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Abstract—We analyze and optimize the performance of a new
type of channel that exploits sunlight for wireless communication.
Recent advances on visible light backscatter have shown that
if mobile objects attach distinctive reflective patterns to their
surfaces, simple photosensors deployed in our environments
can decode the reflected light signals. Although the vision is
promising, only initial feasibility studies have been performed so
far. There is no analysis on how much information this channel
can transmit or how reliable the links are. Achieving this vision
is a complex endeavour because we have no control over (i) the
sun or clouds, which determine the amount and direction of
light intensity, and (ii) the mobile object, which determines the
modulated reflection of sunlight. We investigate the impact of the
surrounding light intensity and physical properties of the object
(reflective materials, size and speed) to design a communication
system that optimizes the encoding and decoding of information
with sunlight. Our experimental evaluation, performed with a
car moving on a regular street, shows that our analysis leads to
significant improvements across many dimensions. Compared to
the state of the art, we can encode seven times more information,
and decode this information reliably from an object moving three
times faster (53 km/h) at a range that is four times longer (4 m)
and with three times lower light intensity (cloudy day).

I. INTRODUCTION

Wireless communication is a fundamental pillar of modern

societies. The explosive growth of bandwidth demand, number

of devices, and the need to reduce energy footprint, are driving

efforts for new communication means, cf. Fig. 1. In the past

decades, active communication, which requires carrier signals

to be generated, has been the most popular approach using

radio-frequency (RF) and visible light (VL). Recently, there

is great interest in passive communication, leveraging existing

signals in RF [1] and VL spectrums [2], [3], [4] to convey data.

Motivated by this later group of studies, we investigate how

to optimize the use of sunlight for wireless communication.

Except for [3], all communication systems in Fig. 1 share an

implicit assumption: transmitters can be controlled. In active

communications, a transmitter can control transmission power

and symbol duration. In passive systems, it can control symbol

duration. In [3] we cannot control either because ambient light

is leveraged as a signal carrier. Since ambient light cannot be

modulated directly, we proposed to modulate light reflections

by i) changing the external surfaces of objects according to

the information want to convey, and ii) exploiting the object’s

mobility to modulate light reflecting from its surface. An

inexpensive and energy-efficient photosensor can be used to

measure the reflected light patterns to decode the information.

Motivating application: Objects that tweet. Communica-

tion with sunlight can enable passive monitoring of events

��������	�
�
�������
���
���������

��������	�
����
�
�����	������

�����	��
�����������	�
�
�������������

����������	
��
����
���

�����������

��������	
�������������
�����

���
�
�
����	���

� ����� ���	

�
�

��


�
�
�
�
��


Fig. 1. A new type of communication
channel.

Fig. 2. Tweeting with Sunlight: the
external surfaces of mobile objects
convey information by reflecting light.

and activities. As an example, consider the communication

between a moving car and a static receiver shown in Fig. 2.

The car embeds a message as a pattern in the reflected light.

The message length is limited due to the size of the car. This

communication method could be seen as a Twitter post: a

short-length message sent to the world. The goal is to decode

the information with a receiver placed next to the road as the

car passes by. The message transmitted by the car can contain

a static unique identifier similar to a license plate, or some

dynamic information like where it is heading towards. In this

paper we use static barcodes to encode messages, consisting

of black and white stripes. But materials such as e-ink could

be used to embed dynamic messages. We evaluate our system

with this outdoor application in Sec. V.

Research questions. The vision of using sunlight for com-

munication is promising, but this new channel has not been

analyzed yet. As in traditional communication, our goal is to

maximize the amount of information that can be transmitted

at the largest distance possible, while minimizing energy

consumption. With this new channel, however, we do not have

control over the sun’s direction and illuminance, which depend

on the weather and the time of the year/day; and we do not

have control over the object’s size and speed, which determine

the modulation processes. The above considerations imply that

the design choices for this channel are fundamentally different

from traditional systems and can be summarized as follows:

1) Encoding: The size of the object determines the amount

of information that can be encoded on its external surface. In

this type of channel, information can be encoded as barcodes,

and thus, the narrower the stripes, the more information we

can encode. We need to analyze the optimal (minimum) stripe

width that can be decoded reliably, and the properties of

different reflective materials to create communication links

that are as robust as possible considering the various directions

and illuminance levels of sunlight.
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2) Decoding: In traditional communications, the transmit-

ter determines the amplitude and the period of symbols. In our

case, we cannot determine the amplitude (which depends on

light reflections) and the timing (which depends on the object’s

speed). This means that symbols within a message could look

very different from each other, making the decoding process

harder. We need to design robust schemes to cope with highly

variable amplitudes and modulation rates within the packet.

Contributions. We proposed to use sunlight for communica-

tion in [3]. We further analyze and optimize the use of this new

communication channel. We provide three main contributions.

1) Optimal encoding of data (Sec. III). We design a frame-

work to derive the optimal (minimum) stripe width to decode

information reliably. Given that the object’ s size limits the

amount of information that can be transmitted, this analysis is

necessary to maximize the data rate of the channel.

2) Reliable decoding of data (Sec. IV). We propose a new

decoding scheme, based on barcode methods, to overcome the

problems caused by variable amplitudes and symbol duration.

3) Validation of insights (Sec. V). We build a testbed to val-

idate our findings and perform realistic outdoor experiments.

Our results showcase the strength of our framework: compared

to state of the art, we can decode more data (7×), from faster

objects (3×), at longer distances (4×), with less light (3×).

