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Dichotomy and Stability of Disturbed Systems with Periodic
Nonlinearities

Vera B. Smirnova1, Anton V. Proskurnikov2, Natalia V. Utina3 and Roman V. Titov4

Abstract— Systems that can be decomposed as feedback
interconnections of stable linear blocks and periodic nonlin-
earities arise in many physical and engineering applications.
The relevant models e.g. describe oscillations of a viscously
damped pendulum, synchronization circuits (phase, frequency
and delay locked loops) and networks of coupled power
generators. A system with periodic nonlinearities usually has
multiple equilibria (some of them being locally unstable). Many
tools of classical stability and control theories fail to cope
with such systems. One of the efficient methods, elaborated
to deal with periodic nonlinearities, stems from the celebrated
Popov method of “integral indices”, or integral quadratic
constraints; this method leads, in particular, to frequency-
domain criteria of the solutions’ convergence, or, equivalently,
global stability of the equilibria set. In this paper, we further
develop Popov’s method, addressing the problem of robustness
of the convergence property against external disturbances that
do not oscillate at infinity (allowing the system to have equilibria
points). Will the forced solutions also converge to one of the
equilibria points of the disturbed system? In this paper, a
criterion for this type of robustness is offered.

I. INTRODUCTION

Many applications deal with a special class of nonlinear

systems that can be decomposed as a feedback interconnec-

tion of a linear time invariant system and a periodic nonlin-

earity (henceforth referred to as the systems with periodic

nonlinearities). The simplest example of such a system is

a viscously damped pendulum; other examples include, but

are not limited to, vibrational units, electric motors, power

generators and various synchronization circuits such as e.g.

phase and frequency locked loops (PLL/FLL) [1]–[5].

Systems with periodic nonlinearities are featured by multi-

ple stable and unstable equilibria points, which lead to many

effects (such as e.g. existence of periodic trajectories and

other “hidden” attractors [6]–[10]) that cannot be examined

by tools of classical stability theory. An important problem,

concerned with dynamics of PLLs and other synchronization
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circuits, is the convergence of all solutions to equilibria

points (or, equivalently, global stability of the equilibria set).

This counterpart of global asymptotic stability in systems

with unique equilibria (sometimes called gradient-like be-

havior [11], [12]) excludes, in particular, “hidden” attractors.

Finite-dimensional systems with periodic nonlinearities

have been thoroughly studied [6], [9], [11]–[15]; one of

the methods for their investigation [11], [14] exploits spe-

cial non-quadratic Lyapunov functions, whose existence is

proved via the Kalman-Yakubovich-Popov lemma. Much less

studied are their infinite-dimensional counterparts, describing

e.g. synchronization systems with delays [16], [17] and non-

rational low-pass filters [18]. The central method proposed to

study them [19]–[24] stems from the seminal V.M. Popov’s

technique [25], [26], which is referred to as the method of

“a priory integral indices” and has given rise to the method

of integral quadratic constraints (IQC) [27]–[29]. Using

this approach, conditions for the solutions’ convergence, as

well as estimates for their transient behavior, have been

obtained [19]–[24]. These criteria may be called “frequency-

algebraic” and reduce to frequency-domain conditions, in-

volving the transfer function of the linear part and some

parameters that are constrained by algebraic inequalities.

In this paper, we are interested in the convergence of

systems with periodic nonlinearities in presence of uncertain

disturbances. Obviously, if such a disturbance persistently

excites the solution (being e.g. harmonic or other periodic

oscillatory signal), the solution no longer converges to an

equilibrium point but oscillates around it. In synchroniza-

tion systems, such disturbances are typically modeled as

combinations of stationary random signals and polyhar-

monic signals [30]–[32] to be attenuated. In this paper,

we deal with other type of disturbances that have limits

at infinity and thus enable the disturbed system to have

equilibria. Such disturbances are often considered in the

works on cycle slipping [33], [34], whose main concern is

the solution’s “switching” between the basins of attraction

of different equilibria points (in synchronization systems,

this effect is considered as undesirable since it leads to

demodulation errors). We address the following question:

given a convergent system and disturbance that has a limit

at infinity, does each of the forced solutions converge to

some equilibrium of the disturbed system? In this paper,

we establish novel “frequency-algebraic” criteria that ensure

the convergence of forced solutions under the disturbances

of the aforementioned type and “relaxed” versions of these

criteria, ensuring the property of dichotomy (convergence

of each bounded solution). This paper extends our previous
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work [35], confined the case of static scalar nonlinearity.

