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Abstract: We study a boundary value problem for nonlinear partial differential equations of the
hyperbolic type on the plain in a domain with a complex boundary. To find the missing data for the
given boundary constraints, we solve a supplementary nonlinear problem. For the approximation of
solutions, one constructive method is built.

Keywords: nonlinear wave equation; two–sided method; boundary value problem with prehistory;
“free” curves

1. Introduction

The study of processes of a different nature (e.g., gas sorption, drying by the air flow,
pipes heating by a stream of hot water, etc.) often leads to boundary value problems
(for short, BVPs) for nonlinear differential equations of the hyperbolic type on the plane,
defined in the domains with a complex structure of the boundary. The general problem
setting of such BVPs was first introduced by Collatz (see discussions in [1]). The author
suggests splitting the given domain D by characteristics onto subdomains Di, i ∈ N and
the consecutive solution of the classical Cauchy, Darboux, and Gaursat problems on each of
these subdomains. Since it is not possible to find the exact solution of the given nonlinear
problem, every following BVP will contain errors in their outcome data. At the same time,
it is unknown how these errors will influence the end result. This leads to the significant
disadvantage of the approach, suggested by Collatz.

On the other hand, there are some recent results, devoted to constructive methods of
investigation and approximate solution of such BVPs with continuous and discontinuous
right-hand sides in the nonlinear differential equations (see discussions in [2–6]). In these
papers, the studied problem is reduced to the equivalent system of nonlinear integral
equations. It allows us to approximately solve the system by the constructed iterative
methods, where at every iteration step, one gets a solution of the studied BVP in the given
domain with a pre-defined precision. This eliminates the aforementioned disadvantage of
Collatz’s approach.

Note that in [2–6], the authors studied problems where the initial data (i.e., the
boundary conditions) are known. However, there are processes dependent on prehistory,
which means that in the mathematical model, not all of the income data are defined. In this
case, one has to investigate an additional BVP describing this prehistory. A classical
example of such problems can be the mathematical model describing exploitation of the
already used respirator. Even though the model of the previous usage of the respirator is
given, the gas concentration in the sorbent (due to its exploitation) is unknown, and thus,
is defined as a prehistory.
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To our best knowledge, these types of problems are not studied in the literature. This
explains the motivation of our research, of which results we present in the current paper.

2. Problem Setting

On the phase plain xOt, let us define a domain D = D1 ∪ D2 ∪ D3 (see Figure 1), where

D1 = {(t, x)| x ∈ (x1, x2], t ∈ (g1(x), t1]},

D2 = {(t, x)| x ∈ [x0, x1], t ∈ (g2(x), t2)},

D3 = {(t, x)| x ∈ (x1, x2], t ∈ (t1, t2]},

t = gi(x) if x = ki(t), i = 1, 2 are the “free” curves and

g′1(x) > 0, g′2(x) < 0,

g1(xi) = ti−1, g2(xj) = t2−j,

for j = 0, 1, x0 < x1 < x2, t0 < t1 < t2.

Figure 1. Domain D = D1 ∪ D2 ∪ D3.

Problem 1. In the space of functions

C∗(D2 ∪ D3) := C(1.1)(D2 ∪ D3) ∩ C(D2 ∪ D3)

find the solution of the wave equation

L(1.1)
ai u(t, x) = f (t, x, u(t, x)) := f [u(t, x)], (1)

L(1.1)
ai u(t, x) := D(1.1)u(t, x) + a1(t, x)D(0.1)u(t, x) + a2(t, x)D(1.0)u(t, x), (2)

which satisfies the conditions:

u(g2(x), x) = ψ2(x), u(t2, x) = ϕ(x), x ∈ [x0, x1], (3)

u(t1, x) = v(t1, x), x ∈ [x1, x2]. (4)
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Here, function v(t, x) ∈ C∗(D1) is a solution of the differential equation

