f) (g)

is-in-domain ed

(h) (i) (l)
0.0

0.5

1.0
e

Figure 4.2: The three geometric fields used in this in this study for a 46 µm × 16 µm (height × width) specimen.
Panels (b) to (d) show the distance-to-boundary fields for three of the ten boundary segments of the specimen
in Fig. 4.1. A boundary segment is any of the lines connecting two consecutive dots in panel (a). The value
of κ in Eq. (4.8) is equal to 0.1. These fields endow each point in the geometry with information regarding its
closeness to the corresponding boundary segment. The closer the value of the field to one, the closer the point
is to the boundary. Panels (e) to (f) show the is-on-boundary fields for three of the ten boundary segments
of the specimen in Fig. 4.1. These fields endow each point in the geometry with information regarding its
location with respect to corresponding boundary segment. If the value is equal to one, the point is located
on that specific boundary segment. Panels (h) to (l) show the is-in-domain fields. These fields endow each
point in the geometry with information regarding its location with respect to a domain (positive, or negative
electrode, or SPE). If the value of the field is equal to one, the point is located on that specific domain.

DISTANCE-TO-BOUNDARY FIELD

The distance-to-boundary field measures the closeness of a point to a certain boundary
segment. Let us assume that a boundary segment b is defined by n[b] points at coordi-
nates X [b]. The closest Euclidean distance between a grid point i to the boundary b is
given by

r [b]
i = min

j
‖Xi −X [b]

j ‖2 with j = 1, ...,n[b], (4.7)

where j is a point on the boundary b and Xi contains the coordinates of grid point i .
Equation (4.7) can be evaluated in a vectorized manner using the pairwise distance func-
tion cdist in the Scipy library [21]. The result of this computation is a continuos field
r [b] ∈Rny×nx with values in the semi-infinite domain [0,∞). For numerical convenience,
values in r [b] are transformed using the exponential function

e[b]
r = exp

(
−r [b]

κ

)
, (4.8)

where κ is a scaling factor, and e[b]
r ∈ [0,1] is the distance-to-boundary field. An example

of this field is depicted in Fig. 4.2(b to d). The value of e[b]
r at a grid point being close to

one implies that the grid point is close to the boundary b.
The purpose of distance-to-boundary fields is to encode a specific attribute of the

geometry, namely the location of boundaries and points that are close to boundaries. If
κ is very large, e[b]

r becomes close to one over the entire domain and hence, it cannot
pinpoint the location of boundaries. If κ is very small, e[b]

r becomes close to zero over
the entire domain except along the boundary, and hence it fails to identify points which
are close to the boundary. An appropriate value of κ can be identified through visual
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inspection. For instance, κ = 0.1 satisfies the aforementioned requirement in Fig. 4.2(b
to d).

IS-ON-BOUNDARY FIELD

The is-on-boundary field e[b]
b ∈ Rny×nx identifies boundary segment b in a specimen.

Closest grid points to a specific boundary segment get the value of one while the others
are set to zero.

To compute this field, one could identify the boundary segment b by selecting n[b]

number of points on it. Then, the closest grid point to the point j on boundary b is

p j = arg mini ‖Xi −X [b]
j ‖2 with i = 1, ...,ny ×nx , (4.9)

where ny ×nx is the total number of grid points. An example of this field is depicted in
Fig. 4.2(e to g).

IS-IN-DOMAIN FIELD

The battery cell problem introduced in Section 4.2 consists of three domains; positive
and negative electrode, and solid polymer electrolyte. The physics of each domain is
governed by its own specific partial differential equations. To pass information about
location of the domain d to the CNN-based surrogate, we construct the is-in-domain
field e[d ]

d ∈Rny×nx . We follow the logic outlined in the previous section and identify the
domain d in a field by setting values of grid points in that domain to one and the rest of
the grid points to zero as shown in Fig. 4.2(g to i).

4.4.3. STACKING GEOMETRIC AND SOLUTION FIELDS WITH DIFFERENT SIZES

In the previous sections we explained how to preprocess a single battery cell specimen
by encoding its geometry into image-like fields and interpolating the solution fields onto
the same grid. However, we are primarily interested in preprocessing several specimens
with different geometries and stack the resulting geometric and target fields into a sin-
gle geometric tensor and a single solution tensor, respectively. We stack target fields of
several specimens into the solution tensor S ∈Rm×ny×nx×ns , where m is the number of
specimens, ny and nx are number of grid points in vertical and horizontal directions,
and ns is the number of target fields. Likewise, we stack geometric fields into the geo-
metric tensor E ∈Rm×ny×nx×ng , where ng is the number of geometric fields. Depending
on which geometric fields one considers, the value of ng differs. For instance, should one
only consider distance-to-boundary and is-in-domain fields, then ng becomes nb +nd,
where nb is the number of boundaries, and nd is the number of domains.

