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ABSTRACT
The number of molecules used in a typical Molecular Dynamics (MD) simulations is orders of magnitude
lower than in the thermodynamic limit. It is therefore essential to correct diffusivities computed from
Molecular Dynamics simulations for finite-size effects. We present a comprehensive review on finite-
size effects of diffusion coefficients by considering self-, Maxwell–Stefan, and Fick diffusion coefficients
in pure liquids, as well as binary, ternary, and quaternary mixtures. All finite-size corrections, both
analytical and empirical, are discussed in detail. The finite-size effects of rotational and confined
diffusion are also briefly discussed.
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1. Introduction

Mass transport by diffusion plays a crucial role in a wide variety
of processes in nature and engineering. Such processes are sep-
aration, drug and protein delivery in living organisms, fog for-
mation, powder metallurgy, and many others [1–5]. Diffusion
is commonly described as the mass flux (i.e. transport) due to
a gradient of concentration or chemical potential of a com-
ponent [6–8]. In liquids, diffusion is a relatively slow process
and is often a limiting factor in engineering applications [9–
11]. Usually, the diffusion in engineering applications involves
multicomponent liquid mixtures [11,12]. The accurate predic-
tion of diffusivities of these mixtures is therefore very important
[13]. Self-diffusivity is the motion of individual molecules in a
pure liquid or in a mixture due to random Brownian motion,
i.e. in the absence of an external driving force [14–16]. Techni-
cally, collective diffusivities are of greater interest in engineer-
ing applications. Collective diffusion describes the net
transport of a component in a multicomponent mixture rela-
tive to a reference motion of another component. The mass
flux in collective diffusion is described by a gradient in chemical
potential due to differences in temperature, concentration,
pressure and/or electric field [11,16,17].

The framework for the systematic study of diffusion was
established by the pioneering studies of Graham [18] and
Fick [19] in the mid-19th century. Since then, experimental
methods for measuring the diffusivity in liquids have signifi-
cantly improved. Such methods include Nuclear Magnetic Res-
onance (NMR) [20], Raman Micro-spectroscopy [21],
Dynamic Light Scattering (DLS) [22,23] and holographic inter-
ferometry [24]. Despite this progress, experimental measure-
ments are often challenging to perform. In many cases,

experiments require special and costly equipment and can be
very time consuming for mixtures with sluggish dynamics
[25–27]. Moreover, experimental measurements can be danger-
ous when poisonous or explosive compounds are studied, and
when high temperatures and/or pressures are required [28,29].
The resolution of experiments is generally too low for obtaining
insight at the molecular level [30]. To this end, theoretical
approaches based on the kinetic theory and hydrodynamics
have been developed to predict diffusivities. Such approaches
are the well-known Stokes–Einstein [31] and Wilke–Chang
[32] models. Recently, Gross and co-workers [33] proposed a
model according to which the self-diffusion coefficients of
pure liquids can be calculated from the scaling of the excess
entropy, using the Perturbed-Chain Polar Statistical Associat-
ing Fluid Theory (PCP-SAFT) equation of state. Nevertheless,
such semi-empirical correlations cannot be generalised for all
fluids. A detailed discussion on theoretical approaches for
obtaining diffusion can be found elsewhere [3,11,12,34,35].

After more than half a century of practice, molecular simu-
lation has been matured into a powerful tool for computing
diffusion coefficients of pure fluids and mixtures, complement-
ing experiments and models [6,10,30,36–55]. Diffusion coeffi-
cients can be computed by performing Molecular Dynamics
(MD) or Kinetic Monte Carlo (KMC) simulations [37,38,56].
The MD approach is by far the most widely used, and thus
the focus of this review. In MD, diffusion coefficients can be
computed either by using equilibrium (EMD) or non-equili-
brium (NEMD) simulations [57,58]. In NEMD simulations,
an external driving force is used to exert a net flux in the system
from which the transport properties can be calculated
[36,37,59–62]. In EMD, diffusivities are computed in mixtures
at equilibrium, i.e. in the absence of external forces. The Green-
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Kubo (GK) method and Einstein relations are two common
approaches in EMD simulation. The GK method [52,53,63–
66] is based on the computation of integrals of velocity-time
correlation functions, while the Einstein relations are based
on the linear fit to mean-squared displacements as a function
of time [14,67–69].

EMD simulations have been extensively used for computing
self-diffusivities of fluid models, e.g. hard spheres and Lennard-
Jones (LJ) particles [70–74], as well of a wide variety of molecu-
lar fluids, e.g. water, carbon dioxide, hydrocarbons, ionic
liquids, deep eutectic solvents, and biomolecules [48,75–85].
Many studies have focused on the computation of self-diffusiv-
ities in mixtures [86–89]. EMD has also been widely used to
predict collective diffusivity in binary, ternary, and multicom-
ponent mixtures [30,49–52,61,90–98]. To describe collective
diffusion in mixtures, the Maxwell–Stefan (MS) theory and
Fick’s law are the most commonly used approaches
[1,11,13,17,94]. According to the MS theory, a gradient in
chemical potential is the driving force for mass transport
[94]. Since chemical potentials cannot be directly measured
in experiments, the determination of MS diffusion coefficients
is challenging [13,50,94]. MS diffusivities can be computed in
EMD simulations using so-called Onsager coefficients. Onsager
coefficients allow for a phenomenological description of diffu-
sion based on the Onsager theory of irreversible thermodyn-
amics, which relates the velocity difference of the individual
components to chemical potential gradients [17,94,99,100].
Contrary to MS diffusivities, Fick’s diffusion [17,19] can be
directly measured experimentally. Since MS and Fick describe
the same physical phenomenon, these diffusivities are related.
The conversion between Fick and MS diffusivities is enabled
by the so-called matrix of thermodynamic factors, which is a
measure of the non-ideality of the mixtures [101,102]. A way
to obtain thermodynamic factors is via Kirkwood–Buff inte-
grals (KBIs) [103–107]. KBIs are expressed as either integrals
over the radial distribution functions (RDFs) of a closed subvo-
lume in canonical MD simulations, or as density fluctuations of
an open and infinite system in grand-canonical simulations
[106,108,109]. For an in-depth discussion on KBIs as well as
on self-, MS and Fick diffusivities, the reader is referred to
the relevant literature [6,50,94,106,107,109–111].

