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ABSTRACT Manual or automatic delineation of the esophageal tumor in CT images is known to be very
challenging. This is due to the low contrast between the tumor and adjacent tissues, the anatomical variation
of the esophagus, as well as the occasional presence of foreign bodies (e.g. feeding tubes). Physicians
therefore usually exploit additional knowledge such as endoscopic findings, clinical history, additional
imaging modalities like PET scans. Achieving his additional information is time-consuming, while the
results are error-prone and might lead to non-deterministic results. In this paper we aim to investigate if
and to what extent a simplified clinical workflow based on CT alone, allows one to automatically segment
the esophageal tumor with sufficient quality. For this purpose, we present a fully automatic end-to-end
esophageal tumor segmentation method based on convolutional neural networks (CNNs). The proposed
network, called Dilated Dense Attention Unet (DDAUnet), leverages spatial and channel attention gates in
each dense block to selectively concentrate on determinant feature maps and regions. Dilated convolutional
layers are used to manage GPU memory and increase the network receptive field. We collected a dataset
of 792 scans from 288 distinct patients including varying anatomies with air pockets, feeding tubes and
proximal tumors. Repeatability and reproducibility studies were conducted for three distinct splits of training
and validation sets. The proposed network achieved a DSC value of 0.79 ± 0.20, a mean surface distance
of 5.4 ± 20.2mm and 95% Hausdorff distance of 14.7 ± 25.0mm for 287 test scans, demonstrating
promising results with a simplified clinical workflow based on CT alone. Our code is publicly available
via https://github.com/yousefis/DenseUnet_Esophagus_Segmentation.

INDEX TERMS Esophageal tumor segmentation, CT images, densely connected pattern, UNet, dilated
convolutional layer, attention gate.

I. INTRODUCTION
Esophageal cancer is one of the least studied cancers [1],
while it is lethal in most patients [2]. Because of the very poor
survival rate, three standard treatment options are available,
i.e. chemoradiotherapy (CRT), neoadjuvant CRT followed
by surgical resection, or radical radiotherapy [3]. For this
purpose, rapid and accurate delineation of the target vol-
ume in CT images plays a very important role in therapy
and disease control. The complexities raised by automatic

The associate editor coordinating the review of this manuscript and
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esophageal tumor delineation in CT images can be divided
into several categories: textural similarities and the absence
of contrast between the tumor and its adjacent tissues; the
anatomical variation of different patients either intrinsically
or caused by a disease, like a hiatal hernia in which part of
the stomach bulges into the chest cavity through an opening
of the diaphragm (see Figure 1-(e) and (i)), extension of tumor
into the stomach, or existence of air pocket inside the esoph-
agus; existence of foreign bodies during the treatment, like a
feeding tube or surgical clips inside the esophageal lumen.
Figure 1 illustrates some of the challenging cases. These
difficulties lead to a high degree of uncertainty associated
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FIGURE 1. Variations in shape and location of the tumor. Green contours show the manual delineation of the GTVs. (a) normal junction of esophagus and
stomach, (b) hiatal hernia (type I): migration of esophagogastric junction through the gap in the cranial direction, (c) hiatal hernia (type II): migration of
esophagogastric junction in the chest, (d) proximal tumor including an air pocket and feeding tube, (e) proximal tumor including an air pocket, (f) tumor
including an air pocket, (g,h) junction tumor (extension of the tumor into the stomach) including an air pocket, (i) tumor including an air pocket and
feeding tube, (j) relocation of the esophagus to the left of aorta, (k) a variety in the shape of the tumor, (l) junction tumor including an air pocket.

with the target volume of the tumor, especially at the cranial
and caudal border of the tumor [4]. In order to overcome these
complexities, physicians integrate CT imaging with the clin-
ical history, endoscopic findings, endoscopic ultrasound, and
other imaging modalities such as positron-emission tomog-
raphy (PET) [5]. Obtaining these additional modalities is
however a time-consuming and expensive process. More-
over, the process of manual delineation is a repetitive and
tedious task, and often there is a lack of consensus on how
to best segment the tumor from normal tissue. Despite using
additional modalities and expert knowledge, the process of
manual delineation still remains an ill-posed problem [6].
Nowee et al. [4] assessed manual delineation variability of
gross tumor volume (GTV) between using CT and com-
bined F-fluorodeoxyglucose PET (FDG-PET) [7] and CT in
esophageal cancer patients in a multi-institutional study by
20 observers. They concluded that the use of PET images can
significantly influence the delineated volume in some cases,
however its impact on observer variation is limited.