Solution and geometric tensors collect values sampled over grids of the same ny ×
nx size, irrespective of the specimen geometry. This implies that when stacking several
specimens with different geometries each specimen only covers part of the grid. Ideally,
we would like to train the CNN-based surrogate only on parts of the grid covered by
the specimen. To this end, we construct a set of masks that identify regions of the grid
covered by each specimen. These masks are used in Section 4.7 to train the CNN-based
surrogate only on the region actually covered by each specimen.
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4.4.4. STANDARD SCALING
Up to this point, we discussed the construction of geometric, mask, and solution ten-
sors. The first two are input to the CNN-based surrogate while the last is the target that
we train the surrogate for. The training of a CNN-based surrogate, i.e., the optimization
of its parameters, is sensitive to the magnitude of its inputs and targets [22]. We further
elaborate on this aspect in Section 4.5.3. To boost the stability and the speed of the op-
timization process, according to LeCun [22], these values should have the mean and the
standard deviation of approximately zero and one, respectively.

Let us assume that we have an m number of battery cell specimens. For each spec-
imen we compute the geometric and the solution tensors. This process is referred to
as data collection (further discussed in Section 4.7.1). Consider the geometric tensor
E (we apply the same process for the solution tensor S). To avoid overfitting and to
increase generalization of the CNN-based surrogate, we train it only on some speci-
mens and then test its generalization capabilities on the others. Concretely, we divide
specimens into training E train ∈Rmtrain×ny×nx×ng and test E test ∈Rmtest×ny×nx×ng tensors,
where m = mtrain +mtest. Next, we compute the mean µtrain = E(E train) ∈ Rng and the

standard deviation strain =
√
E(E train −µtrain)2 ∈Rng of the training tensor, where E indi-

cates the expected value. With these quantities, we scale both training and test tensors
according to

E train ← E train −µtrain

strain
,

E test ← E test −µtrain

strain
.

(4.10)

This procedure is referred to as standard scaling. To avoid data leakage [23], it is essential
to scale the test tensor using the mean and standard deviation of the training tensor.
Data leakage occurs when the performance of the model on the test data is considerably
better than that of the real-life due to the inclusion of illegitimate data [23]. Illegitimate
data is what we do not have access to in real life. In this case, we do not have access to
the mean and standard deviation of the test set in a real-life scenario.

It is of importance not to scale the mask tensor M because it loses its binary format
and therefore fails to discriminate between parts of the grid that the specimen does not
cover and parts that it does.

4.4.5. SUMMARY OF PREPROCESSED FIELDS
Before moving on to the definition of the CNN-based surrogate, let us summarize the
preprocessing stage. We consider m differently-shaped battery cell specimens. For each
specimen, we compute target fields through a FEM analysis as discussed in Section 4.2.
Afterwards, we construct a structured grid that is large enough to accommodate all spec-
imens. To describe the geometry of each battery cell as image-like fields, we construct
the geometric tensor on the aforementioned grid. We also interpolate target fields onto
the same grid and stack them into a solution tensor. Finally, we divide specimens into a
training and a test tensors and scale them according to the procedure in Section 4.4.4.

Table 4.2 lists geometric, target, and mask fields, together with their respective units
and dimensions. Tensors E and M are inputs the to CNN-based surrogate. The opti-
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Field name Field notation Unit Dimension

Geometric (E )
distance-to-boundary er - m ×ny ×nx ×nb

is-on-boundary eb - m ×ny ×nx ×nb

is-in-domain ed - m ×ny ×nx ×nd

Target (S)

strain [εx x ,εy y ,εx y ] - m ×ny ×nx ×3
stress [σx x ,σy y ,σz z ,σx y ] MPa m ×ny ×nx ×4

electrostatic potential φ V m ×ny ×nx ×1
electric current density [ix , i y ] A m−2 m ×ny ×nx ×2

concentration c mol µm−3 m ×ny ×nx ×1
mass flux [hx ,hy ] mol m2 s m ×ny ×nx ×2

Mask (M) - - m ×ny ×nx ×1

Table 4.2: Preprocessed field on a ny × nx grid. The numbers of boundaries and domains are nb and nd,
respectively, m is the number of specimens, nx and ny are the numbers of grid points in the horizontal and
vertical directions, respectively, and solution fields are those of Table 4.2 but interpolated onto the ny ×nx grid.

mization of the parameters of the CNN-based surrogate such that its outputs becomes
acceptably close to the target (i.e., tensor S) is discussed in Section 4.5.3.

4.5. CONVOLUTIONAL NEURAL NETWORK-BASED SURROGATE
As discussed in Section 4.3, the typical FEM analysis conducted in this study has two
computational bottlenecks: evaluation of a nonlinear constitutive model and inversion
of the system matrix. In this section we introduce HydraNet, a convolutional neural net-
work variant that is computationally independent of physics-based constitutive models
and whose evaluation does not require a matrix inversion.

4.5.1. BUILDING BLOCKS OF A CONVOLUTIONAL NEURAL NETWORK

A convolutional neural network is essentially a stack of several different functions. These
functions are the building blocks of the convolutional neural network and are commonly
referred to as layers. Each layer takes the output of the previous layer, transforms it in a
certain manner, and passes the output to the next layer.