A remaining challenge of MD simulations is the limited sys-
tem size. The system sizes used in a typical MD simulation vary
from a few hundred to several thousands of molecules. Periodic
boundary conditions are traditionally imposed in all directions
to mimic the bulk fluid phase and eliminate surface effects [36–
39]. Due to the long-range nature of hydrodynamic and elec-
trostatic interactions between molecules in the simulation box
and with the periodic images (because of periodic boundary
conditions), dynamical properties may suffer from the finite-
size effects [37,112,113]. In particular, the computation of diffu-
sivities [74,114–118], activity coefficients [119], thermal con-
ductivities [120], ionic conductivities [121], and KBIs
[122,123] have been shown to depend on the system size.
Other properties, such as the shear viscosity are not affected
by the system size [78,124–126]. As Dünweg and Kremer
[114] explicitly state in their pioneering work on the dynamics
of polymer chains, to avoid such finite-size effects one may con-
sider performing simulations without periodic boundary

conditions, e.g. using hard walls. Nevertheless, such a choice
would simply introduce different effects which are possibly
more difficult to control, e.g. unwanted fluid-wall interactions.
It is important to note that finite-size effects are present in the
computation of both self- [78,127] and collective diffusivities
[91,117,128], both in pure liquids and multicomponent mix-
tures. To mitigate finite-size effects, researchers have used rela-
tively large system sizes, large cut-off radii in the interaction
potentials, or analytic corrections [51,77,115,129,130].

In this review paper, we present a comprehensive discussion
of the finite-size dependence of self- and collective diffusion
coefficients computed with EMD simulations for various mol-
ecular and LJ systems. Our study covers pure fluids, binary,
ternary and quaternary mixtures. Finite-size effects for diffusiv-
ity computations in confined systems, and for rotational diffu-
sion are also briefly discussed. The rest of the manuscript is
organised as follows: In Section 2, the available MD codes for
computing diffusion coefficients are presented. The finite-size
dependence and available correction terms for self, rotational
and collective diffusivities are discussed in Sections 3, 4 and
5, respectively. Finite-size effects of diffusion of confined liquids
is also discussed in Section 3. Our main findings are summar-
ised in Section 6.

2. Computational details and available software

The open-source MD packages LAMMPS [131] and GRO-
MACS [132] are widely used for computing transport proper-
ties of liquids. One of the reasons for the popularity of these
packages is the default built-in features and tools which can
be used to calculate diffusion coefficients based on the Green-
Kubo and Einstein methods [36,133]. The source codes of
both LAMMPS and GROMACS are designed in a modular
way which promotes the development of new features by the
simulation community. Recently, a new open-source plugin
for LAMMPS, called OCTP (On-the-fly Calculation of Trans-
port Properties), has been developed by Jamali et al.
[134,135]. OCTP uses Einstein relations combined with the
order-n algorithm [36,136] to accurately compute the following
properties: shear and bulk viscosities, radial distribution func-
tions (RDFs), thermal conductivities, and self- and MS diffusiv-
ities. In addition, Humbert et al. [137] has recently developed
the open-source post-processing tool PyLAT (Python Analysis
Tools) for LAMMPS which enables the computation of several
transport properties such as viscosities, self-diffusivities, ionic
conductivities, dielectric constants, and RDFs. Deublein et al.
[138] developed a molecular simulation program named ms2,
to compute thermodynamic and transport properties of pure
liquids and multicomponent mixtures based on classical MD
and MC simulations. In ms2, static properties such as thermal
and caloric properties, chemical potentials, vapour-liquid equi-
libria, Henry’s law constant, and second virial coefficients, and
dynamic properties such as self-diffusion coefficients, MS diffu-
sivities, shear and bulk viscosities can be computed in different
ensembles.

All diffusivities presented in this study are computed using
the OCTP plugin in LAMMPS. A schematic representation of
the workflow for computing self- and collective diffusivities is
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shown in Figure 1. The exact simulation scheme and force field
details can be found in our previous studies [117,128].

3. Finite-size dependence of self-diffusivities

The study by Dünweg and Kremer [114] was one of the first
focusing on finite-size effects of dynamic properties computed
in MD. The authors carried out MD simulations of a polymer
chain diluted in a good solvent for different system sizes. It was
shown that the computed diffusion coefficient of the chain
scales linearly with the inverse of the simulation box length,
L, which is proportional to N1/3 (where N is the number of
molecules). This means that the self-diffusivities of a molecule
in the thermodynamic limit, D1

Self , can be obtained by linear
extrapolating to 1/L � 0. Almost a decade later, Yeh and
Hummer [115] validated the findings of Dünweg and Kremer
by performing MD simulations of LJ particles and TIP3P
[139] water. To obtain D1

Self , Yeh and Hummer [115] derived
an analytic finite-size correction term based on hydrodynamics
[115]. Although the same term has been already derived by
Dünweg and Kremer [114], it is commonly referred to as the
Yeh–Hummer (YH) correction:

D1
Self = DMD

Self +
kBTj
6phL

(1)

where DMD
Self is the finite self-diffusion coefficient computed in

MD simulations, (kB) is the Boltzmann constant, T is the
absolute temperature, h is the shear viscosity computed in
MD simulations, and j is a dimensionless constant equal to
2.837298 for periodic (cubic) lattices [140,141]. DMD

Self and h
can be directly computed in EMD simulations using the

Einstein relations [36,37,134]:

DMD
Self = lim

t�1
1

6Nit

∑Ni

j=1

(r j,i(t)− r j,i(0))
2

〈 〉
(2)

and

h = lim
t�1

1
2t

V
kBT

∫t
0
Pab(t

′) dt′
( )2

〈 〉
(3)

where r j,i(t) is the position of the j-th molecule of species i at
time t, and Ni is the number of molecules of species i in the sys-
tem. Pab are the off-diagonal components of the stress tensor
(i.e. Pxy, Pxz , and Pyz), and V is the volume of the system.
The angular brackets denote an ensemble average. It is impor-
tant to note that h computed from EMD does not exhibit finite-
size effects. [78,115,124–126]

In addition to LJ fluids and water, the validity and applica-
bility of the YH correction has been shown for various com-
ponents, e.g. carbon dioxide, n-alkanes, and deep eutectic
solvents [30,78,130,142]. The magnitude of the finite-size
effects may significantly vary, depending on the system type
and the thermodynamic conditions [127,128]. For example,
as shown by Moultos et al. [78], the YH correction needed to
compensate for the finite-size effects of the computed diffusiv-
ity of CO2 at 323.15 K and 200 bar using 250 molecules is ca.
8%, a value which is comparable with the error in the calcu-
lation of the diffusivity of a finite-size system. In sharp contrast,
for systems in which the solute size is significantly larger than
the size of the solvent molecules, the YH correction can be even
larger than the computed diffusivity. In particular, recently
Erdös et al. [143] computed the diffusivity of cyclodextrins in
water and showed that the YH correction is ca. 30% to 75%
of the final (corrected) self-diffusion coefficients (depending
on T and P). Thus, in such systems, the use of finite-size

Figure 1. (Colour online) The workflow on how to compute diffusion coefficients in liquid mixtures.
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corrections is imperative, even if relatively large system-sizes
are used in MD simulations (i.e. 6000 molecules [143]).
Based on the YH correction (Equation (1)), and by assuming
that the self-diffusivity of a molecule, with effective hydrodyn-
amic radius R, can be described using the Stokes–Einstein
equation [14,31,144]

D1
Self =

kBT
6phR

(4)

one can derive the following:

DMD
Self

D1
Self

= 1− j
R
L

(5)

Equation (4) shows that the finite-size effects of self-diffusivity
depend on the size of the diffusing molecule with respect to the
size of the simulation box. Hence, it is not surprising that finite-
size effects in diffusivity computations were initially observed
for polymers [115].

In Figure 2, finite-size effects are shown for the self-diffusiv-
ity of several pure fluids and mixtures. Figure 2(a) shows the
self-diffusion coefficient of SPC/E water as a function of the sys-
tem size. The simulations were carried out at 298.15 K and 1.0
atm, considering six system sizes in the range of 512–8000 mol-
ecules. The self-diffusivity of SPC/E water in the thermodyn-
amic limit deviates by 1.3% from the corrected diffusivity
using the YH expression (Equation (1)). These results are in
agreement with the self-diffusivity of SPC/E water reported in
literature [127,142,145]. The finite-size effects of the self-diffu-
sivity in a binary LJ system are shown in Figure 2(b) and (c).
For this system, dimensionless reduced units were considered
where e, s and m are the LJ parameters, and the mass, respect-
ively. The first component (LJ1) is used as the basis with
e1 = e = 1, s1 = s = 1 and m1 = m = 1. The parameters of
the second component (i.e. LJ2) are e2 = 1, s2 = 1.6s and
m2 = s3. Equimolar binary mixtures for four system sizes
(500, 1000, 2000 and 4000 particles) were considered. Simu-
lations were performed at a reduced temperature of 0.65 and
a reduced pressure of 0.05, corresponding to an average
reduced density of 0.34. As in pure liquids, self-diffusion coeffi-
cients in binary mixtures vary proportionally with the inverse
of the simulation box length. The difference between the cor-
rected self-diffusion coefficients using the YH expression and
extrapolated values to the thermodynamic limit is less than
1%. To test the validity of the YH correction for the self-diffu-
sion coefficients in ternary molecular mixtures, MD simu-
lations of the toluene/acetone/water mixture were carried out
at 298.15 K and 1 atm. Results are shown in Figure 2(d–f).
Four different system sizes consisting of 400–1500 molecules
(in total) were simulated. The mole fractions of toluene,
acetone and water are 0.10 0.65 and 0.25, respectively. The den-
sity of the system is 835 kg/m3, which agrees with the exper-
imental density [146]. The OPLS-AA force field was used for
Toluene [147] and Acetone [148], and the SPC/E force field
[149] was used for water. As shown clearly in Figure 2, for
both LJ fluids and molecular systems, the YH correction
(Equation (1)) can accurately predict the finite-size effects of
self-diffusivity.

Recently, Jamali et al. [126] proposed a method (called D-
based) for computing shear viscosities of pure and multi-com-
ponent fluids by exploiting the finite-size effects of self-diffusiv-
ities. In this method, a linear regression is performed to self-
diffusivities computed for at least two different system sizes.
The slope of the linear fit is proportional to the inverse of the
shear viscosity because of the YH correction term (Equation
(1)). Jamali et al. [126] tested this method using 250 binary
and 26 ternary LJ systems, pure water, and ionic liquid Bmim
[Tf2N] ionic liquid. The obtained viscosities were shown to
be in good agreement with the ones computed directly in
EMD using the conventional methods (e.g. Einstein relations).
For the exact details on the D-based method and guidelines for
using it in the most efficient way, the reader is referred to the
original paper [126].

