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Abstract
In this contribution,we extend the principle of integer bootstrapping (IB) to a vectorial form (VIB). Themathematical definition
of the class of VIB-estimators is introduced together with their pull-in regions and other properties such as probability bounds
and success rate approximations. The vectorial formulation allows sequential block-by-block processing of the ambiguities
based on a user-chosen partitioning. In this way, flexibility is created, where for specific choices of partitioning, tailored VIB-
estimators can be designed. This wide range of possibilities is discussed, supported by numerical simulations and analytical
examples. Further guidelines are provided, as well as the possible extension to other classes of estimators.

Keywords GNSS · Integer ambiguity resolution · Integer least-squares (ILS) · Vectorial integer bootstrapping (VIB) · Pull-in
region · Z -transformation · Ambiguity success rate

1 Introduction

Global navigation satellite system (GNSS) ambiguity resolu-
tion is the process of resolving the unknown integer ambigui-
ties of the observed carrier phases.Once they are successfully
resolved, advantage can be taken of the millimeter-level pre-
cision of the carrier-phase measurements, thereby de facto
turning them into ultra-precise pseudo-ranges. The practical
importance of this becomes clear when considering the great
variety of current and future GNSS models to which integer
ambiguity resolution applies. A comprehensive overview of
these GNSS models, together with their applications in sur-
veying, navigation, geodesy and geophysics, can be found
in textbooks such as (Strang and Borre 1997; Teunissen and
Kleusberg 1998; Kaplan and Hegarty 2006; Misra and Enge
2006; Hofmann-Wellenhof et al. 2008; Borre and Strang
2012; Leick et al. 2015; Teunissen and Montenbruck 2017;
Morton et al. 2021).
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In the current theory of integer ambiguity resolution, one
can discriminate between three different classes of estima-
tors: the class of integer (I) estimators (Teunissen 1999), the
class of integer-aperture (IA) estimators (Teunissen 2003a)
and the class of integer-equivariant (IE) estimators (Teunis-
sen 2003b). The classes are subsets of one another, with
the I-class being the smallest and the IE-class the largest:
I ⊂ IA ⊂ IE. Members from all three classes have found
their application in a wide range of different GNSS mod-
els, see, e.g., (Brack et al. 2014; Hou et al. 2020; Odolinski
and Teunissen 2020; Psychas and Verhagen 2020; Verhagen
2005; Wang et al. 2018; Zaminpardaz et al. 2018). In this
contribution, we restrict attention to the I-class.

Popular estimators in the I-class are integer rounding (IR),
integer bootstrapping (IB) and integer least-squares (ILS).
Integer rounding is the simplest, but has the poorest suc-
cess rate performance, while integer least-squares has the
best performance, but is computationally the most complex
(Teunissen 1998, 1999). In terms of their success rate per-
formance, the three integer estimators can thus be ordered as
follows

IR ≤ IB ≤ ILS (1)

where the equality holds if the ambiguities are perfectly
decorrelated.
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The IB-estimator has the attractive property that it is sim-
ple to compute and that it can have a close to optimal success
rate performance when used with a properly chosen ambi-
guity parametrization. The estimator is characterized by two
operations that are alternately applied: a sequential condi-
tional least-squares estimation and an integer mapping. With
the IB these are both applied at the scalar level. This is, how-
ever, not a necessity for the two principles to be applicable.
In this contribution, we will generalize the scalar concept
of integer bootstrapping to a vectorial form in which both
the sequential conditional estimation and the integer map-
ping are vectorial. We will develop the associated theory and
show that with the concept of vectorial integer bootstrapping
(VIB) great flexibility is created for designing one’s integer
estimators when balancing computational simplicity against
success rate performance.

This contribution is organized as follows. In Sect. 2, we
briefly review integer ambiguity resolution with a special
emphasis on integer bootstrapping and its various proper-
ties. The concept of vectorial integer bootstrapping (VIB) is
introduced in Sect. 3. Two different descriptions of the class
of VIB-estimators are given, one that follows naturally from
the definition of scalar integer bootstrapping and another that
is more suitable to characterize its pull-in regions. In Sect. 4,
we develop probabilistic properties of the VIB-estimators,
with a special emphasis on their probability of correct inte-
ger estimation, the ambiguity success rate, together with its
easy-to-compute lower bounds and upper bounds. In this
section we also provide a generalized version of the perfor-
mance I-ordering defined in (1). It includes newly defined
VIB-estimators and it shows the great flexibility one has
in working with vectorial integer bootstrapping, which we
also demonstrate through numerical examples. In Sect. 5, we
provide further considerations for VIB-usage, including the
choice of ambiguity parametrization, efficiency enhancing
options when solving the normal equations and the differ-
ent ways in which the VIB concept can be extended to other
classes of estimators. Finally a summary with concluding
remarks is provided in Sect. 6.

The following notation is used throughout: E(·) denotes
the expectation operator, D(·) the dispersion operator, P(·)
probability of an event, || · ||2Q = (·)T Q−1(·) the square-
weighted-norm in the metric of Q, and I : R

n �→ Z
n an

admissible integer map.

2 Mixed-integer model estimation

In this section, a brief review is given ofmixed-integer model
estimation with an emphasis on the method of integer boot-
strapping.

2.1 Mixed-integer model and ambiguity resolution

The basis of GNSS integer ambiguity resolution is formed
by the mixed-integer model, given as

E(y) = Aa + Bb, D(y) = Qyy (2)

with y ∈ R
m the vector of observables containing the pseudo-

ranges and carrier-phases, (A, B) ∈ R
m×(n+p) the full-rank

designmatrix, a ∈ Z
n the vector of unknown integer ambigu-

ities, b ∈ R
p the vector of real-valued unknown parameters

(e.g. baseline components and atmospheric delays), and Qyy

the positive-definite variance-covariance (vc) matrix of the
observables.

