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A B S T R A C T

The design of feasible trajectories to traverse the k-space for sampling in magnetic resonance imaging (MRI) is
important while considering ways to reduce the scan time. Over the recent years, non-Cartesian trajectories have
been observed to result in benign artifacts and being less sensitive to motion. In this paper, we propose a
generalized framework that encompasses projection-based methods to generate feasible non-Cartesian k-space
trajectories. This framework allows to construct feasible trajectories from both random or structured initial
trajectories, e.g., based on the traveling salesman problem (TSP). We evaluate the performance of the proposed
methods by simulating the reconstruction of 128 × 128 and 256 × 256 phantom and brain MRI images in terms
of structural similarity (SSIM) index and peak signal-to-noise ratio (PSNR) using compressed sensing techniques.
It is observed that the TSP-based trajectories from the proposed projection method with constant acceleration
parameterization (CAP) result in better reconstruction compared to the projection method with constant velocity
parameterization (CVP) and this for a similar read-out time. Further, random-like trajectories are observed to be
better than TSP-based trajectories as they reduce the read-out time while providing better reconstruction quality.
A reduction in read-out time by upto 67% is achieved using the proposed projection with permutation (PP)
method.

1. Introduction

Magnetic resonance imaging (MRI) is a non-invasive imaging
modality that provides detailed soft tissue images without exposing the
subject to any harmful radiation. The MR signal is frequency encoded
and can be directly mapped to the spatial frequency domain called the
k-space [1]. The image is constructed by taking the inverse Fourier
transform of the k-space signal. The k-space is traversed along a tra-
jectory, s(t) : ℝ → ℝ2,

= ∈t s t s t t Ts( ) [ ( ), ( )] , [0, ],T
x y (1)

where the parameter t corresponds to time. Here, we consider 2D
scanning, i.e., we assume that a slice has been selected and the k-space
is traversed in the kx-ky plane. The trajectory has as initial and final
points s(0) = sstart and s(T) = send, respectively, and it is governed by
the magnetic gradients g(t) = [gx(t),gy(t)]T, t ∈ [0,T] as

∫ ∫= =s t γ g τ τ s t γ g τ τ( ) ( )d , ( ) ( )d , .
t t

x 0 x y 0 x (2)

where γ is the gyromagnetic ratio, which is γ = 42.58MHz/T for

hydrogen. The most commonly used trajectory is the Cartesian trajec-
tory in which the k-space is traversed line-by-line. Non-Cartesian tra-
jectories such as the spiral [2,3] and the radial [4] trajectories have also
been used extensively in practice. Non-Cartesian trajectories are ad-
vantageous over Cartesian trajectories as they can better utilize the
hardware of an MRI scanner and provide incoherent artifacts. However,
long acquisition times in MRI are a limitation and also pose a problem
for claustrophobic patients. Therefore, to reduce the acquisition time in
MRI, the design of faster pulse sequences [5–7], parallel imaging [8–11]
and compressed sensing (CS) techniques [12,13] have been proposed.
More recently, deep learning-based methods for MRI have been pro-
posed in the literature as well [14–19]. In addition to providing an
improvement in the reconstruction quality, the main advantage ob-
served in these methods is the speed of reconstruction compared to
iterative reconstruction methods.

CS theory allows undersampling the k-space data based on the fact
that MR images are sparse in transform domains such as wavelet and
finite differences. The sparse signal is then recovered by means of non-
linear optimization methods [20–22]. However, there are two main
considerations that need to be accounted for when designing sampling
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schemes for MRI. The first is related to variable density sampling (VDS)
in which low frequency region of the k-space is more densely sampled
as compared to the high frequency region. The use of VDS has become
an integral part of the system owing to the theory of level sparsity as
advocated in [23–25]. The second is the fact that the magnetic gra-
dients are physically limited in their maximum magnitude and slew
rate. Therefore, to achieve feasible trajectories, the design must satisfy
these gradient constraints. Although there has been a lot of research to
find optimal density functions [26,27], to design sparsifying transforms
[28,29] and to develop CS image reconstruction methods [30,31] for a
Cartesian trajectory, less attention has been given to the design of
feasible non-Cartesian k-space trajectories satisfying the magnetic gra-
dient constraints.