3.1. Finite-size dependence of self-diffusivities of fluids
in confinement

The self-diffusivity of a liquid in a nanochannel may signifi-
cantly deviate from the self-diffusivity in the bulk phase due
to both the actual confinement effect (fluid-wall interactions)
and the use of periodic boundary conditions [116,150]. It
has been shown that the physical properties of liquids in
confinement such as the pressure, density, viscosity and
diffusivity can spatially vary (i.e. evidence of localised
phenomena) [151–161]. These local effects typically subside
within a couple of molecular diameters away from the
walls [162–165]. This means that, as channel diameter
increases, dynamic properties (i.e. viscosity, diffusivity) even-
tually become equal to the respective quantity in the bulk
phase [165–167]. Recently, Simonnin et al. [116] investi-
gated how the self-diffusion coefficient of a nanoconfined
fluid is affected by the confining distance (H ) and the simu-
lation box length parallel to the wall (L). Simonnin et al.
[116] showed that the self-diffusion coefficient decreases as
the simulation box length parallel to the wall (L) increases.
This effect is evident due to the use of periodic boundary
conditions. Furthermore, the diffusion coefficient increase
with increasing confining distance. This is mainly due to
the receding effect of wall-liquid interactions, as also dis-
cussed earlier in other studies [168–171]. An analytic correc-
tion term for finite-size dependence in nanoconfined fluids
was derived by Simonnin et al. [116] using continuum
hydrodynamics. This term accounts for the contribution of
both L and H. The model was developed for an LJ fluid
in a slit-like pore with no-slip condition, and the finite-
size correction of such system was validated using MD
simulations:

D1
II = DMD

II + kBT
h

3
40

H
L2

− 3 ln (1+ ��
2

√
)

4pL

[ ]
for H . L (6)

D1
II = DMD

II − 1
24

kBT
h

H
L2

for H ≤ L (7)

where D1
II and DMD

II are the self-diffusion coefficients for
nanoconfined liquid in thermodynamic limit and at finite-
size, respectively. These finite-size correction terms
(Equations (6) and (7)) are in good agreement with MD
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simulation results, except for very narrow channels [116]. In
narrow channels, the assumptions based on classical consti-
tutive equations break down, e.g. Newton’s law of viscosity.
Consequently, continuum variables such as viscosity, diffu-
sivity, thermal conductivity obtained from constitutive
equations become inaccurate [152,161,172].

4. Finite-size dependence of rotational diffusivities

Finite-size effects are also present in the computation of
rotational diffusion [173] in EMD. The accurate prediction of
rotational diffusivity is mainly important for the design of
bio-engineering applications, which involves relatively large
and rather asymmetric molecules (e.g. DNA, RNA, carbo-
hydrates). To this purpose, studies have investigated the scaling
of the rotational diffusivity with the system size [174–176].
Linke et al. [177] performed MD simulations of B-DNA dode-
camer and horse-heart myoglobin using various system sizes.
Linke et al. [177] developed an analytic correction term to
account for the finite-size dependence of the computed
rotational diffusion coefficients in three-dimensions (3-D):

D1
Rot = DMD

Rot +
kBT
6hV

(8)

where D1
Rot and D

MD
Rot is the rotational diffusion coefficient in the

thermodynamic limit and the one computed in MD simu-
lations, respectively. h is the shear viscosity and V is the
volume of the simulation box. A similar correction term for
the finite-size effects of the rotational diffusivity of biological
membrane proteins and carbon nanotubes was derived by
Vögele et al. [178] based on a two-dimensional (2-D) periodic

Stokes flow:

D1
Rot = DMD

Rot +
kBT
4hV

(9)

The difference between Equations (8) and (9) is the use of 2-D
and 3-D flows for the correction of rotational diffusivities.
Vögele et al. [178] suggested that mean square displacement
expressions for rotational diffusion in 2-D are much simpler
compared to the same expressions in 3-D (i.e. use of quater-
nions). As can be seen from Equations (1), (8) and (9), the cor-
rection term for the translational diffusion contains the inverse
of the simulation box length, while the finite-size correction
term for rotational diffusion contains the inverse box volume.
This indicates that the required correction of rotational diffu-
sion is much smaller than the one for translational diffusion.

5. Collective diffusivities

Fick diffusion coefficients relate liquid fluxes to concentration
gradients. The generalised Fick’s law in an n-component sys-
tem with respect to a molar reference frame equals [11,19]:

Ji = −ct
∑n−1

j=1

Dij∇x j (10)

where Ji is the diffusion flux, ct is the total molar concentration,
x j is the mole fraction of component j, and Dij are the Fick
diffusion coefficients. For an n-component system, the Fick
diffusion matrix consists of (n− 1)× (n− 1) components.