In the following, we will refer to b simply as the base-
line vector. The underlying distribution of the previous
mixed-integer model will be assumed a multivariate normal
distribution as common in many GNSS applications (Leick
et al. 2015; Teunissen and Montenbruck 2017; Morton et al.
2021). The solution to the (2) is obtained through the follow-
ing three steps:
Step 1: the model is solved by means of least-squares (LS)
estimation whereby the integerness of the ambiguities is dis-
carded. This gives the so-called float solution, together with
its vc-matrix, expressed by

[
â
b̂

]
,

[
Qââ Qâb̂
Qb̂â Qb̂b̂

]
(3)

Step 2: an admissible integer map I : Rn �→ Z
n is chosen to

compute the integer ambiguity vector as

ǎ = I(â) (4)

The integer map is admissible when its pull-in regions Pz =
{x ∈ R

n| I(x) = z}, z ∈ Z
n , cover Rn , while being dis-

joint and integer translational invariant. It follows that those
regions leave no gaps, have no overlaps, and obey an integer
remove-restore principle (Teunissen 1999).

Some popular choices for I are integer rounding (IR),
integer bootstrapping (IB), or integer least-squares (ILS). To
enhance the probabilistic and/or numerical performance of
ambiguity resolution, the integermap is often preceded by the
decorrelating Z -transformation ẑ = ZT â of the LAMBDA
method (Teunissen 1995), in which case the integer estimate
of a is computed as

ǎ = Z−T · I(ZT â) (5)
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Step 3: after ǎ ∈ Z
n has been validated, the ambiguity-

resolved or fixed baseline solution can be given as

b̌ = b̂ − Qb̂â Q
−1
ââ (â − ǎ) (6)

Its vc-matrix, in case the uncertainty of ǎ may be neglected,
is given as

Qb̌b̌ = Qb̂b̂ − Qb̂â Q
−1
ââ Qâb̂ (7)

which shows by how much the precision of b̂ will be
improved as a consequence of imposing the integer ambi-
guity constraint a ∈ Z

n .

2.2 Integer bootstrapping

The IB-estimator is one of themost popular integer ambiguity
estimators. Its popularity stems from the ease with which it
can be computed and from its close to optimal performance
once the ambiguities are sufficiently decorrelated. The IB-
estimator, following (Teunissen 1998) is here defined.

Definition 1 (Scalar integer bootstrapping). Let â = (â1,
. . . , ân)T ∈ R

n be the float solution and let ǎIB =
(ǎ1, . . . , ǎn)T ∈ Z

n denote the corresponding integer boot-
strapped (IB) solution. Then

ǎ1 = �â1�
ǎ2 = �â2|1� = �â2 − σ21σ

−2
1 (â1 − ǎ1)�

...

ǎn = �ân|N � = �ân − ∑n−1
j=1 σn, j |Jσ−2

j |J (â j |J − ǎ j )�
(8)

where �·� denotes integer rounding and âi |I is the least-
squares estimator of ai conditioned on the values of the
previous I = {1, . . . , (i − 1)} sequentially rounded com-
ponents, σi, j |J is the covariance between âi and â j |J , and
σ 2
j |J is the variance of â j |J . For i = 1, âi |I = â1. 	


This previous definition shows that the IB-estimator is driven
by products of ambiguity conditional covariances and vari-
ances like σi, j |J · σ−2

j |J . As shown in (Teunissen 2007), these
are readily available when one works with the triangular
decomposition of the ambiguity vc-matrix, Qââ = LDLT ,
thus making the computation of the IB-estimator particularly
easy. The matrix L is lower unitriangular, so its entries are
defined as

(L)i j =
⎧⎨
⎩
0 for 1 ≤ i < j ≤ n
1 for i = j
σi, j |J · σ−2

j |J for 1 ≤ j < i ≤ n
(9)

while we have

D = diag(σ 2
1 , σ 2

2|1, . . . , σ 2
j |J , . . .) (10)

Another attractive feature of the IB-estimator is that its prob-
ability of correct integer estimation, or success rate, can be
easily computed. Its analytical expression is given by Teu-
nissen (1998) as follows

P(ǎIB = a) =
n∏

i=1

[
2Φ

(
1

2σi |I

)
− 1

]
(11)

with Φ(·), i.e. cumulative normal distribution, being

Φ(x) =
∫ x

−∞
1√
2π

exp

{
−1

2
v2

}
dv (12)

Note thatwhile the entries of L inQââ = LDLT drive the IB-
estimator, entries of D are the ones that determine its success
rate. Moreover, the IB-estimator is not the best estimator
within the class of I-estimators. Teunissen (1999) proved that
of all admissible integer estimators, the ILS-estimator

ǎILS = arg min
z∈Zn

||â − z||2Qââ
(13)

is best in the sense that it has the largest possible success rate.
The price one pays for this optimality is that, in contrast to
the easy-to-compute IB-estimator, the computation of (13) is
based on a more elaborate integer search (Teunissen 1995).

Although IB is not best in the class of integer estimators,
it is best in a smaller class, namely the class of sequential
integer estimators. This class was introduced in (Teunissen
2007) as any I : Rn �→ Z

n for which

I(x) = [x + (R − In)(x − I(x))] (14)

where [·] denotes component-wise integer rounding of its
vectorial entry and R is an arbitrary unit lower triangular
matrix. Note that both IR and IB belong to this class. IR is
obtained with the choice R = In and IB with the choice R =
L−1. In (Teunissen 2007) it is shown that of all sequential
integer estimators, IB has the largest success rate. Hence,
for the success rate of the three popular integer estimators,
we have P(ǎIR = a) ≤ P(ǎIB = a) ≤ P(ǎILS = a). Thus
integer rounding has poorest performance and integer-least-
squares the best. In the following section we will extend
this ordering by including the success rate performance of
a vectorial formulation for the integer bootstrapping.

3 Vectorial integer bootstrapping

In this section, we introduce the concept of vectorial inte-
ger bootstrapping (VIB) together with a description of its
pull-in regions that are illustrated by means of a few three-
dimensional examples.