A recent approach to obtain a trajectory from randomly under-
sampled points in the k-space using VDS is proposed in [32], in which
the shortest path through these points is computed by solving a tra-
veling salesman problem (TSP). However, TSP-based trajectories are
not feasible for implementation in an MRI machine since the physical
constraints as discussed before are generally not satisfied here. In view
of this, various methods have been proposed in the literature to obtain
feasible trajectories. The design of feasible trajectories satisfying the
magnetic gradient constraints is generally formulated as a constrained
convex optimization problem. For instance, in [33], the authors explore
various convex optimization problems to find multi-dimensional time-
optimal gradient waveforms. In [34], the time-optimal control (TOC)
method gives an optimal reparameterization of any curve such that it
can be traversed in the fastest way possible. This method, being the
most commonly used, suffers from the drawback that it requires long
read-out times if the curve has sharp turns. A different approach for
designing feasible trajectories was proposed in [35]. Here, trajectories
are designed by finding optimal interpolation points between two
consecutive sample points. Despite that these methods obtain feasible
trajectories, they distort the sampling density of the trajectory. To
compensate for this, the projection method [36] projects some para-
meterized trajectory onto the set of feasible trajectories. By doing so,
the density of the trajectory is preserved at the cost of smoothing near
the center of the k-space which results in a poor sampling coverage.

In this paper, we provide a general framework for projection-based
methods to obtain feasible trajectories. The original projection method
with constant velocity parameterization [36] turns out to be a special
case of the proposed general framework. In addition, we show that
other parameterizations as discussed later outperform the projection
method as it was originally proposed.

2. Material and methods

In this section, we discuss various aspects to be considered while
designing a feasible k-space trajectory, the proposed methods, and the
experimental setup. To set the notations, we denote a 2D continuous
curve as f(t). fx and fy denote the discretized x- and y-dimesions of f(t),
repectively. f denotes the complete discretized curve with one dimen-
sion appended below the other. fi denotes the ith 2D point of f. [fx]i and
[fy]i denote the ith entry of the vectors fx and fy, repectively.

2.1. System considerations

The linear magnetic gradients mentioned earlier are obtained by
using gradient coils in the three directions. The current in these coils
produces different magnetic fields in different spatial locations of the
body. The amplitude and slew rate (rate of change of the current) of
these gradients are limited by the gradient amplifiers, heating in the
amplifiers and coils, and by uncomfortable nerve stimulation. The
maximum magnetic gradient amplitude and slew rate are denoted as
Gmax and Smax, respectively, and are machine specific. Hence, the k-
space trajectory needs to satisfy these gradient constraints. For details
of gradient coils and other hardware aspects, we refer to [1]. The effects

of off-resonance [37], T2∗ decay [1], imperfect magnetic gradients due
to eddy currents [38,39] and other irregularities [40] are assumed to be
negligible in this work.

In this paper, we use the following definitions of a curve and a
trajectory. A trajectory in 2D is a function s(t) : ℝ+ → ℝ2 mapping time,
t > 0, to ℝ2. A curve in ℝ2 is the image of this trajectory. Thus, the
function s(t) describes a parameterization of the curve, where time t is
the parameter. For example, the function s(t) given by

=t t ωt t ωts( ) ( sin( ), cos( )) (3)

describes the trajectory of a point that moves in ℝ2 with t. The curve
described by (3) is a spiral. We use s to denote both the curve and the
trajectory while the difference will be clear from the context.

Next, we discuss the notions of distance and velocity with respect to
sampling in the k-space for MRI. Consider an arbitrary 2D trajectory s
(t) = [sx(t), sy(t)]. Assuming a fixed sampling interval ts, this trajectory
can be described by an m-point discrete 2D trajectory
s ∈ ℝ2m = [sxT syT]T where sx ∈ ℝm and sy ∈ ℝm denote the x- and y-
coordinates, respectively. We denote the ith point along the trajectory as
si = [[sx]i [sy]i]T, 1 ≤ i ≤ m. Throughout this work, we assume that
the sampling interval ts is small compared to the overall scanning time.
In practice, the minimum ts is driven by the machine. Under these
settings, (2) can be discretized (in 2D) as

∑= ≤ ≤
=

γ t i ms g , 1 ,i
j

i

j s
1 (4)

where gi = [[gx]i [gy]i]T, 1 ≤ i ≤ m is the magnetic gradient mag-
nitude at the ith point.