Figure 2. (Colour online) (a) Self-diffusion coefficients of pure water at 298.15 K and 1 atm for six system sizes consisting of 512–8000 molecules. (b) Self-diffusion coeffi-
cients of binary LJ mixtures at a reduced temperature of 0.65 and a reduced pressure of 0.05 for LJ1, and (c) LJ2 for four system sizes consisting of 500, 1000, 2000, and
4000 particles. (d) Self-diffusion coefficients of toluene, (e) acetone and (f) water in a ternary mixture of toluene-acetone-water at 298.15 K and 1 atm (xtoluene = 0.1,
xacetone = 0.65, and xwater = 0.25) for 5 system sizes consisting of 400–1500 molecules. The uncorrected MD results are shown with red circles. Grey diamonds show
the corrected self-diffusion coefficients using Equation (1). Blue dashed lines are the linear extrapolation of MD results to the thermodynamic limit and black dashed
lines are the extrapolated values. The axes of subfigures scales differently.
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The MS theory relates the gradient in chemical potentials to
the liquid friction at a constant driving force [17,94]:

− 1
RT

∇T ,pmi =
∑

i=1,j=i

x j(ui − u j)

Đij
(11)

where R is the universal gas constant, ∇mi is the chemical
potential gradient of component i at constant pressure and
temperature. (ui − u j) is the difference in average velocities
between components i and j, which is proportional to the fric-
tion force at a constant driving force. Đij are the MS diffusion
coefficients, which are (unlike Fick diffusivities of Dij) sym-
metric, i.e. Đij =Đji. For an n-component system, there exist
n(n− 1)/2 MS diffusion coefficients. In a molar reference
frame, the relation between Fick and MS diffusivities can be
expressed by using the matrix of thermodynamic factors [Gij]
and the phenomenological diffusivity matrix [Dij] [17,94]:

[Dij] = [Dij][Gij] (12)

where [179]

Gij = dij + xi
∂ ln gi
∂x j

( )
T ,p,S

(13)

where dij is the kronicker delta, gi is the activity coefficient of
component i. The S symbol is used to point out that partial
differentiation of ln gi with respect to xj is performed at

constant mole fractions of all other components except for
the n-th component [10].

The elements of [Dij] can be obtained as follows:

Dij = (1− xi)
Lij

x j
− Lin

xn

( )
− xi

∑k=n

k=1,k=i

Lkj

x j
− Lkn

xn

( )

with i, j = 1, . . . , (n− 1)

(14)

where Lij are the Onsager coefficients computed using
EMD simulations (here shown using the Einstein formulation)
[90,94,99,100]:

Lij = 1
Nt

lim
t�1

∑Ni

k=1

(rk,i(t)− rk,i(0))

( )
×

∑Nj

k=1

(rl,j(t)− rl,j(0))

( )〈 〉

(15)

where Ni and Nj are the number of molecules of species i and j,
respectively. Nt is the total number of molecules in the system,
and ri,j is the position of i-th molecule of species j at time t.
Onsager coefficients can be transformed into MS diffusivities
using the [Bij] matrix. The [Bij] matrix is the inverse of [Dij]:

[Bij] = [Dij]
−1 (16)

MS diffusion coefficients is related to the elements of [Bij]
matrix by

Bii = xi
Đin

+
∑n

i=1,j=i

x j

Đij
with i = 1, 2, . . . (n− 1) (17)

Bij = −xi
1
Đij

− 1
Đin

( )

with i, j = 1, 2, . . . (n− 1) and j = i

(18)

The resulting expressions for binary, ternary, quaternary
systems can be found in [6,49,90]. For ideal diffusing
systems, MS diffusivities can be related to self-diffusivities
[84], but in general this is not the case due to velocity cross-
correlations.

5.1. Finite-size dependence of collective diffusivities

5.1.1. Binary mixtures
Jamali et al. [128] performed an in-depth investigation of finite-
size effects of MS diffusivities in binary mixtures. These authors
performed EMD simulations of 200 LJ and 9 molecular mix-
tures and showed that, similarly to self-diffusivities, MS-diffu-
sivities scale linearly with the system size. On the basis of the
YH-correction (Equation (1)), and by taking into account the
non-ideality of the mixtures, Jamali et al. [128] developed a
phenomenological correction term which should be added to
the computed MS diffusivity, ĐMD, to obtain the property in
the thermodynamic limit, Đ1:

Đ1 = ĐMD + 1
G

( )
kBTj
6phL

= ĐMD + 1
G

( )
DYH (19)

where G is the thermodynamic factor (which can be obtained
from MD simulations using KBIs [103,106]). As can be seen
from Equation (19), the magnitude of the required finite-size

Figure 3. (Colour online) (a) MS and (b) Fick diffusion coefficients of a binary equi-
molar methanol–methylamine mixture at 298 K and 1 atm as a function of the
simulation box length (L). (c) MS and (d) Fick diffusion coefficients of binary LJ mix-
tures (x1 = 0.3 and x2 = 0.7) at a reduced temperature of 0.65 and a reduced
pressure of 0.05 as a function of the simulation box length (L). The uncorrected
MD results are shown with red circles. Blue dashed lines are the linear extrapol-
ation of the MD results to the thermodynamic limit. Grey diamonds show the cor-
rected MS and Fick diffusion coefficients using Equations (19) and (21),
respectively. Black dashed lines are the corrected diffusion coefficients computed
from the linear extrapolation of the Onsager coefficients of the smallest sizes
(NMolecular = 250 and NLJ = 500) to the thermodynamic limit. For LJ systems, simu-
lations were performed for four system sizes consisting of 250, 500, 1000, and 2000
particles. For the molecular mixture, four system sizes consisting of 500, 1000,
2000, and 4000 particles were considered. The results are based on the study in
[128]. The axes of subfigures scales differently.
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correction for MS diffusivities depends on the thermodynamic
factor. This means that for non-ideal mixtures close to demix-
ing (G � 0) the correction term becomes very large.

For binary mixtures, there is single MS and Fick diffusion
coefficient defined. They are related to each other by

D = GĐ (20)

As shown in the work by Jamali et al. [128], the finite-size cor-
rection for Fick diffusivities in binary mixtures can be derived
by combining Equations (19) and (20) [128]:

D1 = DMD + DYH (21)

Thus, the YH correction applies to the Fick diffusivities. This
finding seems reasonable since the YH correction is a hydro-
dynamic effect and the Fick diffusivities appear in the hydro-
dynamic equations.