123



   99 Page 4 of 14 P. J. G. Teunissen et al.

3.1 TheVIB-estimator

The IB-estimator is characterized by two elements that are
alternately applied, the sequential conditional estimation and
the integer mapping. With the IB-estimator they are both
applied at the scalar level. This is however not a necessity
for the two applied principles. Hence, we may generalize
the scalar integer bootstrapping to a form in which both the
sequential conditional estimation and the integer mapping
are vectorial. As a result we have the following definition of
vectorial integer bootstrapping.

Definition 2 (Vectorial integer bootstrapping) Let â =
(â1, . . . , âv)

T ∈ R
n be the float ambiguity solution, with

âi ∈ R
ni , i = 1, . . . , v and n = ∑v

i=1 ni , while let
ǎVIB = (ǎ1, . . . , ǎv)

T ∈ Z
n denote the corresponding vec-

torial integer bootstrapped solution. Then

ǎ1 = �â1�1
ǎ2 = �â2|1�2 = �â2 − Q21Q

−1
11 (â1 − ǎ1)�2

...

ǎv = �âv|V �v = �âv − ∑v−1
j=1 Qv j |J Q−1

j j |J (â j |J − ǎ j )�v

(15)

where �·�i : Rni �→ Z
ni is a still to be chosen admissible

integer mapping, and âi |I is the least-squares estimator of ai
conditioned on the values of the previous I = {1, . . . , (i−1)}
sequentially integer estimated vectors, Qi j |J is the covari-
ance matrix of âi and â j |J , and Q j j |J is the variance matrix
of â j |J . For i = 1, âi |I = â1. 	

Note that each v integer map, �.�i : Rni �→ Z

ni , in (15), can
still be chosen freely. As an example consider the case where
â is partitioned in two parts, â = (âT1 , âT2 )T . Then v = 2
and the conditional estimator of a2, when conditioned on a1,
is given as

â2(a1) = â2 − Qâ2â1Q
−1
â1â1

(â1 − a1) (16)

having as vc-matrix

Qâ2â2|a1 = Qâ2â2 − Qâ2â1Q
−1
â1â1

Qâ1â2 (17)

Would we now choose both �·�1 and �·�2 as ILS-maps, the
corresponding VIBILS solution follows as

ǎ1,VIBILS = arg min
z1∈Zn1

||â1 − z1||2Qâ1 â1

ǎ2,VIBILS = arg min
z2∈Zn2

||â2(ǎ1,VIBILS) − z2||2Qâ2 â2 |a1
(18)

Thus now two ILS-problems need to be solved, but both at a
lower dimension than that of the original full ILS-problem,
which was defined as

ǎILS = arg min
z∈Zn

||â − z||2Qââ
(19)

The two solutions, (18) and (19), can be compared ifwemake
use of the following orthogonal decomposition (Teunissen
1995),

||â − z||2Qââ
= ||â1 − z1||2Qâ1 â1

+ ||â2(z1) − z2||2Qâ2 â2 |a1
(20)

This shows that instead of minimizing the sum of quadratic
forms, as done with (19), the solution in (18) is obtained
by minimizing the two quadratic forms separately. The
integer-valued vector z1 in (20) is obtained during the first
minimization.

In general, the integer mapping in each block can be cho-
sen as only IR, or only IB or only ILS, or combinations of
them. Nonetheless, if for a certain ni -dimensional block we
consider IB as the estimator, this is equivalent to a further
partitioning into ni (scalar) blocks. It follows that adopting
IB in each block, i.e., applying the VIBIB estimator, will lead
to the exactly same (scalar) IB formulation, and thence this
is not separately analyzed.

3.2 TheVIB pull-in regions

In our VIB-definition given in (15) we have described the
components of the VIB-estimator using the analogy with its
scalar variant in (8). For the purpose of describing the pull-in
regions of the VIB-estimator, we now provide its vectorial
form thereby drawing on the analogy with (14).

Lemma 1 (VIB-estimator) Let IVIB : R
n �→ Z

n be the
VIB-defining admissible integer map. Then we have ǎV I B =
IVIB(â), with

IVIB(x) = I ( x + (L − In) (x − IVIB(x)) ) (21)

whereI : Rn �→ Z
n is givenasI(x) = (�x1�T1 , . . . , �xv�Tv )T

for x = (xT1 , . . . , xTv )T . The L ∈ R
n×n is given as a lower

block-triangular matrix, such that

L =

⎡
⎢⎢⎢⎢⎢⎢⎣

In1
−Qâ2â1Q

−1
â1â1

In2
−Qâ3â1Q

−1
â1â1

−Qâ3â2|a1Q
−1
â2â2|a1 In3

...
...

. . .

−Qâv â1Q
−1
â1â1

−Qâv â2|a1Q
−1
â2â2|a1 . . . Inv

⎤
⎥⎥⎥⎥⎥⎥⎦

(22)

Proof The proof follows directly by substitution thereby
using the lower block-triangularity of L in (21). 	


The pull-in regionPz of an integer estimator is defined as the
region in which all float solutions are mapped to the same
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Fig. 1 The 3D pull-in regions and their 2D projections are given for integer rounding (IR, cube), integer bootstrapping (IB, parallelopiped) and
integer least-squares (ILS, parallelohedron). The vertexes of each region are given in red

integer z ∈ Z
n by the integer estimator. Hence, for the VIB-

estimator, it is defined as

Pz,VIB = {x ∈ R
n| IVIB(x) = z}, z ∈ Z

n (23)

The following Lemma shows how the pull-in regions are
indeed driven by the VIB characterizing integer maps �.�i :
R
ni �→ Z

ni and sequential conditional estimation.

Lemma 2 (VIB pull-in region) The pull-in regions of ǎVIB =
IVIB(â) are given as

Pz,VIB = {x ∈ R
n| I(L(x − z)) = 0}, z ∈ Z

n (24)

where I(x) = (�x1�T1 , . . . , �xv�Tv )T and L is the lower
block-triangular matrix given in (22).

