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Graphon Filters: Graph Signal Processing in the Limit
Matthew W. Morency , Student Member, IEEE, and Geert Leus , Fellow, IEEE

Abstract—Graph signal processing is an emerging field which
aims to model processes that exist on the nodes of a network and
are explained through diffusion over this structure. Graph signal
processing works have heretofore assumed knowledge of the graph
shift operator. Our approach is to investigate the question of graph
filtering on a graph about which we only know a model. To do this
we leverage the theory of graphons proposed by L. Lovasz and B.
Szegedy. We make three key contributions to the emerging field of
graph signal processing. We show first that filters defined over the
scaled adjacency matrix of a random graph drawn from a graphon
converge to filters defined over the Fredholm integral operator with
the graphon as its kernel. Second, leveraging classical findings from
the theory of the numerical solution of Fredholm integral equations,
we define the Fourier-Galerkin shift operator. Lastly, using the
Fourier-Galerkin shift operator, we derive a graph filter design
algorithm which only depends on the graphon, and thus depends
only on the probabilistic structure of the graph instead of the
particular graph itself. The derived graphon filtering algorithm is
verified through simulations on a variety of random graph models.

Index Terms—Graph signal processing, graph filter design,
graphons, random graphs.

I. INTRODUCTION

GRAPH signal processing is an emerging topic which en-
deavours to explain the evolution of signals supported

on an irregular domain, modeled as a graph [1]–[10]. The
interconnections between nodes of the graph in some way cap-
ture interdependencies of data supported on the nodes. Such
considerations have previously been made in the domain of
machine learning, specifically in the domain of semi-supervised
learning [11]–[13]. For example in [11] the network in partic-
ular is a weighted graph, the weights of which are similarities
between the nodes. Tying these domains together is the challenge
of processing data with an underlying structure, modeled by a
graph. Such data can come from many different fields. This
information is encoded in graph shift operators, which also
capture operations that are performed on the node-supported
data. For example, the action of the scaled adjacency matrix on
the data supported on the nodes of the graph leads to a weighted
sum of the values on the neighbours of every node.
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As an irregular domain analogue of classical signal process-
ing, one of the fundamental operations of graph signal process-
ing is that of filtering. The simple graph filter is a polynomial in
the graph shift operator, the coefficients of which are chosen to
satisfy as closely as possible a desired filter response. The graph
frequencies themselves are taken to be the eigenvalues of the
graph shift operator. Both finite impulse response (FIR) [3] and
infinite impulse response (IIR) [6] filters have been investigated
and designed. The simple graph filter imposes on the network
process a uniform rule: each delay is to be multiplied by the same
coefficient by every node in the network. More agile and general
filters have been designed whereby each node is able to choose
a different coefficient for all of its neighbours (node-varying
filters) [7], or each node is able to scale the signal it receives from
each of its neighbours independently (edge-varying filters) [8].

Disregarding for the moment universal graph filter design [4],
each of these strategies relies on knowledge of the graph shift
operator in order to design the graph filter. In this paper, we
investigate the line of questioning raised by Laszlo Lovasz
in [18]. Specifically, how shall we design graph filters when
the graph is so large that we cannot store or evaluate the entire
graph and its diffusion, but only statistically probe the graph and
derive models which in some way capture the graph’s structure.
To this end, [18] and references therein developed a probabilistic
and function theoretic framework known as graphons. The word
graphon itself is a portmanteau of graph and function. These are
two-dimensional kernel functions supported on [0, 1]× [0, 1].
Random graphs can be drawn from a graphon by drawing two
samples uniformly distributed over [0,1] for each pair of nodes
xi, xj , ∀i, j and interpreting the two samples as coordinates
on the graphon. The value of the graphon at these coordinates
is then the parameter p for a Bernoulli trial which decides
the connection of the nodes. Random graphs drawn in such
a way are structurally “related” to the graphon through graph
homomorphism densities [18], and the spectra of the scaled
adjacency matrices associated to such random graphs can be
shown to converge to integral operators with the graphon as
a kernel function [22]. In this paper we limit the scope of
investigation to dense graphs, whose convergence properties are
more easily understood. The case of sparse graphs, which is
more applicable to real world graphs has been investigated in,
for example, [19]. Other works in the signal processing literature
have leveraged the spectral convergence properties of random
graphs. For example, in [10] the authors leverage the spectral
convergence properties of the scaled adjacency matrix to extend
the notion of the graph Fourier transform to graphons, which
they dub the Graphon Fourier Transform.
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Leveraging these properties of graphons, we make three key
contributions. The first is to show that a graph filter defined with
the scaled adjacency matrix of a kernel-based random graph as
its shift operator converges to the graphon filter defined by the
same kernel. The major difficulty in performing this comparison
is bridging the gap between the graph filter, which is a finite
dimensional linear operator, and the graphon filter which is an
infinite dimensional linear operator. To accomplish this task, we
“lift” the graph filter into the infinite dimensional vector space as
a step function defined over [0,1]. As a corollary of this finding,
we draw a parallel to the numerical solution of Fredholm integral
equations. Using projections of the kernel onto different sets
of orthonormal bases we can calculate the output of the graph
filter with a sparse shift operator, as opposed to a dense one,
and thus reduce the cost of computation to O(N log(N)) where
N in this case is the size of the basis chosen to represent the
Fredholm integral equation. Finally, using the Fourier-Galerkin
shift operator, we derive the optimal order-k graphon filtering
algorithm.

To differentiate our approach from other graph filtering ap-
proaches, the graphon filtering algorithm is agnostic with respect
to the actual graph. Although similar to the universal graph
filtering approach, our approach differs from it in a fundamental
sense. Graph filtering operates on the graph “frequencies” and
the output of the graph filter is thus some projection onto the
scaled eigenvectors of the graph. Thus, while the filter design
may be universal with respect to graph frequencies, the filter
design is not universal in terms of its input-output relationship.
In contrast, the graphon filter is designed precisely based on
the input-output relationship within a standardized basis for all
classes of graphs. Thus if the filter is reachable for two given
classes of graphs, their outputs will be similar with the same
inputs. This is more analogous to filtering in classical signal
processing. Our algorithm allows the user to both design a
distributed graph filter, and also make predictions about the
signal value at nodes in an arbitrary graph from the class for
which the filter was designed. As such, it presents potentially
great computational benefits in the domain of extremely large
graphs, as the complexity of the algorithm depends on the graph
complexity, which we call its “frequency content,” and not its
size.

The structure of this paper is as follows. Section II introduces
graph signal processing preliminaries. In section III the basics
of kernel based random graphs are introduced. In section IV we
introduce some basic properties of Hilbert-Schmidt operators
of which Fredholm integral operators with graphons as their
kernels are a subset, and define graphon filters as the counterpart
to graph filters. In section V, we introduce the theory of sparse
approximations of Fredholm integral equations via expansion
methods. In section VI we investigate the convergence of graph
filters to their graphon counterparts. In section VII and VIII we
define the Fourier-Galerkin shift operator and derive the graphon
filtering algorithm. Section IX demonstrates the findings of
the paper in simulations with several random graph models.
Importantly, in subsection IX-C we investigate how to use the
proposed methods contained in this paper on unlabeled graphs
from which a graphon must be estimated, which is the situation

that practically confronts anyone who would like to use the
findings of this paper. This is followed finally by conclusions.