Definition 1(Read-out time) The read-out time is the amount of
time required to collect the MR signal by traversing the k-space. It is
directly proportional to the length of the trajectory. The discretization
(4) assumes that two consecutive points in the trajectory s are traversed
in the sampling time, ts, hence, the ith point is reached at time i ts. The
total read-out time required to traverse the trajectory will be T = mts.

Definition 2 (Distance) The distance traveled up to the ith point is
given as

∑= ∥ − ∥ ≤ ≤
=

−l i ms s , 2 .i
j

i

j j
1

1 2
(5)

Definition 3 (Instantaneous velocity) The instantaneous velocity at
the ith point on the trajectory can be obtained from (4) and (5) as

= − = ∥ − ∥ = ∥ ∥ ≤ ≤− −v l l
t t

γ i ms s g , 2 .i
i i

s

i i

s
i

1 1 2
2 (6)

The instantaneous velocity is proportional to the magnitude of the
magnetic gradient at that time instant. Hence, the gradient constraints
restrict the distance traversed per second. Note that the maximum ve-
locity with which the trajectory can be traversed is vmax = γGmax.

Definition 4 (Instantaneous acceleration) The instantaneous ac-
celeration is given as

= − =
∥ ∥ − ∥ ∥

≤ ≤− −a v v
t

γ
t

i m
g g

, 2 .i
i i

s

i i

s

1 2 1 2

(7)

The maximum acceleration with which the trajectory can be tra-
versed is amax = γSmax.

Definition 5(Feasible trajectories) The maximum magnitude and
slew rate constraints on the magnetic gradients g are equivalent to
velocity and acceleration constraints on the trajectory s. A trajectory is
feasible if it satisfies these constraints. To formalize this, we introduce
the block diagonal matrix notation

= = ⎡
⎣

⎤
⎦

A A A 0
0 Ablkdiag ( ) .(2)

2

The set of m-point feasible curves s ∈ ℝ2m = [sxT syT]T can then be
defined as
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S �= ∈
∥ ∥ ≤ ∥ ∥ ≤∞ ∞t γG t γS
s
D s D s

{ :
, },

m m

s s

2

1
(2)

max 2
(2) 2

max (8)

where
D1

(2) = blkdiag2(D1), D2
(2) = blkdiag2(D2) with

=

⎡

⎣

⎢
⎢
⎢
⎢

…
− …

− …
⋮

…

⎤

⎦

⎥
⎥
⎥
⎥

×

D

0 0 0 0 0
1 1 0 0 0

0 1 1 0 0

0 0 0 0 1 m m

1

being the first-order difference matrix, and D2 = − D1
TD1 ∈ ℝm×m the

second-order difference matrix. Here, the gradient constraints are taken
to be rotation invariant, i.e., the gradient coil in each direction is as-
sumed to work independent of the other coils and each of them can
reach the maximum constraints.

2.2. Design of feasible k-space trajectories

A common heuristical method for designing feasible trajectories is
to start from an arbitrarily parameterized curve. The curve is then re-
parameterized to obtain gradients which satisfy the magnetic gradient
constraints using optimal control theory [33,34,41]; or the trajectory is
approximated by a feasible trajectory using the projection method [36].
We briefly discuss two significant and relevant methods, the time-op-
timal control [34] and the projection method [36] as they will be used
to compare the performance of the proposed methods.

2.2.1. Time-optimal control method
If the trajectory is described by a closed-form expression such as a

spiral, rosette and others, the magnetic gradients can be obtained using
(2). However, the time-optimal contol (TOC) method provides the
fastest gradient waveforms to traverse the given trajectory s(t) with
start and end points given by sstart and send, respectively. For details of
the method, we refer to [34]. This method suffers from the major
drawback that the resultant trajectory takes more time near sharp turns,
thereby increasing the overall read-out time. The method therefore
works well for some classical (smooth) trajectories but not for the TSP-
based trajectory which has many sharp turns.

