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Abstract: The thermal kinetic modeling is crucial for development of sustainable processes where
lignocellulosic fuels are a part of chemical system and their thermal degradation eventuates. In this
paper, thermal decomposition of three lignocellulosic materials (bagasse, rice husk, and wheat straw)
was obtained by the thermogravimetric (TG) technique and kinetics was analyzed by both model-
fitting and isoconversional (model-free) methods to compare their effectiveness. Two models selected
from each class include Arrhenius and Coats–Redfern (model-fitting), and Kissinger–Akahira–Sunose
(KAS) and Flynn–Wall–Ozawa (FWO) (model-free). The formal model-fitting approach simulating
the thermal decomposition of solids by assuming a fixed mechanism was found to be unduly facile.
However, activation energy (E) values calculated from two model-fitting techniques were consider-
ably different from each other with a percentage difference in the range of 1.36% to 7.65%. Particularly,
both model-fitting methods predicted different reaction mechanism for thermal disintegration of lig-
nocellulosic materials (two-dimensional diffusion (D2) by Arrhenius and one-dimensional diffusion
(D1) by Coat–Redfern method). Conversely, the model-free routine offers a transformation of mecha-
nism and activation energy values throughout reaction and is, therefore, more authentic to illustrate
the complexity of thermal disintegration of lignocellulosic particles. Based on the model-free kinetic
analysis, the lignocellulosic materials may be devised in following order of activation energy: rice
husk > bagasse > wheat straw, by both KAS and FWO methods with a percentage difference no more
than 0.84% for fractional conversion up to 0.7. Isoconversional approach could be recommended as
more realistic and precise for modeling non-isothermal kinetics of lignocellulosic residues compared
to model-fitting approach.

Keywords: lignocellulosic fuels; kinetic modeling; thermogravimetry; isoconversional modeling;
model-fitting methods

1. Introduction

Access to energy is crucial to subdue poverty, boost economic expansion and em-
ployment opportunities and uphold the provision of social services, such as healthcare
and education for sustainable human development. Energy access and energy poverty
have been increasingly realizing as essential issues for society as an integral part of global
development agendas. It is substantial to cope with these issues in the framework of two
other considerable socio-ecological challenges of present time, that is, energy certainty and
environmental sustainability. This threefold issue is imputed as the “energy trilemma” by
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the World Energy Council (WEC) [1,2]. Lignocellulosic biomass, as an ideal renewable
energy source, offers numerous advantages including renewability, abundant reserves,
cheap, and carbon neutrality. In contrast to other renewable energy resources, it can be
utilized for generation of heat, power, and transportation fuels, and is proficient to generate
continuous energy under wide range of scales. The lignocellulosic feedstocks resources
are more evenly distributed geographically compared to fossil sources, conforming the
security of supply to a large extent [3,4]

However, lignocellulosic biomass-based fuels constitute only about 10% of annual
energy consumption worldwide [5]. The large-scale processing of lignocellulosic materi-
als into fuel and valuable products through thermochemical conversion, and numerous
heterogeneous reactions with indefinite kinetics entailed at different phases of thermal
degradation is one of the critical problems. Particularly, the intricate 3D structure of lig-
nocellulose matrix is extremely cumbersome for engineers to design reactors for biomass
thermochemical transformation processes [6]. The thermal decomposition kinetics of ligno-
cellulosic materials can be computed by simulation of the rates of thermal degradation data
by a suitable kinetic model. Accurate computation of kinetic parameters for lignocellulose
thermal decomposition is indispensable to forecast real-time material performance and
lifetime estimation, modeling the combustors and gasifiers and to optimize the operat-
ing parameters [7,8]. For the fruitful utilization of computational fluid dynamics (CFD)
simulation to lignocellulose thermochemical conversion, it is necessary to predict kinetic
parameters of devolatilization process [9].