In Figure 3, the finite-size effects of the MS and Fick diffu-
sivities are shown for the binary mixture methanol/methyl-
amine and a binary LJ system. MD simulations were
performed for equimolar methanol/methylamine mixtures
consisting of four different system sizes (i.e. 250–2000 mol-
ecules) at 298 K and 1 atm. Force field parameters for methanol
[180] and methylamine [181,182] were obtained from the
Transferable Potential for Phase Equilibria (TraPPE) force
field. For the LJ system, simulations were performed at a
reduced temperature of 0.65 and a reduced pressure of 0.05.
The mole fractions of species 1 and 2 were chosen as 0.3 and
0.7, respectively. This LJ system corresponds to an average
reduced density of 0.22. The LJ system involves prominent

dissimilarities in size (s2/s1 equal to 1.6), interaction energy
(e2/e1 equal to 0.6), and mass (m2/m1 equal to 4.096). For all
other simulation and force field details, the reader is referred
to Ref. [128]. Analytic finite-size corrections for MS and Fick
diffusion coefficients are computed using Equations (19) and
(21), respectively. The analytic corrections are compared with
the linear regression of the MD results to the thermodynamic
limit. As can be seen in Figure 3, the proposed correction accu-
rately accounts for the finite-size effects of MS and Fick diffu-
sion coefficients in binary molecular and LJ systems.
Maximum deviations of 2.1% and 3.3% were observed from
the extrapolated values in binary molecular and LJ systems,
respectively.

5.1.2. Ternary mixtures
Very recently, Jamali et al. [117] derived the generalised form
for finite-size corrections of collective diffusion of multicompo-
nent mixtures. By analysing the eigenvalues and eigenvectors of
the Fick diffusion matrix, it was shown that only eigenvalues,
which describe the speed of diffusion, are system-size depen-
dent. The eigenvectors, which describe the direction of the
diffusion process, do not depend on the size of the simulation
box. Thus, the off-diagonal components of the Fick diffusion
matrix exhibit no finite-size effects, while the diagonal com-
ponents are system size dependent and can be corrected
using the YH correction term. The generalised expression for
finite-size corrections of the Fick diffusivity matrix is [117]:

[D1] = [DMD]+ DYH[I] (22)

where [I ] is the identity matrix. By combining Equations (12)
and (22), one can obtain the generalised expression for finite-
size corrections of the D matrix:

[D1] = [DMD]+ DYH[G]−1 (23)

in which MS diffusivities are computed using Equations
(16)–(18).

The validity of the generalised correction terms shown in
Equations (22) and (23) was tested in the study by Jamali
et al. [117] using a ternary mixture of chloroform/acetone/
methanol, and 28 different ternary LJ liquids. In Figures 4
and 5, we show the computed Fick and MS diffusion coeffi-
cients of the ternary molecular mixture of chloroform
(x1 = 0.3), acetone (x2 = 0.3) and methanol (x3 = 0.4). MD
simulations were carried out at 298 K and 1 atm, which corre-
spond to a system with an average density of 1025 kg/m3. Diffu-
sion coefficients were computed for four system sizes
containing 500, 1000, 2000 and 4000 molecules. The OPLS
force field was used to model chloroform, acetone and metha-
nol [183]. All simulation details and the force field parameters
can be found in [117]. As postulated in Equation (22), the off-
diagonal components of the Fick diffusivity matrix do not
depend on the system size (see Figure 4). In sharp contrast,
the diagonal components have a pronounced finite-size depen-
dence, which can be accurately corrected using the YH correc-
tion (Equation (1)). As shown in Figure 5, unlike Fick
diffusivities, all MS diffusion coefficients depend on the system
size and can be corrected using Equation (23). The maximum
difference observed between the diffusion coefficients obtained

Figure 4. (Colour online) Fick diffusion coefficients of a ternary molecular mixture
(molar reference frame) of (1) chloroform (2) acetone, and (3) methanol
(xchloroform = xacetone = 0.3 and xmethanol = 0.4) at 298 K and 1 atm as a function
of the simulation box length (L). (a) Diagonal component D1,1, (b) Off-diagonal
component D1,2, (c) Off-diagonal component D2,1, and (d) Diagonal component
D2,2. The uncorrected MD results are shown with red circles. Blue dashed lines
are the linear extrapolation of the MD results to the thermodynamic limit. Grey
diamonds show the corrected Fick diffusion coefficients using Equation (22).
Black dashed lines are the corrected Fick diffusion coefficients computed from
the linear extrapolation of the Onsager coefficients of the smallest size (N=500)
to the thermodynamic limit. Simulations were performed for four system sizes con-
sisting of 500, 1000, 2000, and 4000 particles. The results are based on the study in
[128]. The axes of subfigures scales differently.
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via the analytic correction and the linear extrapolation to the
infinite system size was 1.5%. This difference is rather small
considering that the error in the computed diffusivities is not
higher than 5%.

To further investigate the finite-size effects of collective
diffusivities in ternary mixtures, an LJ system at a reduced
temperature of 0.65 and reduced pressure of 0.05 was simu-
lated. The σ and m parameters for all species are chosen to
be equal. To induce dissimilarities in the system, the ε par-
ameters were varied (i.e. e1 = 1.0, e2 = 0.8, and e3 = 0.6),
and adjustable parameters (kij) were applied to the Lorentz–
Berthelot mixing rules (i.e. k12 = 0.05, k13 = 0.05, and
k23 = −0.3) [37]. The mole fractions are 0.4, 0.3 and 0.3 for

LJ species 1, 2 and 3, respectively. Four system sizes, ranging
from 500 to 4000 molecules, were considered. All other simu-
lation details and force field parameters can be found in
[117]. Figures 6 and 7 illustrate Fick and MS diffusivities,
respectively, for this LJ system. In-line with the results of the
molecular mixture, corrected diffusion coefficients are in a
good agreement with the diffusivities obtained from the linear
extrapolation to the infinite system size. The deviation in finite-
size corrected diffusivities between two approaches is up to
2.5%.