II. PROBLEM SETUP.

Consider a control system described by integro–

differential equations

σ̇(t) = b(t) +R(ψ(σ(t− h)) + f(t− h))−

−
t∫

0

γ(t− τ)(ψ(σ(τ)) + f(τ)) dτ (t > 0).
(1)

Here σ(t) = (σ1(t), . . . , σl(t))
�, ψ : Rl → R

l and ψ(σ) =
(ψ1(σ1), . . . , ψl(σl))

�, f : [−h,+∞)→ R
l, b : [0,+∞)→

R
l, γ : [0,+∞) → R

l×l, R ∈ R
l×l, h ≥ 0. The solution

of (1) is defined by initial condition

σ(t)|t∈[−h,0] = σ0(t). (2)

In all theorems demonstrated throughout the paper, the

following conditions are adopted.

Assumption 1: The system (1) and its initial condi-

tion (2) satisfy the following restrictions:

1) the function b(·) is continuous and b(t)→ 0 as t→∞;

the function γ(·) is piece–wise continuous;

2)

|b(t)| ∈ L1[0,+∞) (3)

|γ(t)|ert ∈ L2[0,+∞) (r > 0); (4)

3) the function σ0(·) is continuous and σ(0+0) = σ0(0);
4) the function f(t) is continuous and

lim
t→+∞ f(t) = L, (5)

where L = (L1, . . . , Ll)
�, Lj ∈ R;

5) each map ψj is Δj-periodic (ψj(σj +Δj) = ψj(σj));
it is C1-smooth with

α1j := inf
ζ∈[0,Δj)

ψ′j(ζ);α2j := sup
ζ∈[0,Δj)

ψ′j(ζ) (6)

(it is clear that α1jα2j < 0);

6) the functions

ϕj(ζ)
Δ
= ψj(ζ) + Lj (7)

have simple isolated roots.

By (5) and (7) the system (1) can be rewritten in the

form⎧⎪⎪⎨
⎪⎪⎩
σ̇(t) = b(t) +Rξ(t− h)−

t∫
0

γ(t− τ)ξ(τ) dτ (t > 0),

ξ(t) = ϕ(σ(t)) + g(t),
(8)

where ϕ(σ) = (ϕ1(σ1), . . . , ϕl(σl))
�, g(t) = f(t)− L. It

is clear that

g(t)→ 0 as t→ +∞ (9)

In this paper we are going to investigate the asymptotic

behavior of the system (1) (or of the equivalent system (8)).

The goal of the paper is to establish the properties of g(t)
which guarantee certain types of asymptotic behavior of

the system. Thus the paper inherits [22], [20], devoted to

the system (1) without external disturbances (f(t) ≡ 0),

and [36] considering the case of g(t) ∈ L2[0,+∞). We shall

study here the following aspects of asymptotic behavior: the

dichotomy which means that any bounded solution converges

and the gradient-like behavior when any solution converges.

Our study is based on Popov’s method [25], [26]. Its main

idea is to determine a functional of σ̇ and ξ in the form of

a positive inner product in Hilbert space and to rewrite it in

the frequency domain, using the Plancherel theorem. If the

real part of the frequency response (with certain additions)

does not change its sign, one can obtain the convergence of

quadratic functionals, which in turn implies the convergence

of solutions. For this reason, all the results are formulated in

terms of the transfer matrix of the linear part of (1)

K(p) = −Re−ph +

∞∫
0

γ(t)e−pt dt (p ∈ C) (10)

and involve a certain frequency–domain inequality. The

parameters of the latter inequality vary in some set, described

by nonlinear algebraic constraints.