In the following, lower-case letters are scalar variables, upper-
case letters are scalar constants, bold lower-case letters denote
vectors, bold upper-case letters denote matrices, and caligraphic
letters denote special mathematical objects such as distributions,
sets, graphs, or functions, and double bold letters correspond
to a field, e.g. C representing the complex numbers, or K

representing a general, unspecified (infinite) field.

II. NETWORKS, ACTION, AND SHIFT OPERATORS

A graph G(V, E) is a double defined on a set of nodes
V = {v1, . . . , vN}, and the set of connections between the nodes
E . The set of neighbours to a given node is denoted as Ej . A
graph signal x ∈ R

N is one that is supported on the vertices
of an undirected graph G(V, E). The graph shift operator S
in some way captures the structure of the graph. For example,
S = A, the adjacency matrix whereAi,j = Aj,i = 1 if i, j ∈ E ,
and 0 otherwise. There are many other possible shift operators
including the graph Laplacian, or weighted versions of the adja-
cency and Laplacian. Note that since the G under consideration
is undirected, the graph shift operator S is symmetric, and
thus has real eigenvalues and a complete set of orthonormal
eigenvectors. In graph signal processing, it is assumed that the
network structure in some way captures the evolution of the
process supported on the graph nodes. However, it is not just the
graph connections which influence the evolution of the graph
signal, but also the action that the nodes take on the graph signal
at each diffusion step. Any action that can be implemented by a
linear operator can be represented as

[x]j,t = a[x]j,t−1 +
∑
i∈Ej

bi,j [x]i,t−1

where bi,j is the edge-weight connecting the i-th and j-th nodes
in the graph, a is whatever weight the node gives to its own
observation at “time” t− 1, and [x]i,t is the i-th element of x at
“time” t. Time here meaning discrete ordered diffusions through
the graph shift operator: in other words “graph time.” The signal
xj,t depends on information existing on the nodes of the graph
at time t− 1. For example, in the case of the scaled adjacency
matrix the operation each node performs on the signal is

[x]j,t =
1

N

∑
i∈Ej

[x]i,t−1

In this paper, we consider only the scaled adjacency matrix S =
1
NA as the graph shift operator.

The Graph Fourier transform (GFT) of a graph signal x
supported on a graph G(V, E) is defined as

x̂ = UTx

whereS = UDUT is the eigenvalue decomposition of the graph
shift operator. The eigenvalues of the shift operator are taken to
be the “graph frequencies.” Similarly, the inverse graph Fourier
transform is defined asx = Ux̂. Though two networks may have
the exact same connections, depending on the actions performed
at each node, the shift operator that models diffusion over the
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graph may have a vastly different eigendecomposition, e.g. a
scaled adjacency matrix and a Laplacian, and thus different
modes and frequencies. Thus they will also have different fre-
quency responses and different filtering operations altogether
for the same filter coefficients.

Having defined the GFT for a fixed network and a given node
action, the task of graph filtering can be introduced. The GFT
is the expression of the signal supported on the network nodes
in the modes of the graph. The filtering operation is then on the
eigenvalues of the shift operator. Specifically

y = UD′UTx (1)

where D′ is the matrix with the desired frequency coefficients
along the diagonal. For example, if we wanted to filter out the
i-th graph frequency, we would set [D′]i,i = 0. As clear as this
definition of a GFT is, it is abstract. It remains unclear how to ac-
tually implement the filtering operation on the network through
local diffusion. By eliminating certain modes, the operator in (1)
will likely develop non-zero entries in positions corresponding
to non-existent connections in the graph. This indicates that the
“ideal” graph filtering operation may not be realizable with local
diffusion.

To filter the graph frequencies, a polynomial approach is thus
adopted. The graph signal is diffused over the network by ap-
plying the shift operatorK times, weighted by a coefficient and
summed to produce the filtered output. In view of the definition
of the ideal graph filter, the design objective for polynomial
graph filters is to achieve a desired filter response in the graph
frequencies. Specifically, certain graph frequencies are to be
attenuated as much as possible, while holding others constant.
With sufficiently many taps, any response can be modeled by

H =

K−1∑
k=0

hkS
k. (2)

In [3] it is proven that any filter that commutes with graph shift
(i.e, a H such that for all xwe have S(Hx) = H(Sx)) must be a
polynomial: H = poly(S). Since the filter is expressed through
the diffusion over the graph through the action of the nodes, any
such filter is, by definition, reachable. The filter in (2) has the
implicit constraint that every node is constrained to use the same
filter coefficient as every other node at each delay. We call such
graph filters “simple.” This constraint can be relaxed to produce
node-varying and even edge-varying filters. In this paper, we
consider only simple filters.

III. RANDOM GRAPH MODELS AND GRAPHONS

A. Kernel-Based Models

Our motivation is to conduct signal processing tasks on large
graphs about whose structure we know little. This could be the
case in the real world where the graphs are either too large, or
too time-varying to have a single reliable representation. Such
networks are typically not well-modeled by the classical Erdös-
Renyí random graphs [14], [18]. Real-world networks typically
have heavy-tailed degree-distributions, exhibit “small-world”
phenomena, they tend to be clustered, and have neighborhood

density higher than the average edge density [14], [16], [18]. This
has given rise to new, more general random graph models, one of
which are Kernel-based models [20]. These are characterized by
the use of a symmetric kernel function to generate probabilities
controlling the formation of edges between nodes.

A kernel-based random graph is a triple G(N,W, μ) where
N is the number of vertices in the graph, W : [0, 1]2 → [0, 1]
is a symmetric measurable function, and μ is a random variable
defined on [0, 1]. To generate a graph from this triple, for each
pair of vertices vi and vj a sample is drawn from μ. Then each
realization of μ is treated as a coordinate and mapped to a
probability by the symmetric function W . This probability is
then used to perform a Bernoulli trial to establish if the two
vertices are connected, in a manner analogous to the formation
of an Erdös-Renyí graph. The symmetric function W is called a
graphon by Lovasz and Szegedy [18]. In this paper, we assume
that μ is uniform, i.e. μ is evenly distributed over [0,1]. It is
important to mention that graphs generated in such a manner
are dense [18]. The case of sparse graphs has been considered
in, for example [19].

Conversely, the adjacency matrix of a graph G induces a
graphon in the following way. Consider a weighted graph
with vertex weights αn, where

∑
n αn = 1, and edge weights

0 ≤ βi,j ≤ 1. Then, to construct a symmetric function, for each
element of the adjacency matrix place a square of area αi × αj
in the corresponding position of [0, 1]2, in which the symmetric
function will be the constant edge weight βi,j . This graphon is
denotedWG . Here we assumeαi = 1

N ,βi,j = 1. Such a graphon
is referred to as an empirical graphon.

B. Graph Sequences and Convergence

Consider a sequence of random graphs (Gn) with n→ ∞
where each Gn is drawn from a kernel model G(n,W, μ), for
n→ ∞. A natural question is whether this sequence converges
to any particular object. If so, then, while the graph in question is
still random, its emergent properties would remain deterministic.
The graph properties that we consider in this paper are homomor-
phism densities. The homomorphism density of a simple graph
F with K nodes in a given graph G with N nodes is defined as

t(F ,G) = hom(F ,G)
hom(F ,KN )

=
hom(F ,G)

NK
(3)

where hom(F ,G) is the number of adjacency preserving maps
(homomorphisms) V(G) → V(F), and KN is the complete
graph on N nodes, KN . Roughly speaking t(F ,G) is a ratio
between the number of copies of F in G and the number of
copies of F in the complete graph on N nodes. The graph
homomorphism densities of different graphs F in G provide
structural information about the graph. For example, if F = K3

then t(F ,G) is the triangle density of G. A sequence of graphs
(Gn) is said to be convergent if t(F ,Gn) converges for any
simple graph F [15].