CONVOLUTION LAYER

The convolution layer is comprehensively explained in Ref. [19]. Here we introduce
its essential parts. The convolution layer, unlike what its name suggests, is a cross-

correlation operation. This operation cross-correlates the kernel tensor Wc ∈Rk×k× f i× f o

over the input of the convolution layer I ∈ Rm×ni
y×ni

x× f i
to generate the output of the

convolution layer O ∈Rm×no
y×no

x× f o
:

O =Wc ∗ I +bc. (4.11)

In the equation above, ∗ is the cross-correlation operation, f i and f o are the number of
input and output filters, respectively, the input and output tensors are defined on ni

y ×ni
x
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and no
y ×no

x -sized grids, respectively, k is the size of the kernel tensor, and bc ∈R f o
is the

bias vector.
The output of the cross-correlation operation (4.11) has a smaller dimension than its

input. For instance, if the input height ni
y is 100 and the kernel size k is 5, the output

height no
y becomes 96 (for details of this calculation refer to the spatial arrangement

section in Ref. [19]). To avoid this undesirable dimension reduction, it is common to pad
perimeters of the input tensor with zeros in order to increase its dimension to (ni

y +2p)×
(ni

x +2p), where p is the number of zero padded grid points on each side. In the previous
example, the dimension of the input (i.e., no

y = ni
y = 100) is preserved with p = 1.

If several convolution layers are stacked while preserving tensor dimensions, the
computational complexity of the CNN becomes very large. As a remedy to this prob-
lem, it is common to reduce the dimension of the input tensor in a controlled manner
through downsampling. In the cross-correlation operation, the kernel weight Wc strides
through the input tensor one grid point at a time. One could downsample the input ten-
sor by simply striding the kernel weight by s > 1 points at a time (with s = 2, the output
dimension no

y becomes 50, i.e., half of the dimension of the input field). This process is
clearly illustrated in Ref. [24]. For detail of this computation, refer to the spatial arrange-
ment section of Ref. [19]. A consequence of the downsample by striding just discussed
is an unwanted size unbalance. Should we pass the geometric tensor through a stack of
convolution layers with s > 1, the dimension of the last output tensor becomes consider-
ably smaller than that of the geometric tensor. However, as discussed in Section 4.3, the
output of the CNN-based surrogate should be equal to the dimension of the grid that the
solution field is defined on. Therefore, after a series of downsampling operations using
the convolution layer with s > 1, we need to upsample the field to the initial grid size as
discussed next.

TRANSPOSED CONVOLUTION LAYER

The transposed convolution layer, as the name suggests, is the transposed version of
the cross-correlation operation in the convolution layer. This operation is descriebed in
Ref. [25, section 4.2] and it is clearly illustrated in Ref. [24, Fig. 13.10.1]. Essentially, a
transposed convolution layer, with s > 1, upsamples the input field. Just like the convo-
lution layer, the transposed convolution layers has a kernel weight Wtc and a bias vector
btc.

Let us follow up with the example in the previous section where we passed an input
tensor with a height of 100 to a convolution layer with s = 2 and p = 1. The convolution
layer reduces the height of the tensor to 50. To upsample the output tensor back to the
height of 100, we could pass it to a transposed convolution layer with s = 2 and p = 1.

Both convolution and its transpose are linear operations. Stacking a number of these
linear layers results in a linear CNN model. To add nonlinearity, we transform outputs of
these layers with the rectified linear unit discussed in the next section.

RECTIFIED LINEAR UNIT

The convolution and the transposed convolution layers are linear operations. Stacking a
number of these linear layers trivially results in another linear layer. To add nonlinearity
to the CNN model, the output of each (transposed) convolution layer should be nonlin-
early transformed. One nonlinear transformation that has been empirically proven to be
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effective is the rectified linear unit (ReLU) [26]:

O = max(0, I ), (4.12)

where I and O are the input and output tensors, respectively. This transformation re-
turns zero where the input tensor has a negative value and the value of the input field
otherwise.

There is a possibility that the distribution of the input tensor gets shifted to negative
values. This phenomenon is referred to as internal covariate shift. In that scenario, the
rectified linear unit trivially returns a zero tensor. As a remedy to this issue, batch nor-
malization [27] is used to standardize input values such that their mean becomes zero
and the standard deviation becomes one. In this contribution, however, we choose not
to make use of the batch normalization layer as we observed that it does not significantly
improve the accuracy of our model and it substantially increases the computational ex-
pense.

4.5.2. HYDRANET: A CONVOLUTIONAL NEURAL NETWORK FOR MULTI-PHYSICS

PROBLEMS
The convolution layer, its transpose, and the rectified linear unit are stacked together
to construct a CNN-based surrogate that we call HydraNet. We propose HydraNet as a
surrogate for multi-physics FEM analysis. The architecture of HydraNet is depicted in
Fig. 4.3. HydraNet consists of two parts: the body and a number of heads. The body
transforms the geometric tensor E and passes the resulting tensor to the heads. Each
head transforms the output of the body to a set of solution fields.

