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This paper presents a computationally efficient wavefront aberration prediction framework for data-driven control
in large-scale adaptive optics systems. Our novel prediction algorithm splits prediction into two stages: a high-
resolution and a low-resolution stage. For the former, we exploit sparsity structures in the system matrices in a
data-driven Kalman filtering algorithm and constrain the identified gain to be likewise sparse; for the latter, we
identify a dense Kalman gain and perform corrections to the suboptimal predictions of the former on a smaller grid.
This novel prediction framework is able to retain the robustness to measurement noise of the standard Kalman filter
in a much more computationally efficient manner, in both its offline and online aspects, while minimally sacrificing
performance; its data-driven nature further compensates for modeling errors. As an intermediate result, we present
a sparsity-exploiting data-driven Kalman filtering algorithm able to quickly estimate an approximate Kalman
gain without solving the Riccati equation. © 2021 Optical Society of America under the terms of the OSA Open Access

Publishing Agreement
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1. INTRODUCTION

Adaptive optics (AO) systems aim to compensate for incoming
phase aberrations in optical systems. The incoming light is split
between a focal plane camera and a wavefront sensor (WFS).
A reconstruction of the aberrated wavefront is developed from
the WFS image, which is used by a controller that regulates a
deformable mirror (DM) that is able to correct for the phase
aberrations. Determining a minimum variance wavefront
reconstruction has been extensively studied [1,2]. Due to the
existence of modes of the wavefront that are not visible to the
sensor and the presence of measurement noise, this is not trivial.
Usually, these issues are addressed by including prior informa-
tion regarding the statistical properties of the aberration and
noise.

Due to a delay within the AO control loop, each control
input is used to correct an aberration ahead in time, meaning
that wavefront prediction techniques are important for effec-
tive correction. Extending the minimum variance wavefront
reconstruction to the online prediction case, with a dynamic
wavefront subject to process and measurement noises, suggests
the use of a Kalman filter (KF) in an optimal control frame-
work [3–5]. Because computing the steady-state Kalman gain
involves solving the computationally complex discrete algebraic
Riccati equation (DARE), straightforward KF implementa-
tions are impractical for large-scale applications. As a result,
multiple KF-based methods have been proposed to decrease the
computational complexity in the large-scale AO context [6–10].

Alongside their large computational complexity, KF-
based methods in AO have another important drawback:
the computation of the Kalman gain via the DARE requires
knowledge of the temporal dynamics of the wavefront and of
the statistical properties of the process and measurement noises.
In the Kalman filtering literature, data-driven KFs have been
proposed to avoid the need for prior knowledge of the statistical
properties of both the process and measurement noises [11,12],
instead relying on measurement data and the deterministic
part of a state-space model; however, practical application
of these techniques can be challenging in large-scale systems
when limited data are available, and due to their computational
complexity. While data-driven Kalman filtering has not previ-
ously been brought to AO, the reduction of reliance on prior
information has motivated the development of data-driven
optimal controllers [13–15] in AO, and the reduction of their
computational complexity has led to an increased attention
toward the use of structured models, as matrix structures such as
sparsity and tensor structures appear in models describing the
turbulence dynamics [15–18].

Furthermore, significant work has been dedicated to the
design of fast wavefront reconstruction algorithms for online
aberration correction [10,19–21], which must accompany the
sampling frequency of the system in large-scale AO systems.
Among these, the idea of conducting operations on multiple
grids of different densities has been explored in methods such
as Refs. [20,21] and is explored likewise in the present work.
Specifically, we propose a second low-resolution grid designed
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to intuitively fit into the discussed modeling and data-driven
Kalman filtering frameworks with lessened computational
burden.

This paper addresses both the offline and online compu-
tational complexities involved in wavefront prediction in a
data-driven setting. First, it introduces sparse matrix techniques
into data-driven Kalman filtering using AO modeling insights,
allowing obtention of the Kalman gain more efficiently than
with the DARE and with less reliance on prior knowledge, and
serving as a first step for the second contribution. Second, it
proposes a framework, the high-low-resolution filter (HLRF),
in which wavefront prediction is split into a high-resolution
stage and a low-resolution one; by enforcing sparsity in the gain
identified for the high-resolution stage and correcting the error
thus induced with the low-resolution stage, a computationally
efficient online prediction framework is created, while reducing
the offline (identification) time complexity down to linear in the
total number of lenslets in the WFS array.

The novelty of the new proposed data-driven framework for
predictive AO control is twofold with respect to existing predic-
tion solutions [7–10,19–21]. First, it incorporates information
about the process and measurement noises without assuming it
is known beforehand, instead deriving it implicitly from mea-
surement data. Second, efficient algorithms, both for the off-
and online computations, are derived; in particular, the HLRF
sacrifices some of the performance of the KF due to heuristic
choices, with simulations showing that it nonetheless achieves
high performance in comparison with the full data-driven and
DARE-based KFs, with improved prediction times.

This paper is structured as follows: Section 2 provides
an introduction to Kalman filtering theory in standard AO
systems, including the modeling of the WFS and atmos-
pheric turbulence; the data-driven Kalman filtering algorithm
from [22] is overviewed in Section 3; Section 4 discusses an
implementation of this algorithm in AO that exploits sparsity
structures in the system matrices and introduces the HLRF.
The results of both data-driven Kalman filtering and the HLRF
are discussed in Section 5. The main conclusions and practical
applicability of the methods are addressed in Section 6.

Notation: When considering the temporal dynamics,
the current discrete time-step is denoted by a subscript k ,
i.e., φk represents the wavefront at moment k in time. The
pseudo-inverse of a rectangular matrix is denoted by A† . The
computational complexity, which is considered to be the order
of magnitude of the total number of elementary arithmetic
operations, is expressed by O(·) . Rather than including both
the number of pixels n of the predictions and the number m of
lenslets in the WFS array in the complexities, m will take the
place of n , using the fact that n ≈m/2 in large-scale AO appli-
cations. Notation w∼N (µ, Q) is used to describe a Gaussian
random (vector) signal w with mean µ and covariance Q ,
and E (·) denotes the expectation operator. Operator ‖ · ‖F

represents the Frobenius norm.

2. KALMAN FILTERING IN AO

This section provides an introduction to the application of
standard KF theory in AO systems. The theory presented in this
section can be found in various textbooks; see, for example, [23]

for more information about AO and [24] for more information
about system identification and Kalman filtering.

A. Modeling for AO

This subsection will introduce the components of a stand-
ard AO system for astronomy and will discuss the aberration
dynamics caused by atmospheric turbulence. A square aperture
is considered so as to accommodate the HLRF, as detailed later.