Proof Starting with (21), we have

IVIB(x) = I(x + (L − In)(x − z))

= I(L(x − z) + z)

= I(L(x − z)) + z

(25)

from which, using (23), the result follows. 	

To gain further insights into the geometries of theVIB pull-in
regions, in particular, under different choices for the integer
maps �.�i : Rni �→ Z

ni , we provide a few graphical repre-
sentations.

3.3 Graphics of VIB pull-in regions

We consider a three-dimensional float ambiguity vector â =
(â1, â2, â3)T ∈ R

3, having as vc-matrix

Qââ =
⎡
⎣ σ 2

1 σ12 σ13
σ21 σ 2

2 σ23
σ31 σ32 σ 2

3

⎤
⎦ ∼=

⎡
⎣ 0.090 −0.045 0.027

−0.045 0.101 0.002
0.027 0.002 0.171

⎤
⎦ (26)

Its lower unitriangular matrix L and the diagonal matrix D
from Qââ = LDLT are given, respectively, as

L =
⎡
⎣ 1.000 0 0

−0.499 1.000 0
0.300 0.200 1.000

⎤
⎦ (27)

D =
⎡
⎣0.302 0 0

0 0.282 0
0 0 0.402

⎤
⎦ (28)

The pull-in regions of the traditional integer estimators IR,
IB and ILS are first considered. They are shown in Fig. 1
as a cube, parallelepiped, and parallelohedron, respectively.
Their projections on the three mutually orthogonal coordi-
nate planes are also shown. Note that generally it is wise to
start with the most precise ambiguities in the IB, in this case
â1.

For the three-dimensional VIB-estimators, two different
ambiguity-partitionings can be considered, depending on
whether �·�1 is a 1-dimensional or a 2-dimensional map.
In Fig. 2, �·�1 is 2-dimensional for which IR (Fig. 2, left)
and ILS (Fig. 2, right) is chosen. The third ambiguity is then
conditionally updated and rounded to its nearest integer. For
the alternative case that �·�1 is 1-dimensional, one starts with
ordinary rounding, but then has different choices for the sec-
ond step. In Fig. 3, the second step, where conditioning has
taken place on the first ambiguity, is based on IR (Fig. 3, left)
and ILS (Fig. 3, right).

As visible from these examples, different VIB-estimators
have different geometries for their pull-in regions. Hence,
their pull-in regions will have different fits to the float-
ambiguity’s confidence region and therefore also different
success rates.
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Fig. 2 The 3D pull-in regions are given for the VIBIR [(a1, a2) → (a3)] estimator (left) and for the VIBILS [(a1, a2) → (a3)] estimator (right).
The arrow refers to a conditioning of the last component on the first two ambiguities

Fig. 3 The 3D pull-in regions are given for the VIBIR [(a1) → (a2, a3)] estimator (left) and for the VIBILS [(a1) → (a2, a3)] estimator (right).
The arrow refers to a conditioning of the last two components on the first ambiguity

4 VIB probability of correct integer
estimation

In this section, we study the success rate of VIB-estimators,
along with bounds and possible approximations.

4.1 TheVIB success rate

As the success rate of an admissible integer estimator of
a ∈ Z

n is given by the amount of probability mass its
a-centered pull-in region covers of the probability density
function (PDF) of â, fâ(x), the VIB success rate is given by
the integral

P(ǎVIB = a) =
∫
Pa,VIB

fâ(x)dx (29)

The following lemma shows how this success rate can be
computed from a product of probabilities.

Lemma 3 (VIB success rate) Let â ∼ N (a, Qââ) and let
ǎVIB be the VIB-estimator of a ∈ Z

n, as expressed in (15).
Then

P(ǎVIB = a) =
v∏

i=1

P(âi |I ∈ a + Pi ) (30)
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with

P(âi |I ∈ a + Pi ) =
∫
Pi

1√|2πQii |I |
exp

{
− 1

2 ||xi ||2Qii |I

}
dxi

(31)

and Pi = {x ∈ R
ni | �x�i = 0}, i = 1, . . . , v.

Proof The proof is given in Appendix. 	

This general result has two familiar special cases. For v = n,
then the above VIB success rate reduces to that of the (scalar)
integer bootstrapping given in (11). For v = 1, it depends on
the chosen integer mapping �·� : Rn �→ Z

n , for which IR,
IB and ILS are the popular contenders.

4.2 Bounds and approximation of VIB success rate

We now discuss how existing bounds and approximations
to the success rates of IR, IB, and ILS can be used in order
to obtain overall bounds and approximations for the VIB
success rate as well.

Lemma 4 (VIB success rate bounds) Let Pi = {x ∈
R
ni | �x�i = 0} be the origin-centered pull-in region of

the integer map �.�i : R
ni �→ Z

ni and let the bounds
LBi ≤ P(âi |I ∈ a + Pi ) ≤ UBi be given. Then

v∏
i=1

LBi ≤ P(ǎVIB = a) ≤
v∏

i=1

UBi (32)

Proof This follows from using the individual bounds LBi

and UBi in (30). 	

Bymaking use of known bounds for IR and ILS, respectively,
(32) can be easily applied to obtain the following two success
rate bounds.

Lemma 5 ( Success rate bounds for VIBIR and VIBILS) Let
σ 2
j |I , for j = qi−1 + 1, . . . , qi (q0 = 0, qi = ∑i

j=1 n j ),
and i = 1, . . . , v, be the variance of the j th ambiguity
conditioned on aI , with I = {1, . . . , i − 1}. Then with the
Ambiguity Dilution of Precision (ADOP) of the i th subset
âi |I ∈ R

ni ,

ADOPi = |Qii |I |
1

2ni (33)

we have

P(ǎVIBIR = a) ≥
v∏

i=1

⎛
⎝ qi∏

j=qi−1+1

[
2Φ

(
1

2σ j |I

)
− 1

]⎞⎠

P(ǎVIBILS = a) ≤
v∏

i=1

P

(
χ2(ni , 0) ≤ cni

ADOP2i

)
(34)

where χ2(ni , 0) denotes a central Chi-squared distributed
random variable with ni degrees of freedom, while

cni = 1

π

[ni
2

· Γ
(ni
2

)]2/ni
(35)

with Γ being the gamma-function.