II. A NEW CHANNEL: POTENTIAL AND CHALLENGES

This section summarizes the necessary background to un-

derstand the concept of wireless communication with sunlight.

A. Encoding with sunlight: uncontrollable but sustainable

Our system is composed of three basic block elements:

• Sunlight, our signal carrier, is widely available but hard to

control (modulate), as opposed to artificial lights, which

are easier to control for backscattering [2], [4].

• Tags, which reside on top of mobile objects and contain

different reflective materials to encode information. We

refer to the information carried by the tags as “messages”.

• Receivers, which are tiny boxes containing at least one

photosensor to measure the impinging light intensity.

As the object moves, the intensity of the reflected light

changes depending on the properties of the tag’s materials.

The variations in the reflected light can then be decoded by

the receiver. This channel poses many challenges but it has a

low carbon footprint across two important dimensions. First,

lighting infrastructure. There is no need to add extra light

sources or electronic transmitters. Second, energy consump-

tion. Our system saves energy by using photosensors rather

than cameras. Cameras can consume two order of magnitudes

or more (1000 mW [5]), compared to the 6 mW consumed by

our prototype. Furthermore, cameras raise up privacy concerns.

B. Research challenges

Compared to other systems, ours is opportunistic and best-

effort because it depends on many factors outside the de-

signer’s control. Since we have no transmitters but only sun-

light with variable direction and illuminance, the performance

TABLE I
FACTORS AFFECTING THE SYSTEM’S PERFORMANCE

Metric Design Parameters

Symbol duration Stripe width W , object speed v

Communication Field of view and sensitivity of photosensor,
reliability reflective properties of materials

of our passive channel depends strongly on the design of the

tags and the receiver. As presented in Table I, the symbol

duration at the receiver is a function of the tag’s stripe width

and the object speed v. The reliability of the passive channel

depends instead on the reflective properties of the tag, and the

field of view (FoV) and sensitivity of the receiver. Below, we

describe the design challenges in detail.

1) Challenges due to the object’s properties.: The modula-

tion of our signals is dictated by the reflective properties of the

tags, and the size and speed of the object. These characteristics

raise up three main challenges. First, we need to derive the

optimal stripe width to encode, reliably, as much information

as possible on the (limited) objects’ surfaces. Second, we

need to design decoding methods that can cope with variable

amplitudes caused by uncontrolled reflections over the tags.

Third, the decoding method should also cope with variable

symbol durations. An object could move faster or slower at

any point in time. These dynamics can change the symbol

duration within the same message and cause decoding errors1.

Thus we need to design a light-weight decoding method that

can overcome amplitude and timing distortions.

2) Challenges due to the sun’s properties.: The fact that

we cannot determine the location and illuminance of the sun

impacts the design of the receiver and tags. The receiver’s

ability to decode information is particularly susceptible to its

FoV. A broad FoV provides a high gain and a wide coverage,

but it exposes the receiver to more interference, cf. Fig. 3.

A narrow FoV provides the opposite trade-off. Regarding the

reliability of links, the problem is hard because we depend

on untamed reflections. The continuous change of the sun’s

relative location affects the design of the tags because the

direction of reflections changes throughout the day creating

intermittent links [3]. Our system should provide a reliable

link independently from the sun’s position during the day.

III. ENCODING INFORMATION IN PASSIVE CHANNEL

In this section, we analyze the performance of our channel

and derive the optimal (minimum) message’s stripe width. We

disentangle the problem into the following sub-problems:

• For the tag: identify the appropriate type of reflecting

material (Sec. III-A). We need to use materials that reflect

light in such a way that we can maintain a continuous link

independently of the sun’s position.

• For the receiver: maximize the amount of information

that can be decoded reliably (Sec. III-B). We use geomet-

rical optics to design receivers that can reduce their FoV

1In traditional communication systems, the symbol duration within a packet
changes minimally. Different methods have been devised to cope with small
drifts [6], but they cannot overcome large variations.
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Fig. 3. A narrow (wide) FoV
sees one (multiple interfer-
ing) stripe(s) at a time.

Fig. 4. Specular reflection: left) the specular reflected light
rays reach the sensor with the highest energy; right) they do
not reach the sensor because of a different position of the sun.

Fig. 5. Diffuse reflection. The light rays reach the photosensor
regardless of the angle of incidence.

(to encode more data on the tags), and as well, increase

the received signal strength (to decode data reliably).

• For the channel: analyze how the channel distorts signals

(Sec. III-C). We derive the channel impulse response and

show how the ‘perfect’ square-wave signals of barcodes

get distorted into Gaussian-like waves.

• For the entire system: quantify the overall communication

performance (Sec. III-D). We use a realistic setup to

analyze the joint effects of channel response and inter-

symbol interference to derive the optimal stripe width.

A. Light reflection and reception

1) Modulation: It is performed by the reflection of im-

pinging sunlight on a moving object’s surface. The amount of

reflected light is determined by (i) the intensity and direction

of sunlight and (ii) the reflection coefficient ρ of the surface

material, which takes values in the range [0, 1]. Assuming that

the sunlight’s intensity and direction do not change during the

(short) data transmission, information bits can be associated

to stripes of width W having two distinct reflective materials:{
bit = 0 → LOW reflection coefficient (ρ1)

bit = 1 → HIGH reflection coefficient (ρ2).
(1)

2) Specular vs diffuse reflection: The reflection coefficient

is not the only parameter that matters for the design of our tags.