1. WFS

We consider a grid of L × L lenslets measuring local wavefront
gradients (often called slopes) yk ∈Rm corresponding to the
subaperture of each lenslet (as is the case with Shack–Hartmann
or, for example, pyramid sensors). Assuming a square aperture
and Fried geometry, m = 2L2 , and the wavefront is sampled on
a grid of (L + 1)× (L + 1) pixels. Defining the total number
of pixels as n = (L + 1)2 , the relation between the sensor signal
yk and the discretized wavefront φk ∈Rn is formulated as

yk = Gφk + vk, (1)

where G ∈Rm×n is the sensor geometry matrix and vk is a
measurement noise vector. Usually, vk is assumed to be a white
Gaussian measurement noise vector with diagonal covariance
matrix R , i.e., vk ∼N (0, R) [3,8,15].

This sensor configuration is unable to measure two particular
modes of the wavefront phase: the piston (spatially constant)
and waffle (checkerboard) modes, which is reflected in a rank
deficiency of G , with rank (G)= n − 2 .

2. Modeling the TurbulenceDynamics

The wavefront aberrations caused by atmospheric turbulence
are time-varying and commonly assumed to adhere to Taylor’s
frozen flow assumption [25], according to which atmospheric
turbulence is represented by multiple “frozen” turbulence lay-
ers, each moving at its own constant speed in its own direction.
A common choice to model the temporal evolution of atmos-
pheric turbulence is the vector auto-regressive (VAR) model of
order 1 [3,4,8,26],

φk+1 = Aφk +wk , (2)

where wk is assumed to be Gaussian white noise wk ∼

N (0, Q) , uncorrelated with φk . Since the speed and direction
of the phase screens are typically unknown, a common choice
is to assume the state-transition matrix A is diagonal, ignoring
the temporal dynamics of the wavefront [3,4,8]. Although this
model may be sufficiently accurate when the movement of the
turbulence in between consecutive time steps is negligible, a
better A would represent this movement, especially when the
temporal evolution is not negligible. Defining the covariance
matrices: Cφ, j = E(φk+ jφ

T
k ) , A in model (2) is given by

A=Cφ,1C−1
φ,0. (3)

In practice, covariances Cφ,0 and Cφ,1 are unknown and would
have to be estimated using a finite set of wavefront data. Let
the wavefront phase data, available from time step 0 to N , be
arranged into “past” and “future” data matrices,
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80,N =
[
φ0 · · · φN−1

]
; 81,N =

[
φ1 · · · φN

]
.

Then, an estimate Â of A can be obtained from a linear least-
squares problem,

Â= argmin
A
‖81,N − A80,N ‖

2
F, (4)

which, in the limit as N→∞ , is equivalent to Eq. (3). Another
practical complication is that exact wavefront data are unavail-
able, as they are not directly measurable by sensors. Equation
(4) will therefore have to rely on reconstructed wavefront data
instead, which introduces additional errors in the model.

3. ModelingErrors

On top of the wavefront data set being estimated, a major cause
of modeling errors is that the true dynamic system driving the
turbulence is more complex than the simple VAR-1 model of
Eq. (2). For one, when considering the atmosphere as a stack of
multiple dynamic phase screens with each phase screen dynam-
ics exactly represented by a VAR-1 model, their combined
influence in the observed wavefront φk is no longer described
by any VAR model in terms of φk . As a consequence, the VAR-1
model can only approximate the true system dynamics.

The VAR-1 model is additionally only capable of accurately
representing movements of the wavefront phase screen that
are exact pixel-size shifts in between time steps, given the def-
inition of a pixel as in Section 2.A.1. This issue is addressed in
the appendix of [27], which proposes using a lagged version of
the VAR-1 model in Eq. (2) such that it more closely represents
whole-pixel movement, and running alternating KFs at no
additional computational cost.

Both of these modeling errors result in VAR-1 models with
nonwhite wk , thus violating one of the assumptions made in
KF design and negatively impacting its performance. Due to its
data-driven nature, the Kalman filtering algorithm presented in
this paper is nonetheless capable of compensating for a certain
degree of modeling error, as illustrated in Fig. 3. More details on
modeling errors are included in [27].

B. Kalman Filtering

The combination of the VAR-1 turbulence model [Eq. (2)] and
the sensor equation [Eq. (1)] yields the following state-space
model:

φk+1 = Aφk +wk

yk = Gφk + vk
, (5)

with φk ∈Rn , and yk ∈Rm . In the context of Kalman filtering,
the vector φk is known as the state vector and yk is the output
vector. Recall that vectors wk and vk are zero-mean Gaussian
white noise sequences and are here assumed uncorrelated with
each other, i.e., E [wkv

T
k ] = 0 . Process noise wk is further

uncorrelated with state φk .
Since the model is linear time-invariant (LTI), the prediction

of the steady-state KF is given in observer form by Eq. (6) and in
innovation form by Eq. (7) [24],

φ̂k+1 = (A− K G)φ̂k + K yk, (6)

φ̂k+1 = Aφ̂k + K e k, (7)

where e k ∼N (0, Re ) is the prediction-error sequence defined
via

yk = Gφ̂k + e k . (8)

The steady-state Kalman gain K is obtained from

K = APGT(GPGT
+ R)−1, (9)

where P ∈Rn×n is the state-prediction-error covariance
matrix, given by the positive-definite solution to the DARE,

P = APAT
+ Q − APGT(GPGT

+ R)−1GPAT. (10)

The computational complexity of the KF will be split into
online and offline complexities. The online computational com-
plexity will refer to the computations that have to be performed
within each sample time of the KF. In the case of the standard
LTI KF of this section, the online computation pertains to Eq.
(7), which has a computational complexity of O(m2) . The
combined computational complexity of all the other operations
will be referred to as the offline computational complexity.
Finding the solution to the DARE and applying Eq. (9) are,
with a complexity of O (m3) , the offline bottlenecks in the
computation of the Kalman gain K .

3. DATA-DRIVEN KALMAN FILTERING

The previous section discussed how the use of standard Kalman
filters has several difficulties when applied to large-scale AO
applications. The data-driven Kalman filtering algorithm by
authors Juang and Chen [22], which estimates the Kalman gain
directly from measurement data, is here introduced and shortly
derived. The use of this data-driven Kalman filtering algorithm
instead of the standard DARE-based KF is motivated by the
following three properties:

• The data-driven algorithm directly identifies the Kalman
gain without solving the DARE nor applying Eq. (9), replacing
these with equations that are apt for exploitation of the sparsity
of the system matrices in AO.

• It requires only (an estimate of ) the deterministic part
of the state-space model in Eq. (5) (matrices A and G ) and
measurement data, implicitly accounting for the stochastic part
of the model (matrices Q and R ).

• It compensates for a certain degree of modeling error
by implicitly considering the modeling errors to be a form of
process noise [28] and identifying a corresponding Kalman
gain. Given the sources of modeling error discussed in Section
2, it is possible for the identified Kalman gain to outperform the
DARE-based gain.

