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Abstract—Network virtualization is intended to be a key
element of new generation networks. However, it is no clear
how the implantation of this new paradigm will affect the
power consumption of the network. To shed light on this
relatively unexplored topic, we evaluate and analyze the power
consumption of virtualized Base Station (vBS) experimentally.
In particular, we measure the power consumption associated
with uplink transmissions as a function of different variables
such as traffic load, channel quality, modulation selection, and
bandwidth. We find interesting tradeoffs between power savings
and performance and propose two linear mixed-effect models to
approximate the experimental data. These models allow us to
understand the power behavior of the vBS and select power-
efficient configurations. We release our experimental dataset
hoping to foster further efforts in this research area.

I. INTRODUCTION

Next generation mobile networks are intended to cope with
an increasing traffic load [1] coming from new demanding
applications [2]. A promising method for accommodating
these needs is network densification: deploy more base sta-
tions (BSs) in order to shrink the cell size, offer high-
throughput links to users, and reuse efficiently the wireless
spectrum [3]. This will change dramatically cellular networks,
which will comprise orders of magnitude more BSs, with
different size and technology. Indeed, nowadays there is a
fast shift from hardware-heavy BSs to smaller softwarized
BSs [4]. Prominent examples are the open-source platforms
OpenAirInterface [5] and srsLTE [6], but also propri-
etary initiatives [7]. These BSs implement their functions using
software, which offers unprecedented management flexibility
and supports their virtualization in shared hardware [8].

However, this network densification and softwarization
comes at a cost for the environment and operators’ budget. In
particular, energy consumption accounts for 15-30% percent
of network OPEX in developing markets [9], and 70% of
that is attributed to BSs [10]. It becomes thus clear that the
successful deployment of next generation networks depends
highly on being able to answer the following questions: i)
How much power do such virtualized base stations consume?
ii) What parameters affect their power consumption? iii) How
can we reduce their power costs? Some of these questions
have been asked in the past, yet previous studies do not offer
valid answers for this context due to two main reasons.

First, the BSs softwarization poses a completely new archi-
tecture. While legacy BSs operate with dedicated hardware,
the baseband units (BBU) of virtualized BS (vBSs) are im-
plemented in software that runs in general purpose proces-
sors. This raises questions about their power consumption, as
previous studies have considered totally different equipment.
Moreover, while in legacy BSs the transmission power is
a predominant power cost factor, the network densification
implies lower transmission power, hence lessening its overall
importance. In this context, the power that is consumed at the
BBU becomes a significant contributor in the overall power
budget of vBSs, which motivates our experimental work.

Second, the computational load of the BBU changes with
several parameters that affect differently the power consump-
tion. In particular, the authors in [11] show that computational
load at the BBU presents non-linear relations with the channel
quality, the modulation and coding scheme (MCS) and the
traffic load; yet it is not clear how these can affect the power
consumption. In contrast, this behavior does not appear in
legacy BSs. For instance, measurements in [12] show that
the power consumption only varies up to 3% when the traffic
intensity goes from no load to peak level.

Motivated by the above, we deploy a bespoke testbed based
on srsLTE [6] and use extensive experiments to shed light
on the relatively unexplored topic of power consumption of
virtualized base stations. We focus mainly on the CPU power
consumption at BBU, which is the main different component
from legacy BSs, and we also measure the total vBS power
(computing platform and radio). We study the uplink because
its characterization is more intricate than the downlink, i.e.,
the power-load relation is non-linear and involves 2.5 times
more computations. Also, the uplink is significant in today’s
networks where uploading user-generated content is common1.

We first study how the SNR and airtime (or duty cycle)
affect the CPU power consumption. We observe linear rela-
tions between the consumed power and these parameters; and
propose a statistical model based on our measurements that are
collected in real-time and for various system configurations.
Previous works analyzed the impact of traffic on power, but
there are no studies regarding the SNR or airtime. We find,

1For instance, live streaming communications (e.g., YouTube Live), con-
tent uploading in video platforms, and data exchange in social networking
platforms.
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interestingly, that different combinations of SNR and airtime
lead to the same throughput yet, different power consumption;
this creates room for power-aware vBS configurations, and we
provide several examples.