Depending on the material’ smoothness, there are two types

of reflections: specular and diffuse. Specular reflection occurs

on smooth mirror-like surfaces that reflect light to a single

direction; while reflections on rough surfaces are diffuse, that

is, light is reflected to all directions. For example, metallic

plates and white paper have high reflective coefficients, but the

former is a specular material and the latter is diffuse reflective.

For our purposes, the trade-off between using specular and

diffuse reflective materials is that of range versus coverage.

Given that the sun’s position (azimuth and zenith) changes

during a day, using a specular mirror-like surface would imply

that the photosensor captures a strong light beam but only from

the direction of the angle of incidence, as in Fig. 4. Most of the

time the link will not exist. With diffuse reflection, we guaran-

tee that a photosensor will receive the signal because sunlight

is reflected to all directions. In this case, only the photosensor’s

FoV determines the detectable area of the object’s surface.

By pointing the photosensor towards the expected location of

the object, signals modulated through diffuse reflection will

be received independently of the position of the light source,

as illustrated in Fig. 5. Therefore, to guarantee a continuous

link, we use diffuse reflective materials to modulate sunlight.

A limitation of using diffuse reflections is that the luminous

power towards the receiver is decreased. In Sec. III-B, we

show that lenses help in overcoming this limitation.

3) Light reception at the photosensor: Upon impinging the

object, sunlight scatters into multiple rays reflected in various

directions. To quantify the light reaching the receiver, we fol-

low a ray-tracing approach. We use the Lambertian reflection

model to simulate the diffuse reflection on materials [7]. We

divide the object surface into tiny cells. For each cell, a set of

light rays is generated according to the Lambertian reflection

model. The final received signal strength is given by the sum

of light rays reaching the sensor’s detectable area.

B. Use of lens and optical transmission

Our system faces a fundamental trade-off between the

amount of information that can be encoded on an object’s

surface and our ability to decode that information. We require

a narrow stripe width W to encode as much information as

possible and increase the data rate. But a narrow size requires a

narrow FoV, cf. Fig. 3. The problem of having a narrow FoV is

that it reduces the light intensity reaching the receiver, making

it harder to distinguish between HIGH and LOW symbols.

The authors of [3] faced this challenge but they solved it

by simply controlling the receiver’s FoV with a small cap

surrounding the photosensor. With this approach, the authors

either increased their data rate or their signal strength, but they

could not achieve both goals simultaneously.

We exploit lenses to achieve the dual goal of increasing

the data rate and increasing the amount of light reaching

the receiver. In traditional systems, lenses have been used to

improve the SNR in VLC [8] and to increase the efficiency

of solar panels [9]. The goal in the above two applications

is solely to gain more luminous power. Once the FoV covers

the light source, there is no need to further decrease the FoV.

We, on the other hand, need to identify an optimal trade-off

between received energy and coverage. A similar problem is

faced by barcode readers, which usually embed lenses [10].

However, the lack of control over the light source and the

mobile object, as well as the sustainable design of our receiver

(single photosensor) make our problem space unique.

To highlight the benefit of using lenses, we first describe the

properties of a receiver with no lens in a simplified 2D model,

see Fig. 6. Let dp be the distance between the aperture sg and

a photosensor with size sp. Let D be the distance between

the aperture and the surface. The receiver’s FoV leads to a

detection area A which can be derived with geometrical optics:

A = spD/dp + sg(dp +D)/dp. (2)
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Fig. 6. FOV and detection area A for
a receiver without lens.

Fig. 7. A 2-D geometric representa-
tion of our receiver with the object
(left), lens (middle) and sensor (right)

This type of receiver leads to a non-optimal encoding

because A is wide, but does not provide much optical energy

at the receiver. There is a smaller area M that can provide

maximum illuminance to the sensor (because it can be “seen”

from any point on the photoreceptor’s area sp):

M = sg + (|sg − sp|)D/dp. (3)

Ideally, we would like a receiver that satisfies three condi-

tions: (i) A = M , (ii) A is small, and (iii) A provides sufficient

illuminance for decoding. Adding a lens to the receiver helps

limiting the FoV, without lowering the received light intensity.

First, let us clarify how lenses increase the luminous power.

Lenses increase the illuminance power on a specific sensor

area in the same way a magnifying glass (a lens) focuses the

sunlight impinging over the lens’ area into a ‘single point’

to burn wood [11]. This property is particularly beneficial for

reflections captured by a receiver with a small FoV.

Now, let us show how lenses reduce the detection area A.

Denoting f as the focal length of the lens, a distance di exists

for which the lens will give a sharp image of the surface’s

symbol (A = M ), see Fig. 7. The relationship between f and

di is defined by Newton’s lens formula:

1/f = 1/di + 1/dp. (4)

The size of the sharp image si at di is given by the formula:

si = spdi/dp. (5)

Then, using geometrics, we find that:

A = spD/dp + sg|(D − di)/di|. (6)

1) Operational regions: These equations provide four re-

gions that determine the final design of our receiver:

• Region 1. f ≤ 1

2
dp ⇒ 0 < di ≤ dp. In this case, the

lens’ focal length is too short, making di too short for our

applications. This region would only help if the distance

between the object and receiver is less than the size of

the receiver. Hence, we do not consider this region.

• Region 2. 1

2
dp < f < dp ⇒ di > dp. This is the most

relevant region to us due to two reasons: i) the receiver

can be designed to match di with the expected distance

D, optimizing the amount of reflected energy (A=M );

ii) this region always leads to surfaces with narrower

stripe widths compared to the case without lens (even

for the cases where di and D do not match). This occurs

because the factor multiplying sg in Eq. 6 is less than the

corresponding factor for the case without a lens (Eq. 2).