Let matrices Yi, j ,N and Yi,N be defined as

Yi, j ,N =


y i y i+1 y i+2 · · · y i+N−1

y i+1 y i+2 · · · y i+N
...

...
y i+ j−1 y i+ j · · · y i+ j+N−2


Yi,N =

[
y i y i+1 y i+2 · · · y i+N−1

]
= Yi,1,N

, (11)
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where Yi, j ,N ∈R jm×N is an N− column block Hankel matrix
with j block rows of output information yk . Define E i, j ,N

and E i,N analogously for the prediction errors e k . Henceforth,
assume data are available from time step 0 up to time step
Nd , for a total data batch length of Nd + 1 . Define as well
O j ∈R jm×n as the extended observability matrix up to power
j − 1 of A ,

O j =
[
GT (G A)T · · · (G A j−1)

T]T
. (12)

Consider system (5) and its KF, operating in steady state.
Assuming asymptotic stability of the system, it is possible to find
an order s such that (A− K G)k ≈ 0 for any k ≥ s . Using this
property, recursively introducing the KF prediction in observer
form [Eq. (6)] into itself and combining it with Eq. (8) results
in, for an arbitrary time index k ,

ŷk = G
[
(A− KG)s−1 K · · · (A− KG)K K

]︸ ︷︷ ︸
L


yk−s

...
yk−2

yk−1

+ e k .

(13)
Let there be a total of Nd + 1 time steps of measurement data

from time step 0 to Nd . Then, stacking the left-hand side of (13)
horizontally into matrix Ys ,N ,

Ys ,N = GLY0,s ,N + E s ,N , (14)

where N = Nd − s − p + 2 , so that y s+p+N−2 = y Nd . The
first step toward identification of the Kalman gain is estimation
of GL , which can be done in a linear least-squares setting,

ĜL= argmin
GL
‖ Ys ,N − (GL)Y0,s ,N ‖

2
F . (15)

Recalling Eq. (13), note that Eq. (15) is fitting a VAR model of
order s (i.e., a VAR- s model) to measurement data. Define
now the Markov parameters of the steady-state KF in observer
form [Eq. (16)] and innovation form [Eq. (17)],

A j = G(A− KG) j−1 K , (16)

B j =GA j−1 K . (17)

With GL estimated from Eq. (15), one has obtained esti-
mates of the observer form Markov parameters A j up to j = s
. From these, the next step is to compute the innovation form
Markov parameters,

B̂ j = Â j +

j−1∑
i=1

B̂ j−iÂi , (18)

where j ∈ {2, 3, , p} and p is a tuning parameter such that
2≤ p ≤ s . The estimated innovation form Markov parameters,
stacked vertically, yield an estimate of Op K ,

Ôp K =

 B̂1
...
B̂p

=
 Ĝ K

...
̂G A p−1 K

 , (19)

from which an estimate K̂ of K can be retrieved in a second lin-
ear least-squares problem,

K̂ = argmin
K
‖ Ôp K −Op K ‖2

F . (20)

Assuming that Y0,s ,N has full row rank, the solution to Eq. (15)
is unique. Further assuming the system is observable and that p
is set large enough, Op has full column rank, and the solution
K̂ to (20) is likewise unique. This estimator for K is asymptoti-
cally unbiased in s .

The data-driven Kalman filtering procedure of [22] is
summarized as follows:

(1) Gather the data into Ys ,N and Y0,s ,N as in Eqs. (11) and
(14).

(2) Solve the least-squares problem in Eq. (15) for an estimate
ĜL of GL .

(3) Compute estimates of the innovation form Markov param-

eters as per Eq. (18) and build Ôp K according to Eq. (19).
(4) Solve the least-squares problem in Eq. (20) for an estimate

K̂ of K .

4. SPARSE METHODS FOR LARGE-SCALE AO

Solving the optimization problems in Eqs. (15)–(20) for an
arbitrary system with dense system matrices has a computa-
tional complexity of O (m3) . This section will describe the
intuitive reasoning behind sparsity patterns in AO, enabled by
the frozen-flow nature of turbulence [17,18] and exploit them
in two novel algorithms. The first, in Subsection 4.B, combines
the data-driven Kalman filtering of Section 3 with sparse VAR
modeling to quickly estimate an approximate Kalman gain, but
still in O(m3) time. The second algorithm, in Subsection 4.C,
aims to reduce the online computational complexity by directly
enforcing sparsity in the identified gain and compensating for
the error thus induced with an additional set of fast operations,
while additionally reducing the offline identification complexity
down to O(m) .

A. Sparse Turbulence Modeling

The sparsity of the matrix A can easily be illustrated by recalling
the frozen turbulence assumption. Assuming a wind speed of
ν , the frozen turbulence assumption implies that, when ν is
at least overestimated, and without assuming knowledge of
the wind direction, one knows that information travels only
within a radius of r = τν in between consecutive time steps, τ
being the sampling time. Because A in Eq. (2) establishes this
movement within a single sampling period, a sparsity pattern
can be set beforehand to directly identify a sparse model.

Consequently, for a single turbulence layer, the sparsity pat-
tern of A is dictated by the wind speed given in pixels per time
step, here denoted by ω ,

ω=
ντ

δ
, (21)

such that δ will be referred to as the pixel width, which is defined
as the width of a single pixel: δ = D/L . The sparsity structure
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of A is then proposed as follows: any entries of A that relate pix-
els further than ω pixel widths away from each other should be
zero. With the adoption of this a priori structure for matrix A ,
a sparse multibanded matrix is obtained, similar to the structure
adopted in [17].

In practice, a single layer may not accurately represent the
total atmosphere, and the wind speed ν should be replaced by
the dominant wind speed of all the phase screens. The exact
wind speed may also be unknown; it is therefore necessary to
approximate the sparsity pattern based on the limited informa-
tion available: if a rough estimate (or overapproximation) of the
wind speed is available, this can be used instead in Eq. (21). For
example, when δ = 0.05 m, τ = 0.005 s and an overestimation
ν ≤ 20 m/s is available, then ω≤ 2 pixel widths per sampling
time.

Let SA denote the set of valid A matrices with the previously
described sparsity pattern. The linear least-squares problem in
Eq. (4), reformulated as

Â= argmin
A∈SA

‖81,N − A80,N ‖
2
F (22)

and assuming that there is an average number q of nonzeros per
row of A , can be solved in O (Nq 2m) time.

B. Sparse Data-Driven Kalman Filtering

This section deals with the introduction of sparsity into the
data-driven Kalman filtering algorithm of Section 3 and its use
in AO. The algorithm is divided into two linear least-squares
problems: the first problem fits a VAR model to measurement
data, and the second one determines the Kalman gain from these
models. These are explored separately ahead.