In this paper we aim to investigate if a simplified clini-
cal workflow based on CT scans alone allows to automati-
cally delineate the esophageal GTV with acceptable quality.
Recently, there has been a revived interest in automating this
process for both the esophagus and the esophageal tumor
based on CT images alone [8]–[10]. Our earlier work [11],
leveraged the idea of dense blocks proposed by [12], arrang-
ing them in a typical U-shape. In that study, the proposed
method was trained and tested on 553 chest CT scans from
49 distinct patients and achieved a DSC value of 0.73±0.20,

and a 95% mean surface distance (MSD) of 3.07± 1.86 mm
for the test scans. Eight of the 85 scans in the test set had
a DSC value lower than 0.50, caused by the presence of air
cavities and foreign bodies in the GTV, which was rarely seen
in the training data. In order to enhance the robustness of the
network, in the present study we extended that work. The
main contributions of this paper are as follows:

1) We propose an end-to-end CNN for esophageal GTV
segmentation on CT scans. Different from much of the
previous work, which addressed segmentation of the
esophagus itself, we focus on the more challenging
tumor area (GTV). The proposedmethod is end-to-end,
without intricate pre- or post-processing steps, and uses
no information in addition to the CT scans;

2) We introduce dilated dense attention blocks which
leverage spatial and channel attention to emphasize on
the GTV related features. Also, dilation layers are used
to support an exponential expansion of the receptive
field while keeping the size of the network fixed;

3) We collected a dataset of 228 distinct patients
(792 scans). The dataset includes different varieties
of anatomies, and presence of foreign bodies and
air pockets in the esophageal lumen. In this study,
all patients received either Neoadjuvant or defini-
tive chemoradiotherapy treatment options. To the best
of our knowledge, none of the related works have
addressed such a comprehensive dataset.

The initial results of this work were presented in [11]. The
current paper includes a larger and more diverse dataset, and
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more elaborate evaluation. Also, we leverage dilated convo-
lutional layers in order to increase the receptive field without
increasing the size of the network, and attention gates [13] to
filter tumor relevant features.

II. RELATED WORK
Most automatic esophagus segmentation approaches have
used either a shape or appearance model to guide the seg-
mentation, where training such a guidance model is com-
plicated. Rousson et al. proposed a two-stage probabilistic
shortest path approach to segment the esophagus from 2D
CT images [6]. In the first stage, the aorta and left atrium
are segmented and then registered to reference shapes in
order to find a region of interest (ROI). In the second stage,
the optimal esophagus centerline is extracted using the short-
est path algorithm. Fieselmann et al. proposed an automatic
approach for segmenting the esophagus by detecting the air
cavities that often constitute the esophagus [14]. For reduc-
ing the time complexity, they confined all the computations
to an ROI. Also, they proposed another method based on
spatially-constrained shape interpolation in order to segment
the esophagus in 2D CT images [15]. In that investigation,
two assumptions are considered: the shape of the esophagus
changes smoothly, and there is no intersection between the
esophagus and the other organs.

In [16] amulti-step approach based on probabilisticmodels
has been proposed to segment the esophagus on 3D CT
scans. In that work, a pre-processing step is used to extract
an ROI. Then, a discriminative learning technique is applied
to label the voxels. In [17] an optical flow approach for
semi-automated segmentation of CT images is used, where
manually drawn curvature points are extended to contours
by Fourier interpolation and afterwards, optical flow is used
for registering the original contour to the other slices. This
method is not only highly user-interactive but it also fails
when the region to contour is topologically different between
two slices. Feulner et al. proposed a multi-step approach
based on probabilistic models for automatic segmentation of
the esophagus in 3D CT scans [18]. In that work, by running
a discriminative model for each axial slice, a set of approx-
imated esophagus contours is extracted. Then, the contours
are clustered and merged and afterwards, a Markov chain
model is used for finding the most probable path through
the axial slices. Ultimately, another discriminative model is
used for refining the result. This approach just works for
a manually selected ROI. The manual selection of an ROI
was later extended to automatic ROI detection by a salient
landmark on the chest [19].