Let

m1j ≤ α1j , m2j ≥ α2j . (11)

Notice that mij (i = 1, 2; j = 1, . . . , l) may be either a cer-

tain number or ∞. In the latter case we put m−1
ij = 0. Let

Mi = diag
{
m−1

i1 , . . . ,m
−1
il

}
(i = 1, 2). Introduce diago-

nal matrices κ = diag {κ1, . . . ,κl}, ε = diag {ε1, . . . , εl},
τ = diag {τ1, . . . , τl} and δ = diag {δ1, . . . , δl} and deter-

mine the frequency–domain inequality

Π(ω)
Δ
= �e{κK(ıω)− (K(ıω) + ıωM1)

∗τ(K(ıω)+
+ıωM2)−K(ıω)∗εK(ıω)} − δ ≥ 0.

(12)

Here ı2 = −1, the symbol (∗) means Hermitian conjugation

and

�eH Δ
=

1

2
(H +H∗), H ∈ R

l×l. (13)

III. FREQUENCY-DOMAIN CONDITIONS OF DICHOTOMY

.

We shall establish frequency-domain conditions of the

dichotomy for several various classes of g(t).
Class 1. Let us assume that in addition to (9) g(t) is

differentiable and

ġ(t) ∈ L1(0,+∞)
⋂
L2(0,+∞). (14)

Theorem 1. Let the inclusions (14) be true. Suppose for
a certain set of parameters κ, ε > 0, δ > 0, τ > 0, M1M2

the frequency-domain inequality (12) holds for all ω ≥ 0.
Then any bounded solution of (1) converges in the sense

σj(t) −−−→
t→∞ σjeq (j = 1, 2, . . . , l), (15)

σ̇(t) −−−→
t→∞ 0, (16)

where σjeq is a root of the equation

ψj(σjeq) = −Lj .
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Proof: We follow here the standard scheme of Popov’s

method in case of differentiable nonlinearity.

Let η(t) = ϕ(σ(t)), then ξ(t) = η(t)+g(t). Introduce the

auxiliary function

μ(t)
Δ
=

⎧⎪⎨
⎪⎩
0, t < 0,

t, 0 ≤ t ≤ 1,

1. t > 1.

(17)

For T ≥ 1 and a given solution of (1) consider the functions

ξT (t)
Δ
=

{
μ(t)ξ(t), t < T,

ξ(T )ec(T−t) t ≥ T (c > 0);
(18)

σ0(t) = b(t) +Rξ(t− h)(1− μ(t− h))−

−
t∫

0

(1− μ(τ))γ(t− τ)ξ(τ) dτ. (19)

It is easy to see that

|σ0(t)| ∈ L1[0,+∞)
⋂
L2[0,+∞). (20)

Introduce the function

σT (t) = RξT (t− h)−
t∫

0

γ(t− τ)ξT (τ) dτ. (21)

It is clear that

σ̇(t) = σ0(t) + σT (t) for t ∈ [0, T ]. (22)

Consider a set of functionals (T ≥ 1)

JT
Δ
=

∞∫
0

{σ∗TκξT + ξ∗T δξT+

+σ∗T εσT + (σT −M1ξ̇T )
∗τ(σT −M2ξ̇T )} dt.

(23)

Due to Plancherel theorem we have

JT = 1
2π

+∞∫
−∞

{F(σT )∗κF(ξT ) + F(ξT )
∗δF(ξT )+

+F(σT )
∗εF(σT ) + (F(σT )−M1F(ξ̇T ))

∗τ(F(σT )−
−M2F(ξ̇T ))} dω,

(24)

where F stands for the Fourier transform. Since

F(σT )(ıω) = −K(ıω)F(ξT )(ıω) (25)

and

F(ξ̇T )(ıω) = ıωF(ξT )(ıω). (26)

We have

JT = − 1
2π

+∞∫
−∞

F∗(ξT )(ıω)Π(ω)F(ξT )(ıω) dω (27)

and by virtue of (12)

JT ≤ 0. (28)

On the other hand the following inequality is true

JT > ρT + J0 + J1T + J2T , (29)

where

ρT
Δ
=

T∫
0

{σ̇∗κξ + ξ∗δξ + σ̇∗εσ̇+

+(σ̇ −M1ξ̇)
∗τ(σ̇ −M2ξ̇)} dt,

(30)