1. Sparse VARSlopeModeling

In order to obtain efficient solutions to the optimization prob-
lem presented in Eq. (15), which fits a VAR- s model to slope
data, it is important to obtain a sparse representation of matrix
GL . Consider a VAR- s model for the slopes,

yk =A1 yk−1 +A2 yk−2 + · · · +As yk−s + ξk . (23)

Following an intuition analogous to that of Section 4.A, a
similar radius-based sparsity pattern can be set, leading to a
method for sparse VAR- s modeling, as presented in [18]. It
should be remarked that an overestimate of ω is essential in this
case, as it was observed to have a smoothing effect to deal with
measurement noise.

In the model of Eq. (23), each Ai coefficient establishes a
relationship between slope vectors i time steps apart, so each
coefficient should have a sparsity radius r i that increases with i .

Let SGL refer to the set of valid GL matrices with a spar-
sity pattern fulfilling the description above, and constrain the
first least-squares problem of the data-driven Kalman filtering
procedure [Eq. (15)],

ĜL= argmin
(GL)∈SGL

‖ Ys ,N − (GL)Y0,s ,N ‖
2
F . (24)

Assuming an average of q nonzero elements per row of GL ,
Eq. (24) can be solved in O(Nq 2m) time. Without exploiting
sparsity, solving Eq. (15) would take O(Ns 2m2

+ s 2m3) time
instead. More details regarding the implementation of Eq. (24)
are provided in [27].

Furthermore, the consequently low number of parameters to
identify permits, for large-scale application, the use of “tall” data
sets, with a number of time -steps of data much smaller than the
number m of lenslets in the WFS array.

2. Retrieval of theKalmanGain

After constructing the sparse estimate Ôp K from Eqs. (18)
and (19), which involves only negligible O(m) sparse matrix
products and additions for sensible choices of s and p , the
remaining final step is to obtain a computationally efficient
solution to Eq. (20). However, since the Kalman gain itself is
dense, the approach used to formulate the sparse solutions in
Eqs. (22) and (24) is not applicable in this case.

Instead, the linear least-squares problem of Eq. (20) has

a highly sparse regressor Op and regressand Ôp K , which
enables the use of dedicated solvers. The sparse rectangular
solver built into MATLAB’s \ operator is [29] as of R2020b, and
solves Eq. (20) in roughly O(m3) time, as is the case without
leveraging sparsity or finding the gain with the DARE, but is
efficient in practice due to its sparsity-exploiting nature, leading
to the results of Fig. 2 that confirm that the entire identification
procedure is far faster than the DARE.

Alongside the computational complexity of its computation,
which remains the bottleneck for applications of arbitrarily large
scale, another major drawback of the dense matrix K is that it
also directly influences the online predictions, given by Eq. (7).
Since the online computations involve matrix-vector multipli-
cations with K , the online computational complexity will scale
as O(m2) . In order to obtain a scalable online computational
complexity, the use of the large and dense matrix K should be
avoided. Section 4.C introduces a new framework, partly based
on the presented sparsity-exploiting data-driven KF, that aims
to decrease the computational complexity of the online com-
putations and, in addition, decreases the offline computational
complexity further.

3. ImplementationDetails andApproximations inAO

Practical issues arise when applying the proposed data-driven
Kalman filtering method to AO systems using the approximate
VAR-1 turbulence model derived in Section 2. This subsection
acknowledges and discusses these issues.

The assumption that (A− K G)s ≈ 0 any small s generally
does not hold for the AO case. Because sparsity is progressively
lost with increases in s , s is nonetheless consciously kept low,
meaning that the resulting Kalman gain will be approximate.
In practice, the presence of the modeling errors (see Section 2)
implies that the identified Kalman gain may outperform the
DARE-based gain even for low values of s and that arbitrarily
increasing s does not necessarily mean better performance. The
influence of s on the performance of the KF will be addressed in
the simulation results of Section 5.
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Furthermore, a near- 1 eigenvalue of (A− K G) corre-
sponding (approximately) to the piston mode leads as well
to the appearance of column-wise constant distortions in the
identified Kalman gain due to the implicit pseudo-inversion of
Op when solving for K̂ in Eq. (20). The column-wise means
of the identified Kalman gain should therefore be removed
after retrieval with Eq. (20), as should the piston mode of the
filter’s predictions, lest their mean become unstable and lead to
numerical problems.

C. HLRF

The computational complexity of the standard KF prediction
operation [Eq. (7)] is O(m2) . Even with a sparse A , the dense-
ness of the Kalman gain remains an issue. This section presents
an algorithm that aims to have the noise robustness of Kalman
filtering, reduce the computation time of the online prediction
operation, and improve the time complexity of the offline iden-
tification procedure. The algorithm separates prediction into
two distinct stages, one in the original array using only sparse
matrix operations, and one in an artificially constructed low-
resolution array where dense operations are acceptable without
significant computational burden. These are as follows:

• The high-resolution stage performs prediction in the
original, potentially extremely large fine array. In this stage, only
sparse operations are acceptable. To achieve this, high sparsity
is imposed in the identified gain, resulting in a data-driven
sparse observer that is capable of predicting detailed local high-
spatial-frequency structures in the wavefront phase, but fails to
satisfactorily account for its overarching shape.

• The low-resolution stage predicts the remainder of the
wavefront in a coarse, low-resolution array using a (dense) data-
driven KF. In fact, this stage is effectively predicting the state
prediction errors of the sparse observer of the high-resolution
stage; these prediction errors comprise low-spatial-frequency
modes of the wavefront phase, which should not require an array
as dense as the original one for prediction. This low-resolution
array is a mathematical construct whose measurements are
built from measurement data from the original array using
sparse operations likewise, hence demanding no hardware
modification.

The algorithm is formulated for square lenslet arrays due to
the current construction of the low-resolution stage, which is
done by designing each lenslet of the low-resolution array to be a
square comprising lenslets of the original high-resolution array.
Extension to circular apertures is briefly discussed in Section 6.

1. SparsePredictorGain

The HLRF algorithm is based upon setting a radius-based spar-
sity pattern on the identified gain, analogous to those in Eqs.
(22) and (24); denote by SK the set of potential gains K ∗ with
such a sparsity pattern, and constrain Eq. (20) accordingly,

K ∗ = argmin
K∈SK

‖ Ôp K −Op K ‖2
F . (25)

Because none of the nonzero patterns of the matrices involved
depends on m , let q denote the average nonzeros per column of

K ∗ , Op , and Ôp K , without distinction. A dedicated imple-
mentation of Eq. (25) can be solved in O(mq 3) time, linear
in total number of lenslets m . This, as opposed to the original
O(pm3) time of Eq. (20) without exploitation or enforcement
of sparsity. Thesis [27] provides further details regarding the
implementation of Eq. (25).

