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� Biomarker discovery in imaging mass
spectrometry data can be considered
a feature ranking problem.

� Interpretability methods enable
automated estimation of biomarker
candidate potential.

� Our biomarker candidate discovery
workflow uses Shapley additive ex-
planations (SHAP).

� SHAP measures the direction and
magnitude of a feature's influence on
a classifier.

� SHAP maps provide insight into the
spatial specificity of biomarker
candidates.
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a b s t r a c t

The search for molecular species that are differentially expressed between biological states is an
important step towards discovering promising biomarker candidates. In imaging mass spectrometry
(IMS), performing this search manually is often impractical due to the large size and high-dimensionality
of IMS datasets. Instead, we propose an interpretable machine learning workflow that automatically
identifies biomarker candidates by their mass-to-charge ratios, and that quantitatively estimates their
relevance to recognizing a given biological class using Shapley additive explanations (SHAP). The task of
biomarker candidate discovery is translated into a feature ranking problem: given a classification model
that assigns pixels to different biological classes on the basis of their mass spectra, the molecular species
that the model uses as features are ranked in descending order of relative predictive importance such
that the top-ranking features have a higher likelihood of being useful biomarkers. Besides providing the
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Imaging mass spectrometry
Shapley additive explanations
Explainable artificial intelligence
user with an experiment-wide measure of a molecular species' biomarker potential, our workflow de-
livers spatially localized explanations of the classification model's decision-making process in the form of
a novel representation called SHAP maps. SHAP maps deliver insight into the spatial specificity of
biomarker candidates by highlighting in which regions of the tissue sample each feature provides
discriminative information and in which regions it does not. SHAP maps also enable one to determine
whether the relationship between a biomarker candidate and a biological state of interest is correlative
or anticorrelative. Our automated approach to estimating a molecular species' potential for character-
izing a user-provided biological class, combined with the untargeted and multiplexed nature of IMS,
allows for the rapid screening of thousands of molecular species and the obtention of a broader
biomarker candidate shortlist than would be possible through targeted manual assessment. Our
biomarker candidate discovery workflow is demonstrated on mouse-pup and rat kidney case studies.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

A biomarker can generally be considered an objectively
measurable indicator of a specific biological state or disease con-
dition [1,2]. Biomarkers can be used to differentiate between
anatomical structures, cell types, and disease states, and lend
themselves to the screening, diagnosis, and monitoring of disease,
the identification of new drug targets, and the assessment of
therapeutic response [1,3e5]. In our work, the term “biomarker
candidate” refers to a putative molecular biomarker (i.e. a chemical
species) that is differentially expressed between biological states
[2]. One technology for discovering suchmolecular markers at scale
is mass spectrometry, which characterizes molecular species in
terms of their mass-to-charge ratio (m/z). Imaging mass spec-
trometry (IMS) is a multiplexed, label-free imaging technology that
uses mass spectrometry for the molecular mapping of tissues down
to cellular resolution [6e8]. An IMS experiment involves collecting
spatially localized mass spectra for each pixel in a grid of mea-
surement locations across a sample surface [9,10]. Each pixel has an
associated mass spectrum and each mass spectrum plots the
measured signal intensity, which is indicative of relative abun-
dance, versus the analytes' m/z values. The spatial distribution and
relative abundance of an analyte can be visualized as an ion image,
which plots the signal intensity measured for that analyte across all
pixels of the sample's surface [11,12]. IMS is an excellent tool for
biomarker discovery for the following three reasons: it is able to
concurrently detect hundreds to thousands of analytes within a
single experiment in an untargeted manner, it can probe analytes
from a wide range of molecular classes (e.g. peptides, proteins,
lipids, glycans, metabolites), and it enables themapping of analytes'
spatial distributions in relation to the (patho)histology of tissue
samples [5,13,14].

One way novel biomarker candidates can be discovered is by
observing the differential expression of molecules between distinct
sample classes (e.g. different cell types, different organs, different
stages of a disease) [2,15]. However, the large size and high-
dimensionality of IMS datasets, which commonly yield several
hundreds of thousands of pixels and several hundreds to thousands
of molecular ions tracked per pixel, pose a challenge. Manually
examining the spatial mapping of thousands of molecular species
across the surface of a sample is laborious and risks introducing
human subjectivity into the process, leading to results whose
reproducibility cannot necessarily be guaranteed [11,16]. The
amount of data generated by IMS experiments is so large that it has
become more efficient (and in many cases necessary) to compu-
tationally search for biomarker candidates among a multitude of
ion intensity signals [5,17]. In this work, we suggest a machine
learning (ML) workflow for performing biomarker candidate
2

discovery that provides one with a shortlist of molecular species
that are characteristic of the class for which biomarkers are sought.
Our approach uses supervised ML models to classify mass spectra
into different biological classes of interest and then uses state-of-
the-art methods from the field of interpretable ML [18e20] to
determine the discriminative relevance, and biomarker potential,
of each molecular species.

In our work, an IMS dataset is represented by a data matrix X2
Rm�n whose rows xi ¼ Xði;:Þ, for i ¼ 1;2;3…m, correspond to the
mass spectra of the pixels making up the sample's surface and
whose columns xj ¼ Xð:;jÞ, for j ¼ 1;2;3…n, correspond to the m/z
bins per spectrum. The m rows and n columns of X can be
respectively referred to as observations and features. Classification
is a form of supervised ML in which the observations xi are anno-
tated with discrete class labels yi that represent user-provided
knowledge related to these observations. Binary classification
problems involve a positive class (e.g. diseased tissue), labeled as
yi ¼ þ1; and a negative class (e.g. healthy tissue), labeled as yi ¼ �
1. The positive class is usually the class of interest: in our case
studies, it is the class for which we want to discover biomarker
candidates. Problems with multiple target classes (e.g. multiple cell
types or functional tissue units) can be decomposed into multiple
binary classification problems, each of which involve differentiating
one class from the remaining classes. In the context of our work,
classification is therefore the task of learning a multivariate func-
tion f * : Rn1f � 1; þ 1g, called a classifier or classification model,
that assigns each pixel to a class according to the molecular infor-
mation provided by its mass spectrum xi. Note a difference between
the classifier's discrete class prediction byi ¼ f *ðxiÞ2f�1;þ1g and
its continuous raw output f ðxiÞ2R, where f : Rn1R. The classi-
fier's prediction is the class label assigned to a particular observa-
tion xi, whereas the classifier's raw output can be interpreted as the
score (e.g. probability, log-odds ratio) of xi being assigned to the
positive class. Fig.1a illustrates the process of building a classifier in
IMS: a supervised ML algorithm fits a classification model to a
labeled IMS dataset called the training dataset (i.e. mass spectra xi
whose class membership yi is known). The resulting model can
then be used to classify new unlabeled data (i.e. mass spectra xi
whose class membership yi is unknown) as illustrated by Fig. 1b.
The performance of a classifier is measured by its ability to gener-
alize, that is to correctly predict the labels for new data instances
such that byi ¼ yi:

Traditionally, applications of supervised ML in IMS focus on
maximizing the predictive performance of classifiers designed to
automate user-defined recognition tasks, without necessarily
examining their decision-making processes. However, we suggest
that examining the relationship between a classifier's features and

http://creativecommons.org/licenses/by/4.0/


Fig. 1. Diagrams of the classifier building and prediction processes in imaging mass spectrometry. Icons from Refs. [21,22].
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its prediction is important because it can reveal which features, and
thus which molecular species, enable the differentiation of classes.
1 There is no formal definition of supervised machine learning model inter-
pretability that is agreed-upon within the computer science and data science
communities [23e25]. The definition we propose, namely explaining a model's
decision-making process by quantifying the influence of its input features on its
output, is specific to the analysis of imaging mass spectrometry data using super-
vised machine learning methods other than deep learning. We use the terms
interpretability and explainability interchangeably.

3

Model interpretability is the ability to explain the predictions of a
supervised ML model by reporting the relative predictive impor-
tance of its features1. The importance, or relevance, of a feature is a
measure of how it influences the model's prediction, considering
both its direct effect (i.e. statistical association with the prediction)
and its indirect effect (i.e. statistical association between features)
[19,26]. The local predictive importance of a feature measures its
influence on the predictive model's output for a specific observa-
tion (e.g. the mass spectrum of one pixel), whereas the global
predictive importance of a feature measures its influence on the



2 Overfitting is a common issue that occurs when a regression or classification
model adapts too closely to the training data and memorizes not only the rela-
tionship between inputs and outputs but also the noise. The structure of an overfit
model is very sensitive to changes in its training data. Such a model usually per-
forms poorly on new data. The risk of overfitting tends to increase when handling
high-dimensional data like imaging mass spectrometry data.
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predictive model's output for all observations (e.g. all pixels of a
sample) [19,20,26]. In addition to reporting which features drive
the decision-making processes of supervised ML models, inter-
pretability methods also facilitate model troubleshooting (e.g.
debugging, monitoring, checking for bias). For example, in the
context of IMS data analysis, interpretability methods make it
possible to trace whether the decision-making process of a classi-
fier is based on genuine biological patterns rather than on instru-
mental patterns or chemical noise that are spuriously associated to
the class labels. ML interpretability methods effectively address the
issue of supervised ML algorithms producing “black-box” models
with unintelligible predictive mechanisms [18e20]. The impor-
tance of ML interpretability for knowledge discovery has recently
been discussed in genomics [27] and single-cell mass spectrometry
[28]. To our knowledge, our work is the first application of ML
interpretability methods to IMS data for the purpose of biomarker
candidate discovery. Our aim is to formulate and demonstrate how
ML interpretability methods can be used to understand how the
spatial distribution and relative abundance of certain molecular
species relate to the classification of different regions of a tissue
sample, effectively automating biomarker candidate discovery in
IMS data.

Our approach to aiding biomarker discovery is to automate and
accelerate the identification of discriminative features by empir-
ically learning which molecular species' overexpression or
underexpression enable the recognition of a user-defined class
[15]. We translate the problem of biomarker discovery into a
feature ranking problem: ML interpretability methods computa-
tionally estimate the importance of each feature, or m/z value,
with regards to a specific classification task and produce a ranking
of the features in descending order of predictive importance.
Ranking the features in terms of predictive importance facilitates
the identification of a shortlist of molecular species that are
characteristic of a class of interest, and thus have a higher likeli-
hood of being useful biomarkers. In addition to providing onewith
a global understanding of which molecular species hold potential
for recognizing a user-provided class, our approach uses SHAP
maps to give the user spatially localized insight into each
biomarker candidate's relationship with the class of interest.
SHAP maps are a novel graphical representation of a model's
decision-making process that can yield a nuanced local assess-
ment of a biomarker candidate's potential and spatial specificity.
Our biomarker candidate discovery workflow is therefore a scal-
able computational tool that enables one to rapidly, efficiently,
and automatically filter the multitude of molecular species
recorded by IMS down to a panel of promising biomarker candi-
dates that deserve further study and validation.

2. Machine learning methodology

2.1. Extreme gradient boosting for imaging mass spectrometry data
classification

There are many applications of supervised ML in IMS: random
forests [17,29,30], support vector machines [29,31], convolutional
neural networks [32,33], and gradient boosting machines [34,35]
are frequently used classification model types. Decision trees are
particularly suitable for IMS data analysis because they are non-
linear and non-parametric predictive models that can account for
complex dependencies between features, do notmake assumptions
about the underlying data distribution, and do not require feature
scaling. A decision tree is a directed graph that partitions the
feature space by recursive binary splitting: its nodes correspond to
subsets of the data, and its branches correspond to the partitioning
of a feature above or below a splitting threshold [36e38]. Given
4

that a single decision tree is neither flexible nor stable enough to
achieve high predictive performance on IMS data classification
tasks, combining multiple decision trees into an ensemble model is
usually a preferable strategy [37,39]. We therefore choose to use
XGBoost models for classification. XGBoost is a fast and scalable
implementation of (stochastic) regularized gradient boosting that
was developed by Chen and Guestrin in 2016 [40] based on the
work of Friedman [41,42], Freund and Schapire [43]. An XGBoost
model is an ensemble of regression trees (i.e. decision trees that
output real values in their terminal nodes) that can perform clas-
sification by additive logistic modeling [44,45].

min
f

Xmtrain

i¼1

L

�
yi; byi

�
þ
XK
k¼1

UðtkÞ (1)

Regularized gradient boosting is a forward stagewise additive
modeling algorithm for solving numerical optimization problems
of the form of Equation (1). L is a differentiable loss function (e.g.
negative log-likelihood) that measures the difference between the
observations' labels yi and the predictive model's predictions byi ¼
f *ðxiÞ, andU is a regularization term that penalizes the complexity
of the regression trees making up the ensemble in order to avoid
overfitting2 [40,46]. In Equation (1), the regression trees are
written tk, for k ¼ 1;2;3…K; and mtrain refers to the number of
observations making up the training dataset. The XGBoost algo-
rithm builds a classification model from sequentially added
regression trees, each of which is focused on the observations that
the previously added trees classified incorrectly [46e48]. Given an
initial prediction t0 (e.g. the logarithm of the odds), the accuracy
of the ensemble model is iteratively improved by functional
gradient descent: each newly added regression tree is parame-
terized to approximate the negative gradient of the loss function
L [46]. In order to avoid overfitting, the contribution of each
newly added regression tree is weighted using a shrinkage
parameter n; with 0< n<1 ðn¼ 0:3 in our case studies), which
determines the learning rate of the boosting procedure [40,41,49].
In our automated biomarker candidate discovery workflow, the
XGBoost learning process is stochastic because the regression
trees making up the ensemble are learned on randomized sub-
samples of the training set, and because the features used for node
splitting are chosen among a random subset of features [40,49].
The idea is to randomly subsample the rows and columns of the
data matrix during training to make each regression tree slightly
different from the other regression trees, and hence prevent
overfitting.