Let us analyze HydraNet by walking through its computation graph. Initially, the ge-
ometric tensor E goes through nl convolution layers, each followed by a rectified linear
unit. The value of the strides s in these convolution layers is equal to two. These oper-
ations are shown with black circles in Fig. 4.3. We refer to this part of HydraNet as the
body. The rest of HydraNet consists of several heads. Each head transforms the output
of the body to a set of solution fields. In each head, the output of the body is passed to nl

transposed convolution layers, with stride s = 2, each of which is followed by a rectified
linear unit. These operations are indicated with gray circles in Fig. 4.3. The output of the
aforementioned operations is then passed to a convolution layer, with stride s = 1, indi-
cated by the white circle with a solid black line in Fig. 4.3. The number of filters in this
convolution layer is equal to the cardinality of the subset of solutions associated with
the head. For instance, if the subset of solutions is [ε̂xx , ε̂y y , ε̂x y ], then the number of fil-
ters in the last convolution layer is equal to three. In the final step, all predicted solution
fields are concatenated into the predicted solution tensor Ŝ. We indicate the concatena-
tion operation by the dashed circle in Fig. 4.3. The Ŝ tensor consists of predicted solution
fields that span over the entire grid. However, each specimen only covers a part of the
grid. We set parts of solution fields that are outside the specimen to zero by an element-
wise multiplication of Ŝ by the mask tensor M . This operation is indicated by the dotted
dashed circle in Fig. 4.3.

Hydranet’s performance depends on the number of heads per solution field: on the
one extreme, one could consider only one head for all the solution fields, on the other
extreme, one head per solution field could be used. In the former scenario, the number
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Figure 4.3: HydraNet consists of two parts: the body, which transforms the geometric tensor E , and a number of
heads, which transform the output of the body to the solution tensor. Conv (s = 2) + Relu stands for convolution
layer (with stride s = 2) followed by the rectified linear unit. ConvT refers to the transposed convolution layer.

of kernel tensors and bias vectors is relatively small and, therefore, the capacity of Hy-
draNet is limited, albeit the model runs the fastest. In the latter scenario, the number of
kernel tensors and bias vectors is considerably large, resulting in a slow HydraNet char-
acterized by a high capacity. Here, we choose a middle ground and consider one head
per strain [ε̂xx , ε̂y y , ε̂x y ], stress [σ̂xx ,σ̂y y ,σ̂zz ,σ̂x y ], electrostatic potential φ̂, electric cur-

rent density [îx , î y ], concentration ĉ , and mass flux [ĥx , ĥy ] fields.
Kernel weights and bias vectors are initially filled with random numbers and zeros,

respectively. As a result, the predicted solution tensor Ŝ is completely different than the
target solution tensor S. In the next section, we discuss how to tune kernel tensors and
bias vectors to decrease the discrepancy between Ŝ and S.

4.5.3. OPTIMIZING THE PARAMETERS OF A CONVOLUTIONAL NEURAL NET-
WORK

HydraNet is essentially a function with a set of trainable parameters, i.e., kernel tensors
and bias vectors. We expect this function to transform a geometric tensor E to a solution
tensor Ŝ, such that the discrepancy between Ŝ and the target solution tensor S is small.

As a measure of discrepancy between Ŝ and S, we define the mean squared error cost
function

e = 1

mtrain
‖Ŝ −S‖2

f , (4.13)

where ‖#‖f is the Frobenius norm of # and mtrain is the number of specimen in the train-
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ing data.
We tune weight tensors and bias vectors to minimize the cost function (4.13) using

a gradient-based optimizer called Adam [28, 29]. Among the parameters of the Adam
optimizer, the learning rate is arguably the most important one. The learning rate de-
termines the size of the steps that the gradient-based optimizer takes while moving to-
wards a local minimum. We discuss the impact of the learning on the accuracy of Hy-
draNet in Section 4.7.3. For the rest of the parameters, we make use of those suggested
by Kingma and Ba [28].

The optimization procedure, regardless of the specific optimizer, has two other pa-
rameters: the number of epochs and the batch size. An epoch is one training cycle
through the entire dataset; the batch size is the number of specimens passed to the op-
timizer at each training step. For instance, with 100 specimens and a batch size equal to
20, five batches should be sent to the optimizer until one epoch is over.

4.6. SOFTWARE AND HARDWARE
HydraNet is implemented and trained on a GPU using the TensorFlow library [30]. Ten-
sorFlow includes implementation of several building blocks of a convolutional neural
network and training functionalities such as the Adam optimizer.

We carry out the preprocessing stage, discussed in Section 4.4, in the Python pro-
gramming language. To facilitate linear algebra operations, we make use of the SciPy
library [21]. The interpolation procedure in Section 4.4.1 is the most computationally de-
manding part of the preprocessing stage and is parallelized using the Joblib library [31].

HydraNet can be downloaded from https://github.com/FGhavamian/cnn_battery.

4.7. RESULTS AND DISCUSSION
In this section we apply HydraNet to the battery cell problem presented in Section 4.2.
We train several HydraNets with different optimization parameters, preprocessing meth-
ods, and architectures in Sections 4.7.3, 4.7.4, and 4.7.5, respectively, and we compare
their respective accuracy using an evaluation metric in Section 4.7.2. Finally, in Sec-
tion 4.7.6 we study the impact of the amount of training data on HydraNet’s accuracy.