Going a step further, we explore how the MCS selection
affects the CPU power; and we discover a tradeoff between
throughput and power consumption. We identify non-linear
relation between the MCS and the parameters studied above
(SNR and airtime). The reason behind this is that when SNR
decreases, more computational resources are needed to decode
the signal – as we measure in a set of experiments here. Based
on these results, we propose a holistic power consumption
model as a function of SNR, airtime, and MCS. This model
can be used to design a power-efficient (at the expense of
throughput) or throughput-efficient (at the expense of power)
MSC radio scheduler; and we demonstrate this by modifying
the srsLTE scheduler and measuring its performance.

We measure and compare the CPU power with the total
power consumption. We find that indeed, the processing
accounts for up to 50% of the total power. We also assess
different computing platforms, ranging from small units (such
as in small vBSs) to larger servers (as in cloud-RAN type
of architectures), and also for different bandwidths. We see
that our models are qualitatively robust, but naturally require
adjustments in their coefficients when the systems are sub-
stantially different. And, finally, we create a fully documented
experimental dataset available to the community [13].

II. RELATED WORK

Legacy BS Power Consumption Models. Previous works
proposed power consumption models for legacy BSs [14]–
[20]. These models capture mainly the effect of power ampli-
fier, RF output, baseband processing, and losses; while fewer
include factors for microwave link, number of sectors, and
transceivers. The work [14] proposed the seminal EARTH
model which maps the RF output power to the total supplied
power of a BS; and [15] integrated the transmission bandwidth
in that model. The works [16], [17] proposed power models
for macro and micro BSs, specifically, and [18] studied how
the packet length affects the CPU power consumption. Power
measurements of legacy BSs (GSM and UMTS) of daily
traffic patterns are shown in [19]. A more detailed, non-linear,
power consumption model w.r.t. the different BS components
is presented in [20]. These models are related to downlink
transmissions and hardware BSs. Although for those devices
the transmission power is a predominant power contributor,
for the new generation of small form-factor vBSs other pa-
rameters are equally important. For example, 40% of power
consumption in femtocells is due to baseband processing [14].
Hence, it is imperative to revisit the models and enrich them
with factors that affect the processing (such as the SNR).

Consumption Model for vBS Power. A computational-
aware power consumption model for vBSs is presented in [21].
It suggests that the EARTH model cannot be generalized
for vBSs because it does not cater for the vBSs computing
intricacies. The authors propose a theoretical model of CPU

Virtual BS

Computing 
Platform

BBU RRH

GW-INSTEK GPM-8213

USRP B210

GPM-001

USB3.0

Power Supply
Cable

Measurement
Cables

Fig. 1: Connection scheme of the vBS and the power meter.
The vBS comprises an RRH (Ettus Research USRP B210) and
a computing platform with a general purpose CPU. The RRH is
connected to the platform using a USB3.0 and is fed through it. The
power supply cable of the BBU is connected to GPM-001 measuring
adapter, which feeds the BBU and enables the power meter GPM-
8213 to measure its power consumption. The UE comprises another
USRP B210 and a computing platform (not shown).

power consumption as a function of the active CPU cores,
clock speed, and load. It assumes a linear relation of data rate
with the computational load, and hence with the consumed
power. Although we have assessed this linearity for a general
case in our work, we have also found configurations where
this relation is not linear. In fact, we show later that the same
data rate can be achieved with different power consumption,
depending on the configuration of other variables. This non-
linear relation is also shown in [11].

Baseband Processing Time & Complexity. Other works
have studied the effect of MCS, bandwidth, and SNR on the
computational load at the BBU [11], [22], [23]. An OpenAir-
Interface (OAI) based framework to pool compute resources
of multiple BSs is presented in [22]. Measurement results
show processing time to be linear with MCS and bandwidth,
and uplink processing load to be 2.5 times higher than the
downlink, due to turbo decoding. In [23] an OAI simulator is
used to model uplink and downlink baseband processing time
for different MCS, bandwidth, and virtualization platforms.
A computing complexity analysis in cloud based radio access
networks for centralized baseband processing of uplink signals
is presented in [11]. These works characterize properly the
BBU computation needs; however, the relation between the
computing load and power consumption is not clear and needs
to be measured and modeled.

