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Abstract Despite significant recent advancements in the sensor technologies, the use
of sensors for raw material characterization in the mining industry remains limited.
The aim of the present studywas to assess the utility of applying themid-wave infrared
(MWIR) reflectance data acquired by the use of a handheld Fourier-transform infrared
spectrometer (FTIR), combined with partial least squares-discriminant analysis (PLS-
DA), for the characterization of a polymetallic sulphide ore deposit. In achieving the
study objectives, focus was given to the MWIR portion of the FTIR dataset, as it is
the least explored region of the infrared spectrum in mineral characterization stud-
ies. Three datasets—covering different wavelength ranges—were generated from the
FTIR spectral data, namely the full FTIR range (2.5–15 µm), MWIR (2.5–7 µm) and
long-wave infrared (LWIR: 7–15 µm), in order to investigate the associated informa-
tion level of each defined wavelength region separately. Design of experiment was
developed to determine the optimal data filtering techniques. Using the processed data
and PLS-DA, a series of calibration and prediction models were developed for ore
and waste materials separately. As the models applied to the MWIR data showed a
successful classification rate of 86.3% for sulphide ore–waste discrimination, simi-
larly using the full spectral FTIR dataset, a correct classification rate of 89.5% was
achieved. This indicates that MWIR spectral range includes informative signals that
are sufficient for classifying the material into ore or waste. The proposed approach
could be extended for automating the sulphide ore–waste discrimination process, thus
greatly benefiting marginally economical mining operations.
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1 Introduction

In recent years, the use of sensor technologies for raw material characterization has
been rapidly growing and innovative technologies are being introduced at a fast pace.
However, sensor technologies are still rarely utilized for material characterization in
the mining industry, due to various factors, including (1) inadequate sensor design,
since most are intended for laboratory use, or are specific to a particular deposit type
and operational environment; (2) the need to demonstrate the sensors’ utility in the
mining industry; and (3) the high initial cost related to purchasing and setting up
the instruments, which may in some cases exceed the benefit to be realized. Despite
the limited use of sensors, findings yielded by extant studies in this field (Buxton
and Benndorf 2013; Fox et al. 2017; Goetz et al. 2009) show that the use of sensor
technologies in the mining industry can improve efficiency, reduce operational cost,
increase productivity, enhance safety and minimize environmental impact.

Several existing sensor technologies can be used for raw material characterization,
including laser-induced breakdown spectroscopy (LIBS), Raman spectroscopy, hyper-
spectral imaging, infrared technologies, and X-ray fluorescence (XRF). For example,
Death et al. (2008) showed the potential for applying LIBS in online compositional
determination of iron ore samples. Similarly, Kruse (1996) demonstrated that rapid
acquisition of short-wave infrared (SWIR) data by the Portable Infrared Mineral Ana-
lyzer II (PIMA-II) enhances the production of drill logs and geologicalmaps, aswell as
assists in the definition of alteration zones. More recently, Culka et al. (2016) investi-
gated the potential for applying a handheldRaman spectrometer in in situ detection and
discrimination of arsenate minerals at outcrops. In addition, Wells and Ramanaidou
(2015) demonstrated the utility of Raman spectroscopy in automated in situ mapping
of iron ore and in gangue mineralogy. According to the recent evidence, XRF ana-
lyzers can also be used for online in situ elemental analysis of bulk materials (Orbit
Technologies 2017; ThermoFisher 2017). Moreover, Alov et al. (2010) demonstrated
the use of XRF analyzer in iron ore mixture quality control performed directly on the
conveyor belt, thus highlighting the potential for online analysis.

Infrared (IR) spectroscopy is one of the most useful analytical techniques for
evaluation of organic and inorganic materials (Chukanov and Chervonnyi 2016;
Griffiths and Haseth 2007; Smith 2011). It is a mature technology and provides
highly reproducible analytical measurements. When infrared light interacts with a
molecule, the bonds between molecule constituents selectively absorb the infrared
radiation energy at specific wavelengths. The consequent changes in the vibrational
energy level of the molecules can be observed through signals at specific wave-
lengths in the infrared spectrum. The IR region of the electromagnetic spectrum can
be divided into the near infrared (NIR: 0.7–1.4 µm), short-wave infrared (SWIR:
1.4–2.5 µm), mid-wave infrared (MWIR: 2.5–7 µm), long-wave infrared (LWIR:
7–15 µm) and far infrared (FIR: 15–1000 µm) regions. NIR sensors can provide
accurate identification of clay minerals, rock forming minerals and sulphide minerals
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(Spectral Evolution 2015; Szalai et al. 2013). SWIR is one of the most widely used
infrared technologies and can be applied in the identification and discrimination of
phyllosilicates, sulphates and carbonates (Sun et al. 2001). In general, it is commonly
employed in the identification of alteration minerals associated with mineralization.
On the other hand, LWIR permits identification of rock forming minerals, whereas
FIR can be employed in the rare earth mineral analyses (Clark 1999; Karr and Kovach
1969). However, to the best of the authors’ knowledge, MWIR reflectance has never
been used for sulphide ore discrimination. This gap in the current analytical method-
ology has motived the present study.