We can further use the symmetric function W to define a
limit object of the graph sequence (Gn). Let W be a bounded
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symmetric function W : [0, 1]2 → [0, 1], and F be a simple
graph with K nodes. Then the graph homomorphism limit of
F in W is defined as

t(F ,W) =

∫
[0,1]K

∏
(i,j)∈E(F)

W(xi, xj)dx (4)

The following two theorems, proven in [17], form the funda-
mental link between convergent graph sequences and graphons,
and hence the link between observed graphs and explanatory
graphon models.

Theorem 1: For every convergent graph sequence (Gn) there
exists a bounded measurable symmetric function W : [0, 1]2 →
[0, 1] such that limn→∞ t(F ,Gn) = t(F,W)

Theorem 2: The graph sequence, (Gn), where Gn is drawn
from G(n,W, μ), is convergent with probability 1, and its limit
object is the function W .

Thus the graphon itself can be used to study the properties
of the graph sequence. As will be observed in the next section,
these are not limited to structural properties of the graph, as we
can also use the graphon to calculate the spectra of the graphs
in (Gn) as n→ ∞.

IV. FREDHOLM INTEGRAL EQUATIONS AND GRAPHON FILTERS

We begin by defining a Hilbert-Schmidt kernel function.
Definition IV.1: LetX and Y be intervals in R and W : X ×

Y → R. If
∫
X

∫
Y |W(x, y)|2dx dy <∞ then W is a Hilbert-

Schmidt kernel function.
Graphons, as defined in the previous section are clearly

Hilbert-Schmidt kernel functions, being both bounded and mea-
surable. Hilbert-Schmidt kernel functions induce bounded in-
tegral operators on the space of square integrable functions
L2(Y ) → L2(X). In the case of graphons, they induce an
integral operator T : L2[0, 1] → L2[0, 1]

Tf(x1) :=

∫ 1

0

W(x1, x2)f(x2)dx2. (5)

Equations of the form

g(x) = Tf(x) (6)

are known as Fredholm integral equations of the first kind [21].
Since the graphons are required to be symmetric, the operators

they induce are self-adjoint. This, combined with the fact that
Hilbert-Schmidt operators are compact [21] implies that the
spectrum of the operator (5) consists of a countable number
of real-valued eigenvalues with λn → 0. The eigenvalues of (5)
and corresponding eigenfunctions can be found by solving the
resolvent equation

λf(x1) =

∫ 1

0

W(x1, x2)f(x2)dx2 (7)

for f(x) and λ, given the kernel W . Since we know from The-
orems 1–2 that graph sequences converge to their limit object,
and that every graph sequence has a limit object, knowledge
of the spectrum of (5) provides knowledge of the spectrum of
the graphs in (Gn), particularly when the number of vertices
becomes large. Indeed, it is not difficult to see from the empirical

graphons WGn
that the spectrum of W is the spectrum of

the scaled adjacency matrix corresponding to Gn as n→ ∞.
Theorem 11.53 in [18] gives a formal statement and proof of this
fact. The Graphon Fourier Transform has also be defined via the
resolvent equation in [10]. Similarly, the degree matrix is also
determined by the graphon [28], and thus, the spectrum of the
graph Laplacian can also be investigated through the resolvent
equation. We do not pursue this here, though.

As was shown in section II a distributed simple graph filter H
can be implemented as a polynomial in the graph shift operatorS

H = h0I+

K∑
k=1

hkS
k, (8)

also known as a k-th order FIR graph filter. The graph filter of
order 1 with h0 = 0 is simply the matrix vector product y = Sx
which as we’ve mentioned converges spectrally to the equation
g(x) = Tf(x). The connection between g(x), f(x), T and S is
the subject of section VI. By defining the powers of T through
operator composition

T 2f(x) = TTf(x) =

∫ 1

0

W(x, z)

∫ 1

0

W(z, y)f(y)dy dz.

(9)

we arrive at the definition of a graphon filter. The higher powers
of T are derived inductively. We draw attention to the fact that
there must be an intermediate dimension added for each power
of T . A graphon filter is then defined as

Hf(x) = h0f(x) +

K∑
k=1

hkT
kf(x). (10)

V. EXPANSION METHODS FOR FREDHOLM INTEGRAL

EQUATIONS

Comparing (6) and y = Sx there is one fundamental differ-
ence which must be reconciled. The Fredholm integral operator
in (6) operates on functions with a continuous domain [0,1],
whereas the equation y = Sx is over a finite dimensional vector
space. We relate the two via the expansion method. Let B =
{b1, b2, · · · } be a complete orthonormal basis for L2[0, 1]. The
expansion method seeks to approximate the (forward) solution
of the Fredholm integral equation, as g(x) =

∑∞
i=1 gibi(x). We

seek to find the coefficients gi given the graphon W(x, y), and
the input function f(x). To do this, we use the inner product
over L2[0, 1] to project both sides of (6) onto the basis B, as∫ 1

0

g(x)bi(x)dx =

∫ 1

0

bi(x)

∫ 1

0

W(x, y)f(y)dy dx

for i ∈ 1, 2, . . . (11)

Substituting the expansions of g(x) and f(y) allows us to write

gi =

∫ 1

0

bi(x)

∫ 1

0

W(x, y)
∞∑
j=1

fjbj(y)dy dx (12)

where the left hand side follows from the orthonormality of B.
Inspecting the right hand side, we see that for each j, the integral
with respect to y can be factored out. The integral with respect
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to y thus becomes the projection of W(x, y) onto bj(y), leading
to Wj(x) =

∫ 1

0 W(x, y)bj(y)dy.

gi =

∞∑
j=1

fj

∫ 1

0

bi(x)Wj(x)dx (13)

Since the sum is invariant with respect to x, the order of sum-
mation and integration can be swapped resulting in (13). The
projections of Wj(x) onto B are now no longer orthogonal to
the basis functions bi(x). By inspection, for i and j ranging
over 1, 2, . . . , (13) can be written as the following matrix vector
equation.

g = Wf (14)

where [W]i,j =
∫ 1

0 bi(x)
∫ 1

0 W(x, y)bj(y)dx dy and [f ]j =∫ 1

0 f(y)bj(y)dy. If B is complete and orthonormal, g(x) can
be approximated without error by (14). We call W the operator
matrix, and (14) the operator equation. The operator equation is a
linear algebraic equation of countably infinite dimension. Thus,
by truncating (14) we arrive at a finite linear approximation of an
integral equation over an infinite domain. This truncated finite
approximation we denote as

ga = Wafa. (15)

As ga is a representation of the solution of the Fredholm integral
equation in the basis B, the approximate solution to the integral
equation can then be resampled with as many points as desired
as

y′ =
N∑
i=1

[ga]ibi (16)

where N is the number of approximating functions in the ex-
pansion, and bi is the vector of samples drawn uniformly from
the basis function bi(x) from the interval [0, 1].

To make an analogy to classical signal processing, (15) is like
the representation of a “time” domain signal (6) in “frequency”
domain.

Remark 1: In the above derivation, we have assumed the
orthonormality of the set B. Practically, basis functions which
are not even orthogonal can be used by introducing a weighting
function w(x), as we do in section VII. Normality can be
enforced by renormalization.

Remark 2: In most cases, Wa will be a principal sub-matrix
of W. However, this is not necessarily the case. In the next
section, the size of the basis determines the basis functions
themselves. To remind the reader of this distinction, we mark
such bases as b′i(x).