As proposed by Vrabec and co-workers [91], the finite-size
corrected MS and Fick diffusivities can also be obtained by
extrapolating the Onsager coefficients to the thermodynamic
limit, i.e. by linear regression in a plot with 1/L. Figure 8
shows the Onsager coefficients for the ternary LJ system com-
puted in this study (x1 = 0.4 and x2 = x3 = 0.3). It is impor-
tant to note that this approach requires multiple simulations
at various system sizes and that a linear extrapolation typically
introduces uncertainties. Recently, Vrabec and co-workers [91]
investigated the finite-size effects of collective diffusion coeffi-
cients of water/methanol/ethanol/2-propanol mixture. The
required phenomenological coefficient (Dij) and thermodyn-
amic factor (Gij) matrices for Fick diffusivities were obtained
from EMD simulations. A finite-size correction for Fick diffu-
sion coefficients was proposed based on the linear extrapolation
of the diagonal elements of the Onsager coefficient matrix to
the thermodynamic limit. Vrabec and co-workers [91]
suggested that off-diagonal Onsager coefficients do not depend
on the system size for their relatively large systems (6000 mol-
ecules). In the binary, ternary, and quaternary systems studied
here, both diagonal and non-diagonal elements of the com-
puted Onsager coefficients show finite-size effects. In Figure
8, an example of the finite-size dependency of the Onsager
coefficients for the ternary LJ system (x1 = 0.4 and
x2 = x3 = 0.3) is shown. MS and Fick diffusion coefficients
computed from the extrapolation of Onsager coefficients in
thermodynamic limit show a good agreement with the analytic
corrections, and also with the linear extrapolation of the Fick
and MS diffusion coefficients (dashed lines in Figures 3–7).
Using both the diagonal and off-diagonal elements of Onsager
coefficients is therefore crucial, particularly when relatively
small systems are considered. For large systems, the influence

Figure 5. (Colour online) MS diffusion coefficients of a ternary molecular mixture of (1) chloroform (2) acetone, and (3) methanol (xchloroform = xacetone = 0.3, and
xmethanol = 0.4) at 298 K and 1 atm as a function of the simulation box length (L). (a) Đ1,2, (b) Đ1,3, and (c) Đ2,3. The uncorrected MD results are shown with red circles.
Blue dashed lines are the linear extrapolation of the MD results to the thermodynamic limit. Grey diamonds show the corrected MS diffusion coefficients based on
Equation (23). Black dashed lines are the corrected MS diffusion coefficients computed from the linear extrapolation of the Onsager coefficients of the smallest size
(N=500) to the thermodynamic limit. Simulations were performed for four system sizes consisting of 500, 1000, 2000, and 4000 particles. The results are based on
the study in [117]. The axes of subfigures scales differently.

Figure 6. (Colour online) Fick diffusion coefficients of a ternary LJ mixture (molar
reference frame) (x1 = 0.4 and x2 = x3 = 0.3) at a reduced temperature of 0.65
and a reduced pressure of 0.05 as a function of the simulation box length (L).
(a) Diagonal component D1,1, (b) Off-diagonal component D1,2, (c) Off-diagonal
component D2,1, and (d) Diagonal component D2,2. The uncorrected MD results
are shown with red circles. Blue dashed lines are the linear extrapolation of the
MD results to the thermodynamic limit. Grey diamonds show the corrected Fick
diffusion coefficients using Equation (22). Black dashed lines are the corrected
Fick diffusion coefficients computed from the linear extrapolation of the Onsager
coefficients of the smallest size (N=500) to the thermodynamic limit. Simulations
were performed for four system sizes consisting of 500, 1000, 2000, and 4000 par-
ticles. The results are based on the study in [117]. The axes of subfigures scale
differently.
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of the off-diagonal elements can be relatively small if the
required finite-size correction is small.

5.1.3. Quaternary mixtures
The generalised finite-size correction for collective diffusion
(Equations (22) and (23)) derived by Jamali et al. [117] has
not yet been explicitly verified for systems containing more
than three components, e.g. quaternary mixtures. Here, we per-
formed MD simulations for an equimolar 4-component LJ col-
our mixture at a reduced temperature of 2.0 and a reduced
pressure of 3.4, which corresponds to a reduced density of
0.72. Six different system sizes were simulated, i.e. 400, 800,
1200, 1600, 3200 and 4800 particles. The σ and ε LJ parameters

for all species are chosen to be equal, so the mixture is ideal, i.e.
[Gii] = 1 and Gij,i=j

[ ] = 0. This means that the matrix of ther-
modynamic factor reduces to the identity matrix. To induce a
physical dissimilarity, the masses of the particles are varied as
follows: m1 = m, m2 = 4m, m3 = 16m, and m4 = 64m. In
Figures 9 and 10, the Fick and MS diffusivities of the quaternary
system are shown as a function of the system size, respectively.
Figure 9 shows that the off-diagonal elements of the Fick diffu-
sion matrix are size-independent, while the diagonal elements
vary proportionally with the inverse of the simulation box length.
In-line with our findings for the ternary mixtures, finite-size
effects of the diagonal elements of the Fick diffusion matrix
can be accurately corrected using the YH expression (Equation

Figure 7. (Colour online) MS diffusion coefficients of a ternary LJ mixture (x1 = 0.4 and x2 = x3 = 0.3) at a reduced temperature of 0.65 and a reduced pressure of 0.05
as a function of the simulation box length (L). (a) Đ1,2, (b) Đ1,3, and (c) Đ2,3. The uncorrected MD results are shown with red circles. Blue dashed lines are the linear
extrapolation of the MD results to the thermodynamic limit. Grey diamonds show the corrected MS diffusion coefficients based on Equation (23). Black dashed lines
are the corrected MS diffusion coefficients computed from the linear extrapolation of the Onsager coefficients of the smallest size (N=500) to the thermodynamic
limit. Simulations were performed for four system sizes consisting of 500, 1000, 2000, and 4000 particles. The results are based on the study in [117]. The axes of subfi-
gures scales differently.