Proof For the proof see Appendix. 	

These bounds can be used in the following sense:

– VIBIR can be considered good enough for ambiguity res-
olution if its lower bound is large enough.

– VIBILS can be considered too poor if its upper bound is
too small.

4.3 Performance ordering of VIB-estimators

We now determine a performance ordering for the differ-
ent integer estimators discussed. Such ordering can also be
adopted to determine additional bounds on the success rates
of well-known integer estimators.

First we can start with a generalization of (1) given a
fixed partitioning a = [aT1 , . . . , aTv ]T ∈ Z

n . In this case,
the success rate in (30) is respectively the smallest and
the largest when all �.�i correspond to IR and to ILS, i.e.,
�xi�i = arg min

zi∈Zni
||xi − zi ||2Qii |I . It follows that the bounds

of (34) are a lower and an upper bound for allVIB-estimators
given that same partitioning. Hence, for a fixed v, we have
VIBIR ≤ VIB ≤ VIBILS, whereas for v = 1 the relation
simply reduces to (1).

Differently, we now allow v to vary, provided that it
satisfies n = ∑v

i=1 ni , so we are processing all ambi-
guity components. It follows that for v = 1, the entire
n-dimensional subset is considered and the relation in (1)
holds, while for v = n, each block is a scalar, so both VIBIR

and VIBILS are ultimately equivalent to IB. For the case
v ∈ (1, n), I-estimators adopted in each block will define
overall VIB performance. Starting with IR, which is poorer
than IB, we thus have VIBIR ≤ IB, but also VIBIR ≥ IR,
since conditioning improves precision and an improved pre-
cision also improves the success rate of rounding (Teunissen
2007). Similarly, since ILS is better than or equal to IB, we
have VIBILS ≥ IB, but always VIBILS ≤ ILS since ILS has
the largest possible success rate in the class of I-estimators.

We summarize the above performance ordering results in
the following Lemma.

Lemma 6 (VIB-performance ordering)

1. For fixed v, i.e., a fixed partitioning a = [aT1 , . . . , aTv ]T ,
with ai ∈ Z

ni , we have

VIBIR ≤ VIB ≤ VIBILS (36)
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Fig. 4 Graphical illustrationof the success rate ordering forwell-known
integer estimators, i.e., IR, IB and ILS. In addition, the VIBIR and
VIBILS are shown, when adopting only IR or ILS in each block, whose
size is arbitrary. Lastly, with the cyan square a generic VIB is illustrated
for a fixed block-size v, using arbitrarily selected I-estimators

2. For any v > 0, satisfying n = ∑v
i=1 ni , we have

IR ≤ VIBIR ≤ IB ≤ VIBILS ≤ ILS (37)

	

This result shows that an easyway to improve IR is to already
define blocks of ambiguities, and include some conditioning.
Similarly, also the performance of IB can be still improved,
while avoiding the computational effort required for a full
ILS solution. A simple way to graphically summarize the
previous lemma is given in the next Fig. 4, where the different
estimators are ordered in terms of their success rate.

In (34), we have already made use of the ADOP quantity
in order to formulate an upper bound. Given that the ADOP
is a geometric average of the sequential conditional stan-
dard deviations of ambiguities (Teunissen 1997a), it gives an
approximation to the average precision of ambiguities, and
therefore, it can be used for obtaining an approximation to
the ILS success rate as

P(ǎILS = a) ≈
[
2Φ

(
1

2ADOP

)
− 1

]n
(38)

with ADOP = |Qââ | 1
2n , similar to (33), but here referring to

the full set of ambiguities. In a similar way, it can be used to
provide an approximation to the success rate of the VIBILS

estimator.

Lemma 7 (VIBILS success rate approximation) Let ǎi ∈ Z
ni

be the i th integer vector of the VIB-estimator defined as

ǎi = �âi (ǎI )�i = arg min
z∈Zni

||âi (ǎI ) − z||2Qii |I (39)

Then

P(ǎVIBILS = a) ≈
v∏

i=1

[
2Φ

(
1

2ADOPi

)
− 1

]ni
(40)

with ADOPi given by (33). 	

This approximation becomes better the more decorrelated

the ambiguities are. The error of approximation vanishes in
case of a full decorrelation. Note that the approximation in
(40) becomes equal to the success rate of IB when ni = 1,∀i ,
and thus when v = n.

Finally, wemention that if the bounds and approximations
are not considered sharp enough, that one can still resort to
Monte Carlo simulations of the required VIB-probabilities
using the approaches as described in (Verhagen et al. 2013).

4.4 Numerical illustration

We now present two numerical examples, one low- and
one high-dimensional, to illustrate and exemplify the per-
formance orderings of Lemma 6.

Example 1 (Three-dimensional ambiguity space) We con-
sider the performance of different I-estimators when the
triangular decomposition of the float ambiguity vc-matrix is
given in (27) and (28). The success rate is numerically com-
puted using 108 samples, where the float ambiguity vectors
are synthetically generated from a normal distribution with
zero-mean and vc-matrix given in (26). Table 1 shows results
for VIBIR and VIBILS, along with results for the well-know
IR, IB and ILS estimators. Here the VIB-estimators have
their third ambiguity conditioned on the other two, which
are fixed by IR or ILS. The exact result for IB, together with
lower bounds for IR andVIBIR, and anADOPapproximation
for ILS and VIBILS, are also given, together with a reference
to their defining equation.