Kurugol et al. presented a 3D level set model for seg-
menting the esophagus over the entire thoracic range employ-
ing a shape model, with a global and a locally deformable
component [20]. In their work, an initial centerline esti-
mation is required where an ad-hoc centerline estimator
was used, which was only performed at the ROI of some
predefined anatomical landmarks followed by interpolation
for the remaining slices. Later, they extended their work by

using prior spatial and appearance models estimated from
the training set instead of using the ad hoc estimator [21].
In [22], a two-phase online atlas-based approach was pro-
posed to rank and select a subset of optimal atlas candidates
for segmentation of the esophagus on CT scans. Atlas-based
approaches face some restrictions including the selection
of optimal atlases and a correct representation of the study
population.

Deep learning for medical image analysis has aroused
broad attention in recent years [23]–[25]. However, this tech-
nique has been limitedly used for esophagus segmentation
and even less for esophageal tumor segmentation. In [26],
a fully convolutional neural network (FCNN) for segment-
ing the esophagus on 3D CT was proposed, surrounded the
bottom-most of the heart and the topmost of the stomach. For
refining the results, an active contour model and a random
walker were used as post-processing steps. In that study,
50 scans were used as the training set and 20 scans as the test
set. An average DSC value of 0.76 ± 0.11 for the test set was
reported. A semi-automatic two-stage FCNN for 2D esopha-
gus segmentation has been proposed by Trullo et al. [27]. The
first stage performs a multi-organ segmentation in order to
extract an ROI including the esophagus. Then the manually
cropped ROI is fed to the second network to segment the
esophagus. A DSC value of 0.72 ± 0.07 has been reported
for this network with 25 scans as the training set and 30 scans
as the testing set. For extracting the largest possible tumor
region in 2D CT scans an FCNN was used by Hao et al. [23].
Then they applied a graph cut for segmenting the tumor.
They reported an average DSC value of 0.75 ± 0.04 for
the four patients in the test set. Jin et al. [8] introduced
a spatial-context encoded deep esophageal clinical target
volume (CTV) delineation framework to produce superior
margin-based CTV boundaries. That work in an expensive
pre-processing step encodes spatial context by computing the
signed distance transform maps (SDMs) of the GTV, lymph
nodes (LNs) and organs at risks (OARs) and then feeds the
results with the CT image into a 3D CNN. In another work
Jin et al. [28] proposed a two-stream chained 3D CNN fusion
pipeline to segment esophageal GTVs using both CT and
PET+CT scans. They evaluated their approach by conducting
a 5-fold cross validation on scans of 110 patients. They
reported that using PET images as complementary infor-
mation can improve the DSC score from 0.73 ± 0.16 to
0.76 ± 0.13. Although reasonable results can be obtained in
the approaches mentioned earlier, the problem of esophageal
GTV segmentation in CTmodalities without extra knowledge
constraining the problem is known as an ill-posed problem
and remains challenging [9].

Most of the mentioned works addressed esophagus seg-
mentation and not esophageal tumor segmentation. However,
esophageal tumor segmentation is a more complicated task
due to the poor contrast of the tumor with respect to its
adjacent tissues. It is especially difficult to define the start
and end of the tumor without additional information such as
endoscopic findings.
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FIGURE 2. The architecture of the proposed method. DDSCAB and DDB stand for dilated dense spatial and channel attention block and dilated dense
block, respectively. R is the number of sub-DDBs. ChA1, ChA2, and SpA denote channel attention gate located on skip connections, channel attention
inside the DDSCAB block, and spatial attention gates inside DDSCAB. ChA1, shown transparently here, is not included in the final network (DDAUnet), but
is used in some of the experiments.