Solving Eq. (25) was observed to systematically produce
asymptotically stable observers. These, with a tight constraint
on the gain, are able to accurately predict high-spatial-frequency
modes of the wavefront, but perform poorly for the low-
spatial-frequency modes, as shown in Fig. 5 of Section 5, which
motivates the use of the low-resolution stage. Note that unlike
the dense gain of Section 4.B, the column-wise means of the
sparse gain should not be removed, as Eq. (25) will not fit for the
distortions, and removal of the means would destroy sparsity.

2. HLRFFormulation

This subsection overviews the HLRF algorithm. The low-
resolution lenslet array is of size L ′ × L ′ ; define m′ = 2(L ′)2

and n′ = (L ′ + 1)2 . The exact definitions of the low- and high-
resolution sampling arrays will be discussed further in Section
4.C.3. With sparse gain K ∗ , the high-resolution stage is given
by

φ̂
[h]
k+1 = Aφ̂[h]k + K ∗e [h]k , (26)

where φ̂
[h]
k ∈Rn is its wavefront prediction for time k and

the measurement prediction errors of the high-resolution stage
e [h]k ∈Rm are

e [h]k = yk − Gφ̂[h]k .

Next, for the derivation of the low-resolution stage, define a
system (still in the original high-resolution array) whose states
are the wavefront prediction errors of the high-resolution stage,

φ̃
[h]
k = φk − φ̂

[h]
k . (27)

The dynamics of this wavefront prediction error are given by

φ̃
[h]
k+1 = (A− K ∗G)φ̃[h]k +wk − K ∗vk

e [h]k = Gφ̃[h]k + vk

. (28)

The goal of the low-resolution stage is to predict the wave-
front prediction error of the high-resolution stage. As stated
previously, φ̃

[h]
k is expected to contain mostly low-spatial-

frequency modes that should not require an array as dense as
the original for sufficiently accurate prediction (and the highest
spatial-frequency modes cannot be predicted whatsoever, due
to measurement noise). The low-resolution stage therefore
involves constructing an artificial low-resolution array within
which a KF for Eq. (28) is designed.

Let a superscript prime indicate matrices in the low-
resolution array, which are obtained as described below. Using
this notation, the wavefront prediction given by the HLRF is
computed as follows:
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φ̂
[h]
k+1 = Aφ̂[h]k + K ∗e [h]k

φ̂
[l]
k+1 = (A− K ∗G)′φ̂[l]k + K ′

(
He [h]k − G ′φ̂[l]k

)
φ̂k+1 = φ̂

[h]
k+1 + I(φ̂[l]k+1)

, (29)

where φ̂[l]k ∈Rn′ is the wavefront prediction for time k of the
low-resolution stage. Operator I represents linear interpo-
lation from the low-resolution array into the high-resolution
array, and sparse matrix H converts the measurements on the
high-resolution array into measurements on the low-resolution
one, as described in Section 4.C.3. Equation (29) is applied in
O(m) time.

In Eq. (29), the Kalman gain K ′ ∈Rn′×m′ is the low-
resolution (dense) Kalman gain, herein identified using the
data-driven method of Section 3, considering He k as measure-
ment data, and (A− K ∗G)′ and G ′ as system matrices. The
state-transition matrix of the low-resolution stage, (A− K ∗G)′

, with available wavefront phase data, can be obtained following
the procedures of Section 2, after running the measurement
data through the high-resolution stage first and subtracting its
wavefront predictions from the corresponding wavefront data as
per Eq. (27). Matrix G ′ ∈Rm′×n′ is built exactly like G but for
the dimensions of the low-resolution array.

3. Definition of the Low-ResolutionArray

Whereas the high-resolution array is defined by the lenslets
of the WFS, the low-resolution array is a mathematical con-
struct that is not the result of any hardware within the AO
loop. This subsection will define the matrix H introduced in
Section 4.C.2.

In Eq. (29), the measurement prediction errors e [h]k were
mapped onto the low-resolution array by matrix H . In order
to define this mapping, consider the problem of transforming
a set of slope measurements yk obtained from an L × L array
of WFS lenslets into an artificial set of measurements zk that
give the slopes on a lower-dimensional L ′ × L ′ sampling
grid, L ′� L . Moreover, assume that L ′ is chosen such that
Lu = L/L ′ , the width of each lenslet of the low-resolution
array, henceforth called a unit, is an integer value.

Matrix H ∈Rm′×m linearly combines the measurements
from the original array,

zk =Hyk, (30)

such that, disregarding measurement noise, zk is related to the
wavefront sampled on a low-resolution array, denoted by ψk ∈

Rn′ , via

zk = G ′ψk . (31)

The low-resolution wavefront ψk can be defined as a selection
of entries of φk that are shared by the low-resolution array. Let
matrix Z ∈Rn′×n of ones and zeros define this selection,

ψk = Zφk . (32)

Combining Eqs. (30)–(32), the problem lies in finding a combi-
nation matrix H such that

G ′Zφk =HGφk (33)

for any arbitrary φk . In the present setting, in which the units
are square, and as detailed in Appendix A, it is possible to find an
exact solution to Eq. (33) for all φk ∈Rn with a highly sparse H
by solving the following least-squares problem:

H= argmin
H∈SH

‖HG − G ′Z ‖2
F, (34)

where SH is the set of valid H matrices with a sparsity pattern
that allows only intraunit combinations, resulting from the
implementation in Appendix A with which the results of Section
6 were obtained.

5. TUNING AND SIMULATION RESULTS

This section overviews the performance of the proposed algo-
rithms with respect to quality of the predictions and execution
times. Prediction quality is measured by the mean squared
2-norm of the piston-removed wavefront prediction error,
normalized by the mean squared 2-norm of the piston-removed
incoming wavefront; this measure of performance is henceforth
referred to as normalized mean-squared error (NMSE),

NMSE=

∑N
k=1 ‖φ̂k − φk‖

2
2∑N

k=1 ‖φk‖
2
2

, (35)

where, to reiterate, both φk and φ̂k have their piston modes
(i.e., their means) removed because offsets in the wavefront
phase do not affect image quality, but would alter the NMSE.
The NMSE is computed after 500 time steps of simulation to
ensure steady-state operation.

As a proof of concept for the proposed algorithm, a numeri-
cal simulation study of a standard AO system is performed. A
square telescope aperture is used to match the square array of
WFS lenslets assumed in the obtention of matrices H and I in
Section 4.C.3. The setting of the analyses is the following:

• The sensor array is an L × L square array configured
in Fried geometry, with L = 60 . Square arrays were chosen
so as to accommodate our HLRF and allow it to be compared
to the alternatives; square arrays are adopted throughout for
consistency.

• The turbulence parameters are set as follows: the Fried
parameter is r0 = 0.1 m, outer scale is L0 = 25 m, and the tele-
scope aperture width is D= 4 m. The wind speed is ω= 0.25
pixels per time step, which, to illustrate, corresponds to v ≈ 8.2
m/s assuming a sampling frequency of 500 Hz [see Eq. (21) for
details]. The signal-to-noise ratio (SNR) of the slope measure-
ments (of both the simulation and identification data sets) is set
to 5 dB.