The success rate values are aligned with the VIB perfor-
mance ordering of Lemma 6 (cf. 37). The VIBILS shows
indeed a quasi-optimal performance, i.e. ILS, without the
need of an integer search over the entire domain. Moreover,
the VIBIR estimator is better than IR, while being suboptimal
to the IBmethod, whose success rate is available analytically.
�
Example 2 (VIB in regional network) A 9-station, dual-
frequency GPS network for PPP-RTK processing with
known station coordinates is considered (see Fig. 5). The
data is processed based on a Kalman filter each 30s using
precise orbits for DOY 293 in 2020, along with mathemat-
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Table 1 Numerical simulations
considering a three-dimensional
problem defined by the
vc-matrix in (26)

Integer estimator Ambiguity success rate (%) Bounds/approx. value (%) Eqs.

IR 63.24 ≥ 61.86 (54)

VIBIR 64.18 ≥ 63.11 (34)

IB 66.04 = 66.04 (11)

VIBILS 66.82 ≈ 66.10 (40)

ILS 66.99 ≈ 67.85 (38)

Fig. 5 Example of regional network for GPS dual-frequency (L1–L2)
data retrieved on DOY 293 (in 2020). The nine stations are located
within 60 km (circle) from a certain station-user

ical models and the software platform described in (Odijk
et al. 2017).

For the purpose of illustrating the performance orderings,
we focus attention on full-ambiguity resolution (FAR) and on
amoment in timewhen the best FARsuccess rate is extremely
low, which in the present example is the case at 7:15 (UTC),
marked by epoch number 870, when a new satellite, PRN03,
rises and is being tracked by all stations of the network. The
dimension of the ambiguity space is n = 146. Figure 6 shows
the success rates of the different integer estimators employed,
with all ambiguities decorrelated using the LAMBDA trans-
formation (Teunissen 1995). In both VIBILS (top plot) and
VIBIR (bottom plot), we consider two different partitioning:
v = 2 and v = 20. The VIBILS behaves optimally for v = 2,
while smaller improvements are found for v = 20, i.e., when
small subsets of 7–8 components are sequentially processed.
We should observe that by decorrelating the ambiguities, an
IB solution becomes quasi-optimal, thus a good lower bound
to the ILS. The same holds also for the VIBILS.

In the bottom plot, the IR solution has a smaller suc-
cess rate with respect to IB, but is extremely efficient. The
VIBIR solution for v = 20 approaches the IB success rate,
with a large improvement over the IR solution. This second
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Fig. 6 Network ambiguity success rates simulated for different I-
estimators (DOY 293, 2020, 20,000 samples per epoch), with VIBILS
referenced (top) and VIBIR referenced (bottom)

result is relevant since it empathizes how some condition-
ing operations can substantially improve robustness of the
straightforward integer rounding. Its success rate will be
always smaller than IB, but once the precision increases, this
difference becomes negligible and a quasi-optimal integer
solution can be obtained almost instantaneously. �

5 Further VIB considerations

5.1 Ambiguity parametrization

In order to enhance the success rate performance of VIB-
estimation, considerations about the chosen ambiguity
parametrization and their ordering are important. The gen-
eral guide hereby is to aim forming blocks having the most
precise ambiguities, followed by blocks that have the most
precision gain from the conditioning, and this continues until
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the success rate drops below the required threshold.Although
such can be achieved through the construction of the full-
dimensional decorrelating Z -transformation (de Jonge and
Tiberius 1996), this process can in many GNSS applica-
tions be significantly aided by the a priori construction of
proper ambiguity re-parametrizations. Here we show three
such examples, with the first working on frequencies, the
second on satellites and the third on antennas.

Example 3 (Widelane-Narrowlane) Widelaning is a popu-
lar multi-frequency technique of taking differences between
ambiguities of different frequencies so as to obtain trans-
formed ambiguities with a better precision (Hatch 1989;
Forsell et al. 1997; Teunissen 1997c). When placed in the
framework of VIB-estimation, the following steps and flex-
ibility in the widelaning procedure can be recognized (here
given for the dual-frequency case, but easily generalized to
the multi-frequency case):

1. Apply the widelane transformation to get the float wide-
lane and narrowlane ambiguity vectors, âw and ân ,
respectively;

2. Integer estimate thewidelane ambiguities as ǎw = �âw�1,
with �·�1 being the integer map of IR or IB;

3. Float estimate the narrowlane ambiguities conditioned
on the fixed widelane ambiguities as ân|w = ân −
Qânâw

Q−1
âw âw

(âw − ǎw);
4. Z -transform the narrowlane ambiguities to decorrelate,

giving ẑn|w = ZT ân|w and its vc-matrix Qẑn|w ẑn|w ;
5. Integer estimate the transformed narrowlane ambiguities

as žn = �ẑn|w�2, with �·�2 being the integer map of IB or
ILS.

The goal of the first step is to obtain ambiguities that are
sufficiently precise so that simple estimators, like IR or IB,
can achieve high-enough success rates in the second step.
The goal of the third and fourth step is to benefit from the
conditioning and decorrelation, before IB or ILS are applied.
In case of ILS, the fourth step is aimed at improving the
numerical efficiency of the ILS-computations, whereas for
IB, it is aimed at improving the success rate. �
Example 4 (Multivariate geometry-free model) Consider the
dual-frequency, geometry-free model when tracking v + 1
satellites (Teunissen 1997b). Due to its special structure, the
2v × 2v vc-matrix of its DD float ambiguities is given as

Qââ = (DT
v Dv) ⊗ Q (41)

in which Dv ∈ R
(v+1)×v represents the between-satellite

differencing operator, ⊗ the Kronecker product and Q the
vc-matrix of the single-differenced, dual-frequency ambi-
guities. It was shown in (Teunissen 1997b), that by using

the analytical LDLT -decomposition of (41), the multivari-
ate quadratic form of the ambiguities can be written in the
form of a weighted sum of 2-dimensional quadratic forms,

||â − a||2Qââ
=

v∑
i=1

i

i + 1
||âi (aI ) − ai ||2Q (42)

in which the ai ∈ Z
2, i = 1, . . . , v, are, with respect to

the reference satellite, the dual-frequency DD ambiguities of
satellite i , aI = (aT1 , . . . , aTi−1)