III. THE PROPOSED METHOD
A. NETWORK ARCHITECTURE
Figure 2 shows a schematic of the proposed network, dubbed
dilated dense attention Unet (DDAUnet). The network is
composed of three levels, a down-sampling path for extract-
ing contextual features and an up-sampling path for retrieving
the lost resolution during extraction. In each level, different
from our prior work [11], we used dilated dense spatial and
channel attention blocks (DDSCAB) which is composed of
a dilated dense block (DDB) and a spatial attention gate and
a channel attention gate which are denoted SpA and ChA1.
Using loop connectivity patterns between the layers in the
DDSCAB blocks provide a deep supervision by re-using
the feature maps, while dilated layers increase the receptive
field exponentially without any additional parameters. Spatial
attention gates are used in the main building blocks, and
encourage the network to concentrate on extracting features
from the tumor adjacency. The channel attention gates are
used in the skip connections between the contracting and
expanding paths of the Unet (named ChA2), for filtering
irrelevant feature maps to improve the training process. The
proposed network DDAUnet does not include ChA1, and this
block is only used in some of the experiments during the
optimization of the network configuration. In section IV the
performance of DDAUnet will be compared with DUnet [11],
dilated dense unet (DDUnet) which is DUnet with dilated
convolutional layers in the dense blocks, DDAUnet without
ChA2, i.e. DDAUnet-noChA2, DDAUnet with ChA1 and
without SpA and ChA2, i.e. DDAUnet-noSpA-plusChA1-
noChA2, DDAUnet with ChA1 and without ChA2, i.e.
DDAUnet-plusChA1-noChA2.

According to [29], the incorporation of a stack of convo-
lutional layers with small receptive fields in the first layers
rather than few layers with large receptive fields decreases the
number of the parameters, increases non-linearity of the net-
work, and consequently makes training of the network easier.

These layers aid the network to extract significant features
before applying convolutional operations with a wider recep-
tive field in DDSCAB. Therefore, the network starts with
two consecutive (3× 3× 3)convd=1,p=true + BN+ ReLU,
inwhich 3×3×3, d and p indicate the kernel size, dilation fac-
tor and padding of the convolutional layer respectively. Also,
BN and ReLU denote batch normalization and a Rectified
linear unit layer, respectively.

Afterward, the network is followed by a DDSCAB com-
posed of a dilated dense block (DDB) and spatial and
channel attention gates. For each DDB, R is the number
of sub-DDBs. In each sub-DDB, there are R number of
(3× 3× 3)convd=2,p=true + BN+ ReLU and R number of
(1× 1× 1)convd=1,p=true + BN+ ReLU layers. The output
of a DDB is the concatenation of all preceding sub-DDBs.
In our prior work, it has been shown that the loop connec-
tivity patterns in dense blocks assist the network to perform
better [11]. In the DDBs, (1 × 1 × 1)conv layers are used
as bottleneck layers, which compress the number of feature
maps and thus improve computational efficiency [12]. In this
paper, the feature maps in each DDB are compressed by a
compression coefficient of θ . The output of DDB then is
fed to spatial and channel attention gates in order to selec-
tively filter the GTV irrelevant spatial features and feature
maps respectively, which leads to improving the training
process. In the down-sampling path, the DDSCABs are fol-
lowed by (1× 1× 1)convd=1,p=true + BN+ ReLU. Using
1 × 1 × 1 convolutional layers does not affect the receptive
field of the network, however, increases the non-linearity
in between layers [30]. At the end of down-sampling path
and in the up-sampling path every DDSCAB is followed by
(3× 3× 3)convd=1 + BN+ ReLU. In Section IV we will
investigate the effect of deploying spatial and channel gates
in DDSCAB and will see that utilizing only the spatial gate
is more effective. Also, the skip connections between the
contracting and expanding path are equipped by channel
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TABLE 1. Details of the dataset.

attention gates to filter the irrelevant feature maps. Later we
will show that leveraging the spatial and channel attention
gates aid the network to end up with better segmentation
results. The network is finalized by a convolutional layer
with linear activation and a soft-max layer to compute a
probabilistic output. The probabilistic output can be classi-
fied as tumor and non-tumor regions. The skip connections
between the down-sampling and up-sampling paths demon-
strate cropped concatenation of the feature maps of the cor-
responding down-sampling levels and up-sampling levels.

B. LOSS FUNCTION
In this work, similar to our prior work [11] we used the Dice
coefficient as our main loss function [31]:

DSCGTV =
2
∑N

i sigi∑N
i s

2
i +

∑N
i g

2
i

, (1)

where si ∈ S is the binary segmentation of the GTV predicted
by the network and gi ∈ G is the ground truth segmenta-
tion. We investigated different combinations of loss functions
including boundary loss [32], distance map loss [33], and
focal Dice [34]. In [32] it is shown that the boundary loss
can be approximated by:

LB(θ ) =
∫
ω

φG(q)sθ (q)dq, (2)

where φG and sθ denote the level set representation of the
boundary of ground truth, and network output, respectively.
The traditional loss functions like Dice are based on integrals
over the segmentation regions [32]. In this work we leverage
the boundary loss function to aid the network to also focus
on the outer contours. In Section IV it will be discussed that
the combination of Dice and boundary loss works the best for
this problem.