J1T
Δ
= −

T∫
0

{σ∗0κξT + 2σ∗0εσ̇+

+σ∗0τ(σ̇ −M2ξ̇T ) + (σ̇ −M1ξ̇T )
∗τσ0} dt,

(31)

J2T
Δ
=

∞∫
T

{σ∗Tκξ(T )ec(T−t) + ξ(T )∗δξ(T )e2c(T−t)+

+c2ξ(T )∗M1τM2ξ(T )e
2c(T−t)−

−cec(T−t)ξ(T )∗(M1 +M2)τσT } dt,
(32)

and J0 is an integral of a continuous function from 0 to 1.

We shall demonstrate that certain functionals are bounded

by constants independent of T , denoting the latter by C with

subscripts.

From the assumptions 1)–5) it follows that η(t), σ̇(t), η̇(t)
are bounded on R+. Hence and from (20) and (14) it follows

that

|J1T | ≤ C2. (33)

It is easy to see that

|J2T | < C3. (34)

Then inequalities (28), (33), (34) together with (29) imply

that

ρT < C0, ∀T > 1. (35)

Let us consider some summands of ρT :

i)
T∫

0

σ̇∗κξ dt =
l∑

j=1

σj(T )∫
σj(0)

κjϕj(ζ) dζ+

+
l∑

j=1

κj

T∫
0

σ̇jgj(t) dt.

(36)

The first summand in right-hand side of (36) is bounded

since σ and ϕ are bounded on [0,+∞). Besides

T∫
0

σ̇jgj(t) dt = σj(T )gj(T )− σj(0)gj(0)−
T∫

0

σj ġj(t) dt.

(37)

Then it follows from (14) that the second summand in right

part (36) is bounded. So

|
T∫

0

σ̇∗κξ dt| < C1. (38)
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ii)

ρ1T
Δ
=

T∫
0

{(σ̇ −M1ξ̇)
∗τ(σ̇ −M2ξ̇)} dt =

=

T∫
0

{(σ̇ −M1η̇)
∗τ(σ̇ −M2η̇)} dt−

−
T∫

0

{(ġ∗M∗
1 τ(σ̇ −M2η̇)} dt−

−
T∫

0

{(σ̇ −M1η̇)
∗τM2ġ} dt+

T∫
0

{ġ∗M∗
1 τ(M2ġ)} dt.

(39)

The first summand in right-hand side of (39) is nonnegative

in virtue of (11). The last term is bounded in virtue of (14).

On the other hand for any ε0 > 0

|ġ∗M∗
1 τ(σ̇ −M2η̇)|+ |(σ̇ −M1η̇)

∗τM2ġ| ≤

≤ ε0(|σ̇ −M2η̇|2 + |σ̇ −M1η̇|2)+

+ 1
4ε0

( max
j=1,...,l

(τjm
−1
1j )

2 + max
j=1,...,l

(τjm
−1
2j )

2)|ġ|2
(40)

and

|σ̇ −Miη̇|2 ≤ C4|σ̇|2. (41)

So in virtue of (14)

|
T∫

0

(ġ∗M∗
1 τ(σ̇ −M2η̇)+

+(σ̇ −M1η̇)
∗τM2ġ dt| ≤ 2ε0C4

T∫
0

|σ̇|2 dt+ C5.

(42)

As a result

ρ1T ≥ −2ε0C4

T∫
0

|σ̇|2 dt− C6 (C6 > 0). (43)

Let ε0 be small enough and ε̄
Δ
= ε−2ε0C4El > 0, where El

is a unit matrix. Then it follows from (30), (35), (38), (43)

that
T∫

0

(σ̇∗ε̄σ̇ + ξ∗δξ) dt ≤ C7 (C7 > 0), (44)

which implies that

σ̇j(t) ∈ L2[0,+∞),
ϕj(σj(t)) + gj(t) ∈ L2[0,+∞) (j = 1, . . . , l).

(45)

Any ϕj(σj(t)) and gj(t) is uniformly continuous on

[0,+∞). So according to Barbalat lemma [25] ϕj(σj(t))
tends to zero as t → +∞. Then σj(t) tends to a zero of

ϕj(ζ) as t→ +∞. Since the functions σ̇j(t) are uniformly

continuous on [0,+∞), they tend to zero as t → +∞.