The parameters of a machine learning process that are set before the optimization
process are referred to as hyperparameters. The learning rate of the optimizer, the method
of encoding geometries, the number of layers in HydraNet, and the amount of training
data are hyperparameters. In the following sections, we specifically study the impact of
these hyperparameters on the accuracy of HydraNet on the data that HydraNet was not
trained on.

4.7.1. DATA COLLECTION AND PREPROCESSING
The schematic of the battery cell specimen is depicted in Fig. 4.1. We fix two parame-
ters of the geometry, ρ = 1 µm and b = 10 µm, and let h and w vary. Specifically, we
consider h∼U (20 µm,100 µm) and w∼U (5 µm,20 µm) to be uniformly distributed and
randomly sample 50 tuples (hi , wi ), i = {1, . . . ,50}. For each tuple, we construct one bat-
tery cell specimen and compute its solution fields using the FEM analysis described in
Section 4.2.

 https://github.com/FGhavamian/cnn_battery
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We then define a grid that is large enough to fit each battery cell specimens. As dis-
cussed in Section 4.4.1, we consider a 512× 64 grid which has a height of 137 µm and
a width of 30 µm. The geometry of each specimen is encoded into geometric fields ac-
cording to Section 4.4.2. To keep track of the area of the grid covered by each specimen
we make use of a mask tensor, as discussed in Section 4.4.3. Stacking all fields yields
a geometric tensor E ∈ R50×512×64×ng , a solution tensor S ∈ R50×512×64×13, and a mask
tensor M ∈R50×512×64×1. As mentioned in Section 4.4.5, ng is the number of geometric
fields, and there are in total 13 solution fields.

To check the generalization capabilities of HydaraNet, these tensors are randomly
divided into training tensors E train, Strain, M train and test tensors E test, Stest, M test. The
training tensors are used to optimize the parameters of HydraNet while the test tensors
are used to quantify the generalization capabilities of the trained model. Generalization
refers to the ability of the model to make accurate predictions on the data it has not been
trained on. As explained in Section 4.4.4, to speed up the training of HydraNet, we scale
geometric tensors and solution tensors such that their mean and standard deviation be-
come close to zero and one, respectively.

4.7.2. EVALUATION METRIC

To compare two models with different hyperparameters, one must select a measure of
performance. Such a measure is often referred to as the evaluation metric. The evalua-
tion metric is a scalar that describes the performance of the model. Ideally, one should
employ an evaluation metric that describes both accuracy and computational expense
of the model. However, to establish such a metric one should consider the application’s
requirements and availability of the computing power. Therefore, for simplicity, we sim-
ply use a metric that describes the accuracy.

Since we are dealing with a regression problem, we employ the mean relative squared
error

MRSE =
1
m ‖S − Ŝ‖2

F

1+ 1
m ‖S‖2

F

(4.14)

as the evaluation metric. We add one to the denominator to avoid division by zero. The
denominator is essentially a scalar that does not change when comparing two models
with different hyperparameters. We also use scaled solution tensors, as discussed in Sec-
tion 4.4.4, to evaluate (4.14).

Equipped with an evaluation metric and two sets of training and test tensors, in the
following sections we discuss the impact of different hyperparameters on the accuracy
of HydraNet.

4.7.3. SELECTION OF THE LEARNING RATE VALUE

The learning rate is arguably by far the most important hyperparameter of a gradient-
based optimizer. On the one hand, if it is very large the optimizer fails to converge to a
local minimum; on the other hand, if the learning rate is very small the gradient-based
optimizer takes an excessive amount of time to converge. In this section we analyze the
impact of different learning rates on the accuracy of HydraNet. We train three HydraNets
using learning rates η ∈ {0.01, 0.001, 0.0001}. We fix the remaining hyperparameters to
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η 0.01 0.001 0.0001
MRSE ×102 6.5 4.6 9.7

Table 4.3: The mean relative squared error on test tensors at different learning rates η. It appears that η= 0.001
is the most efficient among the three.

reference (FEM) η = 0.001 η = 0.0001

(a) (b) (c)
0

36

72
im (A m−2 )

Figure 4.4: Magnitude of the electric current density im =
√

i 2
x + i 2

y predicted by (a) the FE model, (b) HydraNet

with learning rate η= 0.001, and (c) HydraNet with learning rate η= 0.0001.

the following: number of layers nl = 1, kernel weight size k = 7, filter size fo = 16 for the
convolution layer and its transpose, distance-to-boundary method to encode geome-
tries of specimens, number of epochs equal to 200, and batch size equal to 16.

Table 4.3 reports the MRSE on test tensors. It is evident that the learning rate η =
0.001 is the most efficient among the three. On the one hand, it is large enough to let the
optimizer descend rapidly to a local minimum, and on the other hand, it is small enough
to ensure the stability of the optimizer.