Remark 3: The choice of basis affects the matrix W. Specif-
ically, the size of the matrix and its sparsity depend both on
the choice of the basis and the properties of the graphon itself.
Smooth graphons will be easily approximated by a few non-
zero coefficients with respect to smooth basis functions, while
graphons with abrupt changes will require more basis functions
and more non-zero coefficients.

VI. EMPIRICAL GRAPHONS AND THE FREDHOLM EQUATION

The purpose of this section is to make explicit the connection
between graph and graphon filters. We will do this in a series of
steps illustrated in the below commutative diagram.

The linkφ bridges the gap between the finite dimensional shift
operator and the infinite dimensional graphon Fredholm operator
defined by the empirical graphon corresponding to the graph in
question, operating on the piecewise step-functions defined on
[0, 1]. The first right arrow then shows that, since the piecewise
step-functions are dense in the continuous functions, that there
is a stepfunction arbitrarily close to any element of the function
L2[0, 1], and therefore the composition of the empirical operator
defined on a piece-wise approximation of a function in L2[0, 1]
converges to the empirical operator composed on that function.
And finally, the last right arrow concerns the probabilistic con-
vergence of the empirical operator to the true graphon operator.
The logic is that the shift operator is injectively related to an
object which deterministically converges to something which
probabilistically converges to the desired result.

This chain concerns the convergence of the scaled adja-
cency matrix operating on approximations of the function space
L2[0, 1] to the true graphon operator defined over the whole
space. Graph and graphon filters, however, are comprised of
powers of these operators. The convergence of the powers of S
to the powers of T is demonstrated in the final subsection.

As a general note, while the bases used in section V were
arbitrary complete orthonormal bases, in this section specific
bases are used to illustrate key points. Thus, for example, Wa

in this section is a specific instance of Wa from the previous
section.

A. From Finite to Infinite Dimensions

To compare a finite vector to a function in L2[0, 1] we must
define the mapφ. Given a basisB and a finite dimensional vector
x we define

φ(x) := fa(x) =

N∑
i=1

[x]ibi(x), bi(x) ∈ B. (17)

The map φ−1 then returns the coefficients [x]i. The map φ
could also be similarly defined (though in the opposite sense)
given a function f(x), however, our concern is analyzing the
convergence of the shift operator S to a continuous operator T .
In order to avoid confusing terms in the following derivation we
remind the reader that [x]i is the value of the graph signal at node
i, fa(x) is a step-function in L2[0, 1], and [f ]i is the projection
of a function f(x) onto the i-th member of an orthonormal basis
for L2[0, 1].

Proposition 1: There exists a basis B such that φ is bijective.
Proof: Let G be a kernel-based random graph of N nodes

drawn from a kernel W(x, y). We now show that the evalua-
tion of Tefa(x) is equivalent to Sx. That is the finite vector
φ−1(ga(x)) where ga(x) = Tefa(x) will equal y. Assume that
all the nodes are evenly weighted with node-weight α = 1/N ,
and connections between nodes i and j are weighted byβi,j = 1.
Then, with xi being the i-th strip of width 1/N of the interval [0,
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1] centered at i · 1/N , the empirical graphon We(xi, yj) = 1 if
nodes i and j are connected, and We(xi, yj) = 0 otherwise.

This empirical graphon can be approximated exactly using
the procedure described in the previous section, using a basis of
N orthonormal functions. Take as the basis {b1(x), . . . , bN (x)}
the functions

b′i(x) =

{
N if x ∈ [i · 1

N , i · 1
N + 1

N )

0 otherwise
(18)

The approximation W of the empirical graphon We(x, y) is
then the adjacency matrix of the graph with respect to this basis,
for any size N . To see this, we use (14) to calculate Wa,

[Wa]i,j =

∫ 1

0

∫ 1

0

We(x, y)b
′
i(x)b

′
j(y)dxdy

= 1 · 1

N2
·N2 = 1 if (i, j) ∈ E , 0 o.w. (19)

which is the adjacency matrix of G, by definition.
Thus the truncated Fredholm integral operator (15) can be

written as

ga(x) =

∫ 1

0

We(x, y)fa(y)dy (20)

ga(x) =

N∑
i=1

∑
j ∈Ei

1

N
[x]jb

′
i(x)

⇒ φ−1(ga(x)) =
1

N
Waφ

−1(fa(x)) = Sx = y. (21)

This simple derivation leverages the fact that Wa is exactly A
with respect to the basisB. Having noted this, the integral in (20)
is equivalently represented by the averaging operation in (21),
and thus ga is exactly y. Thus, there is no error introduced by
the replacement of the integral in (14) by the summation (imple-
mented by the matrix product) and division operations in (21).
Equivalence of higher powers of T ke follow inductively from the
observation that Te maps stepfunctions to stepfunctions. �

B. Right Arrow 1

Let Te be a Fredholm integral operator with the empirical
graphon of G as its kernel, and Ta be the Fredholm operator
in (15) with the approximation of We as its kernel, using the
basis defined in the previous section. Then, in order to show
convergence of Tafa(x) = ga(x) to Tef(x) = ge(x) we denote
the error function as ea = ga(x)− ge(x). Then, it can be seen
that

Tef(x)− Tafa(x) = ge(x)− ga(x)

⇒ Te(f(x)− fa(x)) = ge(x)− ga(x)

⇒ ‖ea‖ ≤ ‖Te‖ · ‖f(x)− fa(x)‖. (22)

where ‖Te‖ = sup‖v(x)‖=1 ‖Tev(x)‖, v(x) ∈ L2[0, 1]. The first
step is implied by the fact that

We(x, y) =

N∑
i=1

N∑
j=1

[Wa]i,jb
′
i(x)b

′
j(y) (23)

where Wa is as defined in the previous subsection, and the
second step uses the Cauchy-Schwarz inequality. It is not, in
general, true that Te and Ta as defined at the beginning of this
subsection will be equal, it is only through the specific choice of
basis that this holds. The norm ‖ · ‖ is with respect to the space
L2[0, 1].

In this case, the approximation error is entirely due to the
quadrature error of the input f(x), and is scaled by the spectral
radius (T is self-adjoint) of T . We know that this is less than
1 from [18]. Thus, to guarantee convergence of the matrix
approximation of the empirical graphon Fredholm equation by
(14) asN → ∞, we only need to assume continuity of the input
f(x). As a note, the continuous functions are dense in L2[0, 1],
and as N → ∞, the set of basis functions (18) are a basis for
this space.

With the previous result in mind, we return to the comparison
between (8) and (10) with the goal of bounding the total error
of the approximation of (10) defined by the empirical graphon
by (8) where S is given by the scaled adjacency matrix.

Define the output of a filter acting on L2[0, 1] as ze(x) =
(Ih0 +

∑K
k=1 hkT

k
e )f(x) and the output of a graph filter using

the scaled adjacency matrix lifted into L2[0, 1] via the equiv-
alence relationship between (15) and (21) as za(x) = (h0I +∑K
k=1 hkT

k
a )fa(x). We emphasize that za(x) is a function in

L2[0, 1], but it is equivalently represented as a vector in R
N

as the output of a graph filter defined by the scaled adjacency
matrix. Then, taking the norm

‖ze(x)− za(x)‖ = ‖h0I(fe(x)− fa(x))− h1Te(fe(x)

− fa(x)) + · · ·+ T ke (fe(x)− fa(x))‖

≤ ‖
K∑
k=0

hkT
k
e ‖ · ‖f(x)− fa(x)‖

(24)

Since the spectral radius of Te is strictly less than 1, ‖T ke ‖ <
‖Te‖ yielding the result

‖ze(x)− za(x)‖ <
∥∥∥∥

K∑
k=0

hk

∥∥∥∥ · ‖Te‖ · ‖f(x)− fa(x)‖ (25)

As the dimension N → ∞, the approximation ‖f(x)−
fa(x)‖ tends to zero assumingf(x) is continuous. The quantities
‖∑K

k=0 hk‖ and ‖Te‖ are constants with respect to the limit
as N → ∞ and thus the graph filter defined over the scaled
adjacency matrix converges to the graphon filter defined over
the empirical graphon.