• As for the data-driven Kalman filtering parameters, the
VAR model orders s , as seen in Eq. (23) and used in Eq. (24),
are specified prior to each specific set of results, and p = 2
always, as it was observed to produce the best results; the radial
constraints applied to the VAR model of the slopes in Eq. (24)
are r1 = r2 = 1.5 , r3 = r4 = 2 , r5 = 2.5 . In the low-resolution
stage, the parameters are always set to ( s ′ = 4 , p ′ = 2 ).

• The turbulence dynamics are represented by a single
translating phase screen, simulated using the Object-Oriented
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MATLAB Adaptive Optics (OOMAO) toolbox [30]. The sen-
sor signals were obtained simply via the application of Eq. (1) to
the simulated turbulence, giving us direct control over the SNR
of the slope measurements.

• The radius-based constraint of the sparse gain, whose
width is denoted r K , was here implemented as a square of
lenslets around each pixel: a constraint of width zero is such
that each pixel accepts only information from the four lenslets
immediately adjacent to it; each unit increase in the constraint
expands the square one lenslet outward. These implementation
details are arbitrary, and another user can define the constraint
otherwise.

• The matrix-vector multiplication (MVM) method used
herein as a benchmark predicts the wavefront with a regularized
least-squares estimator of φk and a one-step progression via
multiplication with A ,

φ̂k+1 = ACφ,0GT(GCφ,0GT
+ R)

−1︸ ︷︷ ︸ yk, (36)

where the underbraced term is computed offline and multiplied
with yk online. Note that this assumes the covariance matrices
of the measurement noise and incoming wavefront are available
(and sufficiently well estimated), an assumption that is relaxed
by our data-driven methods.

A. Tuning the Model Order

The model order s is a vital parameter of our identification
procedures. A larger s yields a VAR model with more time steps
of information to smooth out measurement noise, but the added
Markov parameters, each with equal or less sparsity than the
previous, increase the identification time. Additionally, it has
been observed that in the presence of erroneous modeling, s
cannot be increased arbitrarily for better performance.

The influence of s in the NMSE [Eq. (35)] of both the
identified KF and the HLRF is illustrated in Fig. 1. The best
performance of the data-driven KF was attained for s = 4 , with
slight drops visible for larger s . As for the HLRF, the tighter
the constraint applied to the gain, the sooner performance is
maximized with respect to s ; for example, for (r K = 3) , which
is used in results below, s = 3 yielded the best performance of
the HLRF. Figure 2 shows how the time taken for offline iden-
tification of the gain (Kalman gain, in the case of 4.B) using the
methods from Section 4 increases with m and s , and further
compares it with that of the DARE.

B. Performance and Prediction Times

Figure 3 presents a comparison between the NMSE obtained
with the DARE-based KF, the MVM method, the identified
KF (from Section 4.B), and the HLRF algorithm with varying
parameters. Good relative performance of the HLRF is achieved
early in the values of its tuning parameters, and both data-driven
procedures can outperform the DARE-based KF due to the
modeling error induced by a fractional ω , as suggested in
Section 2. The error-time trade-off is made evident with Fig. 4.
Notice that, for instance, the ( r K = 3 , L ′ = 10 ) combination
yields a better NMSE than the DARE-based KF, while being

an order of magnitude faster than dense Kalman filtering and
MVM.

C. Spatial Frequency Domain Performance

As argued in Section 4, the sparse data-driven observer of
the high-resolution stage of the HLRF fails to predict the
low-spatial-frequency modes of the incoming wavefront as
accurately as a dense data-driven KF does. This motivated the
creation of the low-resolution stage and is illustrated in Fig. 5
alongside results for the DARE-based KF and MVM. Although
the low frequencies are generally less present in the prediction
errors than the high frequencies, the error induced by sparsity is
sufficient to bring the NMSE [Eq. (35)] of the sparse observer
slightly over that of MVM. Worse models further raise the
importance of the low-resolution stage [27].

6. CONCLUSIONS AND RECOMMENDATIONS

This section summarizes the main conclusions and addresses
the practical applicability of the developed data-driven KF by
presenting several recommendations for future research.

A. Conclusions

This paper has presented a new data-driven wavefront predic-
tion method for real-time application in large-scale AO systems.
By exploiting sparsity structures within the system matrices, we
first developed a data-driven Kalman filtering method capable
of, from measurement data, quickly identifying an approximate
Kalman gain, but still in O(m3) time.

The novel HLRF was further presented, which splits the
wavefront prediction into a low- and a high-resolution stage.
With the enforcement of sparsity in all matrices of the high-
resolution stage, linearity with respect to m of both the
identification (offline) and prediction (online) computa-
tional complexities was obtained, as the low-resolution stage is
designed to be computationally light. This algorithm exchanges
some of the performance of the KF for lower prediction times.
Because the complexities are reduced to linear in m by shifting

Fig. 1. NMSE [Eq. (35)] of the data-driven KF of Section 4.B
(data-driven KF), the HLRF of Section 4.C, the KF obtained with
MATLAB’s idare function (DARE-based KF), and MVM [Eq. (36)],
for varying model order s in the identification scheme of Eq. (24).
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Fig. 2. Average execution times of the offline gain identification pro-
cedures of Sections 4.B (Dense Ident.) and 4.C.1 (Sparse Ident.), and
of MATLAB’s idare function (DARE), as a function of the total num-
ber m of lenslets in the sensor array. A data batch length of 5000 was
used to identify the gains.

Fig. 3. NMSE [Eq. (35)] of the algorithms for varying constraint
r K of the sparse gain and the width L ′ of the low-resolution array. The
model order s used in Eq. (24) was set to s = 3 .

this dependence onto tuning parameters that should take the
array size into consideration, it was shown in the example of
a 60× 60 lenslet array that substantial improvements to pre-
diction times demand only minimal sacrifices in performance
compared to dense data-driven Kalman filtering.

B. Applicability and Future Research

Although the results presented in Section 5 are based on simpli-
fied numerical simulations only, the HLRF of Section 4.C shows
potential as an accurate real-time wavefront prediction method
for large-scale AO systems. However, several issues still need to
be addressed to make this method practically applicable. Note,
however, that the radius-based sparsity of Sections 4.A and 4.B is
by default applicable to nonsquare apertures, and that 4.B thus
presents an already realistically applicable method for identifica-
tion of the Kalman gain for AO systems.

Fig. 4. Average execution times of the online prediction operations
of dense Kalman filtering [Eq. (7)], MVM [Eq. (36)], and of the HLRF
[Eq. (29)], for varying HLRF parameters r K and L ′ .

Fig. 5. Power spectral density (PSD) of each frequency of the
prediction errors for each algorithm, normalized by the PSDs of the
incoming uncorrected wavefront.