III. POWER MEASUREMENT TESTBED

Testbed architecture. Our testbed is depicted in Fig. 1 and
comprises the virtual base station (vBS), the user equipment
(UE), and a digital power meter. The vBS consists of the Re-
mote Radio Head (RRH) for which we use the Ettus Research
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USRP B2102, and the baseband unit (BBU) implemented in
a computing platform. In order to evaluate the impact of
hardware, we use two small factor PCs (Intel NUCs) and also
two servers (see Table I). The RRH and BBU are connected
through a USB3.0 cable, which means that the RRH is fully
fed by the BBU (no external power supply). For the UE, we
also use an Ettus Research USRP B210 and a general purpose
computing platform. The vBS and UE are directly connected
using SMA cables with 20dB RF attenuators. We use the
power meter GW-Instek GPM-8213 along with the GW-Instek
Measuring adapter GPM-001. From the available open-source
4G LTE stack, we consider srsLTE because as compared to
OpenAirInterface it provides considerable gains in terms
of CPU execution time, memory requirements, and stability for
higher bandwidth [24]. We use the version 19.12 of srsLTE
and Ubuntu 18.04 in all computing platforms.

Power measurements. We measure the vBS power con-
sumption via software and hardware. For the former, we use
the Intel’s Running Average Power Limit (RAPL) functionality
integrated into the Linux kernel to measure the CPU power.
RAPL provides several counters indicating power consumption
information using software power models. These models esti-
mate the power consumption by using hardware performance
counters and I/O models. Some works have assessed the
accuracy of RAPL measurements showing that, in most cases,
they match the actual power values [25]–[27]. We obtain the
RAPL measurements using the Linux program turbostat.
We also measure the vBS power via hardware with the GPM-
8213 meter connected as explained above. Note that, when we
measure the power via software, we are only considering the
CPU power. On the other hand, the measurement via hardware
includes the power of the entire platform (CPU, motherboard,
RAM memory, etc.) plus the radio part, since the RRH is fed
through the USB3.0 cable connected to BBU.

Experimental procedure. For the generation of our dataset
[13], we set the configuration of the vBS and UE for a time
period of 1 minute. We take samples of power consumption
continuously via software and hardware during this period,
and compute their average and variance. For each sample in
our dataset, we configure the bandwidth, Transmission Mode
(TM), uplink traffic load, transmission gain at the UE (which
directly impacts the SNR), Modulation and Coding Scheme
(MCS) and Airtime. The traffic load is generated using mgen3.

We use a customized version of srsLTE with which we
change the MCS and airtime through a TCP socket on the fly.
The vanilla srsLTE version only allows to change the MCS
on the configuration file (needs restarting the vBS) and the
airtime configuration is not supported. Our customized version
also includes another TCP socket to get the performance
of the vBS on the fly using JSON format. A Python script
selects the radio configuration and gathers the measurements
in a centralized way. The measurements of the power meter
are also gathered from Python using the SCPI (Standard

2https://kb.ettus.com/B200/B210/B200mini/B205mini.
3https://www.nrl.navy.mil/itd/ncs/products/mgen.

Alias Commercial name CPU
NUC1 BOXNUC8I7BEH i7-8559U @ 2.70GHz
NUC2 NUC7i7DNHE i7-8650U @ 1.90GHz
Server1 Dell XPS 8900 Series i7-6700 @ 3.40GHz
Server2 Dell Alienware Aurora R5 i7-9700 @ 3.00GHz

TABLE I: Computing platforms considered in the experimental
evaluation. All the CPUs have been manufactured by Intel.

Fig. 2: (a) Power consumption in the processor as a function of the
SNR for different values of airtime. The dotted values represents the
experimental values and the full lines are given by our model defined
in Eq. (1). (b) Percentage of the maximum throughput as a function
of the airtime and SNR.

Commands for Programmable Instruments) interface through
USB2.0. Finally, unless otherwise stated, the experimental data
of the figures shown in the paper corresponds to the device
NUC1 configured with a bandwidth of 10MHz.