Thermogravimetry is a frequently employed analytical method to measure the thermal
degradation of solid materials and subsequently formulate kinetic models to illustrate
the pyrolysis process quantitatively [10–12]. The challenge in formulating the kinetic
expressions is mainly due to two reasons: (i) pyrolysis of lignocellulosic materials entails
manifold parallel and series disintegration stages occurring concurrently and (ii) thermal
disintegration of lignocellulosic material is extremely heterogeneous. These attributes
always stimulate the scientists to formulate more rigorous kinetic models to describe
solid fuel degradation. Two types of models have been developed in this regard viz.
model-based and isoconversional or model-free techniques [13]. Model-fitting was the
first and exceedingly famous approach used to model solid-state kinetics. In this method,
first a reaction mechanism is presumed and applied to TGA data. The most suitable
reaction model is then picked on the basis of quality of the regression fit [14]. Whereas, no
reaction model is presumed in model-free methods and kinetic information is deduced
from mathematical relations formulated and kinetic parameters are computed without
supposing a reaction mechanism [15,16].

The quest for appropriate category of models that can precisely depict the kinetics of
thermal degradation of lignocellulosic fuels necessitates a descriptive comparison among
different categories of models. Numerous examples of thermal degradation kinetics of
different solid materials either by isoconversional or by model-fitting methods can be
found in literature [17–19]. A few studies provided a comparison of model-free and
model-fitting approaches for different solid fuels [9,20] but an elaborated comparison of
both categories for efficient modeling of thermal degradation behavior of lignocellulosic
materials is lacking.

Here, kinetics for thermal disintegration of three lignocellulosic fuels (wheat straw,
rich husk, and bagasse) has been evaluated and compared by following both model-fitting
and isoconversional methods to inspect reliability of each category of models to describe
the pyrolysis kinetics of lignocellulosic biomass.

2. Materials and Methods

The biomass samples (wheat straw, rich husk, and bagasse) were collected locally
from Lahore, Pakistan and thermogravimetric analysis was conducted on SDT Q600, TA
Instrument, New Castle, DE, USA. The samples with a particle size of <250 µm were heated
from 25 ◦C to 600 ◦C at different heating rates of 10, 20, and 30 ◦C/min. The heat transfer
barrier could be evaded by employing smaller sized particles under low heating rate [21].
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High-purity nitrogen gas was continuously flushed through the instrument at a flow rate
of about 100 mL/min to maintain inert atmosphere. The TGA was performed using a small
amount of sample (0.5 mg) to avoid exothermic self-heating and thermal gradients.

3. Kinetic Modelling

The thermal deterioration of biomass is a tortuous process and transport phenomena
has not precisely been described. Many authors have represented the rate of thermal
decomposition by following expression [22]:

dα

dt
= k(T)× f (α) (1)

where rate constant k varies with the absolute temperature (T) following Arrhenius equation,
k(T) = Ae−E/RT, in which R represents the universal gas constant (R = 8.314 J/mol K), A
stands for frequency factor, and E is activation energy [23]. Thus:

dα

dt
= Ae−

E
RT f (α) (2)

where α represents the fractional conversion and is given as:

α =
mi − mt

mi − m f
(3)

where mi, mt and m f are the initial, instantaneous and final mass of biomass sample at any
temperature T during TGA analysis. Under non-isothermal conditions, heating rate (β)
changes with time to give the following relation:

dα

dT
=

dα

dt
× 1

β
(4)

And, thus, Equation (2) becomes,

dα

dT
=

A
β

e−
E

RT × f (α) (5)

Different forms of f (α) in conformity with different reaction mechanisms have been
summarized in Table 1 [24].

Table 1. Various reaction mechanism for Arrhenius and Coats–Redfern model [24].

Mechanism f(α) g(α) Abbreviation

Power law 2α1/2 α1/2 P2
Power law 3α2/3 α1/3 P3
Power law 4α3/4 α1/4 P4

Avarami-Eroféve 2(1 − α)[−ln(1 − α)]1/2 [−ln(1 − α)]1/2 A2
Avarami-Eroféve 3(1 − α)[−ln(1 − α)]2/3 [−ln(1 − α)]1/3 A3
Avarami-Eroféve 4(1 − α)[−ln(1 − α)]3/4 [−ln(1 − α)]1/4 A4

Contracting Sphere 2(1 − α)1/2 [1 −
(

1 − α)1/2
]

R2

Contracting Cylinder 3(1 − α)2/3
[1 −

(
1 − α)1/3

]
R3

One Dimensional Diffusion 1/2α α2 D1
Two Dimensional Diffusion [−ln(1 − α)]−1 [(1 − α)·ln(1 − α)] + α D2