• Region 3. f = dp ⇒ di = ∞, which is useful for very

long distances between the object and the receiver. In this

case, the detection area size is A = spD/dp + sg . Note

that A again is always smaller than the case without lens,

because sg now is multiplied by a factor of one.

0 50 100 150 200
Object distance (cm)

0

0.5

1

1.5

2

R
ec

ei
ve

d 
lu

m
in

ou
s 

po
w

er
 

(n
or

m
al

iz
ed

)

With lens (f = 4.9 cm)
With lens (f = 6.5 cm)
With lens (f = 12.9 cm)
Without lens
Measured (no lens)
Measured (f = 6.5 cm)

0 50 100 150 200
Object distance (cm)

0

5

10

15

D
et

ec
tio

n 
ar

ea
 (

cm
)

With lens (f = 4.9 cm)
With lens (f = 6.5 cm)
With lens (f = 12.9 cm)
Without lens
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area (right) for several focal lengths.

• Region 4. f > dp ⇒ di is negative, which results in an

image on the same side of the lens as the object. Not an

ideal case, but it may be the only design option if the

size of the receiver is small and the focal length is long.

2) Evaluation and summary: We perform simulations,

based on our ray-trace model, and empirical measurements to

validate our insights. The parameters used in this evaluation,

sg = 4mm, sp = 1mm and dp = 7.2 cm, are the same as

the ones used in our final receiver in Sec. V. Fig. 8 shows

the results with the received luminous power normalized with

respect to the case without lens. We simulate three lenses:

one in Region 4 and two in Region 2, one close to Region

3 (f = 6.5 cm) and the other further away (f = 4.9 cm).

For our purposes, the second lens (f = 6.5 cm) is better

because it provides a longer di (66 cm compared to 15 cm

for f = 12.9 cm). Our empirical results show that, for that

lens, the received light intensity can increase 33% on average

(57% in simulations), while the stripe width can be reduced

to encode three times more information.

In summary, adding a lens improves the performance of our

channel in two ways: it increases the amount of information

that can be transmitted and increases the luminous power

on the sensor. Note that dp is very small, e.g. only a few

centimeters when D is several meters, making the proposed

solution feasible in reality. In general, for a given scenario,

the focal length f of the lens should be selected in such a

way that 1

2
dp < f ≤ dp (Regions 2 and 3), depending on

the typical distance between the object and the receiver. Note

that fluctuations in D are fine if they are not large. Small

fluctuations will only bring limited distortions on the signal.

C. Channel impulse response

The analysis presented in Sec. III-B is incomplete because it

does not consider that the communication channel distorts the

modulated (reflected) signal while it travels from the surface

to the receiver. Analyzing these distortions is key to correctly

decode information. To have a complete understanding of our

system, we continue to analyze the channel response.

In communication theory, the channel response (or impulse

response) is a function h(t) dependent on time. The received

signal Y (t) is described as a convolution of the transmitted

signal g(t) with the channel response h(t): Y (t) = g(t)∗h(t).
In our system, assuming a constant illuminance coming from

sunlight, the received signal depends on the position of the tag.

We therefore describe the received signal as Y (x) = g(x) ∗

1327



0
0.4

0.2

0.5

0.4

Lu
m

in
ou

s 
po

w
er

 p
er

 a
re

a 
(n

or
m

al
iz

ed
) 

   
   

   
  

0

2D Channel response at 37.4 cm

X-position (cm)

0.2

Y-position (cm)

1

0-0.2 -0.2-0.4 -0.4

0

0.5

-10

R
ec

ei
ve

d 
lu

m
in

ou
s 

po
w

er
 

(n
or

m
al

iz
ed

) 
   

   
   

  

2D Channel response at 37.4 cm

5

X-position (mm)

1

0

Y-position (mm)

0 -5-10-1510

Fig. 9. Simulated (left) and measured (right) channel response at 37.4 cm
showing the small area from which light reaches the sensor.

-15 -10 -5 0 5 10
X-position (mm)

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 c
ha

nn
el

 r
es

po
ns

e

1D Channel response at 37.4 cm

measured
simulated
geometric

-10 -5 0 5 10 15
X-position (mm)

0

0.5

1

N
or

m
al

iz
ed

 c
ha

nn
el

 r
es

po
ns

e

1D Channel response at 101 cm

measured 1
measured 2
measured 3
measured 4
simulated
geometric

Fig. 10. Measured and simulated channel response at 37.4 cm (left) and 101
cm (right). The red vertical lines show the values of A (geometric model).

h(x), where g(x) is the message. Our goal is to determine h(x)
so we can estimate the signal Y (x) expected at the receiver.

We obtain h(x) by determining the luminous power on the

sensor when an ‘infinitesimally narrow stripe’ (the geometric

equivalent of the dirac delta function) passes the detection

area A. We derive h(x) via simulations as well as empirical

measurements. For the simulations, we divide the underlying

surface into a fine-grained grid, and use our ray-based model

to quantify the amount of light reflected from each grid cell.

For the empirical results, we use an e-ink display as a surface

because it reflects light diffusely and allows a fine-grained

control of pixels (white or black).