IV. DATA, TRAINING DETAILS AND EVALUATION
A. DATASET
All patients of this study received one of the following two
treatments:
(A) Neoadjuvant chemo-radiotherapy (CRT) followed by

surgical resection. The radiotherapy is 23 × 1.8 Gy,
5 fractions a week. The external beam radiotherapy
consisted of 23 fractions of 1.8 Gy, five fractions per
week. Concurrent chemotherapy consisted of 5 weekly
administrations of carboplatin and paclitaxel.

(B) If patients are inoperable (proximal tumors they
receive primary/definitive chemoradiotherapy (CRT).

The external beam radiotherapy consisted of 28 frac-
tions of 1.8 Gy, five fractions per week. Concurrent
chemotherapy consisted of 6 weekly administrations of
carboplatin and paclitaxel.

The dataset used in this study consists of 288 distinct
patients acquired for a study approved by the Medical Ethics
Review Committee of Leiden University Medical Center,
the Netherlands. The dataset includes two sub-datasets from
21 and 267 patients, respectively, in which each patient
received either treatment plan A or B. The data acqui-
sition was performed with a Brilliance Big Bore scanner
(Philips Healthcare, Best,Holland) and the delineation pro-
cess was done by Pinnacle3, (version 9.6–9.8; Philips Radi-
ation Oncology Systems, Fitchburg, WI.) treatment planning
software. The ground truth segmentation was performed by
the MD on 2D axial slices and evaluated on the 3D cardinal
planes. Table 1 tabulates the details of the datasets. The first
dataset includes five repeat CT scans acquired at different
time points. Three time-points contain only one 3D CT scan,
and two time-points include one 3D CT scan and one 4D
CT scan, composed of 10 breathing phases. Each subdataset
includes a corresponding esophageal GTV segmentation for
each CT scan, which has been delineated by one (dataset I)
or multiple (dataset II) experienced physicians. Each scan
contains 58-108 slices with an image resolution of 512×512
pixels and an average voxel thickness of 0.98×0.98×3mm3,
and were re-sampled to a voxel size of 1× 1× 3mm3 in this
study.

B. TRAINING DETAILS
In this work, the proposed network, which contains
651,098 trainable parameters, has been implemented in
Google’s Tensorflow and the experiments are carried out
using a NVIDIA Quadro RTX6000 with 24 GB of GPU
memory. For all networks, the patch extraction process has
been implemented by multi-threaded programming in which
fetching the images into RAM, extracting the patches from
the fetched images and feeding the extracted patches to the
GPU are done concurrently. The multi-threading technique
speeds up the patch extraction process. The input patches
have been augmented by white noise extracted from a Gaus-
sian distribution of N (µ′, σ ′), in which µ′ = 0 is the mean
of the distribution and σ ′ is the standard deviation, which is
selected randomly between 0 and 5. During the test process,
the fully convolutional nature of the network is used, with
zero padding to yield equal output size. For managing the
GPU memory with a larger input patch, we use a batch size
of seven.
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For designing the best configuration of the network,
we perform experiments comparing different architectures
and loss functions. Since the size of our dataset was relatively
large with 792 scans, this led to a training time of 6 days.
For this reason, similar to [24], [35], [36], we adopted a
3-fold Monte Carlo cross-validation approach [37] in this
study. Hence, the datasets I and II are divided randomly
into three distinct sets detailed in Table 2. The optimization
of the network is performed on the validation set. The test
set is excluded from the model optimization and kept inde-
pendently for the final evaluation. After choosing the best
configuration of the network, the final model is trained for
two more random splits of the training and validation sets,
resulting in three trained models. At the end, an average of
the final results for the chosen network, trained on three splits,
is reported on the test set.

TABLE 2. Data split into training, validation and testing sets. P and S
denote distinct patients and scans.

