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Abstract
Efficient heat exploitation strategies from geothermal systems demand for accurate and efficient simulation of coupled
flow-heat equations on large-scale heterogeneous fractured formations. While the accuracy depends on honouring high-
resolution discrete fractures and rock heterogeneities, specially avoiding excessive upscaled quantities, the efficiency can
be maintained if scalable model-reduction computational frameworks are developed. Addressing both aspects, this work
presents a multiscale formulation for geothermal reservoirs. To this end, the nonlinear time-dependent (transient) multiscale
coarse-scale system is obtained, for both pressure and temperature unknowns, based on elliptic locally solved basis functions.
These basis functions account for fine-scale heterogeneity and discrete fractures, leading to accurate and efficient simulation
strategies. The flow-heat coupling is treated in a sequential implicit loop, where in each stage, the multiscale stage is
complemented by an ILU(0) smoother stage to guarantee convergence to any desired accuracy. Numerical results are
presented in 2D to systematically analyze the multiscale approximate solutions compared with the fine scale ones for many
challenging cases, including the outcrop-based geological fractured field. These results show that the developed multiscale
formulation casts a promising framework for the real-field enhanced geothermal formations.

Keywords Geothermal reservoir simulation · Fractured porous media · Coupled mass-heat transfer · Multiscale finite
volume method

1 Introduction

Production stimulation in enhanced geothermal systems
depends heavily on activation of fractures, in order to
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increase the effective formation conductivity. These forma-
tions are naturally developed over large (km) length scales,
while the heterogeneity of the damaged matrix needs to
be resolved at fine (e.g., cm) scales. Fractures naturally
add to the complexity of the mathematical formulations
by introducing significant contrasts in the conductivity and
geometry [1–4]. Their important role in the flow and trans-
port of mass and energy can be properly investigated only if
they are explicitly represented in the computational domain
[5–12].
The embedded discrete fracture model (EDFM) [13–15] has
been developed to resolve several geometrical challenges
due to explicit treatment of the fractures. EDFM has been
extended to complex scenarios in multiphase iso-thermal
reservoir simulation [16–18], and, importantly, to geother-
mal systems [19]. Recently, a consistent projection-based
EDFM (pEDFM) for flow has been proposed to account for
all types of fracture conductivities (from flow barriers to
high conductive channels) [20].

The size of final fine-scale systems describing single phase
flow in fractured geothermal reservoirs, even after EDFMmo-
deling approach, is beyond the scope of state-of-the-art
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commercial simulators. Upscaling these highly heteroge-
neous discrete quantities—in order to reduce the computa-
tional costs—would lead to inaccurate simulations, with no
error control ability to the reference system. Therefore, new
modeling and simulation techniques are more than ever on
demand.

Multiscale finite volume methods have been developed
for resolving this computational challenge by constructing
coarse-scale systems based on local basis functions [21,
22]. They are mainly developed for flow equations with
complex fluid physics [23]. Together with their recent
developments for fractured media [10, 15, 24–27], they
form a promising approach for real-field applications.
For geothermal applications, however, the coupled flow-
heat equations need to be considered, which leads to
additional complexities both in linear (size of the discrete
system) and nonlinear (temperature-dependent coefficients
and nonlinear coupling terms) aspects [28].

In this work, we propose a multiscale formulation for
coupled flow-heat equations in fractured porous media,
where not only the flow but also the heat equation are
mapped to the coarse-scale system by using local basis
functions. We investigate two different matrix-fracture
coupling procedure for heat and flow basis functions,
namely totally independent and semi-dependent. These two
approaches differ from each other by the amount of matrix-
fracture coupling and number of matrix basis functions
in the local system construction. The nonlinear coupling
between flow and heat is treated with a sequential implicit
approach.

Several challenging test cases are considered where the
fractures play major role in transport of the cold water
into the reservoir, and thus enhancing the production of
heat. The large temperature gradients (due to slow to fast
flow field) adds to the complexity of the simulations,
which form a good basis to investigate the accuracy of the
developed multiscale method. For all the investigated test
cases, including the outcrop-based characterized formation,
the basis function formulation for both the flow and
heat equations are shown to be able to approximate the
reference fine-scale solutions very well. Specially, the very
first approximate multiscale solutions (with no iterations)
are compared with the fine-scale solutions after the first
Newton update, with very close agreement. Note that,
even though a single-phase flow is considered here, the
conservative velocity field of the Multiscale Finite Volume
(MSFV) method is crucial for accurate transport of enthalpy
which appears in the heat balance equation. The proposed
multiscale finite volume method therefore casts a promising
approach for field-scale geothermal studies.

Note that this work focuses on developing an accurate
method to approximate the fine scale (fully resolved)
solution. While the efficiency improvement is also part of

the goal of the multiscale method, it is not extensively
studied in this work and would be subject to future studies
and development. However, the efficiency of the multiscale
method for pressure solver in fractured reservoirs has been
studied, and interested readers are referred to [24].

This paper is organized as follows. First, the mass
and energy conservation equation of single-phase water
system in fractured porous media are presented, together
with the coupling strategy used to calculate pressure and
temperature. Then, the MSFV method is introduced, and
its application for pressure and temperature calculation is
explained. After that, the numerical results are presented
and discussed, including the simulation results of a real-
field fracture geometry taken from outcrop data. Finally, the
conclusions are presented.

2 Governing equations

2.1 Mass conservation equation

Mass conservation for single-phase flow in fractured porous
media with embedded discrete fracture modelling (EDFM)
approach reads[

∂

∂t
(φρ) − ∇ · (ρλ · ∇p)

]m

= [ρq]mw + [ρq]mf (1)

for matrix on �m ⊂ Rn, and[
∂

∂t
(φρ) − ∇ · (ρλ · ∇p)

]f

= [ρq]f w + [ρq]f m (2)

on �f ⊂ Rn−1 for fractures. In this work, n = 2. But these
general formulations are also valid for three-dimensional
domain (i.e., n = 3). Note that if gravitational effects
are considered, one has to replace the pressure p with the
potential (p − ρgz), where ρ, g, and z are, respectively,
density, gravitational acceleration, and the coordinate along
the gravity (pointing downward). Moreover, the superscripts
m, f , and w indicate, respectively, the matrix, fracture, and
well (source) terms. Moreover, φ stands for the porosity, λ

the mobility, and q the flow rate. Note that the equation for
fractures is defined in a lower dimensional space than for
the matrix.