L(1.1)
bi

v(t, x) = ω(t, x, v(t, x)) := ω[v(t, x)], (5)

satisfying constraints:
v(t, x1) = µ(t), t ∈ [g1(x), t1],

v(g1(x), x) = ψ1(x), x ∈ [x1, x2].
(6)

Moreover, for the aforementioned problems conditions, we hold:

ψ2(x0) = ϕ(x0), ψ2(x1) = µ(t1), µ(t0) = ψ1(x1). (7)

From here on, we assume that

f [u(t, x)] ∈ C(B2,2), f : B2,2 → R,

B2,2 ⊂ R3, ΠpxOtB2,2 = D2 ∪ D3 := D4,

ω[v(t, x)] ∈ C(B1,2), ω : B1,2 → R,

B1,2 ⊂ R3, ΠpxOtB1,2 = D1,

a1(t, x) ∈ C(0.1)(D4), a2(t, x) ∈ C(1.0)(D4),

b1(t, x) ∈ C(0.1)(D1), b2(t, x) ∈ C(1.0)(D1).

In addition, let equalities

D(0.1)a1(t, x) = D(1.0)a2(t, x), (t, x) ∈ D4,
D(0.1)b1(t, x) = D(1.0)b2(t, x), (t, x) ∈ D1,

(8)

hold, and the given functions ϕ(x), ψ2(x), ψ1(x) and µ(t) are such that

ϕ(x), ψ2(x) ∈ C1(x0, x1),

ψ1(x) ∈ C1(x1, x2),

µ(t) ∈ C1(t0, t1).

Note that the solution of the BVP (1)–(4), (7) u(t, x) = us(t, x) , (t, x) ∈ Ds, s = 2, 3,
where u2(t, x) is a solution of the Darboux problem (1), (3) for (t, x) ∈ D2 and u3(t, x) is a
solution of the Goursat problem for the differential Equation (1) with restrictions on the
characteristics t = t1 and x = x1 given by

u3(t1, x) = v(t1, x), x ∈ [x1, x2],

u3(t, x1) = u2(t, x1), t ∈ [t1, t2].
(9)

Furthermore, due to condition (7), an equality

v(t1, x1) = u2(t1, x1)

is true.

3. Auxiliary Statements

It is easy to show that the lemma holds.

Lemma 1. Let
f [u(t, x)] ∈ C(B2,2),

ω[v(t, x)] ∈ C(B1,2),
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a1(t, x) ∈ C(0.1)(D4), a2(t, x) ∈ C(1.0)(D4),

b1(t, x) ∈ C(0.1)(D1), b2(t, x) ∈ C(1.0)(D1)

and condition (8) hold.
Then, the BVP (1)–(7) is equivalent to the following system of integral equations

us(t, x) = Φs(t, x) + εs{T1,3F1[u1(η, ξ)] + T2,3F2[u2(η, ξ)]}
+ TsFs[us(η, ξ)], (t, x) ∈ Ds, s = 1, 2, 3, ε1 = ε2 = 0, ε3 = 1, (10)

where
v(t, x) := u1(t, x),

F1[u1(t, x)] := ω[u1(t, x)] +
[

D(1.0)b2(t, x) + b1(t, x)b2(t, x)
]
u1(t, x),

Φ1(t, x) := µ(t)exp
(∫ x1

x
b2(t, ξ)dξ

)
+

[
ψ1(x)− µ(g1(x))exp

(∫ x1

x
b2(g1(x), ξ)dξ

)]
exp
(∫ g1(x)

t
b1(η, x)dη

)
,

T1F1[u1(η, ξ)] :=
∫ x

x1

∫ t

g1(x)
F1[u1(η, ξ)]K1(x, t; ξ, η)dηdξ,

K1(x, t; ξ, η) := exp
(∫ η

t
b1(τ, x)dτ +

∫ ξ

x
b2(η, ζ)dζ

)
,

Φ2(t, x) := ϕ(x)exp
(∫ t2

t
a1(η, x)dη

)
+

[
ψ2(k2(t))− ϕ(k2(t))exp

(∫ t2

t
a1(η, k2(t))dη

)]
exp
(∫ k2(t)