For the sake of illustration, we randomly select a specimen from the test data and plot

the magnitude im =
√

i 2
x + i 2

y of the electric current density field for learning rates η equal

to 0.001 and 0.0001 in Fig. 4.4. The peak in the electric current density on the bottom
left corner of the electrolyte is completely disregarded when η = 0.0001 and becomes
evident by increasing η to 0.001. The issue with η= 0.0001 is that the optimizer descends
to a local minimum at a much slower pace than when the learning rate is equal to 0.001.
In other words, HydraNet is not trained enough. Allowing the optimization process to
continue long after epoch 200, the accuracy of HydraNet with the learning rate η= 0.0001
will eventually catch up with that of Hydranet with η= 0.001. In the rest of this study we
use 0.001 as an efficient learning rate value.
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Geometry encoding method MRSE ×102

is-on-boundary 18.3
is-on-domain 18.9
is-on-boundary + is-on-domain 14.6
distance-to-boundary 4.6
distance-to-boundary + is-on-domain 3.8
distance-to-boundary + is-on-boundary 3.8
distance-to-boundary + is-on-boundary + is-on-domain 3.6

Table 4.4: The mean relative squared error on the test set. It appears that the richer the features, the more
accurate HydraNet becomes.

4.7.4. RICHNESS OF THE GEOMETRY ENCODING
The effectiveness of the methods described in Section 4.4.2 to encode the geometry of
a specimen into image-like fields is evaluated. We train a HydraNet for each case using
the values of the hyperparameters defined earlier. Table 4.4 reports the MRSE on the test
tensors. The results indicate that the most effective method to encode a geometry is the
distance-to-boundary method for which the MRSE is equal to 4.5× 10−2. In contrast,
considering both is-on-domain and is-on-boundary fields yields a MRSE equal to 14.6×
10−2. It is also evident that HydraNet becomes the most accurate, with a MRSE equal to
3.6×10−2, when geometric fields of all three methods are combined. This combination
results in the most expensive HydraNet and is the one that we use in the rest of the study.
Requirements of a specific application determine whether this combination is worth the
computational effort. A more in-depth study of the contribution of each input falls into
the realm of the interpretability of machine learning models (refer, e.g., to the work by
Molnar [32]).

For the sake of illustration, Fig. 4.5 shows the von Mises stress distribution of a ran-
domly selected specimen from the test data. Note that, according to Section 4.2, the
von Mises stress is only defined on the electrolyte. This field is therefore equal to zero on
other parts of the battery cell. Through visual inspection, it appears that the improve-
ment as a result of considering all geometric fields over the distance-to-boundary fields
is marginal. Nevertheless, we do observe local improvements. For instance, the bound-
ary between the electrolyte and the positive electrode is blurry when only the distance-
to-boundary is considered. This boundary becomes sharper when geometric fields de-
scribing domains and location of boundaries are also considered.

4.7.5. HOW DEEP OR WIDE SHOULD THE HYRANET BE?
The HydraNet model is essentially a nonlinear function. This nonlinear function models
a relationship between the input and the output data. The more layers and the more
filters in each layer, the more complex relationship HydraNet can model. Here, we study
the impact of the numbers of layers and filters on the accuracy of HydraNet.

We consider the same number of layers and filters for the body and each head of
HydraNet. We indicate the number of layers and filters of HydraNet using an array. For
instance, [16,32,64] refers to a HydraNet with three layers in the body and each head.
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reference (FEM) distance-to-boundary

distance-to-boundary
is-on-boundary
is-on-domain

(a) (b) (c)
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Figure 4.5: von Mises stress field obtained from the FE model (a), that of HydraNet when considering only
distance-to-boundary fields (b), and that of HydraNet when considering all three types of geometric fields (c).
It appears that the boundary between the electrolyte and the positive electrode is blurry when only the
distance-to-boundary is considered. This boundary is sharper when geometric fields describing domains and
location of boundaries are also considered.

Number of layers 1 2 3
Number of filters [8] [16] [32] [8,16] [16,32] [32,64] [8,16,32] [16,32,64] [32,64,128]
MRSE ×102 5.1 3.6 3.0 3.9 3.0 2.6 3.5 2.9 2.9

Table 4.5: The mean relative squared error on the test set. It appears that a two-layer HydraNet is the most
accurate. By increasing the number of filters HydraNet becomes more and more accurate.

The body has 16, 32, and 64 filters in the first, second, and third layer, respectively. And
each head has 64, 32, and 16 filters in the first, second, and third layer, respectively. We
set the learning rate to the previously tuned value of 0.001, encode the geometry using
the combination of distance-to-boundary, is-on-domain, and is-on-boundary methods,
and the rest of the hyperparameters are those reported in the previous sections. We train
several HydraNets with a different number of layers and filters, compute their respective
MRSE on the test set, and report the results in Table 4.5.

In a general setting, the impact of the number of layers and filters of HydraNet on its
accuracy is governed by the bias-variance trade-off concept. At the one extreme, should
the number of layers or filters be few, HydraNet fails to model complex relationships
between the input and the output data (i.e., HydraNet becomes biased). At the other ex-
treme, should the number of layers or filters be too many, HydraNet overfits the training
data and is unable to generalize to unseen data (i.e., HydraNet has high variance). In
both scenarios, HydraNet’s accuracy diminishes.
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For the problem at hand, the results reported in Table 4.5 clearly indicate that by in-
creasing the number of filters HydraNet becomes more and more accurate. For instance,
by increasing the number of filters from 8 to 32, the MRSE decreases by approximately
40%. This implies that the limit at which adding more filters would decrease HydraNet’s
accuracy is not yet reached. Nevertheless, adding more filters increases the computa-
tional cost. The balance between accuracy and computational cost is determined by the
practical requirements of a use case.