The mobility is defined as λ = k/μ, where k is the
absolute permeability and μ is the water viscosity. While
the matrix permeability is characterized from geological
inputs (possibly after proper upscaling), the permeability of
the fractures can be defined (under fully developed flow
assumption between parallel plates of distance (aperture) a)
as kf = a2/12.

The well flow rates read

qmw = PI λ(pw − pm)

V
≡ βm(pw − pm) , (3)
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for matrix and

qf w = PI λ(pw − pf )

A
≡ βf (pw − pf ) , (4)

for fractures, where PI is the well productivity index [29],
and β is the normalized well productivity index, with βm

normalized with the matrix control volume V (i.e., βm =
(P I λ)/V ) and βf normalized with the fracture areaA (i.e.,
βf = (P I λ)/A).

The discrete flux exchange between matrix and fractures,
i.e., qmf and qf m, are modeled using EDFM approach as

qmf = CI λf −m(pf − pm)

V
≡ ηm(pf − pm) , (5)

and

qf m = CI λf −m(pm − pf )

A
≡ ηf (pm − pf ) . (6)

Here, CI is the connectivity index between matrix and
fracture, λf −m is the effective mobility at matrix-fracture
interface, and η is the normalized connectivity index, with
ηm normalized with the matrix control volume V (i.e., ηm =
CI λf −m/V and ηf normalized with fracture area A (i.e.
ηf = CI λf −m/A, [24]. The discrete connectivity index
CI allows for the representation of the discrete fracture
element i overlapping with the matrix element j , i.e.,

CIi−j = Ai−j

〈d〉i−j

, (7)

where Ai−j the surface area of fracture element i inside
the element j , and 〈d〉i−j is the average normal distance
between the two elements [15].

2.2 Energy conservation equation

In this study, local thermal equilibrium between fluid and
solid is assumed [30–32], i.e., the rock and the fluid have
the same temperature at any given location. Under this
assumption, the single-phase energy conservation equation
reads[
∂

∂t
(φρU + (1 − φ)ρrCprT ) + ∇ · (uh)

−∇ · (λc · ∇T )

]m

= [qc + qH ]mf + [qH ]mw (8)

on �m ⊂ Rn for matrix, and[
∂

∂t
(φρU + (1 − φ)ρrCprT ) + ∇ · (uh)

−∇ · (λc · ∇T )

]f

= [qc + qH ]f m + [qH ]f w (9)

on �f ⊂ Rn−1 for fractures. Here, ρr and Cpr are the
density and the specific heat capacity of the rock, U and h

are the water specific internal energy and specific enthalpy,
respectively. Also, T is the temperature and λc is the average

thermal conductivity, which is computed as λc = φλcw +
(1 − φ)λcr . The well source term, q∗w

H is defined as

q∗w
H = [ρqh]∗w , (10)

with q∗w defined in Eqs. 3 and 4. Finally, u is the mass flow
rate, which reads u = −ρλ · ∇p according to Darcy’s law.

From Eqs. 8 and 9, the matrix-fracture heat coupling
is divided into two parts: conduction and convection. The
conduction coupling terms qc are defined analogous to the
matrix-fracture mass (flow) transfer, i.e.,

q
mf
c = CIλ

f −m
c (T f − T m)

V
≡ ηm

c (T f − T m) , (11)

and

q
f m
c = CIλ

f −m
c (T m − T f )

A
≡ η

f
c (T m − T f ) , (12)

where ηc is the normalized conductive connectivity index;
with ηm

c normalized with the matrix control volume V (i.e.

ηm
c = CI λ

f −m
c /V and η

f
c normalized with fracture area A

(i.e. ηf
c = CI λ

f −m
c /A.

The convection coupling terms, qH , are defined based on
the exchange mass between the two media, i.e., qmf and
qf m, as

q
mf
H = [ρqh]mf , (13)

and

q
f m
H = [ρqh]f m . (14)

Note that the convection and conduction heat transfer are
defined in a strictly conservative manner, i.e.,∫

V

q
mf
c dV = −

∫
A

q
f m
c dA , (15)

and∫
V

q
mf
H dV = −

∫
A

q
f m
H dA (16)

hold.

2.3 Sequential implicit simulation strategy

The fluid properties depend on both pressure and temper-
ature (see Appendix A for detailed formulations). These
properties result in non-linearity of each mass and heat
transfer equation, as well as the co-dependency between the
coupled equations.

A sequential implicit formulation is followed to treat
the nonlinearly coupled mass and heat transfer equations
for both fine-scale and multiscale simulations, where the
pressure equation is first solved, then the total velocities are
obtained and then the temperature solution in the fractured
media is obtained. Notice that these equations are non-
linear functions of pressure and temperature and therefore
are solved implicitly using the Newton-Raphson method.
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The linearized equation for the general unknown xxx (i.e.,
ppp or TTT ) reads

AAAν
x · xxxν+1 = fff ν

x , (17)

or, in expanded form,⎡
⎢⎣

AAAmm
x AAA

mf
x AAAmw

x

AAA
f m
x AAA

ff
x AAA

f w
x

AAAwm
x AAA

wf
x AAAww

x

⎤
⎥⎦

ν ⎡
⎣ xxxm

xxxf

xxxw

⎤
⎦

ν+1

=
⎡
⎣fff m

x

fff
f
x

fff w
x

⎤
⎦

ν

. (18)

The superscript ν indicates the iteration stage,AAA the system
matrix, and the vector fff ν

x stands for the right-hand-side
terms. Note that for each unknown xxx, matrix, fracture, and
well terms are present and that the system matrix and right-
hand-side terms depend on both ppp and TTT . As such, the
complexity of the system is quite significant for real-field
applications.

To account for the co-dependency between both conser-
vation equations, an outer loop iteration between pressure
and temperature solver (see procedure in Algorithm 1) is
needed. The outer loop runs until convergence is reached
based on ‖δpν+1δpν+1δpν+1‖2 and ‖δT ν+1δT ν+1δT ν+1‖2.