2.2.2. Projection method
A projection-based method was proposed in [36] to obtain a feasible

trajectory, where instead of finding the fastest reparameterization to
traverse the given arbitrary curve, the constraint to follow the curve
exactly is relaxed, providing a smoother curve without sharp edges.
This overcomes the drawback of the TOC method and introduces points
in the k-space that are not present in the initial trajectory. In this
method, an initial arbitrary curve c(t), discretized as c ∈ ℝ2n, is inter-
polated by parameterising c at a constant velocity (a fraction of
vmax = γGmax due to hardware restrictions). We denote the velocity
parameterized curve as cvpar ∈ ℝ2m (assuming that the parameterized
curve has m points). Method to obtain cvpar is discussed below. It is then
projected onto the setSm of feasible curves satisfying various magnetic
gradient constraints [36]. The cost function for the projection method is

S
∥ − ∥

∈
s c(P ): min 1

2
.

s
proj vpar 2

2
m (9)

here, the distance between s and cvpar is minimized to keep the tra-
jectory as close as possible to the original. The velocity of the para-
meterization can be varied to attain different read-out times. The re-
duction in readout time of this method is limited by the gradient
constraints as the maximum velocity at which the curve can be tra-
versed is γGmax. It is important to note that the initial parameterization
of the curve c in (9) significantly affects the resulting feasible trajectory
s in the projection method.

2.2.2.1. Constant velocity parameterization (CVP). CVP means that the
input trajectory c is essentially linearly interpolated by introducing new
sample points on the trajectory such that consecutive points attain a
velocity proportional to a fraction α of the maximum magnetic gradient
amplitude vmax. In this work, we propose to describe the CVP operation
using a linear operator Av(α,c) ∈ ℝm×n that is applied to c such that
cvpar = Av(α,c)c. This notation is to indicate that the linear CVP
operator is dependent on α and c and the subscript ‘v’ is to denote CVP.
Hence, the problem in (9) becomes

S
∥ − ∥−

∈
αs A c c(P ): min 1

2
( , )

s
proj CVP v

(2)
2
2

m (10)

where as before Av
(2)(α,c) = blkdiag2(Av(α,c)). The linear CVP

operator can be decomposed into two operators:

1. a linear interpolation matrix L.
2. a selection matrix ∏α, c such that the consecutive points are tra-

versed with a constant velocity.

Hence, Av(α,c) = ∏α, c L. The details for the design method for the
two matrices is provided in Appendix A.

2.2.2.2. Other parameterizations. Although constant velocity
parameterization (CVP) is used here as an initial parameterization,
other parameterizations can be used. One of the simplest
parameterizations of a curve is the arc-length parameterization.
Following the convention, we can represent a trajectory c by samples
in the arc-length parameterization as c(li) = (cx(li),cy(li)), 1 ≤ i ≤ m,
where li is as described before. When a trajectory is uniformly sampled
in the arc-length parameterization, all consecutive sample points are
equi-distant on the trajectory. Hence, traversing such a trajectory at a
fixed sampling time interval ts makes arc-length parameterization
equivalent to CVP, which is used in the projection method [36]. This
is the most common parameterization in the literature. Similar to CVP,
we propose another possible parameterization: Constant acceleration
parameterization (CAP). In this method, the trajectory is to be traversed
at a constant acceleration a as a fraction of the maximum acceleration
possible amax = γSmax. The details are discussed in Section 2.4.1.

There are no strict or clear measures to find a good parameteriza-
tion. Hence, in this paper, we generalize the projection method and
propose further possible parameterizations that might result in a
shorter read-out time and/or better reconstruction performance.