Figure 8. (Colour online) Onsager coefficients of a ternary LJ mixture (x1 = 0.4 and x2 = x3 = 0.3) at a reduced temperature of 0.65 and a reduced pressure of 0.05 as a
function of the simulation box length (L). (a) L11, (b) L22, (c) L33, (d) L12, (e) L13, and (f) L23. The finite-size MD results are shown with red circles. Blue dashed lines are
the linear fits to the MD results. Simulations were performed for four system sizes consisting of 500, 1000, 2000, and 4000 particles. The results are based on the study in
[117]. The axes of subfigures scale differently.
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Figure 9. (Colour online) Fick diffusion coefficients of an equimolar quaternary LJ mixture (molar reference frame) at a reduced temperature of 2 and a reduced pressure
of 3.4 as a function of the simulation box length (L). (a) Diagonal component D1,1, (b) Off-diagonal component D1,2, (c) Off-diagonal component D1,3, (d) Off-diagonal
component D2,1, (e) Diagonal component D2,2, (f) Off-diagonal component D2,3, (g) Off-diagonal component D3,1, (h) Off-diagonal component D3,2, and (i) Diagonal com-
ponent D3,3. The uncorrected MD results are shown with red circles. Grey diamonds show the corrected Fick diffusion coefficients using Equation (22). Blue dashed lines
are the linear extrapolation of the MD results to the thermodynamic limit and Black dashed lines are the extrapolated values. Simulations were performed for six system
sizes consisting of 400, 800, 1200, 1600, 3200, and 4800 particles. The axes of subfigures scales differently.

Figure 10. (Colour online) MS diffusion coefficients of an equimolar quaternary LJ mixture at a reduced temperature of 2 and a reduced pressure of 3.4 as a function of
the simulation box length (L).(a) Đ1,2, (b) Đ1,3, (c) Đ1,4, (d) Đ2,3, (e) Đ2,4, and (f) Đ3,4. The uncorrected MD results are shown with red circles. Grey diamonds show the
corrected MS diffusion coefficients using Equation (22). Blue dashed lines are the linear extrapolation of the MD results to the thermodynamic limit and black dashed
lines are the extrapolated values. Simulations were performed for six system sizes consisting of 400, 800, 1200, 1600, 3200, and 4800 particles. The axes of subfigures
scales differently.
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(1)). Figure 10 shows that all MS diffusion coefficients are size-
dependent. The finite-size correction for MS diffusivities is
only a function of the YH term because the matrix of thermo-
dynamic factors is equal to the identity matrix (see Equation
(23)). Deviations between MS diffusivities corrected using the
analytic correction and the ones obtained by linear extrapolation
to the thermodynamic limit are in the range of 0 to 4.5%.

6. Conclusions

This review presents an in-depth discussion of the finite-size
effects of diffusion coefficients computed with molecular
dynamics simulations. The finite-size dependencies of self-
and collective diffusivities in pure liquids, binary, ternary and
quaternary mixtures are illustrated by considering various mol-
ecular and LJ systems. The effects of system size on the compu-
tation of diffusivities of confined liquids and rotational
diffusivities are also briefly discussed. For all cases, we discuss
the possible ways for obtaining the diffusivity values in the ther-
modynamics limit. It is shown that the self-diffusion coeffi-
cients of pure liquids and multicomponent mixtures scale
linearly with the inverse of the simulation box length. A way
to obtain self-diffusion coefficients in the thermodynamic
limit is by linear extrapolation of the MD (finite-size) results
to 1/L � 0. The disadvantages of this approach are that it
requires multiple long MD simulations of various system
sizes, and that linear regression introduces uncertainties.
Instead, an analytic correction term proposed by Yeh and
Hummer (Equation (1)) presents an alternative approach.
The YH correction requires the shear viscosity of the fluid
obtained from the conventional MD simulations (i.e. GK
method, Einstein relations). Here, the YH correction for self-
diffusion coefficient is illustrated for various molecular and LJ
systems, i.e. SPC/E water, binary equimolar LJ, and toluene-
acetone-water mixtures. The generalised form for finite-size
corrections of MS and Fick diffusivities by Jamali et al. [117]
is also discussed. For collective diffusion, our main conclusions
are as follows: For multicomponent mixtures (n > 2), the off-
diagonal elements of the Fick diffusivity matrix do not depend
on the system-size, while the diagonal elements show a system-
size dependency which can be corrected using the YH term. In
sharp contrast to Fick diffusivities, all MS diffusion coefficients
are system-size dependent. The required correction for MS
diffusivities can be considered as a modification of the YH
expression, which includes the matrix of thermodynamic fac-
tors. The validity of the generalised correction model for collec-
tive diffusivities is illustrated for binary (i.e. a molecular
methanol-methylamine and a LJ mixture), ternary (i.e. a mol-
ecular chloroform-acetone-methanol and a LJ mixture) and
quaternary (i.e. a LJ colour mixture) systems.
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