Algorithm 1 Sequential solver procedure

1: while ‖δpν+1δpν+1δpν+1‖2 > εs and ‖δT ν+1δT ν+1δT ν+1‖2 > εs do
2: Pressure solver: solve for pppν+1

3: Update pressure-dependent properties
4: Temperature solver: solve for TTT ν+1

5: Update temperature-dependent properties
6: Update δpν+1δpν+1δpν+1 = pν+1pν+1pν+1 − pνpνpν and δT ν+1δT ν+1δT ν+1 = T ν+1T ν+1T ν+1 −

T νT νT ν

7: Assign pppν ← pppν+1 and TTT ν ← TTT ν+1

8: end while
9: Set pppn+1 ← pppν+1 and TTT n+1 ← TTT ν+1

3MSFVmethod for nonlinear flow and heat
equations

MSFV method approximates the fine scale solution by
superposing the coarse scale solution with the basis
functions as the interpolator. The approximate solution is
defined as

x∗ ≈ x′∗ =
Ncm∑
i=1

�∗m
i,x x̆m

i +
Nf∑
i=1

Ncfi∑
j=1

�
∗f
j,x x̆

fi

j

+
Nw∑
k=1

�∗w
k,x x̆

w
k , (19)

where x is a generic term denoting the unknown (i.e., p or
T ), x′ the approximate fine scale solution, and x̆ the coarse

scale solution. The superscript ∗ indicates the domain on
which the unknowns are defined (i.e., matrix or fracture),
and �∗•

x the local basis functions in domain ∗ coupled
with domain • (i.e., matrix (m), fracture (f ), or well (w)).
Finally, Nf is the number of fracture networks, Ncfi

the
number of primal coarse cell in fracture i, and Nw the
number of wells (Nw,inj in temperature system, which is the
number of injection wells).

3.1 Multiscale grids

In the MSFV methods, two types of coarse grids are
constructed and imposed on the fine scale grids. The primal
coarse cells are constructed as the coarse-scale control
volumes, while the dual coarse grids are overlapping coarse
grids bounded by the coarse nodes (vertices) on which the
local basis functions are computed (see Fig. 1).

Figure 1 also illustrates the embedded fracture networks.
Using EDFM benefits the multiscale implementation in
that the coarsening strategy of the fracture elements is
entirely independent of the matrix coarsening. Moreover,
the fracture elements can be connected to any matrix cell,
i.e., a vertex, edge, or an internal cell (based on dual-corse-
cell partition [33]).

3.2 MSFV for the flow equation

In development of an efficient multiscale method, the
proper choice of basis function formulation is important.
The important factors to consider for basis functions
are their accuracy in representation of the underlying
heterogeneity (accuracy), and their independency on the
primary unknowns for adaptivity (efficiency). In this work,
these aspects are being considered to formulate both
pressure and temperature basis functions.

Fig. 1 Multiscale grids in 2D with 45 × 45 fine cells and coarsening
ratio of 15 for a fractured domain. Note that fracture thickness
(aperture) is exaggerated for presentation clarity
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The general formulation of the pressure basis function is
written as

− ∇ · (λ∗ · ∇�∗•
p ) +

∑
j∈conn∗

mf

η∗
j ξ(�∗•

p )

+
∑

j∈perf ∗
w

β∗
j (�∗•

p − �w•
p ) = 0 , (20)

where �∗•
p ∈ {�mm

p , �
mf
p , �mw

p , �
f m
p , �

ff
p , �

f w
p }. The

function ξ(�∗•
p ) is different for each coupling strategy.

Equation 20 is formulated based on an equivalent
incompressible system equation. This formulation is proven
[34] to be the most efficient strategy (based on CPU
measurements) because it eliminates the need to frequently
update the local basis function, while the fully compressible
coarse-scale system takes care of the global compressibility
(and time-dependent) effects.

The pressure basis function formulated using Eq. 20
needs to be calculated at the beginning of the simulation,
and updated only if the water mobility λ changes above
a prescribed tolerance (i.e., due to the change of the
water viscosity). Moreover, with regard to the matrix-
fracture coupling, we consider two different coupling
strategies for the basis function calculation, namely the
totally independent (fully decoupled) and semi-dependent
(coupled) strategy. More precisely, the totally independent
(decoupled) strategy formulates basis function without any
coupling between matrix and fractures, while the semi-
dependent strategy is formulated with partial coupling
between matrix and fractures [24]. In the semi-dependent
strategy, the matrix basis function is coupled with the
fractures, but fracture basis function is decoupled from the
matrix. This way, the semi-dependent approach enriches the
matrix basis functions with the number of fracture course
cells inside a dual-coarse domain.

3.2.1 Totally independent approach for basis functions

In the totally independent coupling strategy, all basis
functions are calculated independent of interactions with
other domains, i.e.,

ξ(�∗•
p ) = 0 ∀�∗•

p ∈ {�mm
p , �

mf
p , �mw

p , �
f m
p , �

ff
p , �

f w
p } .
(21)

An example of the pressure basis function calculated
using this strategy is shown in Fig. 2. In Fig. 2a, it is shown
that the matrix basis function is not affected by fracture
existence, as well as fracture basis function not affected by
matrix basis function in Fig. 2b. The basis function forms
a partition of unity, meaning that the sum of all the basis
function is equal to 1.

3.2.2 Semi-dependent approach for basis functions

In the semi-dependent coupling strategy, fracture basis
function �

ff
p is first calculated, decoupled with the matrix

basis function, using

ξ(�
ff
p ) = 0 . (22)

These values are then used as Dirichlet boundary condition
to calculate �mf and setting

ξ(�
mf
p ) = �

mf
p − �

ff
p (23)

to account for the connectivity of matrix basis function with
the fracture domain. An example is shown in Fig. 3a, where
�

ff
p is plotted in the fractures and �

mf
p is plotted in the

matrix with the coupling effect clearly observed.
The matrix basis function �mm

p is calculated by setting

ξ(�mm
p ) = �mm

p , (24)

(a) (b)

Fig. 2 Matrix basis function �mm
p (a) and fracture basis function �

ff
p (b) calculated using the totally independent coupling strategy
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(a) (b)

Fig. 3 a �
mf
p and �

ff
p and b) �mm

p and �
f m
p calculated using semi-dependent coupling strategy

therefore also accounting for fracture existence. An example
is shown in Fig. 3b where the fracture basis function �

f m
p

is set to 0, and the matrix basis function �mm
p observing the

effect of the fracture existence, as though the fractures act as
flow barriers. This strategy also results in partition of unity.