The main issues that remain to be addressed in the HLRF
are the limitations imposed upon the (original) sensor array
by the current formulation of the low-resolution array and
the corresponding matrix H . First, the algorithm is still to be
extended to nonsquare lenslet arrays (e.g., corresponding to
circular or annular apertures); second, the width of the original
array currently must be divisible by that of the low-resolution
array, which limits the choices of both widths.

The issue of algorithm extension to nonsquare arrays has
been likewise reported in the literature of computationally
efficient wavefront estimation methods; see, for example [15],
where zero padding is proposed to artificially form a square data
array from a nonsquare one. Zero padding can, however, lead to
significant estimation errors. Since the low-dimensional array
is merely a mathematical construct, future research could find
alternative definitions of H that enable additional freedom
in the shape of the low-dimensional units, which could then
accommodate nonsquare arrays and more choices of widths.
Furthermore, the results shown herein explored only linear
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interpolation from the low-dimensional array to the high-
dimensional one. Interpolation methods that better replicate
the shape of a wavefront should naturally be explored. The
method has so far only been tested in open loop. Due to its low
online computational time, the method could be applied in a
closed-loop environment, where the predictions pertain to the
residual wavefront, whose frequency content should differ from
that of the uncorrected incoming wavefront. In order to prop-
erly assess its closed-loop performance, the algorithm should
be paired with a control algorithm that uses its predictions and
be tested in a more detailed simulation study, for example using
OOMAO [30], or in a laboratory setup, and should be com-
pared to existing fast data-driven optimal control methods such
as [15,17].

APPENDIX A: DETAILED SPARSE
CONSTRUCTION OF H
Recall that the low-resolution array consists of larger lenslets,
here called units, that are Lu high-resolution lenslets wide.
Consider the example of Fig. 6, with L = Lu and L ′ = 1 ,
in order to isolate a single 2× 2 unit. Let a subscript x or y
indicate the axis to which a particular slope corresponds. In this
example, y (1)x,k and y (1)y,k are given by y (1)x,k =

1
2

(
φ
(5)
k + φ

(4)
k − φ

(2)
k − φ

(1)
k

)
y (1)y,k =

1
2

(
φ
(5)
k + φ

(2)
k − φ

(4)
k − φ

(1)
k

) , (A1)

and y ( j )
x,k and y ( j )

y,k , j ∈ {2, 3, 4} are defined similarly. The
slopes corresponding to the artificial low-resolution array
should be defined likewise. As per Eq. (31), zx,k =

1
2

(
φ
(9)
k + φ

(7)
k − φ

(3)
k − φ

(1)
k

)
zy,k =

1
2

(
φ
(9)
k + φ

(3)
k − φ

(7)
k − φ

(1)
k

) . (A2)

Construction of H is based on this intuitive insight. Returning
to generality, let Sy , j denote the indices of yk corresponding to
the slopes, in the high-resolution array, measured by the lenslets
within unit j ; let Sφ, j be analogous for the pixels within unit j
. Denoting a selection of vector entries by a parenthesized super-
script, the measurement equation for the lenslets within a single
unit of arbitrary dimensions is given as follows:

y
(Sy , j )

k = Guφ
(Sφ, j )

k , (A3)

where Gu is the same for every unit, and is built like G , but
considering Lu as the array width. Analogously, let the pixel
selection within each unit be given by Zu , which merely selects
the corner pixels of the unit. As per Eq. (A2), the measurement
equation of unit j , now in the low-resolution array, is simply
given by[

z( j )
x,k

z( j )
y,k

]
=

[
−0.5 −0.5 0.5 0.5
−0.5 0.5 −0.5 0.5

]
︸ ︷︷ ︸

V

Zuφ
(Sφ, j )

k . (A4)

Defining Hu as a combination analogous to H in Eq. (30), but
again within a single unit, it follows from Eqs. (A3) and (A4)

Fig. 6. Example of a high-resolution (left) and corresponding low-
resolution (right) array for L = 2 and L ′ = 1 . Note that this pattern
also represents a single unit of any larger grid with Lu = 2 .

that

V Zuφ
(Sφ, j )

k =HuGuφ
(Sφ, j )

k . (A5)

For square units, matrix Hu can be drawn from

Hu = argmin
Hu

‖HuGu − V Zu ‖
2
F, (A6)

whose solutions are nonunique due to the presence of the piston
and waffle modes in the null space of Gu . The minimum-norm
solution

Hu = V ZuG†
u (A7)

is such that Eq. (A5) is exact for any arbitrary φ
(Sφ, j )

k . The
entire combination matrix H is now built from Hu , which is
done quickly via repeated insertion of Hu into the entries of H
corresponding to each unit j ∈ {1, 2, , L ′2} , fulfilling Eq. (33).

In truth, Eq. (A7) takes O(m3) time for fixed L ′ and
O(m3/2) time for L ′ ≈

√
L , but the time effectively taken

to solve it is so insignificant regardless (using MATLAB and
a sparse Gu ), even for unrealistically massive units of tens of
thousands of lenslets themselves, that it is ignored throughout
the paper.

Funding. H2020 European Research Council (339681); Seventh
Framework Programme (2007-2013).

Disclosures. The authors declare no conflicts of interest.

Data Availability. Data underlying the results presented in this paper are
not publicly available at this time but may be obtained from the authors upon
reasonable request.

REFERENCES
1. B. Ellerbroek and T. Rhoadarmer, “Adaptive wavefront control algo-

rithms for closed loop adaptive optics,” Math. Comput. Modell. 33,
145–158 (2001).

2. B. L. Ellerbroek, “Efficient computation of minimum-variance wave-
front reconstructors with sparse matrix techniques,” J. Opt. Soc. Am.
A 19, 1803–1816 (2002).

3. C. Kulcsár, H.-F. Raynaud, C. Petit, J.-M. Conan, and P. V. De
Lesegno, “Optimal control, observers and integrators in adaptive
optics,” Opt. Express 14, 7464–7476 (2006).

4. B. Le Roux, J.-M. Conan, C. Kulcsár, H.-F. Raynaud, L. M. Mugnier,
and T. Fusco, “Optimal control law for classical and multiconjugate
adaptive optics,” J. Opt. Soc. Am. A 21, 1261–1276 (2004).

5. G. Sivo, C. Kulcsár, J.-M. Conan, H.-F. Raynaud, É. Gendron, A.
Basden, F. Vidal, T. Morris, S. Meimon, C. Petit, D. Gratadour, O.

https://doi.org/10.1016/S0895-7177(00)00235-1
https://doi.org/10.1364/JOSAA.19.001803
https://doi.org/10.1364/JOSAA.19.001803
https://doi.org/10.1364/OE.14.007464
https://doi.org/10.1364/JOSAA.21.001261


1002 Vol. 38, No. 7 / July 2021 / Journal of the Optical Society of America A Research Article

Martin, Z. Hubert, A. Sevin, D. Perret, F. Chemla, G. Rousset, N.
Dipper, G. Talbot, E. Younger, R. Myers, D. Henry, S. Todd, D.
Atkinson, C. Dickson, and A. Longmore, “First on-sky SCAO vali-
dation of full LQG control with vibration mitigation on the CANARY
pathfinder,” Opt. Express 22, 23565–23591 (2014).