Three Dimensional Diffusion–Jander
3(1−α)

2
3[

2
(

1−(1−α)
1
3

)]
[1 − (1 − α)1/3]

2
D3
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Table 1. Cont.

Mechanism f(α) g(α) Abbreviation

Three-Dimensional Diffusion-GB 3/2
(

1 − α
−1
3 − 1

)
1 − 2α

3 − (1 − α)2/3 D4

First Order (1 − α) −ln(1 − α) F1
Second Order (1 − α)2 (1 − α)−1 − 1 F2
Third Order (1 − α)3 [

(
1 − α)−2 − 1

]
/2 F3

3.1. Model-Fitting Approach
3.1.1. Arrhenius Model

Many researchers have applied this model to compute kinetic parameters of solid
materials [23,24]. In this model-fitting approach, f (α) can be replaced by the relation
f (α) = (1 − α)n, in which n is reaction order, Equation (5) becomes,

dα

dT
=

A
β

e−
E

RT × (1 − α)n (6)

For a specific reaction mechanism, a plot of ln[(dα/dT)/ f (α)] against 1/T should
provide a straight line and E values can be estimated from the slope (−E/R) of that line.
The linearity (R2, correlation coefficient) value could be an indication for satisfactoriness of
each function model on reaction.

3.1.2. Coats-Redfern Model

In this model, temperature integral is determined by using a asymptotic series expan-
sion. The following form of Equation (6) has been proposed by many researchers to apply
Coats–Redfern model for solid state kinetics of different lignocellulosic materials [9,10]:

ln
(

g(α)
T2

)
= ln

AR
βE

(
1 − 2

RT
E

)
− E

RT
(7)

in which g(α) implicates the mechanism function for a particular reaction model during
thermal disintegration of material, as sum up in Table 1. By comparing Equation (7)
with the expression y = mx + c. The satisfactory of each function mechanism can be
assessed through inspecting the correlation coefficient, R2 which indicates the linearity of
ln[g(a)/T2] versus 1/T plot and activation energy can be determined from the slope.

3.2. Model-Free Approach
3.2.1. Flynn–Wall–Ozawa (FWO) Method

Various integral isoconversional methods have also implied possible solution of
Equation (6) that differ in predictions of the temperature integral. The following linear
equation may be represented as the general model for most of these approximations [25]:

lnβi/TB
α,i = Const − C(Eα/RTα) (8)

where the values of parameters B and C rely on the evaluation of temperature integral.
The FWO model has been considered as the exceedingly reliable model for computation of
thermal decomposition kinetics and is given by the expression as follows [26]:

lng(α) = log AE/R − lnβ − 2.315 − 0.4567E/RT (9)

TGA data of solid material under various heating rates can be modeled using Equation (9)
and the activation energy (E) can be computed from the slope of ln(β) vs. 1/T graph for
specific conversion α.
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3.2.2. Kissinger–Akahira–Sunose (KAS) Method

The KAS method, a model-free technique, has been extensively applied for thermal
kinetics of solid fuel materials and can be primitively attained from the derivative of
Equation (5) as shown below: ∫ ∞

0

dα

f (α)
=

A
β

∫ T

0
e
−E
RT dT (10)

Let u = E/RT, then above expression becomes:∫ ∞

0

dα

f (α)
=

AE
βR

∫ ∞

x
u−2e−udu =

AE
βR

P(x) (11)

By setting g(α) =
∫ ∞

0
dα
f (α) , Equation (11) can be written as:

g(α) =
AE
βR

P(x) (12)

Numerous approximations of P(x) can be used depending upon the particular method.
The KAS approach apply the empirical correlation: P(x) = x−2e−x [21,27], which trans-
forms Equation (12) into:

ln
(

β

T2

)
= ln

(
AE

R × g(x)

)
− E

R
· 1
T

(13)

In this method, the knowledge of the conversion-dependent functions (g(α) or f (α))
is not required and it only presumes that the thermal disintegration of material follows the
same mechanism of reaction for a given conversion. For a constant α, a plot of ln

(
β/T2)

versus 1/T should render a straight line and E can be obtained from the slope. Figure 1
portrays the schematic representation for comparison of thermal kinetic modeling by
model-fitting and model-free methods as performed in the current study.
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Figure 1. Schematic representation for comparison of thermal kinetic modeling by model-fitting and model-free methods of
different lignocellulosic materials.