C. Right Arrow 2

The previous sections define the sense in which the diffusion
of a signal on the nodes of a graph converge to the solution of
a Fredholm integral equation. However, the Fredholm integral
operator in the previous section has as its kernel the empirical
graphon. What remains to be shown is how the output of the
empirical Fredholm equation relates to the Fredholm equation
associated with the “true” graphon.
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Let ge(x) =
∫ 1

0 We(x, y)f(y)dy, then the error we wish to
quantify is ‖g(x)− ge(x)‖.

‖g(x)− ge(x)‖ =

∥∥∥∥
∫ 1

0

W(x, y)f(y)dy

−
∫ 1

0

We(x, y)f(y)dy

∥∥∥∥
=

∥∥∥∥
∫ 1

0

(W(x, y)−We(x, y))f(y)dy

∥∥∥∥
≤ ‖W(x, y)−We(x, y)‖ · ‖f(y)‖ (26)

where the second step follows from Cauchy-Schwarz.
In [18], it is shown that, in general ‖W(x, y)−We(x, y)‖�

where ‖ · ‖� = supS,T⊂[0,1] |
∫
S×T W(x, y) dx dy|, does not

converge to 0 as N → ∞, as the cut norm varies widely with
the node labeling of the graph to which the empirical graphon
corresponds. The cut metric defined as

δ�(W,We) � inf
ψ

‖W −Wψ
e ‖� (27)

where ψ is an invertible, measure preserving map on [0,1],
and Wψ

e = We(ψ(x), ψ(y)) can be shown to converge. Since
‖W‖� ≤ ‖W‖ it is certainly true that ‖W −We‖ does not
converge, in general. However, it was shown in Corollary 1.1
of [22] that if ‖We‖ converges to ‖W‖, and ‖W −We‖� → 0,
then We also converges in the L2 topology. Therefore, the
conditions under which ‖W(x, y)−We(x, y)‖ → 0 should be
investigated.

In [28], several rates for We(x, y) to converge to W are
given assuming that the sample μi are ordered, i.e. μ1 ≤ μ2 ≤
· · · ≤ μN . In the first case, the graphons are assumed to be
piece-wise Lipschitz continuous. In the appendix, however, they
give a convergence rate for a general graphon, based on Lemma
10.16 of [18]. For the purposes of completing the commutative
diagram, it is sufficient to note one such rate.

Proposition 2: If μi are ordered, then, with proba-
bility at least 1− exp(− N

2logN ), ‖We(x, y)−W(x, y)‖ ≤√
176/log(N)1/4.
In particular, limN→∞‖We(x, y)−W(x, y)‖ → 0.
Informally, the sorting of μi introduces a labeling, thus elimi-

nating the need for the measure preserving map ψ. Visually, the
effect of sorting on μi conveys the point of proposition 2 quite
clearly. However, in practice, we encounter unlabeled graphs,
and not graphons or the latent variables μi. What is important is
that the labeling of the graph is consistent with the map ψ, not
that we know the “true” map ψ. Following the findings of [28],
centrality measures such as degree or page rank are both coherent
concepts for graphons, and the centrality measures of the graphs
drawn from graphons also converge to their graphon counter-
parts. Such centrality measures can be used to enforce a labeling
on an unlabeled graph, and so long as this labeling remains
consistent with the graphon estimate based on the observed
sample, the output will also be consistent. We demonstrate this
procedure using the graphon estimation technique of [29] and
degree sorting based on [28] in Section IX-C.

Fig. 1. Empirical graphon of a random graph of 20 nodes generated from the
graphon W(x, y) = e−1/2(x+y).

Fig. 2. Empirical graphon corresponding to unsorted samples of W(x, y) =
1/3 + 1/3 · sin(3 · πx · y).

Fig. 3. Empirical graphon corresponding to sorted samples of W(x, y) =
1/3 + 1/3 · sin(3 · πx · y).
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Fig. 4. The graphon W(x, y) = 1/3 + 1/3 · sin(3 · πx · y).

Fig. 5. Fourier-Galerkin shift operator corresponding to an Erdös-Renyí model
with p = 0.5. There is one non-zero row, the first, indicating that the range space
of this operator is the constant functions.

In Figs. 3 and 4 we see the effect of the sorting on μi in it’s
convergence in norm to the graphon displayed in Fig. 5. Alterna-
tively, we can assume that the samples μi might not be ordered
with respect to the reals, but consistently ordered from sample to
sample. In that case, the graphon to which the empirical graphon
converges in norm is Wψ∗

e where ψ∗ is the measure preserving
map which minimizes ‖W −Wψ

e ‖�. Specifically, it is shown
in [23] that the empirical graphon associated with the adjacency
matrix not only converges to W(x, y) but is rate optimal in the
minimax sense. To wit, for k-step graphons, it can be shown that

δ�(W,We) ≤ C

√
k

N log(k)
(28)

whereC is a numerical constant [23]. In general, however, for an
arbitrary graphon, the most that can be shown is a convergence
rate proportional to log(N)−1/2 [18], [23].

What remains to be shown is that the powers T ke converge to
the power of the true graphon operator T k. We proceed by proof
by induction. In the following, for ease of notation we make use
of the equivalence of norms to write the equations in terms of the

operator 2 norm, in this case equivalent to the spectral radius.

‖T k − T ke ‖ = ‖TT k−1 − TeT
k−1
e + TeT

k−1 − TeT
k−1‖

= ‖(T − Te)T
k−1 + Te(T

k−1 − T k−1
e )‖

≤ ‖T k−1‖ · ‖T − Te‖+ ‖Te‖ · ‖T k−1 − T k−1
e ‖,

(29)

where the final implication is a combination of Minkowski’s
inequality and Cauchy-Schwarz. We then proceed by induction
to write

‖T k−1 − T k−1
e ‖ ≤ ‖T k−2‖ · ‖T − Te‖

+ ‖Te‖ · ‖T k−2 − T k−2
e ‖ (30)

Repeating this process k − 1 times yields the following ex-
pansion.

‖T k − T ke ‖ <= ‖T − Te‖
k∑
i=1

‖T i−1‖‖Te‖k−i (31)

Since ‖T k‖ ≤ ‖T‖k for a finite k in a normed space, we can
simplify.

‖T k − T ke ‖ ≤ ‖T − Te‖
k∑
i=1

‖T i−1‖‖Te‖k−i

≤ ‖T − Te‖
k∑
i=1

‖T‖i−1‖Te‖k−i

= ‖T − Te‖
k∑
i=1

λi−1
maxλ̃

k−i
max

≤ k · ‖T − Te‖ (32)

where λmax and λ̃max are the largest eigenvalues of T and Te
respectively, each being not greater than 1. This allows us to
state the following convergence result for the

‖z(x)− ze(x)‖ =

∥∥∥∥
(

K∑
k=0

h0 T
k −

K∑
k=0

h0T
k
e

)
f(x)

∥∥∥∥
≤

K∑
k=0

|hk| · ‖T k − T ke ‖ · ‖f(x)‖

≤
K∑
k=0

k · |hk| · ‖T − Te‖ · ‖f(x)‖

=
K∑
k=0

k · |hk| · ‖T − Te‖ w.l.o.g.

as N → ∞ (33)

The result of Theorem 1 can be easily combined with Proposi-
tion 2 to give a rate of convergence.