An FTIR spectrometer simultaneously collects data in a wide spectral range in the
time domain, whereby the resulting time-domain graph shows a signal changes over
time. In the next step, a signal processing technique (Fourier transform) is used to
convert the time-domain information to data in the frequency domain, which allows
distinguishing the amount of signal within each specified frequency band over a range
of frequencies (Ismail et al. 1997). Such frequency domain representation is necessary
to convert the input signal into a full spectrum,which can be used to identify or quantify
different materials. A FTIR spectrometer has considerable advantages over grating-
based IR spectrometers. For example, it produces spectra of higher quality relative
to the infrared equivalents (a higher signal to noise ratio). Its other benefits include
short data acquisition time, higher accuracy, higher precision, wider scan range and
high resolution (Agilent 2017; Birkner and Wang 2015; Perkins 1987; Smith 2011;
Stuart 2004). Moreover, owing to the rapid technological advances, portable FTIR
spectrometers can be produced, permitting their use in real-time (in situ) applications
(Agilent 2017).

Multivariate data analysis (chemometrics) involves statistical and mathematical
methods to process and evaluate large amounts of multivariate data (Brereton 2007;
Miller and Miller 2000; Roussel et al. 2014). It includes the design of experi-
ments and the analysis of highly complex multivariate data, in order to acquire
valuable information about the entity or process under investigation. Multivariate
data analysis methods are essential in understanding the different forms of relation-
ship among variables. Therefore, as different sensors (including FTIR spectrometer)
typically produce large amounts of multivariate data, chemometrics techniques can
be employed to solve a wide range of problems, such as material discrimina-
tion.

In view of the preceding discussions, the objective of the present study was to
develop classification and prediction models using chemometric techniques that are
capable of discriminating sulphide ore and waste materials in economically subopti-
mal mining operations, using spectral data acquired by a handheld FTIR spectrometer.
The acquired FTIR spectral data were processed to produce three datasets, namely full
FTIR spectra (2.5–15 µm), as well as MWIR (2.5–7 µm) and LWIR (7–15 µm).
This approach was adopted in order to evaluate the information level associated
with each wavelength region (MWIR and LWIR) separately. In particular, as the
MWIR part of the electromagnetic spectrum has been under-investigated to date
due to historically limited instrument development, it was the focal point of this
study.
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2 Case Study Area, Data Acquisition and Chemical Validation Datasets

2.1 Case Study Area

The Reiche Zeche underground mine located in the Freiberg district, eastern Erzge-
birge, Germany, served as the case study area. Originating in 1168, it is one of the
oldest mines in Europe and, during its operation, it was mined for silver, copper, lead,
arsenic, zinc and pyrite (Scheinert et al. 2009; Seifert and Sandmann 2006). In 1863
and 1886, the elements indium and germanium were discovered, respectively, at the
local Freiberg district (Seifert and Sandmann 2006). As the mine ceased operating in
1969, the “Reiche Zeche” and “Alte Elisabeth” shafts were reconstructed in 1976, and
were reopened as a research and teaching mine.

The deposit is characterized by polymetallic vein typemineralization formed by two
hydrothermal mineralization events of Late-Variscan and Post-Variscan age (Seifert
2008). The Late-Variscan mineralization event dominates in the central part of the
mine and mineralization is rich in sulphur, iron, lead, zinc and copper. Typical ore
minerals include pyrite, galena, arsenopyrite, chalcopyrite and sphalerite, along with
quartz andminor carbonate gangue. Oreminerals with a smaller Cu, Zn and Fe content
characterize the Post-Variscanmineralization event. Thismineralization event consists
of a fluorite-barite-lead ore assemblage, mainly containing sphalerite, pyrite, galena,
chalcopyrite andmarcasite, as well as quartz, fluorite, carbonates and barite, as gangue
(Benkert et al. 2015; Seifert 2008). In the Freiberg district, the polymetallic sulphide
veins of the base metal deposits are hosted by ortho gneiss. For the purpose of the
present study, ore refers to the polymetallic sulphide deposits, including sphalerite,
galena and chalcopyrite. These minerals are the main sources of Zn, Pb and Cu, which
are of primary economic interest. Arsenic is a penalty element in mineral processing
and its presence in dust is a health concern; therefore, it is of interest as well. In the
context of the current investigation, waste refers to the gangue materials, including
the carbonates, fluorite, quartz and the host rock (gneiss).