Theorem 1 is proved.

Class 2. Let us strengthen the restrictions on g(t): g(t)
satisfies (9) and

g(t) ∈ L2[0,+∞). (46)

It turns out then that the restrictions on ġ(t) can be weakened:

ġ(t) ∈ L2[0,+∞). (47)

Theorem 2. Theorem 1 remains valid replacing (14) by
(46) and (47)

Proof: If (14) is replaced by (47) all the arguments

of Theorem 1 are valid except the assertion that
T∫
0

σ̇jgj dt

is bounded independently of T . That is why instead of

formula (37) we shall use the inequality

T∫
0

σ̇jgj dt ≤ ε0

T∫
0

σ̇2
j dt+

1

4ε0

T∫
0

g2j dt. (48)

If ε0 is small enough we can conclude from (30), (35),

(36), (43), (46) and (48) that

T∫
0

(σ̇∗ε̂σ̇ + ξ∗δξ) dt ≤ C8 (49)

where ε̂ is positive definite. The estimate (49) is just alike

the estimate (44). Thus Theorem 2 is proved.

Class 3. Let us assume that g(t) satisfies (9) and

|g(t)| ∈ L1[0,+∞). (50)

Theorem 3. Theorem 1 remains valid replacing (14)

by (50).
Proof: Let us rewrite the system (8) as

σ̇(t) = β(t) +Rϕ(σ(t− h))−
t∫

0

γ(t− τ)ϕ(σ(τ)) dτ,

(51)

where

β(t) = b(t) +Rg(t− h)−
t∫

0

γ(t− τ)g(τ) dτ. (52)

Consider

v(t)
Δ
= |

t∫
0

γ(t− τ)g(τ) dτ |. (53)

We have

∞∫
0

v(t) dt ≤
∞∫
0

t∫
0

|γ(t− τ)||g(τ)| dτ dt =

=

∞∫
0

|g(τ)|
∞∫
τ

|γ(t− τ)| dt dτ =

=

∞∫
0

|g(τ)|
∞∫
0

|γ(λ)| dλ dτ,

(54)
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which implies that

v(t) ∈ L1[0,+∞). (55)

On the other hand since |γ(t)| ∈ L1[0,+∞) and g(t) → 0
as t→ +∞ it follows from [37] that

v(t)→ 0 as t→ +∞. (56)

Thus the functions β(t) and b(t) have the same properties

on [0,+∞). Then Theorem 3 arises from Theorem 1.

Notice that Theorem 1, Theorem 2 and Theorem 3 give

conditions for convergence of bounded solutions, being thus

criteria of dichotomy: any solution is either convergent or

unbounded. This result may serve to prove convergence of

any solution in the case where all solutions are bounded

(Lagrange stability of (1)).

One sufficient condition for this has been found in [38].

In [38] the case of l = 1 is considered and the following

conditions are adopted.

Assumption 2: The restrictions 1), 2), 3) of Assumption

1 are preserved with (3) replaced by

|b(t)|ert ∈ L2[0,+∞). (57)

The disturbance f(t) is continuous and bounded on [0,+∞).
The function ψ(σ) is continuous and Δ–periodic.

Proposition 1: [38] Let l = 1 and Assumption 2 hold.
Suppose there exist numbers ε > 0, λ ∈ (0, r2 ) and γ1, γ2
such that the following conditions are fulfilled:
1) the functions ψ(σ) + γi (i = 1, 2) have two simple zeros
on [0,Δ);
2) �e{K(ıω − λ)} − ε|K(ıω − λ)|2 ≥ 0, ∀ω ≥ 0 ;
3) the equations

σ̈ + 2
√
λεσ̇ + ψ(σ) + γi = 0 (i = 1, 2) (58)

are Lagrange stable;
4) γ2 ≤ f(t) + 1

2λ ḟ(t) ≤ γ1 ∀t ∈ R+, f(0) ∈ [γ1, γ2].
Then the equation (1) is Lagrange stable.