Corollary 1: With probability at least 1− exp(− N
2logN ),

‖H −He‖ ≤ √
176/log(N)1/4

∑K
k=0 k · |hk|.
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In summary, φ has been shown to be bijective with Tefa(x),
which has been shown to converge to Tf(x). Formally, we write

‖Hefa(x)−Hf(x)‖ = ‖Hefa(x) +Hfa(x)
−Hfa(x)−Hf(x)‖

≤ ‖He −H‖ · ‖fa(x)‖
+ ‖H‖ · ‖fa(x)− f(x)‖

≤ ‖He −H‖+
K∑
k=0

|hk| · δ(N) (34)

where δ(N) = ‖fa(x)− f(x)‖. In the above derivation we have
used Minkowski’s inequality as well as Cauchy-Schwarz.

Theorem 3: 1− exp(− N
2logN ), ‖Hefa(x)−Hf(x)‖ ≤∑K

k=0 k · |hk|(
√
176/log(N)1/4 +

∑K
k=0 |hk|δ(N)�.

VII. SHIFT OPERATOR DEFINITION

In the previous sections we have demonstrated the conver-
gence of a graph filter defined on a random graph to a graphon
filter defined on the kernel-model from which the random graph
was generated. In order to make the comparison between a filter
defined on a finite dimensional vector space, and a filter defined
on an infinite vector space, we had to introduce the concept of an
operator matrix. To do this, the input and output functions and
the kernel were projected onto an orthonormal basis for the space
L2[0, 1]. Thus we arrive at the question of how to appropriately
choose a basis in order to arrive at an operator which captures
the behaviour of the operator T as concisely as possible.

We know of a way to choose a matrix on the basis of a
graphon that converges to the Fredholm integral equation: a
random scaled adjacency matrix drawn from the graphon by the
procedure mentioned in Section III has this property. However,
the convergence rate is extremely slow as we saw in the previous
sections. One could choose the step-function basis used in
Section VI however this would also require many step-functions
to converge, especially for smooth graphons. This would defy
our purpose stated in the introduction of how to perform graph
filtering on graphs that are too large to study as a whole. Clearly,
the choice of basis affects the resulting operator matrix: both in
its size and complexity. Thus, the basis should be chosen such
that the resulting operator matrix is as small as possible, as sparse
as possible, and can be calculated as efficiently as possible.

The primary practical concern is that one should be able to
solve the integrals in (15), and they should be sufficiently general
to be able to approximate as many different types of graphons as
possible. To this end, we choose the Tchebyshev basis functions.
Firstly, these functions are the best approximators of continuous
functions in L2[0, 1]. Secondly, the Tchebyshev functions allow
us to use Gauss-Tchebyshev quadrature, thus transforming the
analytical integrals in (15) into weighted sums which can be
numerically evaluated.

A. Fourier-Galerkin Shift Operator

In the Galerkin approach [24] to the solution of Fredholm
integral equations (6), a basis of orthogonal polynomials are

chosen, and the function f(x) and kernel W(x, y) are taken
to be the projections onto this basis. Following [24], [25] the
orthogonal basis is chosen to be the Chebyshev polynomials
of the first kind, ci(x). Working under the frame work of the
operator matrix vector equation (14), we now obtain

[f ]i =

∫ 1

−1

f(u)ci(u)

(1− u2)1/2
du (35)

and

[W]i,j =

∫ 1

−1

∫ 1

−1

W(u, v)ci(u)cj(v)

(1− u2)1/2
du dv (36)

Notably, the Tchebyshev functions of the first kind are only
orthogonal with respect to the weight function 1/(1− x2)1/2,
hence its inclusion in equation (36). However, by mapping the
interval of integration from [0, 1] to [−1, 1] with the substitution
rule u = 2x− 1 we can use the Gauss-Tchebyshev quadrature
rule to convert the equations (36) into tractable weighted sums.
Specifically, equations (35) and (36) can be evaluated with the
rule ∫ 1

−1

f(u)√
1− u2

du ≈
N∑
i=1

wif(ui) (37)

where wi = π
P and ui = cos( 2i−1

P π), where P is the number of
quadrature points, andN is the number of Tchebyshev functions.
Using (37) and using the identity

ci(u) = cos(icos−1(u)) (38)

we can rewrite equations (35) and (36) as

[f ]i =
π

P

P̃∑
k=0

f

(
cos

(
πi

N

))
cos(π(k − 1)) (39)

[W̃]i,j =
π2

P 2

P̃∑
m=0

P̃∑
n=0

W
(
cos
(πm
P

)
, cos

(πn
P

))

cos

(
πm(i− 1)

P

)
cos

(
πn(j − 1)

P

)
(40)

where the operator
∑̃

denotes that the first and last terms are
multiplied by 1

2 . The operator W̃i,j is, in fact, the numerical
solution to the integrals∫ 1

−1

ci(u)√
1− u2

∫ 1

−1

W(u, v)cj(v)√
1− v2

du dv (41)

which has the extra weight function 1√
1−v2 compared to the

defining equations (36). Thus, approximating T by (41) will
incur large errors. However, we can derive the operator W
from the operator W̃ by multiplying (41) by the Tchebyshev
expansion of

√
1− v2

√
1− v2 =

2

π
− 4

π

∞∑
k=1

c2 k(v)

4 k2 − 1
. (42)
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Algorithm 1: Fourier-Galerkin Shift Operator
(W(x, y), P,N ) Complexity O(P 2).

calculate W̃ with (40)
calculate W with (44)
return N ×N principal submatrix of W

By multiplying the series (40) by the series (42), and using
the identity

cp(u)cq(u) =
1

2

(
cp+q(u) + c|p−q|(u)

)
(43)

the operator W can be approximately calculated as

π

2
[W]i,j ≈ ˜[W]i,j −

P∑
l=1

1

4 l2 − 1

(
[W̃]i,j+2 l + [W̃]i,|j−2l|

)
(44)

where the operator W̃ in the above equation is equal to the
operatorW̃ in (40) but padded with extra zeros depending on the
length of the series (42). The calculation of the Fourier-Galerkin
shift operator is summarized in Algorithm 1.

Illustrative Example: The simplest example, structurally
speaking, is that of the Erdös-Renyí (ER) model. Apply-
ing (36) to the function W(x, y) = p readily gives the re-
sult that [W]1,1 = π2p, with [W]i,j = 0, ∀i �= j and i, j ≥ 1,

since
∑M
m=1 cos(

π(m−1)(i−1)
P ) = 0, with the exception of i = 1.

Therefore, diffusion over an Erdös-Renyí graph, as captured by
multiplication by the scaled adjacency matrix, can be encoded
with a single coefficient. Mathematically, the point becomes
clear by investigating the resolvent equation corresponding to
an ER kernel

λf(x) =

∫ 1

0

p1(x, y)f(y) dy (45)

the solutions to this equation are clearly λ = p, which cor-
responds to the eigenfunction 1(x), and λ = 0 with infinite
multiplicity, which corresponds to any function which integrates
to 0.