2.2 Sample Collection

Amine face of approximately 22 m long and 2 m high was defined to test the research
concept at the Reiche Zeche underground mine, as shown in Fig. 1. The defined
mine face is characterized by high material variability and located at the first level of
Wilhelm Stehender North, at a depth of about 150 m. The northern part of the mine
face has an ore vein of thickness ranging from 30 to 100 cm, the vein consists of galena,
pyrite, chalcopyrite and sphalerite minerals hosted by gneiss rock. At the central part
of the mine face, ore is disseminated throughout the gneiss rock, whereas weathering
of the host rock and the ore materials is observed at different locations. Moreover,
small circular pores filled with calcite and ore can also be noted. Channel sampling is
advantageous for capturing different lithotypes and variations in their abundance and
distribution. Thus, as a part of the present investigation, channel sampleswere collected
to address the observed spatial variability and ensure sample representativeness. For
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Fig. 1 A sketch with sample photographs that illustrates the defined mine face having ~22 m lateral extent
and ~2 m height

Fig. 2 Sketch that illustrates a channel cut at the defined mine face. The channel cross-cuts four different
intervals, each belonging to a different lithotype and sampled separately

this purpose, 23 channels spaced approximately 80–120 cm apart (depending on the
material variability at each channel location) were cut, and 102 samples were acquired
from different intervals within each channel, as shown in Fig. 2.
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0       7 cm 

Fig. 3 Handheld FTIR 4300 spectrometer and the three sampling interfaces

2.3 Data Acquisition and Instrumentation

The FTIR 4300 analyzer used in this study has three interchangeable sampling inter-
faces, namely external reflectance, attenuated total reflectance (ATR) and diffuse
reflectance (Agilent 2017). It provides point data at a high data acquisition speed
(less than 30 s). FTIR obtains full-wavelength spectra over a wide range of the elec-
tromagnetic spectrum (1.9–15 µm). Thus, it has a great potential for identification
of various materials. The instrument is depicted in Fig. 3 and is a portable handheld
device, poweredby two100/120/240Vbatteries. Its compact dimensions and relatively
light weight (under 2.2 kg) ensure its effective use in a wide range of in situ appli-
cations in real time. However, due to the harsh environmental conditions in the mine
that served as the study site, in situ underground measurements were not attempted.
Instead, samples were collected and analyzed in a laboratory.

The FTIR measurements were optimized by considering different instrument
setups. Thiswas done by interchanging the three sampling interfaces, varying the num-
ber of sample scans, modifying instrument calibration time and adjusting resolution.
The external reflectance interface allows a mirror-like reflection (specular reflection)
from the sample surface to be captured and is thus typically used for smooth surfaces.
TheATRmeasures the internal reflection of the sample as the IR radiation beam passes
through an ATR element in contact with the sample. Finally, the diffuse reflectance
interface allows internal and external reflection to be measured simultaneously and
it is usually applicable for rough surfaces. The working principles behind all three
setups are shown in Fig. 4.

The performance of each of the three sampling interfaces was assessed using
homogenized powdered samples to remove artefacts due to surface texture and com-
positional intergrowth. To obtain optimal sample scans, the influence of changing the
number of sample scans on the measurement results was evaluated. The instrument
was calibrated at different time intervals and the measurement results were com-
pared. To evaluate the significance of the spectral differences, FTIR measurements
were collected at 4 cm−1, 8 cm−1 and 18 cm−1 resolutions and the results were
compared. The resultant optimized instrument setup comprised 64 sample scans, 126
background scans, 4 cm−1 resolution, 15-min instrument calibration time and diffuse
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(a) (c)(b)

Fig. 4 The three FTIR spectrometer interfaces: a ATR, b specular reflectance, and c diffuse reflectance

reflectance sampling interface. The FTIR spectroscopy data were collected over the
~1.9 to ~15 µm wavelength range. However, for the test case materials, the spectral
range from 1.9 to 2.5µmyielded noisy results andwas excluded from further analyses.
Three sub-datasets were prepared prior to modelling: the full FTIR data (excluding
the range from 1.9 to 2.5 µm), the MWIR (2.5–7 µm) data and the LWIR (7–15 µm)
data. To accommodate sample heterogeneity, multiple spectra were collected from
each sample, the analysis results pertaining to 605 measurements collected using 102
samples are discussed in the sections that follow.

2.4 Chemical Validation Datasets

The conventional data acquisition techniques—namely X-ray diffraction (XRD), X-
ray fluorescence (XRF) and inductively coupled plasma mass spectrometry (ICP-
MS)—were used obtain the data that were employed in the validation of the material
discrimination results. The ICP-MS and XRF measurements were performed using
50 samples, while XRD measurements were carried out using 34 samples. The XRD
data used for this study provide semi-quantitative mineralogical information, whereas
the XRF and ICP-MS data provide quantitative elemental information.

3 Methodology

As illustrated in Fig. 5, the material discrimination approach developed as a part of
the present study is a multi-step process that incorporates data exploration, data pre-
processing, data modelling and model validation. The data exploration task (denoted
as block A in Fig. 5) includes pattern recognition, material identification and data
splitting (e.g., into calibration and validation datasets). The design of experiment
(DoE) was developed to find the optimal data pre-processing techniques (represented
by block B in Figs. 5 and 6). Using the pre-processed data, a series of calibration
and prediction models were developed (indicated by block C in Fig. 5). All prediction
models were validated using independent datasets. The aforementioned approach was
independently applied to three datasets, namely the full FTIR spectra, MWIR and
LWIR. Therefore, the use of these three datasets for the discrimination of the test case
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Fig. 5 Overview of the research workflow. It includes four major steps: data exploration and preparation
(block A), data pre-processing (block B), data modelling and model validation using independent datasets
(block C) and model comparison (block D)
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Fig. 6 The independent (box 1) and combined (box 2) pre-processing methods that were applied to the
spectral data of the full FTIR, MWIR and LWIR datasets

materials was evaluated (block D in Fig. 5). The details of each step are described
below.