IV. IMPACT OF SNR AND AIRTIME ON POWER

In this section, we propose the first model which gives us
the power consumption of the Uplink in a vBS as a function
of the SNR and airtime. We can easily compute the airtime
from the traffic demand and MCS. Namely, the airtime is the
percentage of subframes needed to support the traffic given
the instant data rate4. For this model, we use the default radio
scheduler of srsLTE, which selects the MCS for each given
measured channel quality.

Fig. 2a shows the measurements of the CPU power con-
sumption (scattered dots). We observe that the power con-
sumption grows linearly with SNR. This is because higher
SNR allows the use of higher MCS, which in turn induces
more decoding computational load [11]. Recall that the map-
ping of SNR to MCS is performed by the srsLTE scheduler.
We also observe that after a certain SNR value (approx.
28 dBs) the power remains constant. The reason is that no
higher MCSs are selected after this point, and therefore the
computational load is not further increased. Fig. 2a also shows
the power consumption for different airtime values. Reducing
the airtime not only implies the reduction of the constant
values of the curves (the consumed power for the highest SNR)
but also of the curves’ slope.

Based on the behavior we have observed in the experiments,
we propose a linear mixed-effect model [28] that can capture

4For example, if the instant data rate is 20 Mbps and the traffic demand is
15 Mbps, the airtime is a = 0.75.
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the power consumption as a function of SNR and airtime.
First, we denote c ∈ R+ as the SNR in dBs and a ∈ [0, 1]
as the airtime, where a = 1 indicates that all subframes are
used, and a = 0 indicates zero throughput. The CPU power
consumption P is given by:

P (a, c) =

{
P0(a)− r(a) · (γ0 − c) if c < γ0

P0(a) otherwise
(1)

where P0(a) and r(a) are the maximum power for a fixed
airtime value and slope of the power consumption curve,
respectively, which are defined as follows:

P0(a) = γ1 + γ2 · a, r(a) = γ3 + γ4 · a. (2)

Fig. 2a shows the model (full lines). The values of γ =
(γ0, . . . , γ4) vary depending on several factors such as the
bandwidth and computing platform, and are obtained using
the Least Squares Method (LSM) in our dataset. The values of
γ for different computing platforms and different bandwidths
can be computed using the dataset and the source code we
made publicly available [13].

Fig. 2b shows the joint impact of airtime and SNR on
throughput. We observe that, while the throughput decreases
linearly with the airtime (y-axis), on the x-axis it depends on
the MCS assigned to each SNR value. Although the same
throughput can be achieved by using different combinations
of SNR and airtime as Fig. 2b shows, higher SNR and lower
airtime will always reduce the power consumption of the vBS
in this setting. However, achieving a high SNR can be costly
in terms of energy for the UE in some cases (increase of its
uplink transmission power). Therefore, the UE may decide
to reduce its transmission power to save energy. This decision
will imply an increment of the power consumed by the vBS, as
our experiments show. Our detailed models can be used to fine-
tune all these parameters to achieve the selected performance
in terms of power consumption at the vBS, throughput, and
energy costs at user devices. As our experiments reveal, there
are several non-trivial tradeoffs in this setting.

V. IMPACT OF MCS RADIO SCHEDULER ON POWER

In the previous section, we studied the impact of SNR and
traffic load on power consumption. However, these findings
were conditioned on the scheduler used by srsLTE, which
implements a certain rule for selecting the MCS based on the
measured channel quality. If one can redesign the scheduler,
which indeed is possible in open-source platforms, there are
new opportunities for optimizing power consumption. To the
best of our knowledge, this is the first work that experimentally
evaluates the effect of MCS selection on power.

The default scheduler of srsLTE decides the MCS of
each user based on its channel quality and depends on: i)
the computation of the Channel Quality Indicator (CQI), and
ii) the mapping between CQI and the maximum coderate.
While the latter is standardized ( [29], Table 7.2.3-1), the CQI
computation is not defined in the specification, nor it is clear
which factor should be involved on that. srsLTE, implements

Fig. 3: Turbo decoder iterations and decoding time as a function of
the SNR for different MCS values.

the mapping SNR to CQI from [30], and this aspect is open
to new implementations. For that reason, we propose a new
power consumption model including the MCS as a configuring
variable, making this model suitable for any specific scheduler.