f ðxiÞ ¼ log
�

pðxiÞ
1� pðxiÞ

�
¼ t0ðxiÞ þ

XK
k¼1

ntkðxiÞ

with pðxiÞ ¼ Prðyi ¼ þ1jxiÞ
(2)

Equation (2) defines the raw output f ðxiÞ, or raw untransformed
margin value, of an XGBoost classifier as the (natural) logarithm of
the odds, called the log-odds [49,50]. The odds are defined as the
ratio of the probability pðxiÞ of observation xi being assigned to the
positive class over the probability of observation xi being assigned
to the negative class. The XGBoost classifier is an additive logistic
regression model because it represents the log-odds as a linear
combination of regression trees [45,47]. The probability of the
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model predicting a positive outcome (i.e. assigning an observation
to the class of interest) can be obtained from the log-odds thanks to
a logistic transformation [45]: pðxiÞ ¼ Sðf ðxiÞ Þwhere S : R1½0;1� is
the sigmoid function. Since the sigmoid function is a non-
decreasing saturation function, an increase in the log-odds im-
plies an increase in the probability of predicting a positive outcome,
and, conversely, a decrease in the log-odds implies a decrease in the
probability of predicting a positive outcome. The classification
model's prediction byi ¼ f *ðxiÞ is either þ1 and � 1 depending on
whether pðxiÞ is above or below a given threshold h;with 0< h< 1
(h ¼ 0:5 in our case studies).
3 Gini importance, which is the default measure of feature importance in Scikit-
Learn's implementation of random forest [59] and gain, which is the default
measure of feature importance in the Scikit-Learn wrapper interface for XGBoost's
implementation of extreme gradient boosting [60], are two examples of popular yet
inconsistent impurity-based approaches for estimating features' predictive impor-
tances. The Gini importance of a feature is computed by averaging the weighted
decrease in node impurity achieved by splitting a node using that feature over all
decision trees making up the ensemble [61].
2.2. Shapley additive explanations for measuring biomarker
candidate relevance

Our workflow for biomarker candidate discovery in IMS data
uses Shapley additive explanations (SHAP) to quantify the local and
global predictive importance of features (e.g. m/z values in IMS)
with respect to a given classification task. SHAP is a state-of-the-art
interpretability method based on Shapley values from cooperative
game theory. It regards the features as players that form coalitions
(i.e. ordered subsets) to achieve the classification or regression
model's output, which is the game's payout. SHAP is called amodel-
agnostic interpretability method because it can derive post-hoc
explanations for the predictions of any type of classification
model by relating its input to its outputs [19,20,26]. SHAP was
developed by Lundberg and Lee [51,52] based on the work of
Strumbelj and Kononenko [53,54], and on Ribeiro et al.'s idea of
locally approximating the decision-making process of a “black-box”
supervised MLmodel using inherently interpretable local surrogate
models [55].

In order to explain the prediction made by a model on a specific
observation, SHAP computes the contribution of each feature to the
model's output using Shapley values. The Shapley value of a feature
is its contribution to the model's output for a specific observation,
averaged over all possible feature orderings [52,56]. In the words of
Lundberg et al., “Shapley values are computed by introducing each
feature, one at a time, into a conditional expectation function of the
model's output, and attributing the change produced at each step to
the feature that was introduced” [56]. Equation (3) defines the

Shapley value 4
j
iðf ; xiÞ of feature xj, with j 2f1;2;3…ng, when

explaining the predictive model's decision-making process for one
specific observation xi ¼ Xði;:Þ, with i2f1;2;3…mg. Since a feature's
contribution to the model's output depends on the order in which
other features were introduced, the feature's Shapley value is ob-
tained by averaging its contribution over all possible feature or-
derings. In Equation (3), the set of all possible feature orderings is
written P. The set of features that we are conditioning on, written
Spj , is the set of all features that precede feature xj in ordering p.

f
j
iðf ; xiÞ¼

X
p2P

1
n!

h
fxi
�
Spj ∪ j

�
� fxi

�
Spj

�i
(3)

The set function fxi ðSpj Þ is defined by Equation (4) as the condi-

tional expectation of the model's output. The n-dimensional vector
xi is considered to be a random variable where only the features
belonging to subset Spj (i.e. the features before xj in the feature

ordering pÞ are known [57]. The unknown features (i.e. the features
after xj in the feature orderingp) are obtained by sampling from the
training dataset [57]. In Equation (4), f ðxiÞ is themodel's raw output
for observation xi, rather than the predicted class label f *ðxiÞ2 f �
1; þ 1g. SHAP does not require knowledge of an observation's true
class label (yi for i21;2;3…m) to evaluate the degree to which a
5

model depends on a specific feature. SHAP can therefore be used to
explain the decision-making process of a model on new unlabeled
data, which is useful for measuring the influence of each feature on
the model's generalization performance.

fxi
�
Spj

�
¼ E

h
f ðxiÞ

���Spj i (4)

The sign of a feature's Shapley value provides information about
the direction of its effect on a predictive model's output. A positive
Shapley value indicates that feature xj increases the raw output
f ðxiÞ of the predictive model for observation xi. Conversely, a
negative Shapley value indicates that feature xj decreases the raw
output. The Shapley value's magnitude indicates how strongly the
corresponding feature influences the model's local decision-
making process. In our work, we refer to the Shapley value of a
feature for a given observation as its local SHAP importance score.

In the context of IMS data classification, the Shapley value 4
j
iðf ; xiÞ

reports the contribution of the jth m/z bin or peak when assigning
the ith pixel's mass spectrum to a class. Computing the local SHAP
importance scores of all features (i.e. m/z values) for all observa-
tions (i.e. mass spectra) yields anm� nmatrix whose (i,j)th entry is
the Shapley value of feature xj for observation xi.