3.2.3 Fine scale flux reconstruction

In the pressure MSFV method, one of the most important
step is the fine-scale conservative flux reconstruction. In
MSFV, the mass fluxes are conservative only at coarse
scale. Therefore, the fine scale fluxes need to be obtained
via additional reconstruction step [35]. This is especially
important in multiphase flows, to accurately predict the
saturation front since the fractional flow is sensitive to the
flux. In geothermal simulations, conservative mass flux is
also needed in the convection part of the energy balance
calculation due to its velocity dependency. Therefore, it is
worth revisiting the fine scale flux reconstruction in this
subsection.

The mass flow rate formulation

uuu′ = −ρλ · ∇p′ (25)

is valid at the primal coarse cell boundaries ∂�c. The
conservative fine-scale flux can be reconstructed after
solving
[

∂

∂t
(φρ) − ∇ · (ρλ∇p′′

c )

]∗
= [ρq]∗w + [ρq]∗• (26)

locally on primal-coarse cells �c, subject to the boundary
condition

(ρλ∇p′′
c ) · n̄nnc = (ρλ∇p′) · n̄nnc (27)

at ∂�c. Here, n̄nnc is the normal vector pointing out of the
primal coarse cell boundaries, meaning that the fluxes at
the coarse cell interfaces are used as Neumann boundary

condition to calculate the reconstructed local pressure. The
locally conservative mass flux is finally reconstructed as

uuu′′ =
{ −ρλ · ∇p′′

c , on �c

−ρλ · ∇p′, at ∂�c.
(28)

3.3 MSFV for the heat equation

To exploit the efficiency of the temperature basis functions,
they are formulated based on the conduction term within the
whole energy balance equation. This allows for convenient
implementation, as well as efficient algorithm (since basis
functions are not required to be frequently updated).

The general formulation of the temperature basis
function can be defined as

−∇ · (λ∗
c · ∇�∗•

T ) +
∑

j∈conn∗
mf

η∗
c,j ξ(�∗•

T ) = 0 , (29)

where �∗•
T ∈ {�mm

T , �
mf
T , �mw

T , �
f m
T , �

ff
T , �

f w
T }. The

function ξ(�∗•
T ) is different for each coupling approach, and

is defined the same way as in pressure MSFV method (see
Eqs. 21, 22, 23, and 24).

Note that the temperature basis function formulation is
slightly different with pressure basis function. This is due
to the fact that the well source term in the energy balance
equation is defined through the enthalpy flow. Therefore,
there is no explicit relation connecting the well and the
matrix or fracture temperature. As such, the well basis
function is omitted in Eq. 29.

The temperature basis functions depend only on thermal
conductivity. And since the thermal conductivity is consid-
ered to be constant in this work, the basis functions therefore
do not need to be updated frequently as they will also remain
constant. In models where the thermal conductivity is con-
sidered to be non-constant, then an adaptive update of the
temperature basis functions is necessary (i.e., if λc changes
above a prescribed tolerance). As will be seen in the result
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section, this formulation is shown to be working well to
interpolate the coarse-scale temperature values to the fine
scale. Note that these thermal basis functions along with the
flow basis functions form the full prolongation (interpola-
tion) operator to map between coarse and fine scale values
for flow and heat.

3.4 Multiscale algebraic description and algorithm

In the algebraic formulation of the MSFV method, i.e.,
AMS [36, 37], the multiscale procedure can be described
by the prolongation PPP and the restriction RRR operators.
The prolongation operator is a matrix constructed by the
basis function values (interpolators) to map the coarse
scale to fine scale solution. The restriction operator, on
the other hand, is useful to map from fine scale to coarse
scale. In finite-volume formulation, it acts as an integrator
of all the fine scale fluxes, source/sink terms, as well
as accumulation inside a primal coarse cell [36]. In this
section, the algebraic description is explained in a generic
way for both pressure and temperature calculation. More
specifically, the prolongation operator reads

PPP =
⎡
⎣PPPm

PPPf

PPPw

⎤
⎦ =

⎡
⎣PPPmm PPPmf PPPmw

PPPf m PPPff PPPf w

PPPwm PPPwf PPPww

⎤
⎦ , (30)

where PPP∗ stores the basis functions defined on domain ∗,
�∗•

c,d , i.e.,

PPP∗ =

⎡
⎢⎢⎢⎢⎣

... · · · ...
... · · · ...

... · · · ...

�∗m
1 · · · �∗m

Ncm
�

∗f 1
1 · · · �

∗f Nf

Ncf Nf

�∗w
1 · · · �∗w

Nw

... · · · ...
... · · · ...

... · · · ...

⎤
⎥⎥⎥⎥⎦ ,

(31)

In the totally independent coupling strategy, the sub-
matrices PPPmf and PPPf m are zero matrices, resulting in a
sparser prolongation operator than in the semi-dependent
coupling strategy, where only PPPf m is zero. Note also that
PPP∗w for temperature calculation has the column size of
Nw,inj , andPPPw∗ has the row size of Nw,inj instead of Nw.

The MSFV restriction operator is defined as

RRRFV
i,j =

{
1, if fine cell j is in primal coarse cell i
0, otherwise

, (32)

and in MSFE method, the restriction is defined as the
transpose of the prolongation operator,RRRFE = PPPT .

Now that both operators are defined, the coarse scale
system in equation is written algebraically as

(RRRAAAνPPP) x̆xx
ν+1/2
c = RRRfff ν , (33)

Fig. 4 Geometry of the “+”-shaped fracture networks crossing the
reservoir for test case 1

where x̆xx
ν+1/2
c is the coarse scale solution (i.e., pressure or

temperature), and the superscript ν + 1/2, indicating that
this stage will be complemented by a second stage smoother
to be explained later.