x
a2(t, ξ)dξ

)
,

K(x, t; ξ, η) := exp
(∫ ξ

x
a2(η, ζ)dζ +

∫ η

t
a1(τ, x)dτ

)
,

Fs[us(t, x)] := f [us(t, x)] +
[

D(0.1)a1(t, x) + a1(t, x)a2(t, x)
]
us(t, x),

(t, x) ∈ Ds, s = 2, 3,

T2F2[u2(η, ξ)] :=
∫ t

t2

∫ x

k2(t)
K(x, t; ξ, η)F[u2(ξ, η)]dξdη,

Φ3(t, x) :=
[

ψ2(k2(t))− ϕ(k2(t))exp
(∫ t2

t
a1(η, k2(t))dη

)]
exp
(∫ k2(t)

x
a2(t, ξ)dξ

)
+

[
ϕ(x1)exp

(∫ t2

t1

a1(η, x1)dη

)
− ψ2(x1)

]
K(x, t; x1, t1)

+µ(t1)exp
(∫ x1

x
b2(t1, ξ)dξ +

∫ t1

t
a1(η, x)dη

)
+

[
ψ1(x)− µ(g1(x))exp

(∫ x1

x
b2(g1(x), ξ)dξ

)]
exp
(∫ g1(x)

t1

b1(η, x)dη +
∫ t1

t
a1(η, x)dη

)
,

T3F3[u3(η, ξ)] :=
∫ t

t1

∫ x

x1

K(x, t; ξ, η)F3[u3(η, ξ)]dξdη,

T1,3F1[u1(η, ξ)] :=
∫ x

x1

∫ t1

g1(x)
F1[u1(η, ξ)]K1(x, t1; ξ, η)dηdξexp

(∫ t1

t
a1(η, x)dη

)
,

T2,3F2[u2(η, ξ)] :=
∫ t

t2

∫ x1

k2(t)
K(x, t; ξ, η)F2[u2(η, ξ)]dξdη.
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Note, that from conditions (9) follows that an inequality

D(1.0)[u2(t, x1)− u3(t, x1)] = 0

is true. But

D(0.1)[u2(t, x1)− u3(t, x1)]

=
[

D(0.1)u2(t1, x1)− u1(t1, x1)
]
exp
(∫ t1

t
a1(η, x1)dη

)
:= ρ(t). (11)

Thus, a lemma holds.

Lemma 2. Let conditions of Lemma 1 hold and the BVP (1)–(7) has a solution.
Then it is defined on the space C∗(D4) (i.e., it is regular), if

D(0.1)[u2(t1, x1)− u1(t1, x1)] = 0.

Otherwise, based on (11), ρ(t) 6= 0 and solution of the problem (1)–(7) is irregular.

4. Constructive Method of Investigation and Approximation of Solutions

Let us establish sufficient conditions of the existence and uniqueness of the solution of
the system of integral Equation (10). For this purpose, let us introduce a space of functions
C2(Bs).

Definition 1. We say that functions

Fs[us(t, x)] ∈ C2(Bs), Fs : Bs → R,

Bs ⊂ R3, ΠpxOtBs = Ds, s = 1, 2, 3,

if they satisfy conditions [7]:

1. Fs[us(t, x)] ∈ C(Bs), s = 1, 2, 3;
2. in the space of functions C(Bs,1), Bs,1 ⊂ R4, ΠpxOtBs,1 = Ds, s = 1, 2, 3 there exist

functions Hs(t, x, us(t, x); vs(t, x)) ≡ Hs[us(t, x); vs(t, x)], such that:

• Hs[us[t, x); us(t, x)] ≡ Fs[us(t, x)];
• for any pair of continuous functions us(t, x), vs(t, x) ∈ Bs,1 satisfying condition

us(t, x) ≥ vs(t, x), (t, x) ∈ Ds, in the domain Bs,1 the inequalities

Hs[us[t, x); vs(t, x)]− Hs[vs[t, x); us(t, x)] ≥ 0, (12)

hold;
• functions Hs[us[t, x); vs(t, x)] in the domain Bs,1 satisfy the Lipschitz condition, that

is, for any two arbitrary pairs of continuous functions us,r(t, x), vs,r(t, x) ∈ Bs,1,
r = 1, 2 conditions are true:

|Hs[us,1(t, x); us,2(t, x)]− Hs[vs,1(t, x); vs,2(t, x)]|
≤ Ls(|Ws,1(t, x)|+ |Ws,2(t, x)|),

where Ws,r(t, x) = us,r(t, x)− vs,r(t, x), r = 1, 2 and Ls are the Lipschitz constants,
s = 1, 2, 3.

Remark 1. It is easy to prove that if functions Fs[us(t, x)] ∈ C(Bs) have the bounded first-order
partial derivatives with respect to us(t, x), then they always belong to the space C2(Bs), s = 1, 2, 3.
An inverse statement is not true.
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Assume that functions zs,p(t, x), vs,p(t, x) ∈ C(Ds) correspondingly belong to the
domains Bs,1, for all s = 1, 2, 3 and p ∈ N0 := N∪ {0}.

Additionally, let us introduce the following notations:

Ws,p(t, x) := zs,p(t, x)− vs,p(t, x), (t, x) ∈ Ds, p ∈ N0, s = 1, 2, 3,

f p
s (t, x) := Hs[zs,p(t, x); vs,p(t, x)],

fs,p(t, x) := Hs[vs,p(t, x); zs,p(t, x)],
s = 1, 3,

f p
2 (t, x) := H2[v2,p(t, x); z2,p(t, x)],

f2,p(t, x) := H2[z2,p(t, x); v2,p(t, x)],

Rp
s (t, x) := Φs(t, x) + εs

{
T1,3 f p

1 (η, ξ) + T2,3 f p
2 (η, ξ)

}
+ Ts f p

s (η, ξ),
Rs,p(t, x) := Φs(t, x) + εs

{
T1,3 f1,p(η, ξ) + T2,3 f2,p(η, ξ)

}
+ Ts fs,p(η, ξ),

αs,p(t, x) := zs,p(t, x)− Rp
s (t, x),

βs,p(t, x) := vs,p(t, x)− Rs,p(t, x),
(13)

zs,p(t, x) := zs,p(t, x)− qs,p(t, x)Ws,p(t, x),
vs,p(t, x) := vs,p(t, x) + cs,p(t, x)Ws,p(t, x),

p ∈ N0,

Fp
s (t, x) := Hs[zs,p(t, x); vs,p(t, x)],

Fs,p(t, x) := Hs[vs,p(t, x); zs,p(t, x)],
s = 1, 3,

Fp
2 (t, x) := H2[v2,p(t, x); z2,p(t, x)],

F2,p(t, x) := H2[z2,p(t, x); v2,p(t, x)],

Rp
s (t, x) := Rp

s (t, x)
∣∣∣ f p

s (t,x)=Fp
s (t,x)

,

Rs,p(t, x) := Rs,p(t, x)
∣∣∣ fs,p(t,x)=Fs,p(t,x) ,

(14)

where qs,p(t, x) and cs,p(t, x) are arbitrary functions from the space C(Ds) that satisfy
conditions:

0 ≤ qs,p(t, x) ≤ 0.5,
0 ≤ cs,p(t, x) ≤ 0.5,

p ∈ N0, (t, x) ∈ Ds. (15)

Let us construct sequences of functions {zs,p(t, x)} and {vs,p(t, x)} in the form [7,8]:

zs,p+1(t, x) = Rp
s (t, x),

vs,p+1(t, x) = Rs,p(t, x),
p ∈ N0, (t, x) ∈ Ds, s = 1, 2, 3. (16)

As a zero approximation, we take arbitrary functions zs,0(t, x), vs,0(t, x) ∈ Bs,1 from
the space C(Ds), such that for (t, x) ∈ Ds, the inequalities

Ws,0(t, x) ≥ 0, αs,0(t, x) ≥ 0, βs,0(t, x) ≤ 0, (t, x) ∈ Ds, s = 1, 2, 3 (17)

hold.