SHAP owes its reliability to the fact that it satisfies the local
accuracy and consistency properties [56]. The local accuracy
property, also known as the efficiency property in cooperative
game theory, guarantees that the Shapley values of all features add
up to the difference between the predictive model's raw output
f ðxiÞ for a given observation xi and the model's expected output
E½f ðxiÞ� over the entire dataset [56]. The local accuracy property is
given by Equation (5). SHAP offers contrastive explanations that
compare the model's local output to its average global output. In
IMS terminology, the local accuracy property states that, given a
mass spectrum of interest, the sum of the Shapley values of its
molecular features (i.e. m/z values) is equal to the classifier's raw
output for that mass spectrum minus the classifier's average raw
output over all mass spectra. SHAP distributes the difference be-
tween the classifier's output for amass spectrum of interest and the
classifier's average output, among the different m/z values that the
classifier uses as inputs.

f ðxiÞ ¼ 40ðf Þ þ
Xn
j¼1

4
j
iðf ; xiÞwith 40ðf Þ ¼ E½f ðxiÞ � (5)

The consistency property, also known as the monotonicity
property in cooperative game theory, states that if a model changes
so that some feature's influence on the output increases, the
importance score assigned to that feature does not decrease [58].
Consistency is necessary for the ranking of a model's features ac-
cording to their importance scores because it guarantees that a
feature with a higher importance score than another feature is
actually more important to the model than the other feature. Note
that impurity-based measures of global feature importance, which
are popular for measuring feature importance in decision tree en-
sembles3 and have been used in IMS [34], are actually inconsistent
and can therefore produce unreliable feature rankings [58].
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Fjðf ;XÞ¼
1
m

Xm
i¼1

���4j
iðf ; xiÞ

��� (6)

A global measure of feature importance can be obtained by
averaging the magnitude of each feature's local SHAP scores, or
Shapley values, over all observations in the dataset [56]. Equation
(6) defines what we refer to as the global SHAP score Fj of
feature xj ¼ Xð:;jÞ for j2f1;2;3…ng. The global SHAP score of a
feature quantifies its influence on the model's decision-making
process, averaged over all possible feature orderings and all ob-
servations. Computing the global SHAP importance scores of all
features yields an n-dimensional vector where n is the total
number of features. In the context of IMS data analysis, the global
SHAP score of a feature is an experiment-wide measure of the
feature's predictive importance with respect to a given classifi-
cation task. Promising biomarker candidates can be easily iden-
tified by ranking IMS features (i.e. m/z values) in descending
order of global SHAP importance. Retaining the top-ranking
features yields a shortlist of biomarker candidates that are
worthy of further study.

In our workflow for biomarker candidate discovery in IMS
data, we use a fast implementation of SHAP called TreeSHAP, or
TreeExplainer [62], that is specific to decision tree based pre-
dictive models like XGBoost. Unlike other SHAP implementations
(e.g. KernelSHAP) that calculate sampling-based approximations
of Shapley values (often in exponential time), TreeSHAP is able to
compute the exact Shapley values of features within low-order
polynomial time by exploiting the structure of decision trees
[56,58]. When using TreeSHAP to measure the local and global
SHAP importance scores of features, one has to choose between
two feature perturbation approaches [62]. In this paper, we opt
for the tree-path dependent approach because it involves
computing the observational, rather than interventional, Shapley
values [57]. Observational Shapley values are defined by Equa-
tions (3) and (4), whereas interventional Shapley values define
the set function differently. The difference between observational
and interventional Shapley values relates to how SHAP handles
statistical dependencies between the features that the model
uses as inputs [57]. Accounting for high-dimensional feature
dependencies is what makes measuring the predictive impor-
tance of IMS features, many of which are involved in common
biochemical processes, particularly challenging. Another measure
of global feature predictive importance, called permutation
importance (PI), has been used for ranking IMS features with
regards to tissue classification tasks [17] despite it only partially
accounting for feature inter-dependencies. PI defines the
importance of a feature as the average decrease in model accu-
racy when its values are randomly permuted across all obser-
vations4. The feature importance scores delivered by PI can be
misleading when the classifier's features exhibit statistical de-
pendencies [65]. Unlike PI, SHAP accounts for linear and non-
linear feature inter-dependencies [56]. Furthermore, PI relies
upon out-of-distribution data instances that are not necessarily
realistic [66], whereas computing the global SHAP score of a
4 Permutation importance was originally developed by Breiman, under the name
of mean decrease accuracy, as a model-specific method for measuring feature
importance in random forests [63]. The idea is to randomly permute a feature
across all observations to break its association with the model prediction (and the
other features) and effectively cancel its predictive power [64]. Therefore, if the
feature under study is strongly associated to the prediction, permuting its values
should result in a large drop in predictive performance. Conversely, if the feature is
weakly associated to the prediction, permuting it should have little to no impact on
performance.

6

feature using observational Shapley values constrains the sam-
pling of unknown features to a range of values (i.e. partitions of
the feature space) allowed by the decision trees making up the
ensemble [64]. A detailed discussion of how TreeSHAP computes
observational Shapley values, and how observational Shapley
values handle feature dependencies, is beyond the scope of this
paper, and we therefore refer the reader to Refs. [56e58].
Observational Shapley values are recommended for knowledge
discovery in biology and chemistry because they spread credit
among correlated features that are jointly informative of the
outcome of interest [57].

2.3. SHAP maps for a spatial understanding of a classifier's
decision-making process

In addition to automatically establishing an experiment-wide
biomarker candidate shortlist by means of global SHAP score
ranking, we furthermore introduce a novel spatially-aware repre-
sentation of local SHAP-based explanations, called a SHAPmap. The
SHAP map of a molecular feature is obtained by plotting that fea-
ture's local SHAP importance scores, or Shapley values, across all
pixels. SHAP maps facilitate a spatially localized understanding of a
classifier's decision-making process. In the context of biomarker
candidate discovery, SHAP maps provide one with a nuanced and
location-specific (e.g. cell type specific, tissue region specific) view
into a molecular species' biomarker potential. Fig. 2 illustrates how
SHAP maps can complement feature rankings for the purpose of
biomarker candidate discovery. Unlike global SHAP importance
scores, local SHAP importance scores avoid conflating the magni-
tude of the feature's effect with the prevalence of its effect across
the sample surface area.

The SHAPmap of a feature answers the following two questions:

� Where does the feature increase or decrease the classifier's
output?

The feature increases the probability of the classifier assigning a
pixel to the class of interest (i.e. the positive class) where its local
SHAP scores are positive (red pixels). The feature decreases the
probability of the classifier assigning a pixel to the positive class
where its local SHAP scores are negative (blue pixels). In our
application, studying the sign of a feature's Shapley values together
with the feature's spatial distribution (e.g. the feature's ion image)
enables the user to determine whether it is the presence or the
absence of a feature that is indicative of the biological state or
disease condition of interest. If the regions where the feature's
measured intensity is high coincide with the regions where the
feature's Shapley values are positive, the feature's presence is
indicative of the class of interest. The relationship between the
feature's abundance and the class prediction is correlative.
Conversely, if the regions where the feature's measured intensity is
low coincide with the regions where the feature's Shapley values
are positive, the feature's absence is indicative of the class of in-
terest. The relationship between the feature's abundance and the
class prediction is anticorrelative.

� Where does the feature strongly or weakly influence the clas-
sifier's output?