6. A. Beghi, A. Cenedese, and A. Masiero, “On the computation of
Kalman gain in large adaptive optics systems,” in 21st Mediterranean
Conference onControl and Automation (IEEE, 2013), pp. 1374–1379.

7. C. Correia, J.-M. Conan, C. Kulcsár, H.-F. Raynaud, and C. Petit,
“Adapting optimal LQG methods to ELT-sized AO systems,” in
1st AO4ELT Conference-Adaptive Optics for Extremely Large
Telescopes (EDP Sciences, 2010), p. 07003.

8. P. Massioni, H.-F. Raynaud, C. Kulcsár, and J.-M. Conan, “An
approximation of the Riccati equation in large-scale systems with
application to adaptive optics,” IEEE Trans. Control Syst. Technol.
23, 479–487 (2014).

9. P. Massioni, L. Gilles, and B. Ellerbroek, “Adaptive distributed Kalman
filtering with wind estimation for astronomical adaptive optics,” J.
Opt. Soc. Am. A 32, 2353–2364 (2015).

10. M. Gray, C. Petit, S. Rodionov, M. Bocquet, L. Bertino, M. Ferrari,
and T. Fusco, “Local ensemble transform Kalman filter, a fast non-
stationary control law for adaptive optics on ELTs: theoretical aspects
and first simulation results,” Opt. Express 22, 20894–20913 (2014).

11. R. Mehra, “Approaches to adaptive filtering,” IEEE Trans. Autom.
Control 17, 693–698 (1972).

12. J. Duník, O. Straka, O. Kost, and J. Havlík, “Noise covariance
matrices in state-space models: a survey and comparison of esti-
mation methods. Part I,” Int. J. Adapt. Control Signal Process. 31,
1505–1543 (2017).

13. K. Hinnen, M. Verhaegen, and N. Doelman, “A data-driven H2 -
optimal control approach for adaptive optics,” IEEE Trans. Control
Syst. Technol. 16, 381–395 (2008).

14. B. Sinquin, L. Prengere, C. Kulcsár, H.-F. Raynaud, E. Gendron,
J. Osborn, A. Basden, J.-M. Conan, N. Bharmal, L. Bardou, L.
Staykov, T. Morris, T. Buey, F. Chemla, andM. Cohen, “On-sky results
for adaptive optics control with data-driven models on low-order
modes,” Mon. Not. R. Astron. Soc. 498, 3228–3240 (2020).

15. B. Sinquin and M. Verhaegen, “Tensor-based predictive control for
extremely large-scale single conjugate adaptive optics,” J. Opt. Soc.
Am. A 35, 1612–1626 (2018).

16. R. Fraanje, J. Rice, M. Verhaegen, and N. Doelman, “Fast reconstruc-
tion and prediction of frozen flow turbulence based on structured
Kalman filtering,” J. Opt. Soc. Am. A 27, A235–A245 (2010).

17. C. Yu and M. Verhaegen, “Structured modeling and control of adap-
tive optics systems,” IEEE Trans. Control Syst. Technol. 26, 664–674
(2017).

18. P. Piscaer, “Sparse VARX model identification for large-scale
adaptive optics,” Master’s thesis (Delft University of Technology,
2016).

19. M. Rosensteiner, “Wavefront reconstruction for extremely large tele-
scopes via CuRewith domain decomposition,” J. Opt. Soc. Am. A 29,
2328–2336 (2012).

20. L. Gilles, C. R. Vogel, and B. L. Ellerbroek, “Multigrid precondi-
tioned conjugate-gradient method for large-scale wave-front
reconstruction,” J. Opt. Soc. Am. A 19, 1817–1822 (2002).

21. D. L. Fried, “Adaptive optics wave function reconstruction and phase
unwrapping when branch points are present,” Opt. Commun. 200,
43–72 (2001).

22. J. Juang, C. Chen, and M. Phan, “Estimation of Kalman filter gain
from output residuals,” J. Guid. Control Dyn. 16, 903–908 (1993).

23. F. Roddier, Adaptive Optics in Astronomy (Cambridge University,
1999).

24. M. Verhaegen and V. Verdult, Filtering and System Identification: A
Least Squares Approach (Cambridge University, 2007).

25. G. I. Taylor, “The spectrum of turbulence,” Proc. R. Soc. London A
164, 476–490 (1938).

26. F. Assémat, R. W. Wilson, and E. Gendron, “Method for simulat-
ing infinitely long and non stationary phase screens with optimized
memory storage,” Opt. Express 14, 988–999 (2006).

27. P. Cerqueira, “Data-driven filtering for large-scale adaptive optics,”
Master’s thesis (Delft University of Technology, 2020).

28. A. H. Jazwinski, “Adaptive filtering,” Automatica 5, 475–485 (1969).
29. T. A. Davis, “Algorithm 915, SuiteSparseQR: multifrontal multi-

threaded rank-revealing sparse QR factorization,” ACM Trans. Math.
Softw. 38, 8 (2011).

30. R. Conan and C. Correia, “Object-oriented Matlab adaptive optics
toolbox,” Proc. SPIE 9148, 2066–2082 (2014).

https://doi.org/10.1364/OE.22.023565
https://doi.org/10.1109/TCST.2014.2336591
https://doi.org/10.1364/JOSAA.32.002353
https://doi.org/10.1364/JOSAA.32.002353
https://doi.org/10.1364/OE.22.020894
https://doi.org/10.1109/TAC.1972.1100100
https://doi.org/10.1109/TAC.1972.1100100
https://doi.org/10.1002/acs.2783
https://doi.org/10.1109/TCST.2007.903374
https://doi.org/10.1109/TCST.2007.903374
https://doi.org/10.1093/mnras/staa2562
https://doi.org/10.1364/JOSAA.35.001612
https://doi.org/10.1364/JOSAA.35.001612
https://doi.org/10.1364/JOSAA.27.00A235
https://doi.org/10.1109/TCST.2017.2692738
https://doi.org/10.1364/JOSAA.29.002328
https://doi.org/10.1364/JOSAA.19.001817
https://doi.org/10.1016/S0030-4018(01)01546-2
https://doi.org/10.2514/3.21099
https://doi.org/10.1098/rspa.1938.0032
https://doi.org/10.1364/OE.14.000988
https://doi.org/10.1016/0005-1098(69)90109-5
https://doi.org/10.1145/2049662.2049670
https://doi.org/10.1145/2049662.2049670
https://doi.org/10.1117/12.2054470