Definition 2. Functions zs,0(t, x), vs,0(t, x) ∈ C(Ds) that belong to the domain Bs,1 and satisfy
conditions (17) are called the comparison functions of the BVP (1)–(7).

From (13), (14), (16), we have:

zs,p(t, x)− zs,p+1(t, x) = αs,p(t, x) + Rp
s (t, x)− Rp

s (t, x),
vs,p(t, x)− vs,p+1(t, x) = βs,p(t, x) + Rs,p(t, x)− Rs,p(t, x),

(18)

Ws,p+1(t, x) = Rp
s (t, x)− Rs,p(t, x), p ∈ N0, (t, x) ∈ Ds, s = 1, 2, 3, (19)
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αs,p+1(t, x) = Rp
s (t, x)− Rp+1

s (t, x),
βs,p+1(t, x) = Rs,p(t, x)− Rs,p+1(t, x), (t, x) ∈ Ds.

(20)

Let us emphasize that due to (15), an estimate is true:

vs,0(t, x) ≤ vs,0(t, x) ≤ zs,0(t, x) ≤ zs,0(t, x),

i.e., zs,0(t, x), vs,0(t, x) ∈ Bs,1, if only zs,0(t,x), vs,0(t, x) ∈ Bs,1.

However, then from (18) and (19), taking into account (12), for p = 0, we get the
inequalities

Ws,1(t, x) ≥ 0, zs,0(t, x) ≥ zs,1(t, x), vs,0(t, x) ≤ vs,1(t, x),

or, in other words, relations

vs,0(t, x) ≤ vs,1(t, x) ≤ zs,1(t, x) ≤ zs,0(t, x), (t, x) ∈ Ds, s = 1, 2, 3,

hold. Thus, zs,1(t, x), vs,1(t, x) ∈ Bs,1.
Let us choose arbitrary functions qs,0(t, x) and cs,0(t, x) from the space of functions

C(Ds), which satisfy restrictions (15), in such a way that the inequalities

zs,0(t, x)− zs,1(t, x)− qs,0(t, x)Ws,0(t, x) ≥ 0,
vs,0(t, x)− vs,1(t, x) + cs,0(t, x)Ws,0(t, x) ≤ 0,

(t, x) ∈ Ds

hold.
Then from (20) for p = 0, we have that αs,1(t, x) ≥ 0, βs,1(t, x) ≤ 0, that is, the con-

structed functions zs,1(t, x) and vs,1(t, x) are the comparison functions of the problems (1)–(7).
Taking zs,1(t, x) and vs,1(t, x) as the income data and repeating the aforementioned

arguments via the method of mathematical induction, we conclude that if, at every iteration
step (16) continuous in Ds functions qs,p(t, x), cs,p(t, x) satisfying conditions (15) are chosen
in a way that the inequalities

zs,p(t, x)− zs,p+1(t, x)− qs,p(t, x)Ws,p(t, x) ≥ 0,
vs,p(t, x)− vs,p+1(t, x) + cs,p(t, x)Ws,p(t, x) ≤ 0,

(21)

where p ∈ N0, (t, x) ∈ Ds, s = 1, 2, 3, are true, then for any p ∈ N, we obtain

vs,p(t, x) ≤ vs,p+1(t, x) ≤ zs,p+1(t, x) ≤ zs,p(t, x),
αs,p(t, x) ≥ 0, βs,p(t, x) ≤ 0, (t, x) ∈ Ds, s = 1, 2, 3.