The feature has a relatively large influence on the classifier
where its Shapley values have a high magnitude (pixels with high
saturation). Conversely, the feature has a relatively small influence
on the model where its Shapley values have a low magnitude
(pixels with low saturation). Studying the magnitude of a feature's
Shapley values provides insight into how large or small the



Fig. 2. Diagram of the classifier interpretation process. SHAP is used to measure the local and global predictive importance of the features that the classifier from Fig. 1 uses to assign
the pixels making up the sample surface (and their corresponding mass spectra) to one of four different anatomical classes (cerebral cortex, cerebellum, brainstem, or other). The
global SHAP scores provide an experiment-wide measure of each biomarker candidate's relevance, whereas the local SHAP scores measure the direction and magnitude of each
biomarker candidate's influence on the model output for one single pixel. SHAP maps deliver spatially localized explanations of the classifier's decision-making process. Icons from
Refs. [21,22].
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feature's local influence on a classifier is. In our application, we
consider a feature (i.e. m/z value) to be relevant to recognizing a
given class in the regions of the sample where its Shapley values
have a high magnitude.
3. Results & discussion

Our biomarker candidate discovery workflow is demonstrated
on two IMS datasets that were acquired by matrix assisted laser
desorption/ionization (MALDI) quadrupole time-of-flight (Q-TOF)
IMS using a prototype MALDI timsToF Pro (Bruker Daltonics,
7

Germany) in positive ion mode [67]. Please refer to the supple-
mentary material for information regarding the materials, sample
preparation, experiments, histology, and IMS data preprocessing.
Since the following five case studies do not involve the study of
diseased tissue, the ranked features are not indicative of any
pathological processes but rather of anatomical structures. There-
fore, the term “molecular marker” is preferred over the term
“biomarker” in Section 3. It should be noted that, methodologically
speaking, there is no difference: in both cases our workflow looks
for differentiating markers (i.e.m/z values) that correspond to user-
provided classes of interest.



Fig. 3. Microscopy images of the tissue sections imaged in IMS datasets no1 and no2.
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� Dataset no1 was acquired from the sagittal whole-body section
of a mouse-pup. The autofluorescence microscopy image of the
tissue section is presented in Fig. 3a and was used to guide
annotation of the regions of interest [68]. The sample was cry-
osectioned at 20 mm thickness and a 1,5-diaminonaphthalene
matrix was applied by sublimation. The mean mass spectrum
of the dataset was retrieved and peak-picked to produce a
feature list of 879 distinct ion species. Them/z acquisition range
is 300-1200 and the pixel size is 50 mm � 50 mm. The dataset
consists of a total of 164,808 pixels. Our workflow is therefore
applied to a dataset of 164,808 observations and 879 features.
The challenge of molecular marker discovery in the two case
studies tied to this dataset therefore amounts to automatically
determining whichmolecular species, among the 879measured
m/z values, are most relevant to recognizing two anatomical
regions: the mouse-pup's brain and its liver.

� Dataset no2 was acquired from the sagittal section of a rat kid-
ney. The hematoxylin & eosin stained microscopy image of the
tissue section is presented in Fig. 3b. The sample was cryosec-
tioned at 12 mm thickness and a 1,5-diaminonaphthalene matrix
was applied by sublimation. The mean mass spectrum of the
dataset was retrieved and peak-picked to produce a feature list
of 1428 distinct ion species. The m/z acquisition range is 300-
2000 and the pixel size is 15 mm � 15 mm. Our workflow is
applied to a data table of 591,534 observations and 1428
8

features. The challenge of molecular marker discovery amounts
to automatically determining which molecular species, among
the 1428measuredm/z values, are most relevant for recognizing
three different regions of the kidney: the cortex, the inner and
outer medulla.

Five anatomical regions were delineated within the two tissue
samples on the basis of the microscopy images in Fig. 3. Each tissue
region was given a class label: a brain and a liver region in dataset
no1 and a cortex, inner medulla, and outer medulla region in
dataset no2. Our aim is to discover molecular markers for each of
these user-provided class labels. The molecular marker discovery is
treated separately for each class, using the one-versus-all proced-
ure, yielding five binary classification problems whose target (i.e.
positively labeled) classes are the following: the mouse-pup's brain
and liver in dataset no1; the rat kidney's inner medulla, outer
medulla, and cortex in dataset no2. Note that, although user-
defined masks are employed to label the data in our case studies,
our approach would work equally well if provided with automati-
cally generated class annotations (e.g. tissue segmentation masks
generated by clustering algorithms, masks provided by algorithms
performing automated recognition in microscopy images). Two
case studies (i.e. discovering molecular markers for the mouse-
pup's brain in dataset no1, discovering molecular markers for the
rat kidney's inner medulla in dataset no2) are covered in Section 3,
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whereas the remaining three case studies (i.e. discovering molec-
ular markers for the mouse-pup's liver in dataset no1, discovering
molecular markers for the rat kidney's outer medulla and cortex in
dataset no2) are provided in the supplementary material.
Fig. 4. Class-defining masks used as inputs for training the two XGBoost classifiers designed
were manually annotated as belonging to one of three categories: dark blue pixels are labele
labeled as not belonging to the target organ and make up the negative class, and gray pixels a
difficult to annotate them definitively. The latter are therefore excluded from the training d
during classifier training. (For interpretation of the references to color in this figure legend
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As discussed in subsection 2.1, XGBoost models are used to
classify the pixels on the basis of their mass spectra. These five
classification problems are imbalanced because their correspond-
ing datasets have unequal class cardinality (i.e. the negatively
to recognize the mouse-pup brain and liver. For each task, regions of the tissue sample
d as belonging to the target organ and make up the positive class, light blue pixels are
re close to borders between the target organ and other anatomical structures, making it
ata to avoid feeding the supervised machine learning algorithm unreliable annotations
, the reader is referred to the Web version of this article.)
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labeled pixels outnumber the positively labeled pixels). We avoid
using accuracy (i.e. the proportion of predictions that are correct) to
measure the classifier's predictive performance since accuracy tells
us little about whether false negatives or false positives are more
common [69]. Instead, we choose to measure our classifier's pre-
dictive performance using balanced accuracy, precision, and recall.
Recall (also called sensitivity or the true positive rate) is the pro-
portion of positive observations that are correctly identified. Pre-
cision is the proportion of all positive predictions that are correct.
Specificity (also called the true negative rate) is the proportion of
negative observations that are correctly identified. Balanced accu-
racy is the arithmetic mean of sensitivity and specificity [69]. As
discussed in subsections 2.2 and 2.3, the TreeSHAP implementation
of the SHAP interpretability method (with observational Shapley
values) is used to rank the features (i.e. m/z values) in descending
order of global predictive importance. The top-ranking features are
highly discriminative with regards to a labeled tissue class and are
therefore considered to be promising molecular markers for that
class of interest. In addition to automatically establishing a shortlist
of molecular species that are statistically related to user-provided
tissue class labels, our workflow delivers spatially localized
insight into the relationship (e.g. correlative, anticorrelative) be-
tween eachmeasured ion species and the class of interest bymeans
of a novel visualization approach called SHAP maps.
Fig. 5. Mouse-pup brain recognitio
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3.1. Dataset no1: Recognition of the brain and liver of a mouse-pup