In Section V the optimization of the network configuration
will be discussed on the validation set. Then the best network
is trained by different linear combinations of the loss func-
tions including Dice, boundary loss, distance map, and Focal
loss. Then in Section V-B, for reproducibility, the results of
the best configuration of the network will be reported for two
more distinct and random splits.

C. EVALUATION MEASURES
For evaluating the results we report DSC value (see
Section III-B), MSD and Hausdorff distance (HD) which are
defined as:

MSD =
1
2

(
1
n

n∑
i=1

d(ai, S)+
1
m

m∑
i=1

d(bi, S)

)
, (3)

HD = max{maxi{d(ai, S)},maxj{d(bi,G)}}, (4)

in which S andG are the predicted and ground truth contours,
and {a1, . . . , an} and {b1, . . . , bm} the surface mesh points of
S and G, and d(ai, S) = minj‖bj − ai‖ respectively. For the
Hausdorff distance, we report the 95% percentile instead of
the maximum for robustness against outliers. Since defining
the slices where the tumor starts and stops is difficult even for
medical doctors, we report perpendicular cranial and caudal
distance between the output of the CNNs and the ground
truth. The cranial distance (CrD) error is computed as the top-
most slice number of the ground truth minus the topmost slice
number of the CNN prediction; the caudal distance (CaD)
error is computed similarly.

V. EXPERIMENTAL RESULTS
In this section the experimental results are reported, with
the datasets divided into training, validation and test sets
as described in Section IV-B. Model optimization exper-
iments are described in Section V-A, where comparison
is performed on the validation set. Subsequently, the final
results are reported on the test set in Section V-B. For all
experiments, we extract the largest component of the net-
work prediction using connected component analysis, and
report that. A repeated measure oneway ANOVA test was
performed on the Dice values using a significance level
of p = 0.05.

A. MODEL OPTIMIZATION
We explored the effect of combinations of R values on the
results, where R is the number of sub-dilated dense blocks
in the network. Figure 3 shows the boxplots of DSC, MSD,
95%HD, cumulative frequency (%) of DSC, and perpendic-
ular cranial and caudal distance errors for different combi-
nations of R. Since the setup R = [3, 3, 5, 3, 3] performed
best, this configuration was selected for the remainder of the
paper.

Figure 4 shows the results for different configurations of
the CNN models using the DSC loss function. Since channel
attention gates inside the DDSCAB block, i.e. ChA1 in Fig. 2,
did not improve the results, these are not used in the final
configuration. The results show that DDAUnet outperforms
the other network configurations significantly.

Figure 5 shows the loss curves for different network archi-
tectures on the validation set during the training process,
smoothed with a kernel of size 3. It can be seen that the
networks equipped with attention gates converged quicker.
Figure 6 shows the precision-recall curves for the networks on
the validation set using the DSC loss function. The precision
and recall were calculated with different threshold values
applied to the probabilistic output of the networks. For acquir-
ing the final segmentation we used a threshold of 0.5. Table 3
tabulates the values of the area under the curve (AUC) for the
networks on the validation set [38]. The AUC for DDAUnet
is the largest, and we choose this method as the final network
architecture.

TABLE 3. AUC for the networks on the validation set.

We experimented with different combinations of loss func-
tions including Dice, boundary loss, distance map loss, Focal
Dice on the validation set. Figure 7 shows the results. The
results show that DDAUnet using theDSC+BL loss function
outperforms the other loss functions significantly.
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FIGURE 3. A comparison between different dense block configurations for DDAUnet on the validation set. Each number in the configuration setting
shows the number of conv-BN-ReLU in the dense blocks of the network. The number of results with values larger than the maximum value on the vertical
axis, is shown on top of each plot. The stars in the DSC plot show statistical significance between 33533 and the other configurations.

B. FINAL RESULTS
As explained before, repeatability and reproducibility stud-
ies were conducted for three distinct and random splits of
training and validation sets. Table 4 shows the results on
the independent test set after applying the largest compo-
nent analysis. Figure 8 shows example results of the final
network for some patients with different shape varieties and
difficulties raised by the presence of air pockets or feeding
tubes. The 2D DSC values are shown in yellow. Figure 9
shows a qualitative comparison between the different
CNNs.