3.1 Data Exploration

3.1.1 Unsupervised Classification

To identify a pattern and points of interest in the spectral data, descriptive statistics,
cluster analysis and principal component analysis (PCA) were performed. Descriptive
statistics, including box plots and histograms, were used to describe the basic data fea-
tures. The unsupervised classification (UC) techniquewas applied to assess any natural
patterns or groupings in the FTIR data. A highly efficient and themost commonly used
UCmethods is k-means. Thus, k-means with Euclidian distance was applied to exam-
ine any clustering in the spectral data. When applying this method, n observations are
assigned to k clusters, using the centroid of the clusters and minimizing the sum of
squared errors (Kaufman and Rousseeuw 2005) as shown below

J �
k∑

j�1

∑

i∈C j

(
xi − m j

)2
,

where mj �∑
i∈Cj xi/nj denotes the cluster centroid of Cj, nj is the number of points

in Cj and (x1, …, xn)�X represents the data matrix.
Using the full-range FTIR reflectance data and the k-means technique, the spectral

data were classified into two classes. The UC was implemented with no a priori
knowledge about potential mineral groupings. However, the number of clusters was
specified in advance and two distinct classes were distinguished. The geochemical
difference between the two classes was investigated using validation data (XRF, ICP-
MS and XRD). The two classes exhibited variations in elemental concentrations of
Cu, Zn, Pb, As and Fe. Thus, the class with a higher concentration of these elements
was identified as ore, whereas the class with a lower concentration was considered as
waste. In addition, theUC classification resultswere comparedwith the hand specimen
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classification into the ore and waste classes. The comparison results revealed a very
good agreement, confirming that theUCmethod can be a practical alternative to a hand
specimen description for ore–waste discrimination, as the former can be automated
and the latter might be subjective. Subsequently, a category variable that indicates
samples belonging to ore or waste classes was appended to the full FTIR data table.
Once the category variable was added to the FTIR spectral data, three datasets (the
full FTIR, MWIR and LWIR) were prepared.

3.1.2 PCA Models

PCA is a dimension-reduction tool that transforms multiple correlated variables into a
number of latent variables (uncorrelated variables). It is an effective explanatory data
analysis technique that can be applied to identify the important variables (i.e., those
responsible for an observed class difference) and the correlated variables (variables that
contribute in the sameway).Most importantly, it can be used to detect subtle outliers. In
the present study, PCAmodelswere developed using the three aforementioned datasets
separately. The potential for using each dataset for separation of the two classes was
assessed and compared. The loading plots of the PCA models were interpreted to
identify the important (informative) variables.

3.1.3 Outlier Detection and Data Splitting

Different outlier detection techniques, namely Hotelling’s T2, residual map, influence
plot and visual inspection of unique measurements, were considered in this study.
Hotelling’s T2 is a useful outlier detection tool that describes the distance to the model
center, as spanned by the Principal Components (PCs). It also provides a critical limit
(p value) with different statistical confidence limits. For example, for the p value
of 5%, the 95% confidence ellipse can be included in the score plots of the PCA
models to reveal potential outliers (i.e., data points located outside the ellipse contour).
Accordingly, in the present study, the p value of 5%was adopted, the observed possible
outliers were labelled, and the influence plots were inspected. The influence plot shows
the sample residuals’ X-variance against Hotelling’s T2 and Leverage statistics. The
residual statistics describe the sample distance to the model, whereas the Hotelling’s
T2 andLeverage indicate howwell the sample is described by themodel. Influence plot
is a useful tool for detecting influential samples and dangerous outliers. For example,
samples with high residual variance and high leverage are deemed to contain the
most dangerous outliers. In the present investigation, variable residual plots (a map
of residuals) were examined and the possible residuals were identified. This map is
useful for determining whether samples have high residuals on few or all variables,
and thus helps in outlier detection.

The potential outliers identified using theHotelling’s T2, influence plot and residual
map were visually inspected and compared. Based on the integrated findings yielded
by these inspections, fifteen measurements that are possible outliers were identified
and were excluded from the datasets. Subsequently, each of the three datasets was split
into calibration and validation sets, ensuring approximately equal representation of
each class within the two datasets (block A of Fig. 5). To avoid introducing systematic
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errors, the datasetswere split randomly,wherebymeasurements from the same samples
were assigned to either validation or calibration dataset, but not both. The calibration
and validation sets included 466 and 124 measurements, respectively.

3.2 Data Pre-processing

Data pre-processing is an integral part of multivariate data analysis, irrespective of
whether it is conducted for classification, exploration or prediction purposes (Engel
et al. 2013). It is performed to remove undesired variations (e.g., instrumental artefacts)
and enhance the signal or variation of interest. While several data pre-processing
strategies are currently available, the choice of the optimal data pre-processingmethod
for a particular application depends on the nature of the data and the ultimate goal
of data analysis. Thus, the pre-processing technique is typically selected based on
trial and error, the visual inspection of the spectra and quality parameters, such as
Pearson’s correlation coefficient (PCC), which measures linear correlation between
two variables (Engel et al. 2013). As this is largely a trial and error process, DoE is
required to select the optimal independent and combined data pre-processingmethods.
This approach is advantageous when the aim is to analyze and understand the main
effect and the interaction effect of the pre-processing techniques.