Classification-oriented supervised ML algorithms require
labeled training data (in our case, labeled pixels) to build a classifier.
In the two mouse-pup case studies, anatomical class labels are
obtained as user-provided spatial delineations of the mouse-pup's
brain and liver in the tissue sample. Exploratory analysis of the IMS
data was performed using non-negative matrix factorization to aid
in that delineation task [16,70,71]. Please refer to the supplemen-
tary material to see how the low-dimensional latent patterns
extracted by non-negative matrix factorization from dataset no1
facilitated the manual localization and annotation of the target
organs. The target organs (or tissue regions, cell types, or cells) that
are provided as masks to the supervised ML algorithm are also the
organs (or tissue regions, cell types, or cells) for which we want to
discovermolecular markers. Fig. 4 shows a spatial representation of
the masks used to build the XGBoost classifiers for the mouse-pup
cases. Pixels are either annotated as belonging to the target organ
(i.e. positive class) or not belonging to the target organ (i.e. negative
class). Some pixels (e.g. at the borders of target organs) were
difficult to annotate definitively and were excluded from the
training set to avoid providing the supervised ML algorithm erro-
neous or unreliable training examples. Furthermore, the negative
class was downsampled to avoid the one-versus-all classification of
the brain and liver being severely imbalanced. After downsampling,
n and global feature ranking.
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approximately 25% of the pixels used to build the classifier belong
to the positive class, and approximately 75% belong to the negative
class. Please refer to the supplementarymaterial for themouse-pup
liver case study.
3.1.1. Molecular marker discovery for the mouse-pup brain
Our brain molecular marker discovery workflow starts with

building an XGBoost classifier from IMS dataset no1 and the user-
provided brain mask shown in Fig. 4a. Fig. 5a is the classification
result obtained by supplying the classifier with all IMS measure-
ments (both labeled and unlabeled pixels), and having it auto-
matically recognize brain tissue pixels on the basis of their mass
spectra. Fig. 5a shows which mouse-pup tissue regions are pre-
dicted to belong to the brain according to the XGBoost classifier. As
is apparent from Fig. 5a, the mouse-pup's brain (as well as parts of
its spinal cord) is successfully differentiated from the other organs.
Since an explanation can only be as good as its underlying model, it
is necessary to verify the generalization performance of the
XGBoost classifier designed to recognize pixels belonging to the
mouse-pup brain. The classifier achieves a balanced accuracy of
0.9925, a precision of 0.9967, and a recall of 0.9974 on the testing
Fig. 6. Three promising molecular markers for the mouse-pup's brain. The ion images (left)
decision-making process of the classifier trained to recognize the mouse-pup's brain are sho
across the sample, and are not specifically tied to the task of recognizing the brain. The
importance scores, of each feature across the sample, and provide information on where a
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dataset, which is a labeled selection of pixel measurements that is
distinct from the training dataset.

Fig. 5b shows the top ten molecular markers of the global
ranking of 879 features (i.e. m/z values) obtained by TreeSHAP. The
features are ranked in descending order of global SHAP score, and
thus in descending order of relevance to brain tissue recognition,
yielding a shortlist of molecular markers for mouse-pup brain tis-
sue. Fig. 5b provides insight into a feature's global (i.e. tissue-wide)
relevance to the recognition task of Fig. 5a. The ten top-ranking
features of Fig. 5b are annotated further in Table S1 of the supple-
mentary material, including tentative identifications. The spatially
localized nature of IMSmeasurements together with the SHAPmap
representation developed above allows us to obtain tissue location
specific insights into an m/z value's relevance. Fig. 6 shows the ion
images and SHAP maps of the three top-ranking features of Fig. 5b.
The left column of Fig. 6 displays the spatial distribution and rela-
tive abundance of the three top-ranking molecular features for
recognizing the mouse brain. Fig. 6a, 6c, and 6e are ion images of
the features ranked no1, no2, and no3 respectively, and they are
displayed using a pseudo-color scale whose brightness is indicative
of the signal intensity measured at a given pixel. These ion images
and SHAP maps (right) of three features (i.e. m/z values) with the most influence on the
wn. The ion images plot the spatial distribution and measured intensity of each feature
SHAP maps plot the spatial distribution of Shapley values, or local SHAP predictive
nd how the feature is relevant to the task of recognizing brain.
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provide a classical view on molecular distribution by reporting the
ion intensity signal corresponding to the molecular species at hand.
However, ion images do not provide any information about how
that ion intensity relates to the recognition of brain tissue. The right
column of Fig. 6 provides information on the signs and magnitudes
of the local SHAP scores across the sample for each top-ranking
feature. Fig. 6b, 6d, and 6f are the SHAP maps of the features
ranked no1, no2, and no3 respectively. These SHAP maps provide
information on where and how a given ion intensity signal relates
to the task of brain tissue recognition.

Fig. 6a is the ion image of the feature ranked no1, whose m/z
value is 912.455 and who has been tentatively identified as
[SHexCer(38:6; O5)þK]þ. The measured intensity of this feature is
high in the brain and spinal cord. According to Fig. 6b, feature no1
increases the log-odds (raw) output of the XGBoost classifier in the
brain region: the Shapley values in the brain and spinal cord are
positive, and negative elsewhere. The presence of feature no1 in-
creases the log-odds (and probability) of the classifier predicting
that a given pixel belongs to the brain. The ion image and SHAPmap
of the feature ranked no2 (m/z 800.549) are very similar to those of
the feature in first position. Both top-ranking features are positively
correlated with the classifier assigning a pixel to the brain.
Measuring high intensity signals for features no1 and no2 in a given
pixel increases the log-odds (and probability) of the classifier
assigning that pixel to the brain. The high predictive performance
of the XGBoost classifier suggests that it is probably a good
approximation of the data generating mechanism (i.e. biochemical
processes taking place in the tissue). It can therefore be assumed
and inferred that measuring a high intensity signal for features no1
and no2 in a given pixel also increases the probability of that pixel
actually belonging to the brain. In other words, the presence of
these features (m/z values) is characteristic of the mouse-pup's
brain and spinal cord and differentiates the brain and spinal cord
from other regions in the tissue.