In order to study the strengths and weaknesses of the
final model, we manually labeled each scan with the fol-
lowing properties: presence of air pockets in the esophagus,
the presence of a feeding tube in the esophageal lumen,
the tumor is a junction tumor, the tumor volume is larger
than 30cc (which is defined by the median split of the GTV

TABLE 4. Results for DDAUnet on the independent test set, with the
combined dice and boundary loss function.

volumes), the patient has a hiatal hernia, the tumor is in a
dislocated esophagus, the tumor is located in the proximal
esophagus (proximal tumor). Figure 10 shows the results of
DSC value, MSD and 95%HD for the mentioned tags for the
final network on the test set. Results show that the network
works better for patients with absence of air pockets, feeding
tubes, or junction tumors. This may be caused by the different
varieties raised by the existence of air pockets or foreign
bodies. Also, the number of patients with a hiatal hernia,
a dislocated esophagus or a proximal tumor is relatively small
in the test set, not allowing to draw a conclusion.

VI. DISCUSSION
Esophageal GTV segmentation is not a trivial problem, due
to the difficulties raised by the poor contrast with respect
to its vicinity. Most research addressed only segmentation
of the esophagus, while esophageal GTV segmentation has
been touched in few works. Since defining a correct start
and end location (slice) of the tumor in the cranial-caudal
direction based on CT images alone, is not an easy task
even for doctors, esophageal GTV segmentation is considered
as an ill-posed problem. In this paper, for addressing the
esophageal GTV segmentation we designed an efficient deep
learning model.

In terms of the training data, we collected 792 CT scans
from 288 patients diagnosed with an esophageal tumor. This
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FIGURE 4. A comparison between different network configurations on the validation set. The number of results with values larger than the maximum
value on the vertical axis, is shown on top of each plot. The stars in the DSC plot show statistical significance between DDAUnet and the other CNNs.

FIGURE 5. Loss curves for the validation set during the training process.

dataset is the largest dataset among the present works address-
ing esophageal tumor segmentation. Training time for a single
network was in the order of 5 days. The average inference
time for the final network for a cube of 255 × 255 × 255
voxels, is 4.0± 1.1 seconds.
For tuning the proposed network, many experiments were

performed in the present paper. We leveraged the DenseUnet
network, already deployed in our prior work as a baseline.
In order to increase the receptive field of the network, dense

FIGURE 6. Precision-recall curves for the different network architectures
on the validation set using the DSC loss function.

blocks were equipped by dilated convolutional layers, dubbed
the DDUnet network. We leveraged attention mechanisms to
encourage the network to selectively filter out GTV irrele-
vant features. Three types of attention gates were utilized:
i) a spatial attention gate in the dense blocks to filter out
GTV irrelevant features in the spatial domain of each feature
map, ii) a channel attention gate in the dense blocks (ChA1)
to filter out irrelevant feature maps entirely, and iii) skip
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FIGURE 7. A comparison between deploying different loss functions for DDAUnet on the validation set. The number of results with values larger than the
maximum value on the vertical axis, is shown on top of each plot. The stars in the DSC plot show statistical significance between DSC+BL and the other
loss functions.

attention gates (ChA2) to filter out GTV irrelevant feature
maps between the contracting and expanding paths of the
Unet. The experiments on the validation set showed that
the architecture with the spatial attention and skip attention
gates (ChA2), dubbed DDAUnet, achieved the best result.
The use of attention gates in the dense blocks (ChA1) did
not improve the results, compared to the baseline model.
This may be caused by the removal of feature maps in early
levels of the network, subsequently preventing the network
to extract fine features at deeper levels. On the other hand,
the ChA2 gates filter out redundant or irrelevant feature maps
during the retrieval of lost resolution. This leads the network
to prevent to concatenate tumor-irrelevant feature maps and
consequently aids the network to utilize its capacity on the
tumor region. The optimized network architecture was further
tuned using a large variety of loss functions, again on the
validation set. Results showed that the summation of Dice and
boundary loss performed best. Combining the two loss func-
tions allows the network to concentrate not only on the region
but also on the outer contours, thereby improving the results.
This confirms results from [32] where this improvement was
also observed. Therefore, we introduced the DDAUnet with
the summation of Dice and boundary loss as the loss function
in the final network.