4. Results and Discussion
4.1. Thermal Decomposition Behavior of Lignocellulosic Fuels

Generally, thermal disintegration of lignocellulosic materials is completed in three
steps, viz. water devolatilization, hemicellulose/cellulose decomposition, and lignin de-
composition. The decomposition phenomenon of any biomass can be considered as the
superposition of these principal constituents [28,29]. The weight loss and conversion as
a function of temperature for wheat straw, bagasse, and rice husk under three different
heating rates are displayed in Figure 2, whereas Table 2 provides chemical composition
of lignocellulosic samples. Three different zones can be identified depending upon the
phenomenon occurring during the thermal degradation of biomass (see Figure 2). For
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instance, moisture evaporation takes place in zone I, whereas in zone II mainly decom-
position of hemicellulose-cellulose occurs and degradation of lignin and inorganics in
fuel accompanies in zone III. Due to its complex structure thermal degradation of lignin
overlaps with that of hemicellulose and cellulose. Thermal degradation zones of hemi-
cellulose and cellulose coincide with each other so that two different endotherms cannot
be distinguished for the cellulose and hemicellulose degradation in the DTG curve (not
shown). Maximum weight loss of the material occurs in zone II as decomposition of major
components (cellulose and hemicellulose) takes place in this region and pyrolysis rate
rises rapidly [30].
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Table 2. Proximate and carbon-sulphur analysis of lignocellulosic samples.

Bagasse Rice Husk Wheat Straw

Proximate Analysis (%) MC 7.00 7.94 6.40
VM 75.00 56.19 71.34
FC 10.00 11.75 9.67

Ash 8.00 24.13 12.59
C-S Analysis (%) C 43.55 34.35 43.50

S 0 0.28 0
MC = moisture content, FC = fixed carbon, VM = volatile matter, C = carbon, S = sulphur.

Figure 2 also describes the impact of heating rate on the thermal decomposition of
lignocellulosic materials. It could be noted from Figure 2 that an increase in heating rate
provoked the reaction field towards a higher temperature region. This behavior is due
to different residence time of fuel particles in the reactor under different heating rates.
Heating rates and residence time are inversely commensurate to each other, when heating
rate will be low enough the residence time will be high and thermal gradients sneak into the
inner core of the solid fuel particles. Although under high heating rate operations, thermal
gradients even not spread uniformly into the particle due to low residence time resulting
in less assertive peaks in DTG curve [31]. This might be the primary cause for confined
temperature range at low heating rates and broader temperature range at high heating
rates, as shown in Table 3. It is also evident from Figure 2 that reactivity of lignocellulosic
materials increases with enhancement in heating rate.

Table 3. Temperature ranges estimated for different zones of thermal degradation profiles performed at three different
heating rates.

Heating Rate 10 ◦C/min 20 ◦C/min 30 ◦C/min

Zone I II III I II III I II III

Bagasse 40–114 114–362 362–600 40–123 123–376 376–600 40–130 130–385 385–600
Rice Husk 40–119 119–365 365–560 40–128 128–374 374–568 40–147 147–387 387–576