The Proposition 1 is proved in [38] by nonlocal reduction

method [20], which presupposes the injecting the trajectories

of (58) into Popov functionals for (1).

Two other conditions for convergence of solutions, being

nonlinear algebraic constraints on the parameters, are given

in next section.

IV. FROM DICHOTOMY TO GRADIENT-LIKE BEHAVIOR.

In this section we consider two classes of the external

disturbances.

Class 2. We assume that |g(t)| and |ġ(t)| are from

L2[0,+∞). This case has been studied in [36]. The con-

ditions of gradient-like behavior are given in two criteria

established there. To formulate them we introduce the func-

tions

Φj(ζ)
Δ
=

√(
1−m−1

1j ϕ
′
j(ζ)

) (
1−m−1

2j ϕ
′
j(ζ)

)
(59)

and

Pj(ζ;α, β)
Δ
=

√
1 +

α

β
Φ2

j (ζ) (60)

where α > 0 and β > 0 are parameters.

We shall also need the constants

νj :=

Δj∫
0

ϕj(ζ)dζ

Δj∫
0

|ϕj(ζ)|dζ
, ν0j :=

Δj∫
0

ϕj(ζ)dζ

Δj∫
0

Φj(ζ)|ϕj(ζ)|dζ
. (61)

ν1j(α, β) :=

Δj∫
0

ϕj(ζ) dζ

Δj∫
0

|ϕj(ζ)|Pj(ζ;α, β) dζ

. (62)

Theorem 4. [36] Suppose there exist positive definite
matrices δ, τ, ε, matrices κ, M1 and M2, and numbers
aj ∈ [0, 1] (j = 1, . . . , l) such that the following conditions
are fulfilled:
1) for all ω ≥ 0 the frequency–domain inequality (12) is
true,
2) the quadratic forms

Qj(x, y, z) := εjx
2 + δjy

2 + τjz
2 + κjajνjxy+

+κj(1− aj)ν0jyz (j = 1, . . . , l)
(63)

are positive definite.
Then any solution of (1) converges, i.e. the limit rela-
tions (15) and (16) are true.

Theorem 5. [36] Suppose there exist positive definite
matrices δ, τ , ε and matrices κ, M1 and M2 such that for all
ω ≥ 0 frequency–domain inequality (12) holds and algebraic
inequalities

2
√
εjδj > |ν1j(τj , εj)|κj (j = 1, . . . , l) (64)

are true.
Then the conclusion of Theorem 1 is valid.

Class 3. Let |g(t)| ∈ L1[0,+∞). It follows from the

previous section that in this case the given system (1) can

be reduced to the system (51) with all the attributes of (1)

but with f(t) ≡ 0. So Theorems 4 and 5 are valid here.

Example 1. Consider the phase–locked loop (PLL) with

sine-shaped characteristic and the integrating filter

K(p) =
T

Tp+ 1
(T > 0). (65)

The mathematical equation of the corresponding system (1)

coincides with that of the disturbed pendulum

σ̈ +
1

T
σ̇ + (sinσ − β) + f(t) = 0. (66)

Using Theorem 4, it is possible to estimate the set of

the coefficients {(T, β)}, for which all solutions of the

system (66) converge, provided that either f, ḟ ∈ L2[0,∞)
or f ∈ L1[0,∞). In Fig. 1, we compare this estimate

of the stability domain in the parameter space with the

exact stability domain, computed in [39] for the undisturbed
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system (f ≡ 0) by using qualitative-numerical methods. The

stability domain obtained by Theorem 4 is of course smaller

than the exact one but the approximation is good enough.

Fig. 1. The exact stability domain for the system (66) vs. its estimate.

V. CONCLUSION

In this paper we study forced solutions of systems with pe-

riodic nonlinearities, affected by uncertain disturbances that

do not oscillate at infinity and enable the disturbed system

to have equilibria. We offer novel frequency–domain criteria

for convergence of any forced solution. These critera are

based on techniques, stemming from V.M. Popov’s method

of integral quadratic constraints. To modify these criteria for

Lagrange stability of (1) in case of bounded disturbances,

having no limits at infinity, is a non-trivial problem, which

is a subject of ongoing research.
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