(22)

Let us show that the domain of functions qs,p(t, x) and cs,p(t, x), which satisfy condi-
tions (15) and inequalities (21), is non–empty.

Theorem 1. If Fs[us(t, x)] ∈ C2(Bs) and there exist comparison functions of the problem (1)–(7),
then the set of functions qs,p(t, x), cs,p(t, x), which satisfy conditions (15), (21), is non–empty.

Proof. Let
τs,p(t, x) := αs,p(t, x)− βs,p(t, x) + Ws,p(t, x)

and let us put

qs,p(t, x) =
{

αs,p(t, x)[τs,p(t, x)]−1, Ws,p(t, x) 6= 0,
0, Ws,p(t, x) = 0,

cs,p(t, x) =
{
−βs,p(t, x)[τs,p(t, x)]−1, Ws,p(t, x) 6= 0,

0, Ws,p(t, x) = 0,
p ∈ N0, (t, x)Ds, s = 1, 2, 3.

(23)
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Functions, defined according to (23), satisfy conditions (15) and

zs,p(t, x)− zs,p+1(t, x)− qs,p(t, x)Ws,p(t, x)
= αs,p(t, x)

[
1−Ws,p(t, x)(τs,p(t, x))−1]+ Rp

s (t, x)− Rp
s (t, x) ≥ 0,

vs,p(t, x)− vs,p+1(t, x) + cs,p(t, x)Ws,p(t, x)
= βs,p(t, x)

[
1−Ws,p(t, x)(τs,p(t, x))−1]+ Rs,p(t, x)− Rs,p(t, x) ≤ 0,

for all p ∈ N0 and (t, x) ∈ Ds, s = 1, 2, 3.
Thus, the theorem is proved.

5. Convergence Results

Let us show that the sequences of functions {zs,p(t, x)}, {vs,p(t, x)}, defined by (16),
(21), converge uniformly for (t, x) ∈ Ds to the unique solution of the corresponding integral
equation of the system (10).

Let us put

max
{

sup
D1×D1

K1(x, t; ξ, η) exp
(∫ t1

t
a1(η, x)dη

)
, sup

D4×D4

K(x, t; ξ, η)

}
= 0.5K,

max
s

{
sup
Ds

Ws,0(t, x)

}
= d,

L = max
s

Ls,

max
s

{
sup
Ds

(
1− qs,p(t, x)− cs,p(t, x)

)}
= q,

max{1, x2 − x0 + t2 − t0} = γ.

Then, using the method of mathematical induction from (19), it is easy to conclude
that for any p ∈ N, (t, x) ∈ Ds, the estimate

max
s

sup
Ds

|Ws,p(t, x)| ≤ [A(x− x0 + t2 − t0)]
p

p!
d (24)

is true, where A = LKqγ.
From the estimate (24), it follows that

lim
p→∞

Ws,p(t, x) = 0.

Thus, due to inequalities (22), we get

lim
p→∞

zs,p(t, x) = lim
p→∞

vs,p(t, x) := us(t, x), (t, x) ∈ Ds, s = 1, 2, 3.

Passing in (16) to the limit, when p → ∞, we ensure that the limit functions us(t, x)
for (t, x) ∈ Ds are solutions of the corresponding integral equations of the system (10).

By contradiction, it is easy to show that if Fs[us(t, x)] ∈ C2(Bs) and conditions (18)
hold, then the system (10) has a unique solution.

Theorem 2. Let functions Fs[us(t, x)] ∈ C2(Bs), and there exist comparison functions of the BVP
(1)–(7).