Wheat Straw 40–117 117–355 355–561 40–127 127–365 365–589 40–140 140–374 374–698

4.2. Comparative Kinetic Analysis of Lignocellulosic Fuels

Pyrolysis kinetics of bagasse, rice husk, and wheat straw was evaluated by following
two isoconversional models and two model-fitting methods. Different reaction mecha-
nisms for both model-fitting methods were used, as listed in Table 1, to assess the best
promising reaction model having well conformity with the experimental data. Table 4
depicts the estimated activation energy (E) values from Coats–Redfern and Arrhenius
models along with the corresponding values of correlation coefficient, R2. Both models
show the analogous trend of E values for all three lignocellulosic materials. The highest
E values of 92.73 kJ/mol and 89.41 kJ/mol were observed for bagasse under Arrhenius
and Coats–Redfern models, respectively. Although rice husk exhibits lowest values of
activation energy viz. 77.18 kJ/mol (Arrhenius model) and 71.49 kJ/mol (Coats–Redfern
model). The different E values may be attributed to different composition of biomass parti-
cles as each lignocellulosic constituent possess significantly different value of activation
energy [32]. The highest value of E for bagasse may be due to its higher volatile and lower
ash contents in contrast to rice husk as shown in Table 2 [33,34]. If we compare the results
of both model-fitting techniques, fairly dissimilar values of activation energy and R2 could
be noted. On the other hand, Arrhenius model predicted that thermal disintegration of all
three lignocellulosic materials followed D2 (two-dimensional diffusion) mechanism while
Coats–Redfern model appraised that D1 (one-dimensional diffusion) could be applicable
for all fuel particles. Model-fitting methods did not furnish corresponding results with
each other, as also evident from low values of R2.
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Table 4. Comparison of activation energies (E) predicted from model-fitting methods for all three lignocellulosic materials.

Biomass
Arrhenius Model Coats Redfern Model

% Difference
Mechanism E (kJ/mol) R2 Mechanism E (kJ/mol) R2

Bagasse D2 92.73 0.92 D1 89.41 0.96 3.65
Rice husk D2 77.18 0.84 D1 71.49 0.89 7.65

Wheat straw D2 86.22 0.89 D1 85.05 0.94 1.36

In case of FWO integral isoconversional model, a graph of ln(β) vs. 1/T for specific
conversion renders a straight line with slope −E/R, while following KAS approach a
straight line plot of ln

(
β/T2) against 1/T was obtained with slope −E/R (Figure 3). The

values of E and correlation coefficient R2 calculated thereof are presented in Table 5. It
could be noted from Table 5 that the activation energy values determined from both
model-free methods exhibited trivial difference. Particularly, excellent capability of model-
free isoconversional models to better fit the experimental thermal degradation profiles
of lignocellulosic materials is vivid from R2 values, which are near to unity. Similar
output from model-free approach for different solid fuels kinetics has been reported in the
literature as well [10,35,36].
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Table 5. Comparison of E Values predicted form model-free FWO and KAS methods for all three
lignocellulosic materials.

Biomass α
FWO Model KAS Model

% Difference *
E (kJ/mol) R2 E (kJ/mol) R2

Bagasse 0.10 160.21 0.98 159.63 0.98 0.36
0.20 171.81 0.99 171.43 0.99 0.22
0.30 183.48 1.00 183.50 0.99 0.01
0.40 206.82 1.00 207.91 1.00 0.53
0.50 234.95 1.00 237.35 1.00 1.02
0.60 271.66 1.00 275.84 1.00 1.53
0.70 309.07 0.98 315.10 0.98 1.93
0.80 362.33 0.96 371.02 0.96 2.37

Rice husk 0.10 122.42 0.99 119.70 0.98 2.25
0.20 153.62 1.00 152.19 1.00 0.94
0.30 190.22 1.00 190.50 1.00 0.15
0.40 247.91 1.00 251.04 1.00 1.25
0.50 342.65 1.00 350.57 1.00 2.28
0.60 555.63 1.00 574.51 1.00 3.34
0.70 1100.40 0.99 1147.51 0.99 4.19
0.80 938.95 0.72 998.00 0.73 6.10

Wheat straw 0.10 155.04 0.97 154.28 0.96 0.49
0.20 168.28 0.99 167.93 0.98 0.21
0.30 177.89 0.99 177.87 0.99 0.01
0.40 188.17 0.99 188.54 0.99 0.20
0.50 199.99 0.99 200.84 0.98 0.42
0.60 225.45 0.98 227.51 0.97 0.91
0.70 287.77 0.89 292.95 0.88 1.78
0.80 −161.73 0.22 −180.06 0.24 10.73

* Calculated based on the formula (y1 − y2)/(y1 + y2/2) × 100.