Note that in Eq. 33, (RRRAAAνPPP) constructs the coarse
system matrix AAAν

c . The approximate fine scale solution is
found as

xxx′ν+1/2 = PPPx̆xx
ν+1/2
c = PPP(RRRAAAνPPP)−1RRRfff ν , (34)

or in residual form,

δxδxδx′ν+1/2 = PPPδδδx̆xx
ν+1/2
c = PPP(RRRAAAνPPP)−1RRRrrrν , (35)

where rrrν is the fine-scale residual and is calculated as rrrν =
fff ν − AAAνxxx′ν .

In each solver, both δpδpδp′ν+1/2 and δTδTδT ′ν+1/2 are calculated
first using multiscale operators (see Eq. 35), and then a 2nd

stage smoother (in this study, ILU(0) withMILUMILUMILU
−1 operator

[38]) is employed, i.e.,

δxδxδx′ν+2/2 = MILUMILUMILU
−1rrrν . (36)

Table 1 Simulation parameters for test case 1

Parameters Values Parameters Values

Lx [m] 1 pi [Pa] 1 × 107

Ly [m] 1 pL [Pa] 2 × 107

�x [m] 0.01 pR [Pa] 1 × 107

�y [m] 0.01 Cpr [J/kg-K] 920

t [s] 20000 ρr [kg/m3] 2650

�t [s] 200 λcr [W/m-K] 1.5

φ [−] 0.1 Ti [K] 500

k [m2] 10−15 TL [K] 300

a [m] 0.0101 εs [−] 10−2

kf [m2] 8.50 × 10−6
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(a) (b)

(c) (d)

Fig. 5 EDFM pressure surface plot (a) and top view (b), and DNS
pressure surface plot (c) and top view (d) at t = 20000s for a reservoir
model with the dimension of 1 m×1 m. The EDFM model is resolved

with the resolution of 11 × 11 matrix cells and 14 fracture elements,
while the DNS model is resolved with the resolution of 99×99 matrix
cells

Fig. 6 Pressure and temperature errors of EDFM with respect to the DNS solutions used as reference. Different grid resolutions are used: 11× 11
(left) and 33 × 33 (right)
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Here, we employ 5 ILU(0) iterations per stage. This two-
stage multiscale procedure is repeated iteratively until the
norm of residual goes below the prescribed tolerance.

The approximate fine scale solution is finally calculated
as xxx′ν+1 = xxx′ν + δxδxδx′ν+1/2 + δxδxδx′ν+2/2, where xxx′ ∈
{ppp′,TTT ′}. The MS algorithms for pressure and temperature
are presented in Algorithm 2.

Algorithm 2Multiscale solver iteration procedure

1: while ‖rrrx‖2 < εx do
2: Linear system construction AAAν

x and fff ν
x based on

x′x′x′ν
3: Calculate residual: rrrν

x = fff ν
x − AAAν

xx
′x′x′ν

4: Adaptively compute basis function using Eq. 20
or 29

5: Multiscale stage: solve for δx′δx′δx′ν+1/2 using Eq. 35
6: Smoothing stage: solve for δx′δx′δx′ν+2/2 using Eq. 36
7: Update solution: x′x′x′ν+1 = x′x′x′ν+δx′δx′δx′ν+1/2+δx′δx′δx′ν+2/2

8: Update residual: rrrν+1
x = fff ν

x − AAAν
xx

′x′x′ν+1

9: Assign x′x′x′ν ← x′x′x′ν+1

10: end while

4 Numerical results

In this chapter, numerical results are presented first to
validate the EDFM model for coupled flow-heat equations,
and then to investigate the performance of the multiscale
simulation strategy for fractured reservoirs.

4.1 Test case 1: validation of EDFM

In this test case, the fine scale EDFM model is validated
by comparing it to the result of the fully resolved Direct
Numerical Simulation (DNS), used as a reference. The DNS
result is obtained by using a very fine grid such that the
fractures are captured as equi-dimensional (heterogeneous)
objects [15]. EDFM, on the other hand, imposes much
coarser grids and models the impact of the explicit
lower-dimensional fractures by introducing fracture-matrix
connectivities.

The fracture aperture is 0.0101 m, which can be fully
resolved by imposing 99 × 99 DNS grid cells Fig. 4. This
aperture leads to the fracture permeability of kf = 8.50 ×
10−6 m2. The simulation parameters are shown in Table 1.

Figure 5 presents the pressure and temperature solutions
obtained from EDFM and DNS simulators. Note that the
EDFM solutions are obtained by imposing only 11 × 11
matrix cells and 14 fracture elements. It is clear that the
EDFM solutions are in good agreement with the DNS
reference ones.

Table 2 Simulation parameters for test case 2

Parameters Values Parameters Values

Lx [m] 99 pi [Pa] 1 × 107

Ly [m] 99 pinj [Pa] 2 × 107

�x [m] 1 pprod [Pa] 1 × 107

�y [m] 1 Cpr [J/kg-K] 840

Coarsening

ratio [−] 11 ρr [kg/m3] 2700

t [years] 1 λcr [W/m-K] 2.9

φ [−] 0.15 Ti [K] 500

k [m2] 10−14 Tinj [K] 300

a [m] 0.001 εs [−] 10−2

kf [m2] 8.33 × 10−8 εp [−] 10−6

PI [m] 10 εT [−] 10−1

The following measures are considered for the error of
pressure and temperature:

‖ex‖2 = ‖xEDFMxEDFMxEDFM − xDNSxDNSxDNS‖2
‖xDNSxDNSxDNS‖2 , (37)

assuming ‖xDNSxDNSxDNS‖2 �= 0, where xxx is flow rate qqq for pressure
and enthalpy flux qqqH for temperature at both left and right
boundary faces. The error norms for both pressure and
temperature at different time steps are plotted and shown
in Fig. 6. This figure also presents the EDFM error study
at different times for the case when 33 × 33 EDFM grids
are imposed, with 40 fracture elements. The EDFM errors
are plotted against Pore Volume Injected (PVI) which is
a non-dimensional time measure. The pressure errors are
shown to be increasing slightly twice, and this is most likely
because there are two pressure transient stages. Initially,
the reservoir is hot and therefore water viscosity is lower
and water density is higher, making the pressure gradient
low. However, the injected water is cold and therefore
increasing the pressure gradient in areas close to injection
wells (which in turn decreasing the pressure farther from