Then:

1. The system of integral Equation (10) has a solution, and it is unique for (t, x) ∈ Ds,
s = 1, 2, 3;
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2. Sequences of functions {zp,s(t, x)} and {vp,s(t, x)}, constructed according to (16), (21), con-
verge uniformly to the unique solution of the system of integral Equation (10) for (t, x) ∈ Ds,
where continuous functions qs,p(t, x), cs,p(t, x) satisfy conditions (15);

3. Estimate (24) holds;
4. For arbitrary p ∈ N and (t, x) ∈ Ds, s = 1, 2, 3, inequalities

vs,p(t, x) ≤ vs,p+1(t, x) ≤ us(t, x) ≤ zs,p+1(t, x) ≤ zs,p(t, x) (25)

are true;
5. Convergence of the method (16), (21) is not slower than the convergence of the iterative method

z̃s,p+1(t, x) = Rp
s (t, x), ṽs,p+1(t, x) = Rs,p(t, x). (26)

Let us prove inequality (25). Suppose, that for some p at the point (t0, x0) ∈ Ds,

zs,p(t0, x0) < us(t0, x0).

Then, taking into account (22), at this point ∀n ∈ N we get

zs,p+n(t0, x0) ≤ zs,p(t0, x0) < us(t0, x0).

Hence, the sequence of functions {zs,p+n(t0, x0)} for n → ∞ does not converge to
us(t0, x0). We came to a contradiction.

Analogically, we can prove that the inequality vs,p(t, x) ≤ us(t, x) is true.

If zs,p(t, x), vs,p(t, x) are the comparison functions of the BVP (1)–(7), then from (16)
and (25) follows:

z̃s,p+1(t, x)− zs,p+1(t, x) = Rp
s (t, x)− Rp

s (t, x) ≥ 0,

ṽs,p+1(t, x)− vs,p+1(t, x) = Rs,p(t, x)− Rs,p(t, x) ≤ 0.

Consequently,

ṽs,p+1(t, x) ≤ vs,p+1(t, x) ≤ zs,p+1(t, x) ≤ z̃s,p+1(t, x), (t, x) ∈ Ds, s = 1, 2, 3.

The last inequalities prove the fifth statement of the theorem.

6. Some Corollaries

Corollary 1. Let conditions of Theorem 2 and conditions (8) hold.
Then the BVP (1)–(7) has a unique solution for (t, x) ∈ D4. Moreover, it is regular,

if D(0.1)v(t1, x1) = D(0.1)u2(t1, x1). Otherwise, it is irregular.

Corollary 2. Let
Fs[us(t, x)] ∈ C2(Bs),

Fs[us(t, x)] ≡ Hs[us(t, x); 0], s = 1, 3,

F2[u2(t, x)] ≡ Hs[0; u2(t, x)],

conditions (8) hold and boundary constraints (3), (6) are homogeneous.
If Fs[0] ≥ (≤)0, s = 1, 3, F2[0] ≤ (≥)0 in the domain Bs, then the solution of the BVP

(1)–(7) satisfies the inequalities:

u(t, x) ≥ (≤)0, (t, x) ∈ D4.

Consider an equation of the form

L(1.1)z(t, x) = f1(t, x, z(t, x)) := f1[z(t, x)], f1 : B2,2 → R, B2,2 ⊂ R3. (27)
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Assume that the right-hand sides of the differential Equations (1) and (27) satisfy conditions:

1. F[u(t, x)] ∈ C2(B2,2);
2. Function f1[z(t, x)] ∈ C(B2,2), and in the domain, B2,2 has a bounded first-order

derivative with respect to z(t, x) that satisfies an inequality:

∂ f1[z(t, x)]
∂z(t, x)

+ D(0.1)a1(t, x) + a1(t, x)a2(t, x) ≥ 0, (t, x) ∈ D4; (28)

3. For any function v(t, x) ∈ B2,2 from the space C∗(D4), the inequalities

f1[v(t, x)] ≥ (≤) f [v(t, x)], (t, x) ∈ D3,
f1[v(t, x)] ≤ (≥) f [v(t, x)], (t, x) ∈ D2

(29)

hold.