It appears that adding more layers does not monotonically decrease the MRSE. For
instance, the MRSE of a two-layer HydraNet with [32,64] filters has a MRSE of 2.6×10−2

on the test data. By adding another layer to this HydraNet, [32,64,128], the MRSE in-
creases by approximately 10%. There could be two explanations for this observation.
First, the deeper HydraNet gets, the harder it becomes to train [33]. Second, HydraNet
could have started to overfit the training data. The second explanation is more likely.
The MRSE on the training data is 2.5× 10−2 while that of on the test data is 2.9× 10−2.
This implies that HydraNet is still capable to fit itself to the training data, but it is slowly
losing its generalization capabilities.

For the sake of illustration, we randomly select a specimen from the test data and
depict its concentration in Fig. 4.6. The MRSE of a two-layer HydraNet ([32,64]) is lower
than that a single-layer HydraNet ([16]) (the difference is 1.0× 10−2). This decrease in
the MRSE value is also evident in Fig. 4.6. Compared to the figure in the middle, where
there is only one layer with 16 filters, in the figure on the right, where the number of
layers is increased to two and there are 32 and 64 filters, we observe that the concentra-
tion distribution is sharper and bears more resemblance to that of the FE reference. We
therefore proceed with the most accurate HydraNet, i.e., the two-layer HydraNet with
[32,64] filters.

reference (FEM) layers = [16] layers = [32, 64]

(a) (b) (c)
0.0

0.7

1.4
c/c0

Figure 4.6: Normalized lithium concentration obtained from the FE model (a), that of HydraNet when consid-
ering only distance-to-boundary fields (b), and that of HydraNet when considering all three types of geometric
fields (c). Compared to panel (b), where there is only one layer with 16 filters, the results in panel (c), where
the number of layers is increased to two and there are 32 and 64 filters, we observe that the concentration
distribution is sharper and bears more resemblance to that of the FE reference.
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Percentage of all training data 25 50 75 100
MRSE on test data ×102 4.5 2.9 2.6 2.6

Table 4.6: The mean relative squared error on the test set. It appears that the generalization capability of the
model increases with the amount of data that is used during training up to a 75% of current training data.
Afterward, adding more training data has little impact on improving the MRSE on the test data.

4.7.6. IMPACT OF THE QUANTITY OF TRAINING DATA ON ACCURACY

Next, we determine whether adding more training data helps increasing the generaliza-
tion capability of HydraNet. We set the learning rate to 0.001, encode the geometry using
the combination of distance-to-boundary, is-on-domain, and is-on-boundary methods,
consider a two-layer HydraNet ([32,64]), and set the rest of the hyperparameters to the
values used in the previous sections.

Collecting more data requires executing a computationally expensive FEM analysis
several times. It is often a good idea to a priori test the impact of adding more train-
ing data on the generalization capabilities by means of an examination of the learning
curve [34]. The learning curve shows how the MRSE on the test data changes by increas-
ing the training data. For the problem at hand, we conducted such a study by consider-
ing four scenarios: training HydraNet with 25%, 50%, 75%, and 100% of the training data.
The results of this study are reported in Table 4.6. Should we train HydraNet only on the
25% of the current training data, the MRSE becomes 4.5×10−2. Training HydraNet on
75% of the training data helps decreasing the MRSE to 2.6×10−2, implying that adding
more training data does help. However, increasing the training data to 100%, does not
yield a significant decrease of the MRSE value. It is therefore reasonable to infer that col-
lecting more training data than what we already have would have little impact on further
decreasing the MRSE on the test data.

4.7.7. A NOTE ON COMPUTATIONAL COSTS

An objective comparison of the computational costs of FEM and HydraNet analyses is
very difficult, if not practically impossible. One should study the efficiency of a HydraNet
surrogate on a case-by-case basis, considering the available hardware and implemen-
tations. It is nevertheless possible to list some advantages of a CNN-based surrogate
implementation over a FEM implementation:

• a CNN-based implementation does not require matrix inversion to obtain the so-
lution array;

• a CNN-based implementation is independent of the constitutive model and the
computational cost of its evaluation;

• the most computationally expensive part of HydraNet is a convolution operation
which can be performed as a matrix multiplication [19]; and

• a CNN-based implementation can evaluate a batch of specimens in a vectorized
manner.
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In the examples reported in this section, HydraNet is on average approximately one or-
der of magnitude faster than the corresponding FEM analysis for a given battery cell ge-
ometry. We stress that, even if a simulation involves a single time-step (recall the steady
state nature of the governing equations, Sec. 4.2), a simulation in a nonlinear finite el-
ement framework entails multiple iterations. We do acknowledge that this speed-up is
based on our implementations (refer to Sections 4.2 and 4.6) and could significantly vary
with another.