Fig. 6e indicates that the feature ranked no3, whose m/z value is
759.394, has a low intensity both in the brain and the spinal cord.
Its measured intensity in the spinal cord is slightly higher than its
intensity in the brain. Fig. 6f shows that the Shapley values of that
feature are negative in the spinal cord (with a magnitude
between �1.0 and �1.5). The area highlighted (negatively, hence in
dark blue) in Fig. 6f, namely the spinal cord, is where feature no3
Fig. 7. Masks used as inputs for training the three XGBoost classifiers directed at recognizin
sample were manually annotated as belonging to one of four categories: light blue pixels be
pixels belong to the cortex, and gray pixels are close to borders between these anatomical st
the training data to avoid feeding the supervised machine learning algorithm unreliable ann
that was affected by a sample preparation artefact. (For interpretation of the references to
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plays a role in helping to obtain a biomolecular signature unique to
the brain. The way in which this feature helps the classifier
correctly identify the brain pixels can be read from the sign of its
Shapley values, or local SHAP scores. The local SHAP values in the
spinal cord are negative, meaning that whatever the signal is that is
measured for this feature in the spinal cord, it lowers the log-odds
(and probability) of assigning a pixel to the brain. Studying the ion
image of feature no3 furthermore reveals that the ion intensity for
m/z 759.394 is low in the spinal cord, but still higher than in the
brain. This means that a relative increase in signal intensity of m/z
759.394 strongly decreases the log-odds (and probability) of pre-
dicting a pixel belonging to the brain. Unlike the features ranked
no1 and no2 that are good molecular markers for both the brain and
spinal cord, the feature ranked no3 enables the XGBoost classifier to
tell the brain apart from the spinal cord. We would not be able to
differentiate the mouse's brain from its spinal cord if we were to
use only the two top-ranking features (m/z 912.455 and m/z
800.549). This example illustrates the subtle understanding of
molecular marker spatial specificity that can be obtained from
SHAP maps. If one needs a molecular marker for both the brain and
spinal cord, bothm/z 912.455 andm/z 800.549 are good candidates.
If one requires the ability to tell brain tissue apart from spinal cord
tissue, a more elaborate panel of molecular markers is proposed: if
m/z 912.455 and m/z 800.549 are present in high abundance in a
tissue area, and ifm/z 759.394 is present in very lowabundance, the
probability of those pixels describing brain tissue (exclusively) is
very high.
3.2. Dataset no2: Recognition of renal inner medulla, outer medulla,
and cortex

Annotating the three different functional tissue regions of the
rat kidney - namely the inner medulla, outer medulla, and cortex -
is required to generate the class labels needed to train the three
corresponding XGBoost classifiers. Similar to the previous case
studies (subsection 3.1), exploratory analysis by means of non-
negative matrix factorization was used to aid in delineating
masks. Fig. 7 shows the pixels annotated as belonging to one of the
three target regions. The pixels that were difficult to annotate
manually were excluded from the training and testing datasets.
Similar to the previous case studies (subsection 3.1), downsampling
g the kidney's inner medulla, outer medulla, and cortex. Different regions of the tissue
long to the inner medulla, medium blue pixels belong to the outer medulla, dark blue
ructures, making it difficult to annotate them definitively. The latter are excluded from
otations during classifier training. The black circle outlines a region of the renal cortex
color in this figure legend, the reader is referred to the Web version of this article.)



Fig. 8. Renal inner medulla recognition and global feature ranking.
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of the negative class was performed. The inner medulla, outer
medulla, and cortex are differentiated from the other two regions
using one-versus-all classification where the target region is the
positive class, and the two other regions make up the negative
class. Please refer to the supplementary material for the outer
medulla and cortex case studies.

3.2.1. Molecular marker discovery for the renal inner medulla
Fig. 8a presents the class prediction result for the renal inner

medulla classifier, showing that the inner medulla is successfully
differentiated from the outer medulla and cortex. Regarding
generalization performance, the XGBoost classifier trained to
recognize pixels belonging to the inner medulla achieves a
balanced accuracy of 0.9992, a precision of 0.9989, and a recall of
0.9985. Note the slightly noisy region to the top-left of the medulla
in Fig. 8a. The difficulties encountered by the classifier in this re-
gion, which is outlined by a black circle in Fig. 7, are probably due to
a sample preparation artefact known as visceral fat delocalization
13
[72]. Fig. 8b shows the top ten molecular markers out of the global
ranking of 1428 features (i.e. m/z values) as obtained by TreeSHAP.
The features are ranked in descending order of global SHAP score,
and thus in descending order of relevance to inner medulla tissue
recognition. Fig. 8b therefore provides insight into a feature's global
relevance to the recognition task of Fig. 8a. The most important
feature to the XGBoost classifier used to assign pixels to the inner
medulla (or not) has a m/z value of 1401.001 and a global SHAP
score of 2.036.

The left column of Fig. 9 provides information about the spatial
distribution and relative abundance of the three top-ranking mo-
lecular features for recognizing the inner medulla: Fig. 9a, 9c, and
9e are the ion images of the features ranked no1, no2, and no3
respectively. The right column of Fig. 9 provides information on the
signs andmagnitudes of the local SHAP scores, or Shapley values, of
each top-ranking feature across the sample: Fig. 9b, 9d, and 9f are
the SHAPmaps of the three top-ranking features. These SHAPmaps
provide information on where and how a given ion intensity signal



Fig. 9. Three promising molecular markers for the renal inner medulla. The ion images (left) and SHAP maps (right) of three features (i.e. m/z values) with the most influence on the
decision-making process of the classifier trained to recognize the rat's renal inner medulla are shown. The ion images plot the spatial distribution and measured intensity of each
feature across the sample, and are not specifically tied to the task of recognizing the inner medulla. The SHAP maps plot the spatial distribution of Shapley values, or local SHAP
predictive importance scores, of each feature across the sample, and provide information on where and how the feature is relevant to the task of recognizing the inner medulla.
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relates to the task of inner medulla tissue recognition. Combining
the left and right columns of Fig. 9 provides insight into the pre-
dictive model's decision-making process. The signal intensity
measured in the inner medulla for features ranked no1 and no2 is
low (Fig. 9a and 9c), and yet their Shapley values are high in the
inner medulla (Fig. 9b and 9d). These features,m/z 1401.001 andm/
z 870.513 respectively, are negatively correlated to the XGBoost
classifier assigning a pixel to the inner medulla. In other words,
measuring a low intensity for m/z 1401.001 and m/z 870.513 in a
given pixel increases the log-odds (and probability) of the classifier
assigning that pixel to the inner medulla. Given the high predictive
performance of the classifier, we can assume that measuring a low
intensity for m/z 1401.001 and m/z 870.513 in a given pixel also
increases the probability of that pixel actually belonging to the
inner medulla. Conversely, the feature ranked no3 (m/z 1551.213) is
positively correlated with the classifier predicting a pixel as
belonging to the inner medulla: its intensities (Fig. 9e) and its
Shapley values (Fig. 9f) are both high in the inner medulla.
Measuring a high intensity for m/z 1551.213 in a given pixel in-
creases the log-odds (and probability) of the classifier assigning
that pixel to the inner medulla. Given the high predictive perfor-
mance of the classifier, we can assume that measuring a high in-
tensity form/z 1551.213 in a given pixel increases the probability of
that pixel actually belonging to the inner medulla. The absence of
features ranked no1 and no2, and the presence of the feature ranked
no3 seem to be characteristic of renal inner medulla tissue.