Theorem 3 (comparison theorem). Let ai(t, x), i = 1, 2 in the domain D4 satisfy conditions (8).
Let, for the right-hand sides f [u(t, x)] and f1[z(t, x)] of Equations (1) and (27), the aforemen-
tioned conditions (1)–(3) hold, and in the domain Bs,1 there exist the comparison functions of the
problems (1)–(7) and (27), (3)–(7).

Then, solutions of these problems satisfy conditions:

u(t, x) ≤ (≥)z(t, x), (t, x) ∈ D4. (30)

Proof. According to Theorem 2 and Corollary 2, solutions of the problems (1)–(7) and (27),
(3)–(7) exist, and are unique (regular or irregular). Hence, putting W(t, x) := z(t, x) −
u(t, x) and using the Mean Value Theorem, we get:

L(1.1)W(t, x) = b(t, x)W(t, x) + f1[u(t, x)]− f [u(t, x)],

where b(t, x) := ∂ f̃1[z(t,x)]
∂z(t,x) is a derivative, evaluated at some fixed value z(t, x) ∈ B2,2,

(t, x) ∈ D4.
Obviously, function W(t, x) satisfies the homogeneous conditions (3), (6) and u(t1, x) =

v(t1, x) = z(t1, x)⇒W(t1, x) = 0, x ∈ [x1, x2]. Moreover,

F4[W(t, x)] :=
[
b(t, x) + D(0.1)a1(t, x) + a1(t, x)a2(t, x)

]
W(t, x)

+ f1[u(t, x)]− f [u(t, x)],

that is, due to (28), (29) we get:

F4[W(t, x)] ∈ C2(B2,2)

and
F4[W(t, x)] ≡ H[W(t, x); 0], for (t, x) ∈ D3,

F4[W(t, x)] ≡ H[0; W(t, x)], for (t, x) ∈ D2,

F4[0] ≥ (≤)0 in the domain B3,

F4[0] ≤ (≥)0 in B2.

On the basis of the Corollary 2

W(t, x) ≥ (≤)0, for (t, x) ∈ D4,

that is, the inequalities (30) hold.
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Remark 2. To speed-up convergence of the two-sided approximations to the solution of the
problem (1)–(7), functions zs,p(t, x) and vs,p(t, x) can be constructed according to formulas:

zs,p+1(t, x) = Φs(t, x) + εs

{
T1,3 f p+1

1 (η, ξ) + T2,3 f p+1
2 (η, ξ)

}
+ TsFp

s (η, ξ),
vs,p+1(t, x) = Φs(t, x) + εs

{
T1,3 f1,p+1(η, ξ) + T2,3 f2,p+1(η, ξ)

}
+ TsFs,p(η, ξ)

. (31)

One can show that the iterative method (31) converges not slower than the method (16), (21).

7. Discussion

To summarize, in the current paper, we have presented our recent results in the
study of one boundary value problem for a nonlinear partial differential equation of the
hyperbolic type on the plane in a domain with a complex boundary and a prehistory. To find
the missing data for the given boundary constraints, we solved a supplementary nonlinear
problem. In addition, we have built a two-sided constructive method to approximate
solutions of the studied problems, and proved appropriate convergence properties.

As it was already mentioned in the Introduction, these problems have a wide spectrum
of applications in applied sciences. Thus, the obtained results can be further broadened to
study the mathematical models of real physical processes.
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Notations
In the current paper the following abbreviations and notations are used:

BVP boundary value problem;
D closure of the domain D: D = D ∪ ∂D;
Di,ju(t, x) mixed partial derivative of the function u(t, x), defined as ∂i+j

∂it∂j x u(t, x);

L(1.1)
ai u(t, x)

linear differential operator with respect to function u(t, x) with coefficients ai(t, x) of

the form: L(1.1)
ai u(t, x) := D(1.1)u(t, x) + a1(t, x)D(0.1)u(t, x) + a2(t, x)D(1.0)u(t, x);

ΠpxOtD projection of a domain D onto the xOt plane.
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