We perform tests outdoor with two different D: 37 cm and

101 cm. We use sunlight to illuminate the surface. Fig. 9 shows

the light intensity received from each ‘pixel’ for D=37 cm

(simulations and empirical measurements). Fig. 10 shows the

channel response for both distances, but considering only the

position of the tag (x) as an input (1D response). The most

important observation is that the channel distorts a perfect

square-wave message into a Gaussian-like signal. If we had

used surfaces with specular reflections (mirror-like materials),

the channel response would have been different (likely closer

to a square-wave). Fig. 10 also shows that the normalized

geometric (cf. Eq. 6), simulated (ray-tracing approach) and

empirical results match each other, and the accuracy increases

as the distance between the object and the receiver increases.

This high accuracy is due to the fact that light waves are not

affected by multipath as severely as radio waves are.

D. Inter-symbol interference (ISI)

The impulse response obtained in Sec. III-C considers a

single type of diffuse material. Our messages, however, will

have materials with different reflective properties: HIGH and

LOW. Furthermore, not all objects may pass at the expected

distance D, some may have longer distances, and thus, the

receiver’s FoV may cover more than one stripe at a time,

causing inter-symbol interference (Fig. 3). If the distance is

shorter, the FoV will only cover one stripe, and there will be no

inter-symbol interference (ISI). Considering ISI, an important

question arises: what is the performance of our channel under

more realistic settings? The channel response introduced in the

previous subsection will allow us to analyze this problem in

detail utilizing eye diagrams. Consider for example a moving

car carrying the following messages: 111, 110, 001, and 010.

All messages have a stripe width W = 3.5 cm. The distance

between the receiver and the car is approximately 3 m. The

parameters for the receiver are: sg = 4mm, sp = 1.7mm,

dp = 7.2 cm. These parameters lead to a value of A = 8.5 cm.

Thus, the message 111 could be seen as a pattern equivalent

to having a stripe of width 3×W = 10.5 cm, which is greater

than A (no ISI effect). The message 110 could be seen as a

pattern with a stripe width 2×W = 7 cm, slightly narrower

than A (minimal ISI effect). The messages 100 and 010 could

be seen as a pattern with a stripe of width 1×W = 3.5 cm,

significantly lower than A. In fact, more than two symbols are

under the FoV (strong ISI effect).

If we convolve these messages and all other combinations

of 1s and 0s with our channel response, we obtain the

signals shown in Fig. 11 (left). These signals are the expected

(simulated) performance of our system. The message 111
creates a wide peak. Such wide peak appears as a flat blue

signal at the normalized intensity 1. The message 000 appears

as a flat black signal at the normalized intensity 0. This type

of signals are easy to decode because any threshold between

1 and 0 can be used to differentiate between HIGH and LOW

symbols. But if we start reducing the stripe width, the signal’s

peaks can be lower due to ISI: the reflections of HIGH and

LOW symbols mix up together under the same FoV. The data

rate could increase, but decoding becomes harder. Consider

for example the signals generated by messages 101 and 010
(captured by the ‘eye’). To decode information, we would need

to use a threshold within a much narrower range (between 0.4

and 0.6), and we would only have a window of 3 ms within

a symbol to utilize that threshold reliably (between -1.5 and

1.5 ms). Note that even though W = 3.5 cm is only 40% of

the length of A = 8.5 cm, we can still decode information.

The reason for this phenomenon is the circular coverage of

our receiver which naturally gives a higher weight to the stripe

at the center of the circle. For example in Fig. 3, the broad

FoV covers three symbols, but the black stripe at the center

covers (proportionally) a larger area.

The same setup used in the above simulations is then

evaluated empirically with a car moving on a street, shown

in Fig. 11 (right) (the details of the evaluation are presented

in Sec. V). The problem in real scenarios is that fluctuations in

the illumination or in the reflection coefficients of the surface

can reduce the height of the ‘eye’ significantly, making the

decoding process less reliable.

Our eye diagram analysis provides two insights. First, given

that the amplitude of signal can be highly variable, a simple

threshold detector is not the best method to decode the signal.
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Fig. 11. Simulated (left) and measured (right) eye diagram for our channel
with a stripe size of 3.5 cm moving at 12 m/s at a distance of 3 m.

Fig. 12. A constant sampling rate usually works (left), but if the signal
frequency fluctuates (middle), it is better to detect edges (right).

Prior studies pursued this approach [3], but they had to use

wide stripes (10 cm) stripes at just 1 m distance. In traditional

communication systems, threshold-based methods are efficient

because the transmitter can adjust the output power and sym-

bol duration to create wide-enough eye diagrams based on the

channel conditions. But we have no control over the emitted

signal. In Sec. IV, we will propose an alternative decoding

method for our new channel. Second, the eye diagram can

help us determine a lower bound for the minimum stripe width

W . Using a stripe width equal to A (geometric model) is a

conservative choice because the FoV can cover more that one

stripe and still decode data reliably. Using a stripe size greater

than A/2 would still allow the eye to remain wide enough to

decode symbols reliably. In Sec. V we will validate this claim

and show that if empirical measurements can be performed,

the stripe width could be reduced below A/2.

IV. DECODING INFORMATION: RESILIENCE TO DYNAMICS

In traditional communication systems, a preamble is used to

obtain parameters to decode a frame. This approach is efficient

because the transmitter controls the output power and timing,

and thus, the symbol properties (amplitude and duration) do

not change (much) between the preamble and the payload.

In our system, signals can change in amplitude and time,

causing decoding errors if traditional approaches are used,

Fig. 12. For example, when multiple stripes are under the FoV

(a requirement to maximize the data rate of our channel, c.f.