T , and âi (aI ) is the condi-
tional estimate

âi (aI ) = âi − 1

i
·
i−1∑
j=1

(â j − a j ) (43)

with âi (aI ) = â1 when i = 1. Instead of solving a
high-dimensional ILS-problem by minimizing (42) over the
2v-dimensional space of integers, the v two-dimensional
quadratic forms of (42) are minimized in a sequential fash-
ion. Hence, in this case the main VIB-estimation steps, for
i = 1, . . . , v, are:

1. Compute the conditional estimate âi |I = âi (ǎI );
2. ILS-estimate ǎi = arg min

z∈Z2
||âi |I − z||2Q ;

3. Update integer ambiguity vector: ǎI+1 = (ǎTI , ǎTi )T .

Note, as each 2-dimensional ILS problem may still present
highly correlated ambiguities, that a suitable 2 × 2 decorre-
lating Z -transform can be constructed, which then only has
to be applied once to Q. �
Example 5 (Network array) This example is taken from the
concept of array-aided PPP introduced in (Teunissen 2012).
We assume to have an array with r + 1 antennas, tracking
s + 1 GNSS satellites, on f frequencies. With zi ∈ Z

f s×1

being the integer vector ofDDambiguities of the i th baseline,
the integer network ambiguity matrix Z = (z1, . . . , zr ) ∈
Z

f s×r can be formed of which the f sr × f sr vc-matrix of
the float solution ζ̂ = vec(Ẑ) can be shown to read

Q
ζ̂ ζ̂

= DT
r Qr Dr ⊗ N−1 (44)

in which Dr ∈ R
(r+1)×r represents the between-antenna

differencing matrix, Qr is a cofactor matrix by which the
relative quality of the array-antennas can be modelled (i.e.
Qr = Ir+1 when all antennas have the same quality), and N
is the s f × s f reduced normal matrix of the single-baseline
ambiguities. Note, although (44) resembles the structure of
(41), that (44) is a Kronecker product of two different types
of matrices. As the receiver-antennae dependency is made
explicit in matrix DT

r Qr Dr , differences in antenna-quality
can be exploited in the VIB-conditioning. If we consider the
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case of 3 antennas, with Dr = (e2,−I2)T , e2 = (1, 1)T , and
Qr = diag(σ 2

1 , σ 2
2 , σ 2

3 ), then ζ = (zT1 , zT2 )T ∈ Z
2 f s×2 f s

and (44) can be written as

Q
ζ̂ ζ̂

=
[

(σ 2
1 + σ 2

2 ) · N−1 σ 2
1 · N−1

σ 2
1 · N−1 (σ 2

1 + σ 2
3 ) · N−1

]
(45)

Would we now condition the ambiguities of the second
baseline, ẑ2, on those of the first baseline, ẑ1, the resulting
vc-matrix is obtained with the help of (45) as

Qẑ2 ẑ2|ẑ1 = Qẑ2 ẑ2 ·
(
1 − 1

(1 + γ2)(1 + γ3)

)
(46)

where γi = σ 2
i /σ 2

1 is the variance-ratio between one of the
two auxiliary antennas and the master. The precision of the
ambiguities conditioned in a vectorial sense is improving by
a factor 3/4 for antennas with the same precision. At the
same time, the VIB improvement in the precision of the con-
ditioned ambiguities ẑ2|1 will actually be negligible if the
second antenna (involved in the first baseline) has a very
poor precision, a situation that thus should be avoided. �

Next to frequencies, satellites and receivers, also other ele-
ments of the GNSS functional and stochastic model can in
particular applications be exploited for the construction of
a VIB-suitable ambiguity parametrization. Such can e.g. be
driven by constellation, by satellite-elevation or by atmo-
spheric impact. In a network, for instance, with very different
baseline lengths, the ambiguities of the shorter baselines will
generally be more precise and therefore candidates to be
treated first (Blewitt 1989). A similar consideration holds
for ambiguities of high-elevation satellites, which are usu-
ally more precise than those of lower-elevation satellites.

5.2 Practical considerations

As VIB-estimation is also aimed at reducing the compu-
tational complexities of integer estimation, it is important
to recognize that in several of its computational steps a
good use can be made of the, often readily available,
Cholesky-decomposition of the system of normal equations.
For instance, although in many of the expressions for ambi-
guity resolution the vc-matrix Qââ and/or its inverse Q−1

ââ
are needed, their explicit computation can often be avoided.
Similarly, although the expressions of estimation often show
the float ambiguity vector â explicitly, the computation of
this full vector is not always needed, and this is particularly
so in case of VIB-estimation.

To demonstrate this, let the partitioned system of normal
equations, with the Cholesky decomposition for the normal

matrix, be given as

[
Cbb 0
Cab Caa

] [
Cbb 0
Cab Caa

]T [
b̂
â

]
=

[
rb
ra

]
(47)

Then the reduced systemof normal equations for the ambigu-
ities is given asCaaCT

aaâ = r̄a , fromwhich it follows that the
lower-triangular sub-matrixCaa ∈ R

n×n is directly related to
the vc-matrix of the float ambiguity vector: Q−1

ââ = CaaCT
aa ,

and so Qââ = C−T
aa C−1

aa . The matrix C−1
aa (also lower trian-

gular) can then be directly used in the decorrelation process
prior to the actual integer estimation, thereby saving sev-
eral matrix operations. We refer to de Jonge et al. (1996) for
a more comprehensive description of these computational
aspects, in particular describing further advantages relatively
to the computation of the decorrelating Z -transformation.
Here we also point to the VIB-flexibility as far as the Z -
decorrelation is concerned. One can apply such decorrelation
to all ambiguities, or one can restrict the Z -decorrelation to
only when the mappings �.�i : Rni �→ Z

ni need to be com-
puted.