We now focus on the tissue region to the top-left of the medulla
that actually belongs to the cortex, and that was difficult for the
XGBoost classifier to correctly differentiate from the inner medulla
(see Fig. 8a). The SHAP map of the feature ranked no1 shows (by
coloring the difficult-to-classify area red) that this feature strongly
increases the log-odds (and probability) of the cortex pixels to the
top-left of the inner medulla being erroneously assigned to the
inner medulla: the Shapley values of the feature ranked no1 are
positive with a high magnitude in this region of the cortex. The
SHAP map of the feature ranked no3 shows (by coloring the
difficult-to-classify area blue) that the classifier uses this feature to
correct for the labeling suggested by the feature ranked no1: the
Shapley values of the feature ranked no3 in the region to the top-
left of the inner medulla are negative with a high magnitude.
This case study demonstrates an interesting level of nuance in
molecular marker discovery, uniquely provided by the SHAP map
representation. If only the global SHAP scores of the features are
taken into account (i.e. only the global information provided in
Fig. 8b, without the localized information provided in Fig. 9b, 9d,
and 9f), one might be tempted to consider m/z 1401.001 (corre-
sponding to the feature ranked no1) as the most promising marker
candidate for inner medulla tissue in this dataset. Although m/z
1401.001 has the most influence on the XGBoost classifier designed
to recognize the inner medulla, its global SHAP score is based on a
sample-wide assessment of discriminative relevance and disre-
gards subtle spatially localized patterns. In fact, Fig. 9b shows that
m/z 1401.001 has a positive influence on the classifier's prediction
in the inner medulla but also in a region of the cortex where
visceral fat delocalization probably occurred. Unlike m/z 1401.001
andm/z 870.513 (corresponding to the features ranked no1 and no2
respectively),m/z 1551.213 (corresponding to feature ranked no3) is
exclusive to the inner medulla. Although the global SHAP scores of
m/z 1401.001 and m/z 870.513 are higher than that of m/z 1551.213
(respectively 2.036 and 1.007 versus 0.548), a localized study using
SHAP maps shows that m/z 1551.213 is the more reliable inner
medulla molecular marker of the three because of its high spatial
specificity. Unlike the signal of m/z 1551.213, the signals corre-
sponding to m/z 1401.001 and m/z 870.513 were affected by the
sample preparation artefact that took place in the renal cortex. This
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example also illustrates the importance of not basing one's esti-
mate of a molecular marker candidate's relevance exclusively on its
global SHAP predictive importance score. When visualized in the
form of SHAP maps, the local SHAP scores (or Shapley values)
provide useful spatially localized information as to how and where
the molecular marker influences the predictive model's output and
(assuming the classifier has good predictive performance) how it
ties to the underlying tissue.

4. Conclusion

In this work, we propose an innovative computational approach
for automating the discovery of biomarker candidates in molecular
imaging data. Our approach enables one to efficiently filter a
multitude of molecular species down to a panel of promising
biomarker candidates. Applying the automated biomarker candi-
date discovery workflow to imaging mass spectrometry (IMS) data
is especially interesting because of the massively multiplexed na-
ture of IMS. By enabling the untargeted concurrent mapping of
hundreds to thousands of molecular species across a tissue sample,
IMS enables one to cast a wide net for molecular species with
biomarker potential. However, the wide range of candidates can
pose difficulties since manual examination of IMS data is imprac-
tical. Automating biomarker candidate discovery in IMS using
machine learning (ML) methodologies, rather than resorting to
manual examination, can help re-establish the practical feasibility
of IMS-based biomarker discovery, and can help maintain objec-
tivity, scalability, and reproducibility. Our biomarker candidate
discovery workflow produces a ranking of molecular species ac-
cording to the discriminative relevance they hold for a given tissue
structure or disease condition, such that the top-ranking molecular
species are highly promising biomarker candidates that merit
further study.

Our approach to biomarker candidate discovery is to identify
highly discriminative molecular species whose overexpression or
underexpression characterize a user-defined biological class of in-
terest. A supervised ML algorithm, called extreme gradient boost-
ing (XGBoost), is used to learn a classifier from labeled imaging
mass spectrometry data, and a state-of-the-art ML model inter-
pretability method, called Shapley additive explanations (SHAP), is
used to measure the local and global predictive importance of the
m/z values that the classification model uses as features. We
translate the task of biomarker candidate discovery into a feature
ranking problem: the features are ranked in descending order of
global SHAP importance and the top-ranking features are retained
for further investigation. The TreeSHAP implementation of Shapley
additive explanations, with observational Shapley values, is used
for quantifying the local and global predictive importance of fea-
tures. In order to add nuance to our analysis, we furthermore
introduce SHAPmaps, a novel representation and visualization that
brings a spatial dimension to our understanding of the decision-
making processes of a classifier. The SHAP map of a feature is ob-
tained by plotting that feature's local SHAP importance scores, or
Shapley values, across all pixels making up the sample surface. A
feature's local SHAP importance score is informative of the direc-
tion (e.g. positive or negative) andmagnitude (e.g. large or small) of
the feature's influence on the classifier's output for a given pixel.
SHAP maps provide insight into the spatial specificity of biomarker
candidates by showing how and where a feature influences the
classifier's probability of assigning a pixel, and its corresponding
mass spectrum, to the class of interest.

Although our two case studies concern imaging mass spec-
trometry data, our biomarker candidate discovery workflow is also
applicable to other forms of multiplexed imaging data such as
multiplexed fluorescence microscopy (e.g. CODEX), imaging mass
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cytometry, near-infrared imaging, and Raman spectroscopic imag-
ing, and therefore holds the potential to substantially advance
biomarker development across a wide range of spectral imaging
modalities. One area where our approach can be employed is in the
discovery of clinically relevant molecular signatures for functional
tissue units in the context of large-scale molecular mapping pro-
jects such as the NIH-sponsored Human BioMolecular Atlas Pro-
gram [73], which aims to build a complete molecular map of the
human body at single-cell resolution, and the Kidney Precision
Medicine Project [74], which aims to build a comprehensive mo-
lecular, cellular, and anatomical map of the kidney. Our work onML
interpretability for multiplexed imaging may also help advance
research in biomedical imaging, for example in the field of data-
driven multi-modal image fusion [75], where a cross-modal
regression model ties the observations in one imaging modality
to the observations in another modality. Obtaining spatially-
localized insight into how cross-modal connections are made
holds potential for advancing all fusion applications, including
prediction to a higher spatial resolution, out-of-sample predictions,
as well as cross-modal denoising and relationship discovery [76].
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