We trained the final network for three random splits of the
training and validation sets. The results on the test set showed

an average DSC of 0.79 ± 0.20, an MSD of 5.4 ± 20.2 mm,
a 95%HD of 14.7± 25.0 mm, and cranial and caudal perpen-
dicular distance errors of−6.5±12.3mm and 5.4±20.2mm,
respectively. The cranial and caudal perpendicular distance
errors between the ground truth and the network result show
that the network overestimates at the top of the GTV by
∼ 6.5 mm, and underestimates at the bottom of the GTV
by ∼ 3.5 mm. As slice thickness of the data was 3 mm,
this translates to approximately 2 and 1 slices on average,
respectively. For alleviating this issue, incorporating auxiliary
information could aid the network.

Although the datasets are not comparable, in [28] an
average DSC score of 0.76 ± 0.13 was obtained on scans
of 110 patients, using 5-fold cross validation. In [23] a DSC
score of 0.75 ± 0.04 for four patients as the test set has been
reported. In our prior work [11], we achieved a DSC value
of 0.73 ± 0.20, and a 95% mean surface distance MSD of
3.07 ± 1.86 mm for 85 CT scans from 13 distinct patients.
In the work described in this paper, a higher DSC value was
obtained.

Nowee et al. studied the inter-observer variability in
esophageal tumour delineation, and found that this variability
is mainly located at the cranial and caudal border [4]. They
report a generalized conformity index for the GTV, a measure
related to Dice overlap but for multiple observers, of 0.67.
The human delineation variation in the cranial direction,
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FIGURE 8. Example results of the proposed method with 2D DSC value in yellow. The manual delineation and the network results are shown by green and
red contours, respectively.
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FIGURE 9. Qualitative comparison of DDAUnet with the other CNNs for three slices from three distinct patients. 2D DSC values are show
in yellow. The manual delineation and the network results are shown by green and red contours, respectively.

defined as the standard deviation of the most proximal slice,
was on average 9.9 mm, and 7.5 mm for the caudal direction.
Although these measures are not the same as the measures
reported in this paper, we cautiously conclude that the cranial
and caudal error of the proposed automatic method (see
Table 4) is not far from human delineation variation.

Nowee et al. also investigated the impact of incorporat-
ing FDG-PET scans in the delineation process, and con-
cluded that although it can influence the delineated volume

significantly, its impact on observer variation was limited.
As a future work, we aim to study if fusion of CT with
FDG-PET can aid the CNNs to improve the extracted features
and subsequently the segmentation results.

For a close inspection, we investigated the results
on the independent test set for the final network. We labelled
the patients in the test set with different tags, including
the presence of air pockets, feeding tube, junction tumor,
tumor volume > 30cc, hiatal hernia, dislocated esophagus,
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FIGURE 10. Results analysis for DDAUnet, DSC, MSD and 95%HD boxplots on the test data for different patients with or without an air pocket, a feeding
tube in the esophagus lumen, a junction tumor, tumor volume larger than 30cc (which is defined by the median split of the GTV volumes), a hiatal hernia,
a dislocated esophagus, or a proximal tumor. The outliers larger than 20 and 60 forMSD and 95%HD have not been shown. The number of scans for each
boxplot is shown in parentheses below each plot.

proximal tumor. Inspection of the final results (see Figure 10)
showed that the network performed better for patients with an
absence of air pockets, feeding tubes in the esophagus lumen,
or junction tumors. A lower performance was obtained for
smaller tumors (< 30cc), while the strength of the network
for patients with a dislocated esophagus, a proximal tumor,
or a hiatal hernia was not judge-able. Therefore, enriching
the dataset with more patients with the mentioned properties
would potentially improve the performance of the model.
Also, incorporating endoscopic findings in the process of seg-
mentation can be considered as a future work to investigate if
that can aid CNNs to reduce errors specially at the start and
end of the GTV.

VII. CONCLUSION
In this study, we collected a large set of CT scans from
288 distinct patients with esophageal cancer. To the best of
our knowledge this is the largest dataset in esophageal tumor
segmentation literature to date. We showed that despite the
difficulties raised by poor contrast of esophageal tumors with
respect to their neighbouring tissues, varieties in shape and
location of tumor, presence of air pockets and foreign bodies,
the proposed method, dubbed dilated dense attention Unet
(DDAUnet), could segment the gross tumor volume with a
mean surface distance of 5.4± 20.2mm.
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