4.8. CONCLUDING REMARKS
We proposed a specific type of convolutional neural network (CNN) as an efficient sur-
rogate for the FEM analysis of multi-physics problems. Unlike a FEM analysis, the eval-
uation of the CNN-based surrogate does not require matrix inversion, and its nonlinear
functions are computationally less expensive than those of a FEM analysis.

Previously, in the conclusion section of Ref. [35], we discussed the viability of a sur-
rogate model. An analogous conclusion holds here: there exist a trade-off between the
computational time spent on the training of HydraNet (including the data collection)
and the computational time saved during a multi-query application. A setting in which
the latter is significantly greater than the former is a setting in which HydraNet is an
efficient surrogate for the FEM analysis.

A HydraNet can be trained to accurately interpolate, but it is notoriously incapable
of extrapolation. Therefore, it is often a good idea to define a certain limit at which pre-
dictions of a HydraNet is essentially an interpolation between training data. In this con-
tribution, we defined such a limit through the size and the resolution of the grid. The
size of the grid explicitly defines an upper limit to how big a battery cell specimen can
be. A specimen larger than the grid simply can not fit into the grid. The resolution of
the grid implicitly defines a lower limit to the size of the specimen. If a specimen is so
small that only a small number of grid points cover its geometry, the interpolation of the
solution field onto the grid becomes extremely inaccurate and, as a direct consequence,
HydraNet cannot be accurately trained.

Finally, kernel tensors, bias vectors, and hyperparameters bear no physical meaning.
These numerical quantities are tuned based on a dataset and could change dramatically
if the dataset is changed.
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5
CONCLUSION

In this research, we investigate speeding up FEM simulations. We develop three methods
to do so. The common denominator of these methods is that an ML model is used in
place of (a part of) the FEM model.

The major difference between them is their level of intrusion. The method of Chap-
ter 2 is extremely intrusive. To implement it, one needs to change the very source code
of the FEM model. The method of Chapter 3 is less intrusive. The surrogate that we pro-
posed replaces the micro model in a FE2 scheme. To implement it, one only needs to
modify the interface of the micro and macro models. The surrogate proposed in Chap-
ter 4 is the least intrusive of all. The surrogate replaces the entire FEM model and as a
result, there is no need to make any changes to the FEM model.

The degree of intrusion of a surrogate model is inversely related to their industrial
applicability. In the industry, source codes are either locked to safeguard the intellectual
property or modifying them is non-trivial due to their complexity. Hence, we envision
methods of Chapters 3 and 4 to have value in the industry while the method of Chapters 2
to remain mostly academic.

Methods proposed in the thesis could enable multi-query applications when the
FEM model is computationally expensive. Let us consider a few examples.

A car company wants to assess the reliability of its cars in event of an accident. They
can simulate the car crash using a computationally expensive FEM model. But to assess
the reliability, they need to conduct a Monte-Carlo simulation in which they need to
run the FEM model many times. The computational expense of the FEM model renders
the Monte-Carlo simulation computationally intractable. However, using an efficient
surrogate model in place of the FEM model could enable the Monte-Carlo simulation.

A virtual reality company is developing haptic technology for its devices. They want
to enrich their physics engine by incorporating mechanics. However, mechanical mod-
els are numerically solved using FEM models, which are too slow for real-time simu-
lations. Replacing the FEM model with an efficient surrogate could enable real-time
simulation while enriching the physics engine with mechanics.

The development of an ML surrogate requires a hefty upfront investment. Firstly,
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one requires to collect a substantial amount of data to tune the parameters of the ML
surrogate. To collect a data point, the computationally expensive FEM model needs to
be executed. Secondly, the tuning parameters of the ML surrogate could be a tedious
procedure. These beg the question, does the achieved speed up worth the upfront in-
vestment? Let us consider an example. Let us say that data collection and parameter
tuning take 5 and 2 hours, respectively. And the resulting surrogate is 10 minutes faster
than the FEM model. Then the surrogate is only efficient in an application that it is used
more than 5+2 hours

10/60 hours = 42 times. For that reason, we strongly advise considering the
return on investment prior to developing these ML surrogates.

We argue that developing an effective ML model on data collected from experimen-
tal laboratories is in vain. We deliver two reasons. First, such data is not readily available,
because the data collection procedure is tedious. Let us illustrate that with an example.
Let us say we conduct a uniaxial tensile experiment and collect a bunch of stress-strain
data points. Then we develop an ML model. This model would fail to grasp the Poisson
effect. To enrich the model with the Poisson effect, we have to go back to the labora-
tory and conduct a different experiment and generate new data. This is not only time-
consuming but also expensive. Second, an ML model does not necessarily respect the
laws of physics. When developing an ML model on FEM generated data, we have the
assurance that the more accurate the ML model is, the more it respects physical laws
embedded in the FEM model. But such a guarantee does not apply to ML models devel-
oped on experimental data from laboratories. For instance, if devices are not calibrated,
the ML model still fits perfectly to the data they generate. However, those data negate
the laws of physics.
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