As shown in Fig. 6, baseline correction, standard normal variate (SNV), multi-
plicative scatter correction (MSC), smoothing (such as Gaussian filter smoothing),
normalization and data scaling were the pre-processing methods considered for
the present study. The upper box of Fig. 6 (labelled 1) shows the independent
pre-processing techniques and the lower box (labelled 2) shows the combined pre-
processing techniques. The choice of these methods was based on the fact that they
are the most common artefacts of infrared data (e.g., baseline shift). In addition, the
most prominent data artefacts (e.g., baseline, scatter and noise) were identified from
the line plots of the reflectance spectra. Mean centering (MC) is a data scaling tech-
nique that represents variation around a mean by subtracting the sample mean from
each data value (Roussel et al. 2014). With the exception of raw data, mean centering
was performed in combination with each independent and combined techniques.

Baseline correction is a signal correction method that subtracts the unwanted spec-
tral background from the main signal information. SNV normalizes by deducting the
spectrum mean value from each variable in the spectrum and dividing each resulting
value by the spectrum standard deviation (Fearn et al. 2009; Roussel et al. 2014). It
normalize the spectrum data to itself and minimize the light scattering effect. Nor-
malization removes undesired intensity variation caused by multiplicative effects. It
divides each spectrum based on the estimation of its spectral intensity (Roussel et al.
2014). MSC is also used to reduce multiplicative scattering effects (Fearn et al. 2009).
However, smoothing is based on averaging the neighborhood points in order to mini-
mize random noise (Roussel et al. 2014). The selected pre-processing methods were
employed to develop a DoE that incorporates both independent and combined pre-
processing techniques. The DoE was applied to the three datasets individually and
sets of pre-processed data were generated.
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3.3 Data Modelling and Validation

PLS-DA is a supervised classification method, used to optimize separation between
different classes or groups. Once the classificationmodel is developed, it can be used to
assign unknown samples to the most probable class. In the present study, to establish a
discrimination rule of the two classes (ore andwastematerials), PLS-DA classification
models were developed using the pre-processed data of the three datasets. PLS-DA
was implemented in two steps, whereby PLS regressionwas followed by prediction. In
PLS regression, the categorical data (in this case, the ore and waste classes) as treated
as a response variable and the spectral data at each wavelength is represented as the
independent variables. As shown in block C of Fig. 5, the pre-processed calibration
data were used to develop a series of calibration models that were applicable to each
of the two classes (ore and waste). The prediction model parameters were estimated
using the calibration datasets and were subsequently validated using the independent
(validation) datasets.

The performance of the calibration and prediction models when applied to the same
dataset (e.g., MWIR data) after incorporating each of the previously described data
filtering techniques was evaluated. The optimal data pre-processing methods were
selected based on the calibration, validation and prediction statistics of the classi-
fication and prediction models, whereby lower error terms and higher predicted R2

value were deemed advantageous. In addition, confusion matrices were generated to
assess the correct classification rates of individual models. The correct classification
rates were computed by adding the number of true positives and true negatives and
dividing their sum by the total number of the predicted samples. This approach was
applied to the full FTIR, MWIR and LWIR datasets, and the material discrimination
competencies of the three datasets were also assessed and compared.

4 Results and Discussion

4.1 Explanatory Data Analysis

4.1.1 k-Means

Application of the k-means UC method resulted into two separate classes indicating a
natural pattern or grouping in the reflectance spectral data. The observed natural group-
ings are based on the correlation or similarity among the measured variables (spectral
data). The obtained results were reproducible for the same clustering method. To elu-
cidate any patterns in the spectral data, ascertaining the composition of the two classes
(mineral groupings) is essential. Therefore, the geochemical compositional differences
between the two classes were investigated using the validation data (obtained through
XRF, ICP-MS and XRD measurements). As summarized in Table 1, the two classes
differ in elemental concentration of Cu, Zn, Pb and Fe, all of which are of interest
for the present study due to their economic value. In addition, they also differed with
respect to As, which is also of interest, since it is a penalty element in mineral process-
ing. Thus, its early identification would be highly beneficial for optimizing product
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Table 2 Elemental correlation
coefficient computed using 50
samples

Element pairs Correlation coefficient

Cu–Zn 0.55

Cu–Pb 0.43

Pb–Zn 0.48

Mg–As −0.01

Ca–As 0.17

Pb–As −0.06

Cu–As 0.11

Zn–As 0.69

quality and eliminating risks, yielding saleable mineable material. In thematerial sam-
pled from the study area for the test case, the primary sources of these elements are
the sulphide ore minerals (chalcopyrite, pyrite, arsenopyrite, galena and sphalerite).
Therefore, a higher/lower concentration of the elements signifies that the material is
an ore/waste.