Fig. 7 Geometry of a single diagonal fracture crossing the reservoir
for test case 2
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(a) (b () c)

(d) (e)

Fig. 8 Fine-scale reference pressure with 99 × 99 matrix and 85
fracture elements (a) and multiscale approximate pressure solutions
obtained using independent (b) and semi-dependent coupling (c) meth-
ods with 9×9 coarse matrix and 8 fracture grid cell at convergence. The

corresponding relative error norms (d and e) are ‖ep‖2 = 2.65× 10−5

(independent coupling) and ‖ep‖2 = 2.18 × 10−5 (semi-dependent
coupling)

(a () b) (c)

(d () e)

Fig. 9 Fine-scale reference temperature with 99 × 99 matrix and 85
fracture elements (a) and multiscale approximate temperature solu-
tions obtained using independent (b) and semi-dependent coupling
(c) methods with 9 × 9 coarse matrix and 8 fracture grid cells at

convergence. The corresponding relative error norms (d and e) are
‖eT ‖2 = 1.62 × 10−5 (independent coupling) and ‖eT ‖2 = 1.58 ×
10−5 (semi-dependent coupling)
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(a) (b) (c)

(d) (e)

Fig. 10 Fine-scale reference pressure with 99 × 99 matrix and 85
fracture elements (a) and multiscale approximate pressure solutions
obtained using independent (b) and semi-dependent coupling (c) meth-
ods with 9 × 9 coarse matrix and 8 fracture grid cells at the first
iteration stage before smoothing. The corresponding relative error

norms (d and e) are ‖ep‖2 = 0.0081 (independent coupling) and
‖ep‖2 = 0.0016 (semi-dependent coupling). After 1 stage of smooth-
ing these errors reduce to ‖ep‖2 = 0.0076 (independent coupling) and
‖ep‖2 = 0.0008 (semi-dependent coupling)

(a) (b) (c)

(d () e)

Fig. 11 Fine-scale reference temperature with 99 × 99 matrix and 85
fracture elements (a) and multiscale approximate temperature solu-
tions obtained using independent (b) and semi-dependent coupling (c)
methods with 9 × 9 coarse matrix and 8 fracture grid cells at the
first iteration stage before smoothing. The corresponding relative error

norms (d and e) are ‖eT ‖2 = 0.0343 (independent coupling) and
‖eT ‖2 = 0.0198 (semi-dependent coupling). After 1 stage of smooth-
ing these errors reduce to ‖eT ‖2 = 0.0146 (independent coupling) and
‖eT ‖2 = 0.0035 (semi-dependent coupling)
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Table 3 Simulation results of test case 2

Independent coupling Semi-dependent coupling

‖ep‖2 ‖eT ‖2 ‖ep‖2 ‖eT ‖2
First iteration, no smoothing 0.0081 0.0343 0.0016 0.0198

Converged 2.65 × 10−5 1.62 × 10−5 2.18 × 10−5 1.58 × 10−5

Fig. 12 Log10 of permeability (left) and average thermal conductivity (right) for reservoir model with the dimension of 100 m × 100 m, with the
fine scale resolution of 100 × 100 cells and a coarsening ratio of 10

Table 4 Simulation parameters for test case 3

Parameters Values Parameters Values

Lx [m] 100 pi [Pa] 1 × 107

Ly [m] 100 pinj [Pa] 2 × 107

�x [m] 1 pprod [Pa] 1 × 107

�y [m] 1 Cpr [J/kg-K] 827

Coarsening

ratio [−] 10 ρr [kg/m3] 2600

t [years] 0.25 Ti [K] 500

φ [−] 0.1 Tinj [K] 300

a [m] 0.001 εs [−] 10−2

kf [m2] 8.33 × 10−8 εp [−] 10−6

PI [m] 10 εT [−] 10−1

Fig. 13 Fracture geometry taken from outcrop data [39]
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(a) (b) (c)

Fig. 14 Fine-scale reference pressure with 100×100 matrix and 3860
fracture elements (a) and multiscale approximate pressure solutions
obtained using independent coupling (b) method with 10 × 10 coarse

matrix and 386 fracture grid cells at convergence. The corresponding
relative error norm (c) is ‖ep‖2 = 8.22 × 10−6

the injection wells). After the injection water gets farther
into the reservoir, the pressure gradient close to the injection
wells gets lower and the gradient farther in the reservoir gets
higher until it reached semi-steady state. More specifically,
the error is due to (1) significant difference between the
grid resolutions imposed by each method and (2) the error
of EDFM fracture model. Nevertheless, the two approaches
are in good agreement.

4.2 Test case 2: homogeneous reservoir
with a diagonal fracture

A quarter of a five-spot test case is considered in a
homogeneous reservoir with a diagonal fracture. The
simulation parameters are shown in Table 2. EDFM imposes
85 fracture and 99 × 99 matrix elements. The geometry of
the fracture within the reservoir is shown in Fig. 7. The
multiscale simulator imposes 9 × 9 coarse grids for matrix
and 8 for fractures with two different coupling strategies for
basis function calculation.

Figures 8 and 9 show the converged solution of both
fine scale reference as well as multiscale pressure and

temperature. The white lines shown in the plots are the
primal coarse cell boundaries. The relative error norms
of the multiscale solutions are ‖ep‖2 = 2.65 × 10−5

and ‖eT ‖2 = 1.62 × 10−5 (independent coupling), and
‖ep‖2 = 2.18 × 10−5 and ‖eT ‖2 = 1.58 × 10−5 (semi-
dependent coupling). It is shown that both independent
and semi-dependent coupling strategies result in very good
results.

The multiscale pressure and temperature solutions at
the first iteration (before smoothing) are also presented in
Figs. 10 and 11, respectively, to show that the multiscale
provides very good approximations even with no second-
stage smoother nor any other (inner and outer) iterations.
These results are also compared to the reference fine scale
solutions, demonstrating the accuracy of the developed
multiscale formulation.