However, not all MCSs are feasible for any SNR value. The
higher the MCS the less noise is tolerable during decoding. In
addition, the computational load of decoding increases when
the SNR is reduced. This is because the turbodecoder in
the BBU needs more iterations for lower SNR values, which
implies higher decoding time. We have done a separate series
of experiments to measure this effect, presented in Fig. 3a-3b,
which are in line with previous works, e.g., [11].

As we saw in the previous section, the power consumption
depends on the airtime and the MCS selected by the radio
scheduler. Now, we observe in Fig.3b that for each MCS
m ∈ Z there is an SNR cth(m) below which the computational
load starts increasing. This has a direct impact on power
consumption. Furthermore, we model the slope of the power
consumption increase with r(a,m) since we observe in our
data that it depends on the MCS and airtime. Based on these
facts, we propose the following mixed-effect model:

P (a, c,m)=

{
P0(a,m)+r(a,m) · c if cmin(m)<c<cth(m)

P0(a,m) if c>cth(m)
(3)

where a is the airtime and c the SNR, and we define:

P0(a,m)=β0+β1 ·a+β2 ·m+β3 ·a2+β4 ·m2+β5 ·a·m (4)

r(a,m) = β6 + β7 · a+ β8 ·m (5)
cmin(m) = β9 + β10 ·m (6)
cth(m) = β11 + β12 ·m. (7)

The power P (a, c,m) is not defined for c < cmin(m) since
for these points the combination of m and c is not feasible.
Similarly to Sec. IV, the value of β = (β0, . . . , β12) is fitted
using LSM and depends on the computing platform and radio
bandwidth (discussed in Sec. VI).

Fig. 4a shows the CPU power consumption as a function
of SNR and MCS, for airtime a = 1 (full buffer). The scatter
points correspond to our measurements and the full lines are
given by Eq. 3. We have also included the power consumption
of the default srsLTE scheduler (modeled in the previous
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Fig. 4: (a) Power consumption in the processor as a function of
the SNR for different MCSs and airtime equals 1. The dotted values
represent the experimental values and the full lines are given by our
model. In black, we show the power consumption of given by the
model in the previous section, in which the MCS configuration is
given. (b) Percentage of the maximum throughput as a function of
the MCS and SNR for airtime equals 1. In brown, we show the MCS
assignment of srsLTE default scheduler.

section) for comparison. Fig. 4b depicts the throughput as a
function of SNR and MCS for full buffer. The zero values
in the upper left corner indicate the unfeasible combinations
of SNR and MCS, i.e., points at which the SNR is not high
enough to decode a specific MCS (decoding error). The brown
line indicates the MCS values selected by the default srsLTE
scheduler for a given SNR. We observe in Fig. 4a-4b a tradeoff
between power and throughput. For instance, in Fig. 4a and
for SNR c= 25 dB, the srsLTE scheduler consumes 4.85W,
while if we select MCS m = 23 the consumption is 5.12W
(11.2% power increase). Fig. 4a shows the impact of these
decisions on throughput that can be increased by 76.1% when
we select the maximum MCS value instead the default one.

Fig. 5a shows the dependency of power consumption on the
airtime for two MCS values. We observe that the minimum
feasible value of SNR for each MCS (cmin(m) in our model)
and the inflection point from which the power starts increasing
(cth(m) in our model) do not depend on airtime. This is
captured in Eq. (6)-(7). Moreover, as we mentioned in the
previous section, the airtime has a direct impact on power.

Fig. 5b depicts the effect of airtime on the throughput
for two selected MCS values. The markers in this figure
indicate two configurations with similar throughput. These two
configurations are also marked in Fig. 5a in which we can
observe that, although achieving the same throughput, there
is a small difference in power consumption. This is more
prevalent when the difference between the MCSs is larger.
This indicates that, when the channel quality is good, the
use of higher MCSs is more efficient in terms of power.
However, if the SNR is reduced to 15 dBs (following the
same example), this changes, i.e., the configuration with the
lower MCS consumes less power with the same throughput.
This shows again the non-linear relation between the SNR and
power consumed at the BBU, which can be properly exploited
based on the network’s priorities for performance or costs.

Fig. 5: (a) Power consumption in the processor as a function of the
SNR for different MCS and airtime values. (b) Percentage of the
maximum throughput as a function of the airtime and SNR for the
selected MCSs.