In case of VIB, one can take another advantage of the
triangular structure of Caa by avoiding, through a proper
ordering of the ambiguities, the explicit computation of their
float values. With the triangular matrix Caa partitioned as

Caa =
[
C11 0
C12 C22

]
(48)

it directly follows from the reduced normal equations
CaaCT

aaâ = r̄a that the conditional least-squares float solu-
tion of a1, when conditioned on a2, is given as â1|2 =
C−T
11 [C−1

11 r̄1 − CT
12a2]. This shows that the computation of

the conditional float solution â1|2 does not require the explicit
computation of the float solution â1 and that it can be done
efficiently by solving triangular systems of equations. Hence,
when in case of VIB, the v-block partitioning is known, the
ambiguities can be ordered accordingly to take advantage of
this numerical gain.

As discussed in previous sections, a vectorial formula-
tion enables also ad hoc parametrizations of the ambiguity
components, where structure of a certain problem can be
fully exploited. Given that the mathematical relations pre-
sented in this contribution are generalized for any different
parametrization, it is indeed possible to alsomakes use of dif-
ferent decorrelation approaches (Jazaeri et al. 2014), which
could further enhance efficiency ofVIB-based strategies. The
large variety of applications for such a vectorial formulation
makes a comprehensive discussion about performances not
practical within the scope of this work, therefore a subject of
future researches. However, to further emphasize the avail-
able flexibility, we briefly highlight the possible extensions
to other estimators.
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5.3 Extensions to other classes of estimators

The flexibility of the VIB-formulation does not restrict it
to the class of integer estimators only. It could include
estimators from the IA-class (Teunissen 2003a) or IE-class
(Teunissen 2002) as well. For each block, for instance, one
can include IA-estimators having aperture pull-in regions
that are particularly accommodated to the integer estima-
tor �·�i : R

ni �→ Z
ni of that block. Such can then be

used to include ambiguity-validation for each block, thereby
providing flexibility and options to skip blocks when block
validation fails. Also IE-estimators can be given a place in the
VIB framework, for instancewhen it turns out that the success
rate drops below the required threshold when an additional
block would be fixed. Instead of outputting the conditional
float solution of the remaining ambiguities, one could then
still apply, using their conditional vc-matrix, best integer
equivariant estimation to these ambiguities to improve upon
their mean squared errors. As such, and with the various
options available, the concept of partial ambiguity resolu-
tion, introduced in (Teunissen et al. 1999), is generalized to
the VIB-domain.

6 Summary and concluding remarks

In this contribution we introduced the concept of vecto-
rial integer bootstrapping (VIB) as a generalization of the
popular, but scalar, integer bootstrapping. As with integer
bootstrapping, VIB-estimation is characterized by two alter-
nating operations that are sequentially applied, conditioning
and integer mapping. It is due to the vectorial formulation of
these two principles, that the VIB-concept creates such flexi-
bility in designingone’s integer estimators.Manynew integer
estimators can be formulated, in particular when balancing
computational simplicity against success rate performance.

We presented the probabilistic properties of the VIB-
estimators, with a special emphasis on their probability of
correct integer estimation and the formulation of easy-to-
compute lower bounds and upper bounds of their success
rates. We provided a new ordering in the success rate per-
formance of various different VIB-estimators, together with
corresponding numerical illustrations.

In order to enhance the success rate performance of
VIB-estimation, considerations about the chosen ambiguity
parametrization and their ordering are important. The gen-
eral guide hereby is to aim forming blocks having the most
precise ambiguities, followed by blocks that have the most
precision gain from the conditioning. Although such can be
achieved through the construction of the full-dimensional
decorrelating Z -transformation, it was shown by means of
analytical examples that in many GNSS applications such

can be significantly aided through the a-priori construction
of proper ambiguity re-parametrizations.

We also discussed further considerations when imple-
menting VIB. As it is aimed at reducing the computational
complexities of integer estimation, we described how at sev-
eral of its computational steps a good use can be made of
the, often readily available, Cholesky-decomposition of the
system of normal equations. This not only concerns the com-
putation of the ambiguity vc-matrix, but also of the float
solution itself. Finally, we indicated that the flexible VIB-
concept lends itself to further extensions, in particular in
combination with estimators from the IA- and IE-class.
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7 Appendix

Proof of Lemma 3 (VIB success rate) We make use of the
transformation of integral formula

∫
R

f (y)dy =
∫
T−1(R)

f (T (x)) · |∂x T (x)| dx (49)

with |∂x T (x)| being the determinant (in absolute value) of
the Jacobian matrix of partial derivatives. Moreover, in our
case we have R = Pa,VIB and f : Rn → R as

f (y) = 1√|2πQââ |
exp

{
− 1

2 ||y − a||2Qââ

}
(50)
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As transformation y = T (x) we choose

yi = xi +
i−1∑
j=1

Qi j |J Q−1
j j |J (x j − a j ) , i = 1, . . . , v (51)

which leads for the transformed pull-in region to

T−1(R) = {x ∈ R
n | I(x − a) = 0} (52)

with I(x) = (�x1�T1 , . . . , �xv�Tv )T , and for the transformed
integrand we can write

f (T (x)) · |∂x T (x)| =
v∏

i=1

exp{− 1
2 ||xi − ai ||2Qii |I }√|2πQii |I |

(53)

since |∂x T (x)| = 1. Substitution of (52) and (53) into (49)
proves the result. 	

Proof Lemma 5 (Success rate bounds for VIBIR and VIBILS)
The lower bound for VIBIR follows from the IR lower bound
given in (Teunissen 1998), such that

n∏
i=1

[
2Φ

(
1

2σi

)
− 1

]
≤ P(ǎIR = a) (54)

Note that this lower bound is evaluated for the unconditional
ambiguity standard deviations. The upper bound for VIBILS

follows from the respective upper bound for an ILS estimator,
also given as

P(ǎILS = a) ≤ P

(
χ2(n, 0) ≤ cn

ADOP2

)
(55)

with ADOP = |Qââ | 1
2n , and cn given in (35). For a proof of

this upper bound, see (Teunissen 2000). 	
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