From the result of two model-free methods, lignocellulosic materials could be devised
in succeeding order of activation energy: rice husk > bagasse > wheat straw. The muta-
tion in activation energy with conversion for different lignocellulosic fuels has also been
drawn in Figure 4. A substantial variation in the E values with the progress of thermal
disintegration of material is evident from Figure 4 and the variation is even extensive
at higher conversion. Thus, from a kinetic standpoint, it may be proposed that thermal
decomposition mechanism of lignocellulosic matrices is an intricate phenomenon which
may include unzipping de-polymerization, cis-elimination, intra and intermolecular trans-
esterification, radical or hydrolytic degradation, random scission, etc. Hence, thermal
degradation process should not be represented by a unique set of kinetic parameters for
the entire conversion span [37]. The E values estimated from both isoconversional models
were very close to each other for α < 0.6, and for fractional conversion larger than 0.6 the
percentage difference between E values becomes appreciable. Nevertheless, the likelihood
of intricate thermal degradation process does not deny the use of model-free approach, as
this approach offer kinetic parameters by employing multiple single step equations for a
specific temperature span associated with each fractional conversion [38,39]. A comparison
of average E values for the whole conversion range from both FWO and KAS models is
presented in Figure 5.
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Figure 5. Comparison of average values of activation energy (E) of lignocellulosic materials by
isoconversional methods.

It could be suggested from the results shown in Tables 4 and 5 that model-free tech-
niques are more veritable and authentic in comparison with model-fitting approach for
simulation of thermal deterioration of lignocellulosic particles. The employment of the
model-fitting methods to predict kinetics by simulating TGA usually unable to incorporate
temperature dependence of the reaction model, f (α). Consequently, virtually any f (α) can
adequately fit the experimental data at the expense of extreme deviations in the kinetic
parameters, which offsets the difference between the assumed form of f (α) and the true but
unexplored reaction model. In the literature, this compensation effect has not been clarified
completely but it was generally ascribed to the thermal lag [40,41], physicochemical, or
mathematical causes [42]. Therefore, employment of the model-fitting methods under
single heating-rate data have been reported to afford highly uncertain kinetic parameters
values [20,43,44]. Low values of R2 were obtained for simulation of TGA data by both
model-fitting methods and E values calculated form each model were also considerably
different from each other (Table 5). It was mentioned by Holstein et al. (2005) that a
particular set of experimental measurement could be fitted steadily well by numerous pairs
of kinetic parameters in model-fitting approach [45].

Conversely, both model-free methods produced fairly similar activation energy values
for an almost entire investigated conversion range. The relatively acute values of R2 offer
their immense ability to simulate the experimental TGA data. Isoconversional models
furnish to estimate alteration of activation energy with α, which indicate their capability to
undertake the occurrence of numerous homogeneous as well as heterogeneous pathways
during thermal decomposition phenomenon. Therefore, isoconversional models may be
recommended for more reliable and precise prediction of thermal disintegration kinetics of
lignocellulosic fuels.
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5. Conclusions

A comparative suitability of isoconversional and model-fitting kinetic approaches to
model experimental thermal disintegration behavior of different lignocellulosic materials
including bagasse, rice husk and wheat straw was studied. Two models from each class of
approach were chosen entailed Flynn–Wall–Ozawa (FWO) and Kissinger–Akahira–Sunose
(KAS) (model-free or isoconversional), and Arrhenius and Coat–Redfern (model-fitting).
Both model-fitting methods afforded considerably dissimilar values of activation energy
with percentage difference in the range of 1.36% to 7.65% and predicted different reaction
mechanisms for bagasse, rice husk and wheat straw. Two-dimensional diffusion (D2)
mechanism was predicted by Arrhenius model while Coats–Redfern model suggested
one dimensional diffusion (D1) for thermal degradation of all lignocellulosic materials.
Conversely, both isoconversional methods predicted the E values as a function of fractional
conversion (α) within the extent of 0 ≤ α ≥ 0.8. The values of correlation coefficient R2

were nearly unity for both isoconversional methods in contrast to model-fitting methods
with average values of E as 159.1, 176.68, and 97.05 kJ/mol by FWO and 157.62, 176.02,
and 92.54 kJ/mol by KAS method for bagasse, rice husk, and wheat straw, respectively.
Model-free isoconversional techniques may be recommended as more realistic and accurate
to model non-isothermal pyrolytic kinetics of lignocellulosic materials.
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