Sec. III-D), the amplitude changes depending on the number of

consecutive ones and zeros, Fig. 12 (left). The peaks are higher

when two HIGH symbols are together (instead of just one

HIGH symbol) because more light is reflected back. The issue

of timing is also problematic, Fig. 12 (middle). A signal could

be stretched out or compressed, and the decoding process

would lead to more (or less) bits than the original reflections.

The state-of-the-art [3] applied dynamic time warping to solve

this problem. However, its computing complexity is high and

it requires a training dataset with signals for all possible tags.

To overcome our decoding challenges, we took inspiration

from barcode scanner techniques [12], [13]. We borrow two

key concepts from these methods. First, we use edge detectors

to identify the symbol boundaries instead of symbol duration.
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Fig. 13. The algorithm uses edge detection (middle) on the received signal
(top) to retrieve the barcode signal (bottom).

This approach ameliorates the problems related to variable

speeds. Second, we gather information from the entire packet

before starting the decoding process, as opposed to using

only information from a preamble. This approach allows us

to decode bits based on edge transitions instead of using

thresholds prone to fail due to (varying) amplitudes. We use

these key concepts and optimize our algorithm to work with

the uncontrollable properties of the object (speed, distance)

and environment (illuminance). Note that our system is sig-

nificantly more challenging than standard barcode readers, due

to the much longer distances, the uncontrollable objects, and

the uncontrollable light source.

Our algorithm works for any code with the property that

the maximum number of consecutive 0′s or 1′s is two, as in

popular line coding schemes such as Manchester Coding [14]

and interleaved-2-of-5 (ITF) [15]. We use an example from our

outdoor evaluation to assist the description of our decoding

algorithm, see Fig. 13. The signal captured at the receiver is

shown in Fig. 13 (top). We select four points in the figure, A,

B, C, D, to facilitate the description. Let us denote the tuple

< rx, tx > as the signal value rx and timestamp tx measured

at the receiver for sample x. Our decoding algorithm works

in two steps: edge detection and edge mapping.

Step 1: edge detection. Our algorithm detects an edge when

the signal rx has changed at least �r. The threshold �r is

heuristically chosen by the algorithm, depending on the light

conditions. Consider the two points A and B in Fig. 13. If

|rB − rA| ≥ �r, then an edge is detected. The polarity of

the edge depends on the signal values at point A and B. If

rB < rA, then it is considered as a falling edge; otherwise it

is considered a rising edge (points C and D). When an edge is

detected, the time stamp is stored into a set T . To prevent an

edge being detected again, a ‘detected’ edge is only considered

as new if the polarity is different from the previous edge.

Let N denote the number of detected edges. For the barcode

in our example, the detected edges are drawn in Fig. 13

(middle). In this example, we have N = 18. Among them, 9
are falling edges and 9 are rising edges. The set of timestamps

for the edges becomes T = {t1, t2, . . . , tN}. The first edge,

t1, marks the start of a message, all the other edges t2, t3, . . .
mark the end of a stripe in the code. Note that the last edge,

tN , also marks the end of a message.
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Fig. 14. Receiver: left) diagram; right) snapshot Fig. 15. Disk

Step 2: edge mapping. The detected edges are mapped to

symbol sequences according to the time intervals between each

two consecutive edges. Denoting the interval between the nth

edge and its previous edge as δn, namely

δn = tn − tn−1, ∀tn ∈ T \ t1. (7)

Our algorithm maps a rising edge n into bits as below:

A rising edge −→
{

bit 0, δn < kδ

bits 00, otherwise,
(8)

where δ is a time threshold used to determine the number of

symbols between two edges (explained later), used together

with the empirical constant k. For our system, we chose k =√
2 to maximize robustness. Similarly, a falling edge can be

mapped to bits 1 or 11, depending on the value of δn. Edges

with δn > 3δ mark the boundaries of a tag message.

We denote the set of δn as S = {δ2, δ3, . . . , δN} and we

use the following steps to determine the threshold δ:

1) Find the minimal time interval δmin = minδn∈S δn;

2) Define a new set S ′ of the time intervals. In our algorithm,

S ′ ≡ {δn : δi < kδmin, ∀δn ∈ S}
3) Calculate δ by averaging the elements in the new set S ′.

Based on the above described edge mapping, the detected

edges in the example can be finally mapped to the correct bit

string as shown in Fig. 13 (bottom).

V. PERFORMANCE EVALUATION

In this section, we first combine the theoretical and empir-

ical insights gathered in Sec. III to derive the optimal stripe

width, which provides the highest data rate for our channel.

Then, we evaluate our system in two different setups. The first

experimental setup is created indoors on a small scale, such

that the experiments can be easily repeated to test the impact

of different parameters. The second setup is on a larger scale,

performed outdoors with a car communicating information

through an embedded tag.

Receiver. A prototype of our receiver is shown in Fig. 14.

It is built with the following parameters: sp = 1mm (for

indoor experiments), sp = 1.7mm (for outdoor experiments),

sg = 4mm, dp = 7.2 cm, f = 6.5 cm. The additional distance

dg between the gap and the lens is 1.6 cm. The optical signal

is sensed with a phototransistor, rather than with photodiodes

(as used in [3]). This has the advantage of greatly increasing

the sensitivity of the receiver, at the cost of reducing the

bandwidth. However, our communication channel does not

require high rates as it will be shown in the experiments. The

electrical signal after opto-electrical conversion is sampled by

an ADC at a rate of 50 kHz.
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Fig. 16. Minimum stripe width for the indoor (left) and the outdoor (right)
experimental setups. The geometric estimation represents A/2.