The class threshold value of each element concentration was set based on the value
sequence observed in the classes and a relatively large change in elemental concentra-
tion. For example, the Cu content of 94% in the samples classified as Class 1 indicates
greater than 250 ppm, as shown in Table 1. On the other hand, the Cu content of 93% in
Class 2 samples indicates less than 250 ppm. Similarly, the Fe concentration of 89% in
the samples categorized in Class 1 signifies greater than 60,000 ppm (6%), otherwise
they are categorized as Class 2. Even though Fe has many mineral sources (e.g., sul-
phides, oxides and silicates), for the test case materials, Fe shows moderate to strong
correlation with sulphide minerals, indicating that the main Fe sources are likely the
sulphide minerals. Likewise, the Zn, Pb and As concentrations are higher in Class 1
than in Class 2 (Table 1). Therefore, based on the elemental concentration difference,
Class 1 is denoted as ore, while Class 2 represents waste. In addition, the ICP-MS
and XRF measurement data were used to compute the correlation coefficients of the
elemental dependencies. As shown in Table 2, there is a moderate positive relationship
between Cu and Zn, Cu and Pb, and Pb and Zn. Moreover, while Zn–As correlation is
strong, no Pb–As correlation was observed in the data. The acquired correlation coef-
ficients (except for a few exceptions) indicate that the elements co-occur. Therefore,
a higher concentration of target elements is observed in one class than in the other.

Elemental concentration varied across samples, as shown in Table 1, where the
minimum and maximum content of the indicated elements is given for both classes.
The qualitative XRD measurement results show that most of the minerals assigned to
the two classes are the same. This is likely because, even though their concentration
varies, these minerals occur in both classes. This assertion is also supported by the
XRD measurement semi-quantification results, indicating that a higher concentration
of the sulphide minerals (ore minerals) was observed in Class 1 than in Class 2. It is
highly likely that the acquired reflectance spectra are mixed spectra that are influenced
by combined mineral signals or matrix effects. This is one of the possible reasons for
not assigning 100% of the samples into one of the classes. However, with the indicated
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level of confidence (the % of samples in a class), samples containing the elements in
quantities that are above or below the indicated value can be categorized into the two
classes. Separation of the two classes based on the elemental concentration signifies
presence of a signal in the spectral data that can be linked to mineralogy and hence to
economic value.

The cut-off grade of a commodity is a variable that changes due to fluctuations in
metal prices and mining costs. Compared to the typical current mining cut-off grades,
thematerials from the test case contain lower concentrations of the target elements. For
example, the typical average cut-off grade for Cu in underground mining operations is
above 5000 ppm (0.5%) (Calvo et al. 2016; Lundinmining 2018). However Cu content
exceeded 5000 ppm (0.5%) in only two of the measured samples. Similarly, while the
average cut-off grade for Zn in underground mining operations is above 5.5% (Cana-
dian Zinc Corporation 2018; Lundin mining 2018), in 85% of the measured samples
Zn contentwas below this value. Therefore, for the test casematerials, the cut-off grade
based on the current underground mining operations cannot directly be used to gener-
ically classify the ore and the waste materials. However, even when using sampled
material containing elements of economic interest in low concentrations, discrimina-
tion of materials into two mineral groupings (ore and waste) was still achieved. This
experimental classification result is consistent with themanual specimen classification
into ore and waste. However, to avoid subjective sample classification and automate
the process, application of the k-means technique was considered. Therefore, for the
present study, the Cu, Zn, Pb, Fe and As concentration in the class specified as ore
(waste) is above (below) the threshold value indicated in Table 1.

4.1.2 PCA Models

Figure 7 shows the PCAmodel score plots of the full FTIR, LWIR andMWIRdatasets.
A score plot provides valuable visual information on potential patterns in the samples.
It depicts the relationship between sample differences or similarities and the data
structure. As shown in Fig. 7a–c, when the models are applied to the full FTIR dataset,
the two classes are better distinguished than when the individual LWIR and MWIR
datasets are used, most likely because the full FTIR incorporates more informative
variables that can accommodate variations in the data. The PCA models were applied
to transform the spectral data of the three datasets into latent values (PCs). The loading
plots of the PCs were subsequently interpreted to identify the important or informative
variables.

Figure 8 shows the loading plot of the full-range FTIR, revealing that large loading
coefficients or most variations are observed at different wavelength locations denoted
byorange rectangles, such as at 2.5–2.6µm,3.3–3.8µm,7µm,7.5–7.9µm,8.8–9µm,
10.0µmand 10.7µm (note that, for the purpose of clarity, not all informative variables
are indicated on the plots). As such variations are highly informative, they indicate
that these variables are responsible for the separation of the two classes. When the
wavelength locations of the informative variables are comparedwith the data contained
in spectral libraries (NASA 2017), it is evident that most of the sulphide minerals
show higher reflection at the identified wavelength locations. Thus, it is likely that
the class separation is based on reflection signals from the sulphide minerals. For
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Fig. 8 The loading plot of the first three PCs of the full FTIR dataset

example, relatively higher reflection of galena is around 3.5 µm (NASA 2017). These
3.3–3.8 µm wavelengths are identified as important variables for class separation.