Fig. 5 shows the Fourier-Galerkin shift operator correspond-
ing to an ER random graph model with parameter p = 0.5.
A total of 5 Tchebyshev functions and 10 quadrature points
were used in the evaluation of (41). It can be observed that
the matrix W has only one non-zero row, specifically the first
row, indicating that the range space of the operator is the set
of constant functions. To demonstrate that the matrix W is
the correct linear map corresponding to the kernel function
p = 0.5 we first must assume a function f(y). We thus assume
the function f(y) = y and evaluate the integral

∫ 1

0 p1(x, y)ydy
having the obvious solution 1

41(x). More details on the solution
of resolvent equations and their relationship to the graphon
can be found in [9], [10]. A close correspondence between
the analytical solution, the Fourier-Galerkin solution, and the
evaluation via the scaled adjacency matrix is observed in Fig. 6.

Figs. 7 and 8 show the Fourier-Galerkin shift operator cor-
responding to an exponential random graph model with kernel

Fig. 6. Evaluation of the integral equation
∫ 1

0
p1(x, y)ydy for p = 0.5 via

analytical solution, Fourier-Galerkin method, and diffusion through the scaled
adjacency matrix of an ER graph with parameter p = 0.5 andN = 2000 nodes.

Fig. 7. Fourier-Galerkin shift operator corresponding to the graphon
e(−1/2(x+y)). There are non-zero coefficients in more than the first row.

function e−
1
2 (x+y) and the evaluation of the integral equation∫ 1

0 e
− 1

2 (x+y)ydy which has the solution (4− 6
e1/2

)e−1/2x, re-
spectively. A close correspondence between the evaluation of
the integral equation by the scaled adjacency matrix, Fourier-
Galerkin method, and the analytical solution is again observed.

Remark 4: The convergence of the scaled adjacency matrix to
its limit object occurs as the number of nodes and connections
in the network grows. The convergence of the solution of the
integral equation by quadrature to the analytical solution only
depends on the complexity of the kernel. Thus, given an arbitrar-
ily large graph, given the Kernel function explaining the graph,
the Fourier-Galerkin shift operator achieves a compression of
constant order (with respect to the graph size) of the random
graph. Additionally, given the properties of approximation by
Tchebyshev functions, the approximation error of the solution
of the Fredholm integral equation can be made arbitrarily small.
The error in approximation of the graph filter by the graphon
analog is thus dominated by the convergence of the scaled adja-
cency matrix to the limit object, the Fredholm integral equation.
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Fig. 8. Evaluation of the integral equation
∫ 1

0
e(−1/2(x+y))ydy via ana-

lytical solution, Fourier-Galerkin method, and diffusion through the scaled
adjacency matrix with N = 2000 nodes.

VIII. GRAPHON FILTER DESIGN

In this section, we address the design of simple graphon
filters given the graphon. As was shown in the previous section,
the Fourier-Galerkin shift operator is a linear map between the
Tchebyshev representation of the input function to a Tcheby-
shev representation of the output function (the solution of the
integral equation (6)). In essence, filtering in this context is thus
controlling what Tchebyshev representations are possible as an
output of the evaluation of the filter operator. As such, the goal
of designing a graphon filter is the attenuation of one or more of
the Tchebyshev coefficients of the output.

The first step of the graphon filtering algorithm is to create
a representation of the input graph signal x. To do this, we set
f(x) =

∑N
i=1[x]ib

′
i(x), where b′i(x) is the step basis functions

used in Section VI supported on [−1, 1]. Then, to produce f we
use equation (35). The ordering of x must reflect the ordering
of the graphon W in order to avoid the problems described in
Section 26.

The graph “frequencies” correspond to the various Tcheby-
shev functions respectively. Thus, an “all pass” graphon filter is
simply the identity matrix. A “frequency” band is analogous to
selecting a certain number of rows of the identity matrix. Thus,
the ideal graphon filter response is contained in the diagonal
of a matrix D. Using the graphon filter definition proposed in
section IV in combination with the convergence of the scaled
adjacency matrix to a Fredholm integral equation investigated
in the previous section, a simple graphon filterH is a polynomial
in the Fourier-Galerkin shift operator.

H =

K−1∑
k=0

hkW
k (46)

The design of the simple graph filter can be stated as a simple
least squares problem

min
{hk}

,

∥∥∥∥
K−1∑
k=0

hkW
k −D

∥∥∥∥
2

F

(47)

Algorithm 2: Graphon Filter (W,order k,D) Complexity
O(N6).

Produce f with (35)
A = [vec(W0)vec(W) · · · vec(Wk−1)], b = vec(D)
minh ‖Ah− b‖
return h = A†b
g = Hf
y′ =

∑N
n=1[g]ntn

which can be restated in matrix vector form via the vectorization
operator as

min
h
, ‖Ah− b‖22

where the k-th column of A is vec(Wk−1) and b = vec(D),
which is solved optimally via least squares. Due to the polyno-
mial nature of the columns of A, the matrix A will be highly
ill-conditioned resulting in inaccurate coefficients of extreme
magnitude. Thus, for reasons of numerical stability, the graphon
filter should be designed via truncated SVD.

We remind the reader that hereN is the number of Tchebyshev
functions used to construct W, not the number of nodes on a
graph. Thus N6 is in the order of millions at most. To move
back from the graphon “frequency” domain to the graph node
domain, we use resampling. That is, given the Tchebyshev
representation of the input f , and the implementation of the
filter g = Hf , the node domain representation would be given
by the T dimensional vector

y′ =
N∑
n=1

[g]ntn (48)

where tn is n-th first-kind Tchebyshev function sampled at T
points, where T is the size of the graph, uniformly over [−1, 1],
and y′ denotes the resampled node domain graphon filtered out-
put, as opposed to the graph filtered output y =

∑K−1
k=0 hkS

kx.
Crucially, we point out that the coefficients designed by the
graphon filtering algorithm are the coefficients for the graph
filtering operation. These steps are summarized in Algorithm 2.

A. Filter Response

One interpretative benefit of the graphon filter algorithm
is that filtering is accomplished in terms of a standard basis.
Specifically, while different graphons (and therefore, the random
graphs drawn from the graphons) may have different represen-
tations in this standard basis, but the output will always be in the
standard basis. In this sense, a “low pass” or “high pass” filter has
the same meaning regardless of the graph structure. The output
of the filter will only have non-zero coefficients corresponding to
the desired basis functions. This does not have a parallel to graph
filtering using the eigenbasis of a graph shift operator, wherein
the graph filtering operation and output are graph dependent.
In contrast, the graphon filtering algorithm is not only agnostic
with respect to the particular graph, but also with respect to the
graphon. Only the reachability of D depends on the graphon.
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Fig. 9. Low-pass filter response of a 10th order graphon filter implemented
over a kernel of e−5|x−y|. The filter was designed to preserve the first three
graphon frequencies while nullifying any higher frequencies.

Fig. 10. Consensus filter response of a 10th order graphon filter implemented
over a kernel of e−5|x−y|. The filter was designed to have as small of an output
as possible for all except the constant frequency.

Additionally, the matrix operator provides a clear interpreta-
tion of the frequency response of the graphon filter. Since the
amplitudes of the input frequencies are the j-th coefficient of
the input vector f , the frequency response of the graphon filter
H is the output of H1. This can easily be seen by considering
the response to each frequency individually. The response of
H to the j-th frequency is obviously Hej , and the response to
all frequencies is just the sum over all frequencies j, which is
exactly H1. In contrast to classical signal processing, the fre-
quencies are discrete. There are no graph frequencies “between”
the Tchebyshev frequencies. Thus the frequency response is not
a continuous function, but a vector.