A. Optimal stripe width

One of the goals of this paper is to find the minimum

required stripe width, such that the conveyed information can

be maximized. We compare the stripe widths obtained with

our geometric model, simulations and empirical evaluations

in Fig. 16. We divide the figures for the indoor and outdoor

scenarios because we use a photosensor with sensing area

sp = 1mm indoors and sp = 1.7mm outdoors.

A designer willing to use our channel will first need to

determine the maximum distance D between the receiver and

the object. Then, based on the constraints on the size of the

receiver, the designer needs to place a lens, aiming at D ≈ di.
After that, A can be calculated. If the stripe width W is greater

or equal than the geometric bound A, the system is expected to

work reliably (no ISI), but in Sec. III-D we showed that more

than one symbol can be present under the FoV and the system

can still decode information. Geometrically, we can state that

if the stripe width W is greater than A/2, the dominant stripe

under the FoV (HIGH or LOW) will still reflect (or absorb)

enough light to allow a reliable decoding (blue dotted lines

in Fig. 16). If the designer uses the channel response, an

absolute lower bound can be simulated for the stripe width

(red lines in Fig. 16). A system on this absolute lower bound,

however, will lead to a minimal amplitude difference in the

eye’s height, making the system unreliable. If empirical tests

can be performed in the scenario of interest, the minimum

stripe width can be reduced using eye-diagrams of the received

signal. We did this optimization for the indoor and outdoor

experiments, squares in Fig. 16. All in all, we can observe that

the geometric bound (A/2) is a safe choice, and that a fine-

tuned empirical approach will lie in-between the geometric

and simulated curves.

B. Indoor evaluations

The indoor experiments are performed in a small-scale

setup to provide repeatability. A spinning paper disk with a

barcode striped pattern, shown in Fig. 15, is used as a tag that

repeatedly transmits the same message (the code is 01010100
11001010110101001011001100). The disk is driven by a DC-

motor that can be programmed to adjust the speed. Different

disk-receiver (i.e. object-sensor) distances are tested.

1) Impact of the object’s speed.: We perform the experi-

ments in a low-light condition (about 500 lux). The evaluation

results are shown in Fig. 17. First, we can observe that when

the object-sensor distance is fixed to 37 cm, Fig. 17 (left),

we achieve a 100% decoding ratio when the symbol rate is 50
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Fig. 17. Impact of object’s speed and ambient light intensity: the object-sensor
distances is 37 cm (left) and 70 cm (middle&right), respectively. (SoA: [3])

baud. The decoding ratio drops to around 58% when the object

moves at a higher speed such that the symbol rate is 390 baud.

This drop is due to the distortion of the received signal caused

by the non-ideal behavior of the receiver, which becomes

predominant in low-light conditions. Second, we can observe

that with a varying speed of the object (symbol rate changing

from 50 to 390 baud), our algorithm is still able to decode

the message at a high rate, 85%, because it can compensate

the speed fluctuations partially. In contrast, state-of-the-art [3]

(referred as SoA) can only decode about 10% of the messages

due to its limited robustness to speed variations. Finally, we

can notice that even when the object moves at constant speeds,

our decoding algorithm still outperforms the SoA greatly. The

reasons are two-fold: (1) the intensity of ambient light changes

slowly which affects the performance of the SoA, while our

edge-detection algorithm is resilient to the intensity changes

in ambient light. (2) The SoA relies on perfect detections of

the peaks and valleys of the preambles [3], which cannot be

accurately carried out in practical scenarios. We then place

the sensor at 70 cm from the object. The results are given in

Fig. 17 (middle), where we can observe that our decoding

algorithm still outperforms the SoA.

2) Impact of the intensity of ambient light: In this scenario,

we compare the performance of our system in a low-light

condition (about 500 lux) with the setup exposed to direct

sunlight, which provides much higher illuminance (1000s of

lux). We utilize the high symbol rate case: 440 baud for

70 cm. This high symbol rate did not provide 100% decoding

ratios with low lighting conditions. The evaluation results are

shown in Fig. 17 (right). We can observe that with higher

illuminance, our algorithm achieves 100% decoding ratio with

sunlight, which doubles the decoding rate achieved under a

low-light condition. This result exposes a nice property of

optical receivers: the higher the illumination, the higher the

symbol rates the system can handle. This occurs because

optical sensors react to the amount of photons that it receives

for a given unit of time. Thus a fast moving stripe at a high

illumination can provide more photons than a slow moving

stripe at a low illumination.

C. Outdoor evaluations

For the outdoor experiments we attach a tag to a car’s side

as shown in Fig. 18. Paint could be used to create a tag, but

we printed tags on paper to have two exchangeable tags: (i)
SparseTag: a 21-bit string with a stripe width of 4.8 cm (the
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Fig. 19. Received signal: experiment vs. simulation.

TABLE II
EVALUATION RESULTS IN OUTDOOR SCENARIO

Code Distance Speed Our method SoA [3]

SparseTag
3 m 40 Km/h Decoded Decoded
4 m 53 Km/h Decoded Decoded

DenseTag
2.5 m 40 Km/h Decoded No
3 m 40 Km/h Decoded No

code is 00101010011010010110010); (ii) DenseTag: a 37-bit

string with a stripe width of 3.5 cm (the code is 001010110011
0101001011001101001011010). The receiver is placed by the

roadside at distances ranging from 2.5 m to 4 m from the tags

attached to the car. Due to the speed limit on the road, we

could not drive the car faster than 55 km/h.