VI. COMPUTING PLATFORM EVALUATION

In Sec. IV we proposed a model for the power consumption
of the uplink as a function of SNR and airtime, which was
extended in Sec. V to include the radio configuration (MCS).
Our experiments show that both the CPU power and the total
power follow the patterns shown in Fig. 2a-4a. The reason
is that we are evaluating the uplink which is very computa-
tionally intensive. Only control signals are sent through the
downlink in our experiments and therefore the transmission
power has a reduced impact on the overall power. This means
that the proposed power consumption model can approximate
CPU and total power by selecting the proper values of γ (first
model) and β (second model) for each case.

Moreover, the power consumption exhibits qualitatively the
same behavior for all computing platforms and bandwidths.
However, since we are using general purpose processors the
power will change depending on the energy requirements of
each CPU, its architecture, etc. As an example, for NUC1
and bandwidth 10 MHz we have γ =(27.49, 3.355, 0.522,
-0.0011, 0.0414), β =(3.324, 0.731, -0.008, -0.024, 0.00037,
0.039, 0.753, -0.822, 0.005, 0.097, -0.00034) for the power
consumed by the CPU and γ =(26.83, 10.5, 0.85, -0.001,
0.072), β =(10.51,1.296,-0.011, -0.184,0.00053,0.0613, -
0.5063, 0.93,0.027,0.136, -0.0017) for the total power of the
vBS. The values of these parameters for all the computing
platforms in Table I and for several bandwidths can be easily
computed using the code provided along with our dataset [13].

Fig. 6 shows the total power consumption and the power
consumption of the CPU for 4 computing platforms and 3
bandwidth values when the vBS is operating with full buffer
and high SNR. We consider two architectures: i) two small
factor PCs (NUCs) with expected reduced power consumption
and diverse processors with different energy requirements, and
ii) two general purpose servers.

First, we observe that power consumption increases up to
460.86% when we change from a small factor PC to a general
purpose server. Second, the selection of the bandwidth of
the vBS is the paramount importance and should be selected
accordingly to the network requirements to avoid not only
the waste of energy but also the inefficient use of the radio
resources. We see an increase of 20.27% on average when we
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Fig. 6: Comparison of power consumption for 3 bandwidths and
several computing platforms, using high SNR and full buffer.

change from 3 MHz to 10 MHz. Third, even using a platform
with the same form-factor we find important differences in
the CPU and total power consumption, e.g., NUC2 consumes
86.93% more than NUC1 on average. Finally, we observe that
the portion of the power consumed by the CPU with respect to
the total power is very remarkable and goes between 28.96%
and 49.69%.

VII. CONCLUSIONS

We studied experimentally the power consumption in virtu-
alized base stations. We built a testbed to measure the power
consumption in real time, using srsLTE, a general purpose
computing platform for the BBU, and a USRP for the RRH.
We focus on the less explored uplink power consumption
problem because its characterization is more challenging than
the downlink since it presents non-linear relation between the
load and resource usage. We first measure the power as a
function of SNR and airtime. We observe (and measure) that
the power increases with the SNR, since higher MCSs are
used with more favorable channels, which in turn induce more
computational load. We identify a tradeoff between the power
consumption of the UE and vBS. The UE can save energy by
reducing the transmission power. However, this will worsen
the SNR increasing the power consumption of the vBS.

Second, we evaluate the power consumption as a function
of the MCS. In that case, we find non-linear relations between
the SNR and the power consumption. The reason is that
when the channel quality deteriorates, the received signal is
more noise and the turbo decoder in the BBU needs more
iterations to decode the signal. This implies an increase in
the decoding time and therefore of the power consumption.
We observe that, for a certain objective throughput, we can
find different configurations with different power consumption.
That is, when the channel quality is favorable configurations
with higher MCS and lower airtime can reduce the consumed
power. In contrast, for lower SNR values it is more efficient
in terms of energy to use lower MCSs and higher airtime.

Finally, we propose two linear mixed-effect models to
approximate our experimental data with which characterize
several computing platforms with different energy require-
ments. We release our experimental dataset hoping to foster
further efforts in this research area.
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