Fig. 9 shows the frequency response of a “low-pass” graphon-
filter designed for the graphon e−5|x−y|. Fig. 10 shows the fre-
quency response corresponding to a “consensus” filter designed
for the same graphon. Comparing the two figures we can clearly
see that the graphon filtering algorithm is able to both preserve
and nullify the selected frequencies and thus implement a variety
of filtering tasks.

Fig. 11. Residuals of the least squares filter design algorithm for a Low Pass
filter. A large difference in the ability of different random graph models to
implement the “low pass” filtering task is observed.

IX. SIMULATIONS

In order to demonstrate the graphon filtering algorithm, the
effects of the graphon on the design and reachability of certain
filters, as well as the convergence results presented in this paper,
we examine three graphons: and ER-graphon with p = 0.5,
1
2 + 1

2 sin(
7
2πxy), and e−10|x−y|. Two separate filtering tasks

are implemented: “low-pass” filtering, wherein the aim is to
preserve several low frequencies, and consensus filtering where
the aim is to preserve only the constant frequency present in
the graph signal. All graph filters are implemented with the
coefficients designed by Algorithm 2, without knowledge of the
specific graph sample. The input function is f(x) = x+ sin(x).
Empirical samples are drawn with N = 2000 nodes.

A. Low Pass Filter

We implement the graphon filtering algorithm described in
Algorithm 2 for the aforementioned three graphons, for orders 1
through 8, in order to implement a low-pass graphon filter. The
matrix D in the least squares formulation in Algorithm 2 was
here specified to be diag(b) where b = [1, 5, 5, 10, 0, . . . , 0].
Fig. 11 shows the residuals from the least squares filter design
algorithm.

Inspecting Fig. 11 it becomes clear that the underlying
graphon has an enormous effect on the ability to match the de-
sired graphon filter operator. With an ER graphon, Algorithm 2 is
completely unable to match the desired graphon filter operator
D. This is because the related Fourier-Galerkin shift operator
has no higher order frequency content. Thus all higher order
frequencies are filtered out by default, leaving only the constant
frequency. Other graphon models allow Algorithm 2 to match the
ideal graphon filter operator, specifically because these models
have higher frequency content. The graphon with the highest
frequency content here considered, e−10|x−y| is the best able to
match the ideal graphon filter. Moreover, the graphon with the
higher frequency content is able to implement its filter design
with a lower order filter.

Fig. 12 shows the output of low pass filters designed over
the aforementioned three graphons, with order 5. As Theorem
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Fig. 12. The output of 3 order 5 graphon filters. The first 4 graphon frequencies
were to be preserved while the rest were to be nullified. The input function was
y + sin(y) over the domain [0, 1].

Fig. 13. Residuals of the least squares filter design algorithm for a consensus
filter. A large difference in the ability of different random graph models to
implement the “consensus” filtering task is observed.

?? predicts, the output of all graphon filters closely track the
empirical samples. The output of the ideal filter is plotted for
comparison purposes. It can be observed that the output of the
graphon filter designed over e−10|x−y| fits closest to the output
of the ideal filter. Whereas the other two filters have much lower
frequency content they have much more difficulty in matching
the ideal filter output.

B. Consensus Filtering

We again implement the graphon filtering algorithm described
in Algorithm 2 but this time in order to implement a consensus
filtering task. The Algorithm is again implemented over the same
3 graphons. The ideal graphon filter for this operation is D =
diag(e1). Fig. 13 shows the residuals from the least squares
consensus filter design algorithm.

Contrary to what was observed in the low pass example, the
graphon filtering algorithm is able to almost-perfectly imple-
ment the consensus filter. In direct contrast to the low pass
filtering task, higher frequency content in the Fourier-Galerkin
shift operator is undesirable as these higher order frequencies

Fig. 14. The output of three order 5 graphon consensus filters. The input
function was y + sin(y) over the domain [0, 1].

will need to be nullified. In this case the higher order frequencies
cannot be effectively nullified using a simple graphon filter.

Fig. 14 shows the output of graphon consensus filters designed
over the aforementioned graphons compared with the output of
the ideal graphon filter. Again we see a close correspondence
between the empirical graph filter and the prediction made by
the graphon filter. Contrary to the previous example, random
graphs drawn from the graphon with the highest frequency con-
tent, e−10|x−y|, have the most trouble performing the consensus
task, while the graphon with the least frequency content, the
Erdös-Renyí, performs the consensus task with a high degree of
accuracy. The excess frequency content presents a challenge for
the simple graphon filtering procedure. In order to overcome the
structural challenges presented by the various graphon filtering
tasks, the action of the nodes must be altered in some way: either
via a node or edge varying filter, or a different shift action, or
both.

C. Unknown Graphon and Unlabeled Graphs

We now address how to apply the method to a graph drawn
from an unknown graphon. The only assumption used in this
section is that the graph is drawn from a graphon, the graphon
here being e−4(x+y). There are two key differences in the ex-
position in figures 15 –17 from those of Section 8. First, the
“true” graphon is not used to produce the estimate of the FG
shift operator. One must first be estimated. Secondly, the graph
is unlabeled, that is we don’t know the samples μi. As was
shown in section 7, even if we had the “true” graphon, without
knowing the order of the samples μi, the empirical sample of
the graph does not converge to the true graphon, and thus,
neither does its diffusion. In order to resolve these issues, we
first sort the graph sample by degree. As was shown in [28],
centrality measures such as degree also converge between the
graph sample estimates. Then, the USVT method of [29] is used
to provide an estimate of the graphon. Fig. 16 shows the estimate
of the underlying graphon via the method [29] using the single
largest eigenvalue and its associated eigenvector, specifically
Wsvd = u1u

T
1 λ1. Then Wsvd becomes a lookup table of the
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Fig. 15. Random unlabeled graph drawn from e−4(x+y).

Fig. 16. Estimate of underlying graphon by first degree sorting the observed
graph and then using the USVT technique of [29]. The underlying graphon is
e−4(x+y).

Fig. 17. Comparison between the FG diffusion prediction based on the esti-
mated graphon and the output of the degree-sorted scaled-adjacency matrix.

underlying graphon W for the quadrature procedure outlined
in Section 8. Specifically, the value of [Wsvd]i,j is assumed to
be the sample of W at i

N ,
j
N where NxN is the dimension of

Wsvd. Quadrature points lying between values of i
N and i+1

N
are interpolated from the values of Wsvd. Fig. 17 demonstrates
the close correspondence between the output of the FG shift

operator based on the estimate Wsvd and the degree sorted
scaled adjacency matrix. We note that the eigenvectors of the
graph shift operator can be deduced from the graph signal itself
using, for example, the method developed in [30].

X. CONCLUSION

In this report we defined several concepts. Firstly, we defined
the concept of a graphon filter, both in discrete and continuous
time. Secondly, the sparse approximation of Fredholm integral
equations allowed us to define the relationship between diffusion
of a signal on a graph, represented by the graph shift operator,
and a Fredholm integral equation with the empirical graphon as
its kernel. The approximation error was shown to be a function
of an integral quadrature error, and the spectral radius of the
empirical graphon. Finally, it was shown that the solution of the
Fredholm integral equation defined by the empirical graphon
converges to the solution of the Fredholm integral equation
defined by the continuous graphon. Simulation results verified
these theoretical results.
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