Our comparison with the SoA [3] will be divided in two

parts, one qualitatively, highlighting the gains of our tag

and receiver design (Sec. III), and the other quantitative,

showcasing the reliability of our decoding algorithm (Sec. IV).

The SoA showed that their system could decode information

on a sunny day (≈ 10 kLux) from a car moving at 18 km/h.

The receiver had to be placed on a tripod above the car at

a 1 m distance, and the tags were created with aluminium

foil (HIGH) and black cardboard (LOW). Our analysis of

different reflective materials and the derivation of an optimal

stripe width bring two important advantages. First, for a 1 m

distance we can create messages with W = 1.4 cm, Fig. 16

(right). That is, we can encode seven times more information

compared to the W = 10 cm of the SoA. Second, the fact

that we use diffuse reflections allows us to place the receiver

anywhere (by the side of the road in our evaluation). The SoA

had to place the receiver above the car to receive the specular

reflections (and the link was intermittent). Using a receiver

with the appropriate lens also provides multiple benefits due

to the stronger signal strength. First, we can attain ranges that

are four times longer, even considering that for that distance

our stripes are twice as narrow (4.8 cm vs. 10 cm). Second,

we can decode information for speeds that are three times

higher (53 km/h vs. 18 km/h), validating the insights provided

in Fig. 17. Third, we perform the experiments during a cloudy

day: ≈ 3 kLux vs. the ≈ 10 kLux of a sunny day in the SoA.

To assess the performance of the decoding algorithm, we

implement the threshold-based approach in [3], and provide as

input the traces obtained with our lens-enabled receiver (the

SoA system would not have been able to decode information

with our setup using their receiver). The evaluation results are

summarized in Table II. For illustration purposes, in Fig. 19

we show the received signal strength for the scenario with

the SparseTag at a 4 m distance for a speed of 53 km/h, i.e.

achieving a throughput of 127 b/s (corresponding to a symbol
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rate of 308 baud in our ITF message). The figure shows a

clear signal that can be easily decoded. For the DenseTag,

our algorithm can decode it at a distance of 3 m with the car

moving at a speed of 40 km/h, that is, achieving a throughput

of 123 b/s (corresponding to a symbol rate of 296 baud in

our ITF message). The DenseTag cannot be decoded by the

method presented in [3] because the narrower stripes are more

prone to deviations in amplitude and symbol duration.

Overall, our analysis of this new type of channel not only

provides novel insights about its fundamental properties, but

also improves its performance across multiple dimensions.

VI. RELATED WORK

Our system is inspired by the concept of passive communi-

cation with ambient light introduced in [3]. But this work is the

first to investigate deeply the properties of this new channel.

We propose a framework to derive the optimal stripe width

to maximize the amount of encoded information, and ensure

that it can be decoded reliably. We exploit lenses to increase

simultaneously the data rate and the amount of light reaching

the receiver. Further, we propose a decoding scheme to solve

the problems caused by variable amplitudes and symbol dura-

tion. None of these optimizations were considered by [3], and

thus, our work significantly enhances the performance of this

new type of channel. We are also inspired by other seminal

studies. In particular:

Backscatter communication. Our system is a type of back-

scatter communication [16]. For radio waves, ambient back-

scatter introduced a new generation of RFID tags that exploit

existing artificial RF waves [17]. These tags are energy-neutral,

as the tags harvest energy directly from the surrounding RF

waves. The amount of harvested energy is too small to excite

an antenna, therefore, the tags absorb and reflect surrounding

RF waves to communicate. This concept has been used to

create 3D printed sensors that communicate with WiFi devices

without the need of batteries or electronics [18]. Compared

to the above works, our tags do not need complex electronics

nor rely on artificial (human-generated) waves. Our system ex-

ploits natural sunlight waves, which have completely different

properties compared to artificially modulated RF waves.

Recently, Retro-VLC [2] and PassiveVLC [4] have explored

backscattering with visible light communication. Both works

create a bidirectional link between an active light source that

transmits data to a receiver using traditional VLC. For the up-

link, the receiver replies back using an LCD shutter to change

the reflected light in time. Similar to radio backscattering,

they use local clocks to modulate the reflected light. We have

no such control, we explore backscattering for unmodulated

light sources and mobile nodes. A high-level comparison with

works in VLC backscatter is provided in Table III.

Embedding information into objects. Recent advancements

have embedded information into objects using ‘physical bar-

codes’ [19], [20]. But the tags only contain static information

and require expensive RF equipment to be read (220 000
USD [20]). A more recent study enables data storage and

interaction with smart fabric without onboard electronics [21].

TABLE III
COMPARISON OF WORKS IN VLC BACKSCATTER (TX: transmitter)

Name Throughput Range Control of TX Electronics in Tags

Retro-VLC 0.125 kb/s 2.4 m Yes Yes

PassiveVLC 1 kb/s 2 m Yes Yes

Our work > 0.12 kb/s 4 m No No

Our tags may also be embedded into smart fabric, but more

work is needed to enable such communication channel.

VII. CONCLUSION

In this work we, for the first time, optimized the operation of

a new communication channel based on sunlight. Our thorough

analysis enhanced its performance across multiple dimensions:

longer ranges, higher data rates, higher object speeds and more

robustness. This new area is promising and there are still many

challenges to overcome, e.g. our system does not work well in

darker scenarios at the moment. In the future, we will design

advanced receivers and new methods to over these limitations.
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