Independent coupling for pressure basis function calcu-
lation results in slightly higher error at the fracture tips,
where—as expected—the interaction of matrix and fracture
domain is relatively high. Note that the temperature field
experiences a rapid change in the location of the fracture,
due to rapid transport of cold water through the fractures. As

(a) (b) (c)

Fig. 15 Fine-scale reference temperature with 100 × 100 matrix and
3860 fracture elements (a) and multiscale approximate temperature
solutions obtained using independent coupling (b) method with 10×10

matrix and 386 fracture grid cells at convergence. The corresponding
relative error norm (c) is ‖eT ‖2 = 7.07 × 10−6
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Fig. 16 Multiscale (dotted line) mass and enthalpy production rate
compared with the fine scale (solid line) solutions for test case 3

such, the significant temperature contrast is created fairly
quickly throughout the reservoir, leading to strong nonlinear
time-dependent solution field. In the area near the mid-
point of the fracture, the semi-dependent coupling provides
a slightly lower error for temperature. This can be explained
by the fact that in this area, pressure difference between
matrix and fracture is lower and therefore, the heat exchange
is more conduction dominated. Since the matrix-fracture
coupling in the semi-dependent approach for temperature is
formulated based on conduction, it leads to better approxi-
mation in this area. This is clear from results presented in
Fig. 11. Nevertheless, as shown, the multiscale method can
represent the complex solution field accurately, even with
no smoothing stage.

At the first iteration stage, the relative error norms of the
multiscale solution obtained before smoothing are ‖ep‖2 =
0.0081 and ‖eT ‖2 = 0.0343 (independent coupling), and
‖ep‖2 = 0.0016 and ‖eT ‖2 = 0.0198 (semi-dependent
coupling). After 1 stage of smoothing, the errors are reduced

to ‖ep‖2 = 0.0076 and ‖eT ‖2 = 0.0146 (independent
coupling) and ‖ep‖2 = 0.0008 and ‖eT ‖2 = 0.0035
(semi-dependent coupling). The results are summarized in
Table 3.

The semi-dependent coupling strategy leads to lower
errors compared to the independent coupling, especially in
the area surrounding the fracture. However, it does not bring
much improvements. The errors obtained using independent
coupling are not significant and could be resolved with
several smoothing and iterations.

4.3 Test case 3: fracture geometry from outcrop data

A quarter of a five spot test case is considered in a
heterogeneous reservoir with dense and complex fracture
networks taken (by applied geologists of TU Delft) from
outcrop data in Brazil [39]. The base-10 logarithm of
permeability and average thermal conductivity are plotted
in Fig. 12, and the simulation parameters are shown in
Table 4. EDFM generates 3860 fracture and 100 × 100
matrix elements. The geometry of the fractures within the
reservoir is shown in Fig. 13. The multiscale simulator
imposes 10 × 10 coarse grids for matrix and 386 for
fractures. For this test case, all the results presented are
using independent coupling method.

As shown in test case 2, the decoupled approach
approximates the solution really well. Therefore, for this test
case, only the results obtained using the decoupled approach
are shown for conciseness.

Figures 14 and 15 show the converged solution of both
fine scale reference as well as multiscale pressure and
temperature. The relative error norms of the multiscale
solution obtained are ‖ep‖2 = 8.22 × 10−6 and ‖eT ‖2 =
7.07 × 10−6.

To make it more suitable for real field application and to
further validate the multiscale method for this complex test
case, mass and enthalpy production rate at the production

(a) (b) (c)

Fig. 17 Fine-scale reference pressure with 100×100 matrix and 3860
fracture elements (a) and multiscale approximate pressure solutions
obtained using independent coupling (b) method with 10 × 10 coarse
matrix and 386 fracture grid cells at the first iteration stage before

smoothing. The corresponding relative error norm (c) is ‖ep‖2 =
0.0111. After 1 stage of smoothing this error reduces to ‖ep‖2 =
0.0110



Comput Geosci (2018) 22:1305–1322 1319

(a) (b) (c)

Fig. 18 Fine-scale reference temperature with 100 × 100 matrix and
3860 fracture elements (a) and multiscale approximate temperature
solutions obtained using independent coupling (b) method with 10×10
matrix and 386 fracture grid cells at the first iteration stage before

smoothing. The corresponding relative error norm (c) is ‖eT ‖2 =
0.0467. After 1 stage of smoothing this error reduces to ‖eT ‖2 =
0.0180

well (marked by the blue dot on the top right hand side
of the reservoir model) are calculated and compared with
the values obtained using a direct solver, because they are
important parameter outputs of a reservoir simulator that are
useful for decision making. The result is shown in Fig. 16.
In the plot, it is shown that both multiscale and the fine scale
mass and enthalpy production rate have a very good match,
with ‖ep‖2 = 0.028 and ‖eT ‖2 = 0.036. The error of the
enthalpy production rate is slightly higher due to the fact
that the enthalpy production rate is calculated based on the
mass production rate, and therefore the error from the mass
production rate calculation is propagated. Nevertheless, the
error is still relatively low and therefore acceptable.

The multiscale solutions for both pressure and tempera-
ture at the first iteration stage before smoothing, along with
the fine scale reference solutions for comparison, are shown
in Figs. 17 and 18. The corresponding relative error norms
before smoothing are ‖ep‖2 = 0.0111 and ‖eT ‖2 = 0.0467,
which are relatively low for a complex model. After smooth-
ing, the errors are further reduced to ‖ep‖2 = 0.0110 and
‖eT ‖2 = 0.0180. The results of this test case are sum-
marized in Table 5. The error reduction in pressure after
the smoothing stage is not significant, while error reduction
in temperature is more drastic because of the higher com-
plexity of the heat transfer equation and the simplicity of
the basis function used to calculate it. It is also clear that
the temperature distribution in Fig. 18 (without smoothing)
already captures the preferential flow path of the fluid.

Table 5 Simulation results of test case 3

Independent coupling

‖ep‖2 ‖eT ‖2
First iteration, no smoothing 0.0111 0.0467

Converged 8.22 × 10−6 7.07 × 10−6

From the results obtained, it can be concluded that inde-
pendent coupling method gives reasonably good approxi-
mations, even before the smoothing stage for a heteroge-
neous system and very dense fracture networks.