4.1.3 Detection of Outliers

Outliers can be unique sample measurement results or noise, or might arise due to
measurement errors. As mentioned in Sect. 3.1, in the present study, outliers were
detected using an integrated inspection of Hotelling’s T2, residual map, influence plot
and visual inspection. Figure 9 shows the possible outliers that were excluded using
Hotelling’s T2 and influence plots. Measurements located outside the Hotelling’s T2

ellipse are potential outliers. The top right quadrant of the influence plot shows samples
with higher leverage and higher residual, which are denoted as dangerous samples (as
they are most likely outliers, as previously discussed). Samples in the lower right
quadrant of the influence plot are influential, whereas those in the top left quadrant
are poorly described by the model. Therefore, all samples in these two quadrants
were carefully assessed using the Hotelling’s T2 and residual map to identify those
that are potential outliers (i.e., samples that are poorly described by the developed
models). Therefore, to ensure proper variable description, fifteen measurements that
are possible outliers were identified and excluded from the datasets.

4.2 Data Pre-processing and Modelling

Figure 10a, b show the score plots of the PLS models of the LWIR and the full
FTIR dataset, respectively, after application of the previously described data filtering
techniques. The first two latent variables (Factor 1 and Factor 2) of the PLS regression
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Fig. 9 a A score plot with Hotelling’s T2 limit (p value of 5%). b Influence plot with Hotelling’s T2 on the
x-axis and F-residuals on the y-axis. Samples within red circles are potential outliers that were excluded
from the datasets

explain most of the variations in the data. For example, 94% of the variation in the
LWIR data is explained by the first two factors. Moreover, the first two factors explain
94% and 73% of the variation in the spectra and the class category, respectively. This
finding indicates presence of an unstructured variation in the spectral data that is not
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(a) (b) 

Fig. 10 Score plots of PLS models after data smoothing (Gaussian filter) is applied to a the LWIR and b
the full FTIR dataset

related to the class category. The difference in the variation is likely due to other
mineralogical information that has not been considered in the classification process.
For example, sub-clusteringwas observedwithin the ore class, which could potentially
be attributed to the different mineral groups that occur within the ore. Therefore, there
is a high potential for further discrimination of the materials into additional classes.

Tables 3 and 4 summarize the calibration and prediction statistics of the three
datasets for ore andwaste prediction, respectively. Table 5 shows the correct classifica-
tion rates ofmodels applied to the three datasets, after eachdataset has been subjected to
individual and combined data pre-processing techniques. Therefore, the tabulated data
also indicate model performance after each data pre-processing technique is applied
to the data. Lower statistical error terms (RMSEcal, RMSEval and RMSEP), higher
predicted R2 and higher correct classification rates signify an improved classification
and predictive performance. It is evident that an enhanced prediction was obtained by
applying the data pre-processing techniques to all three datasets. For example, for the
full FTIR raw data, RMSEcal�0.21, RMSEval�0.22, RMSEP�0.22, predicted R2

�0.81 and a correct classification rate of 83.1% were obtained. However the error
terms declined (RMSEcal�0.18, RMSEval�0.19 and RMSEP�0.20), the R2 value
improved (0.84) and the correct classification rate increased (89.5%) after the FTIR
dataset was treated with the SNV data filtering technique. Conversely, not all data
filtering techniques necessarily improved model performance. For example, the MSC
filtering technique did not improve the model performance when applied to theMWIR
data, as shown in Tables 3 and 4, most likely because the multiplicative effect is not
pronounced in the spectral data.

For the given datasets, combining the pre-processing techniques did not result in a
better prediction than that obtained when these techniques were applied individually.
Moreover, the pre-processing technique that was most optimal differed for the three
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Table 5 Summary of the correct classification (ore–waste discrimination) rates when different models are
applied to the full FTIR, MWIR and LWIR datasets

Model FTIR (%) MWIR (%) LWIR (%)

Raw 83.1 75.8 79.8

Normalized 87.1 85.5 84.7

Baseline 83.9 86.3 79.8

SNV 89.5 85.5 84.7

Gaussian 86.3 79.0 80.6

datasets. For example, when applied to the MWIR data, model performance improved
(predicted R2 �0.85 and 86.3% correct classification rate) after baseline correction
(Tables 3, 5). On the other hand, the best results were achieved when the LWIR
data were subjected to SNV (R2 �0.82 and 84.7% correct classification rate). This
finding implies that, in the LWIR dataset, the undesired intensity variation was more
pronounced than in the MWIR data. These results also concur with the empirical
evidence indicating that the choice of most optimal pre-processing technique is data
dependent and requires a trial and error approach (Engel et al. 2013). Therefore, DoE
is a crucial step in determining the most optimal data filtering technique.