5 Conclusion

In this work, a multiscale method for coupled single-phase
flow-heat equations in fractured reservoirs was developed.
The method avoids excessive upscaling of the parameters,
and honours fine-scale heterogeneity in construction of
the coarse-scale system for both flow and heat equations.
This is achieved by formulating flow and temperature basis
functions, allowing for the accurate map between fine and
coarse scale solutions. The coupling between the equations
was treated by a sequential implicit framework, where
both pressure and temperature systems were solved by a
MSFV method. The multiscale formulation was enriched
due to the presence of the fractures, with two coupling
approaches for local basis functions of each solver. An
EDFM approach was adapted to the framework, which
allows for independent grids for matrix and fractures. This
further facilitated the convenient multiscale formulation
and implementation, as totally independent coarse grids
were also imposed on matrix and fractures. Test cases
were performed first to validate the implementation of the
simulator (via comparing its results with a DNS approach),
and then to systematically assess the performance of the
multiscale method for heterogeneous and highly fractured
media. A fracture formation from a real-field outcrop was
also considered to illustrate the capacity of the algorithm in
addressing complex fracture networks.

Although we employed the MSFV iterations to reach
convergence in our sequential implicit framework, one can
stop iterations before convergence is reached. Specially,
as shown in the results, the initial multiscale approximate
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solutions in presence of heterogeneity and fractures were
close to the fine-scale solution at the same stage of
iteration. The tolerance to stop iterations of a conservative
multiscale solver needs to be defined based on the influence
of the solution in the overall accuracy of the coupled
solutions, the stability of the time-dependent solutions, and
the uncertainty within the parameters. Similar to previous
studies for coupled flow and transport [40], such a study is
needed for coupled P-T as a future work. Specially, in the
presence of strong coupling one may consider formulating a
multiscale methodology for fully implicit systems [41, 42].

As for the multiscale basis functions, to exploit the
maximum efficiency, the temperature basis function was
formulated based on the elliptic part of the energy
conservation equation (i.e., the conduction term). Numerical
results showed that such an approach is well suited for the
considered single-phase fluid-dynamic system, i.e., it leads
to accurate results even without smoothing stage.

In this work, a robust approach for solving the coupled
pressure and temperature equations in fractured heteroge-
neous reservoirs was developed. The results presented show
promising framework for further developments for field-
scale enhanced geothermal systems. Future developments
need to consider multiphase (including steam) effects for
fluid and the geo-mechanical effects (including fracture
activations or closures and propagation) for solid rock.

Acknowledgments Hadi Hajibeygi acknowledges the grant from
Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg
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Appendix A: Fluid model

All water properties are calculated using curve fitting
approach with the correlations provided by the International
Association for the Properties of Water and Steam Industrial
Formulation 1997 (IAPWS-If97) [43]. Following the
literature [30], water density, internal energy and enthalpy
read

ρw ≈ ρws(T )[1 + cw(T )(p − ps(T ))], (38)

uw ≈ uws + Cpw(T − Ts), (39)

and

hw = uw + p

ρw

. (40)

Here, ρws and uws are, respectively, water density and
internal energy at saturation condition (ps and Ts). In this
work, after curve fitting, the saturation density function
reads

ρws(T ) =
{ −0.0032 T 2 + 1.7508 T + 757.5 T ≤ 623.15 K

−0.5214 T 2 + 652.73 T − 203714 T > 623.15 K

(41)

The isothermal compressibility values are calculated as a
function of T as

cw(T ) = (0.0839T 2 − 64.593T + 12437) × 10−12,

for 273 K < T < 647 K . (42)

The saturation pressure, ps , is calculated based on
IAPWS-If97 [43] as

ps =
[

2C

−B + (B2 − 4AC)0.5

]4
× 106 Pa, (43)

with the validity range of 273.15 K ≤ T ≤ 647.096 K
(critical point). Here,

A = ϑ2 + n1ϑ + n2 , (44)

B = n3ϑ
2 + n4ϑ + n5 , (45)

and

C = n6ϑ
2 + n7ϑ + n8 (46)

hold, with

ϑ = T + n9

T − n10
. (47)

Moreover, the empirical parameters, ni , are shown in
Table 6.

The combination of uws = 420 kJ/kg, Cpw = 4.2 kJ/kg,
and Ts = 373 K was found to provide the best fitting values
for internal energy calculation. More precisely, compared
with the data, the density relative error norms were below
1% in most regions and 2.2 % near the critical point.
Similarly, the internal energy errors were less than 6%.

Table 6 Coefficients of correlation for saturation pressure and
temperature calculation from [43]

i ni

1 0.116 705 214 527 67 × 104

2 − 0.724 213 167 032 06 × 106

3 −0.170 738 469 400 92 × 102

4 0.120 208 247 024 70 × 105

5 −0.323 255 503 223 33 × 107

6 0.149 151 086 135 30 × 102

7 − 0.482 326 573 615 91 × 104

8 0.405 113 405 420 57 × 106

9 − 0.238 555 575 678 49

10 0.650 175 348 447 98 × 103

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Therefore, the presented fitted function has reasonable
accuracy at temperature range of 273.15 K ≤ T ≤
647.096 K and ps(T ) ≤ p ≤ 22.064 MPa, which is the
single phase liquid region. Finally, the water viscosity [44]
reads

μw(T ) = 2.414 × 10−5 × 10
247.8

T −140 Pa.s. (48)

Appendix B: Fracture coordinates
for the test cases

In this appendix, the fracture coordinates for test cases 1–
2 are presented. For test case 3, readers are referred to [39]
due to the high number of fractures in the model.

The fractures are defined by two points: A and B and the
x and y coordinates are given in the tables.

B.1 Fracture coordinates for test case 1

The fracture coordinates for test case 1 are listed in Table 7.

Table 7 Fracture coordinates for test case 1

Nf xA [m] yA [m] xB [m] yB [m]

1 0.2 0.5 0.8 0.5

2 0.5 0.2 0.5 0.8

B.2 Fracture coordinates for test case 2

The fracture coordinates for test case 2 are listed in Table 8.

Table 8 Fracture coordinates for test case 2

Nf xA [m] yA [m] xB [m] yB [m]

1 20 20 80 80
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