Comparing the three datasets, the full FTIR data resulted in better prediction per-
formance than the MWIR and LWIR data alone (Tables 3, 4, 5), likely because the
former covers a wider wavelength region. Thus, the full FTIR dataset includes more
informative variables to adequately explain the variation in the reflectance spectra
than the individual MWIR or LWIR data. Overall, the three datasets showed a good
potential for discrimination of the test case materials into ore and waste. Moreover,
after baseline correction, SNV and normalization, the correct classification rates were
higher when the MWIR, rather than the LWIR dataset, was utilized (Table 5). This
is an interesting finding, since MWIR is the least explored IR region in lithological
material characterization. Overall, the maximum correct classification rates achieved
for the full FTIR, MWIR and LWIR datasets after data filtering were 89.5%, 86.3%
and 84.7%, respectively. Owing to the limited information level in the IR spectra of the
sulphide minerals and the intermediate values that obscure clear class boundaries (and
thus bias model performance), the obtained accuracies are sufficient to discriminate
the materials into ore and waste.

Figure 11 shows representative spectra of ore and waste material samples. Using
spectral libraries (NASA 2017) and evidence reported by other authors (Ji et al. 2009;
Schodlok et al. 2016), different minerals—including dolomite, muscovite, quartz,
calcite and gypsum—were identified. The sulphideminerals exhibit veryweak spectral
features in the IR reflectance data that a direct interpretation of target minerals spectra
is challenging. However, they have a higher and lower reflection points at different
wavelengths. Hence, this sulphide minerals property can be transformed into valuable
information using the approach proposed in this study.
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Fig. 11 Representative spectra of the two classes denoting a waste material and b ore material

4.3 Potential for Application for In-Situ and Real-Time Material
Characterization

In situ real-time material characterization requires both appropriate instrument design
and software development. The current technological advancements have enabled
design and implementation of portable instrumentation, making in situ spectroscopy
possible. However, for underground mining applications, care must be taken to avoid
or minimize the effect of moisture and dust. With respect to software design, the
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findings reported in this work demonstrated the potential of using a FTIR spectrometer
for distinguishing ore from waste, which is of particular relevance for marginally
economicalmining operations.A predictionmodelwas developed to classify unknown
spectra into ore and waste classes. The acquired results are promising and can be
improved by the inclusion of additional samples into the calibration models. Thus, a
test case-specificmineral library can be developed for automated online discrimination
of ore–waste materials.

The present studywas carried out using powdered homogenized samples. However,
the approach can be extended for whole rock applications by developing customized
sampling strategies to account for inherent material variability and heterogeneity. The
ongoing depletion of mineral resources, accompanied by increasing societal demand,
suggests that it is likely that increasingly lower-grade ores will be extracted in future
mining operations. Thework presented here has demonstrated the potential of utilizing
the MWIR and LWIR data for ore–waste discrimination, which could assist in greater
selectivity during extraction and pre-processing, thus maximizing use of the resources
while increasing economic viability.

5 Conclusions

Infrared spectra collected using an FTIR spectrometer were analyzed and classi-
fied using chemometric analytical methods. The utility of the obtained results for
the characterization of sulphide ore and waste minerals from the selected test site
was investigated. Three datasets spanning different wavelength ranges were prepared,
namely the full FTIR spectra, as well as MWIR and LWIR spectra. Without a priori
knowledge of the material types, the well-known k-means method was implemented
to separate the datasets into two classes, whereby two distinct classes were identified.
The mineralogical composition of the two classes was investigated using the conven-
tional XRF, ICP-MS and XRD measurement techniques. The two classes exhibited
differences in the elemental concentrations of Cu, Pb, Zn, As and Fe, and were thus
defined as ore and waste. The identified categorical variables (the two classes) were
inserted into the spectral data of the three datasets.

DoE was implemented to identify the optimal independent and combined data-
filtering techniques for discriminating the two classes using the three aforementioned
datasets. The processed data were used to make predictions about the composition of
unknown samples. A series of prediction models were developed using the processed
data combined with PLS-DA. Model performance was evaluated using the calibra-
tion, validation and prediction statistics in the form of an estimated prediction error.
In addition, the correct classification rate was calculated for each model. The same
procedure was applied for the three (FTIR, MWIR and LWIR) datasets. In general,
the results showed a good agreement in model performance when applied on the three
datasets. However, when the full-wavelength FTIR dataset was employed, lower pre-
diction errors and higher correct classification rates were obtained compared to those
pertaining to the MWIR or LWIR data.

Even though not all data pre-processing techniques necessary improved model
performance, baseline correction, normalization and smoothing improved the clas-
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sification and prediction performance of the developed models. For example, when
the models were applied to the full-range FTIR dataset, 89.5% correct classification
rate was achieved after subjecting the data to the SNV technique. When models were
applied to the MWIR dataset, the prediction improved to 86.3% after baseline correc-
tion. Finally, after normalization of the LWIR data, an enhanced correct classification
rate of 84.7% was obtained. The MWIR data alone provides sufficient information to
successfully classify the samples into ore and waste. Thus, it can be posited that this
region offers great potential for rock and mineral characterization. In this work, FTIR
spectroscopy was successfully used to discriminate the ore and waste materials of the
test case. For future research in this field, FTIR should be combined with PLS-DA
to explore the potential for rapid automated online discrimination of ore and waste
material. In sum, with accurate model calibration, the material discrimination process
can be automated.
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