2.3. Proposed generalized framework for projection-based trajectory design

The CVP of c as used in the projection method [36] is in fact a linear
operation on c as shown in the previous section. Therefore, it is natural
to ask if there are other such operations on c that could result in a
feasible trajectory that provides a better reconstruction quality or re-
duces the read-out time with similar reconstruction performance. Here,
we explore such possible linear operations on c under a generalized
framework. This approach can be expressed as the following optimi-
zation problem

S A
∥ − ∥

∈ ∈
s A c(P ): min 1

2
( )gen

s A,
(2)

2
2

m (2) (11)

where A(2)(c) is a linear or non-linear function of the known vector c
andA is a constraint set (more details in Section 2.4) associated to the
parameterization required to avoid a trivial solution to the problem
(11). When this transformation is linear, i.e., A(2)(c) = A(2)c with,
A(2) ∈ ℝ2m×2n, the optimization problem could be defined as

S A
∥ − ∥−

∈ ∈
s A c(P ): min 1

2s A
gen proj

,
(2)

2
2

m (2) (12)

where A(2) = blkdiag2(A). Here, A(2) may or may not depend on c. We
aim to obtain a non-trivial solution to the above problems. In the
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previous section, we had provided a method to fit the original projec-
tion method into the proposed generalized framework. For A(2) = Av

(2)

(α,c) (the linear CVP operator), (Pgen−proj) becomes the same as (Pproj).
In this case, A(2) depends on c. The advantage of the generalized fra-
mework is that it provides opportunities to explore different para-
meterizations using different structures on A(2) which may lead to
better projection-based feasible trajectories.

2.4. Proposed parameterizations

In the following subsections, we explore some possible variations of
A(2).

2.4.1. Constant acceleration parameterization (CAP)
As already mentioned in Section 2.2.2, we can consider a para-

meterization method using constant acceleration. Just as the CVP curve
has successive points that have constant velocity (i.e., equidistant
points for fixed sampling time ts), CAP will have successive points that
have constant acceleration (i.e., the distance between points increases
with the progression of the trajectory). Acceleration naturally occurs in
curves like the spiral where the trajectory starts from the center of the
k-space and moves towards the boundary. The CAP operator can also be
described by a linear operator which will be denoted by Aa(β,c) ∈ ℝm×n

where β is the fraction of amax used for the parameterization. The tra-
jectory design problem now becomes:

S
∥ − ∥−

∈
βs A c c(P ): min 1

2
( , )

s
proj CAP a

(2)
2
2

m (13)

where Aa
(2)(β,c) = blkdiag2(Aa(β,c)). The linear CAP operator can be

computed similar to the constant velocity matrix by first interpolating c
using the linear interpolation matrix L and then picking points with the
selection matrix ∏β, c such that the resultant points have constant ac-
celeration. These two operations can be combined as Aa(β,c) = ∏β, cL.
The design method for these two matrices is provided in Appendix B.

One should also note that when a curve is parameterized with
constant velocity, the acceleration constraints (∥D2

(2)s∥∞ ≤ ts2γSmax)
are generally not taken care of. This results in a distortion of the ori-
ginal trajectory after projection onto the feasible curves, which in
certain cases, leads to a poor reconstruction performance. For example,
in case of a spiral curve, the CVP curve might not satisfy the accel-
eration/slew rate constraint near the center of the curve as the curva-
ture is high in that region. Similarly, if the spiral is constant accelera-
tion parameterized, the velocity/gradient magnitude constraint (∥D1

(2)

s∥∞ ≤ tsγGmax) might not be satisfied near the boundary as the cur-
vature is low in that region. This will result in distortion of the tra-
jectory after projection (near the center for CVP and near the boundary
for CAP). Hence, proper care needs to be taken for either para-
meterization. One should properly parameterize the curve by adjusting
the velocity and acceleration such that the spiral is not distorted after
projection. However, this may result in a significantly higher read-out
time [42].

2.4.2. A as a general banded matrix
The structure of Av(α,c) and Aa(β,c) is similar to a banded matrix.

The structure is so because these matrices work on a few consecutive
points in c. Note that the number of columns of the matrix remains the
same for all values of α and β. However, with increasing α (or β), the
number of rows increases as there are fewer points to be chosen with
higher velocity (or acceleration).

We now adapt the structure of the CVP/CAP matrices by making A a
square matrix with a banded structure, denoted as Ab. Ab is made a
square matrix instead of a tall matrix because we do not want to specify
a certain parameterization. Remember that the number of rows of A in
CVP/CAP depends on the parameterization. Further, the varying
bandwidth of the CVP/CAP operators is changed to have a constant
bandwidth, i.e., a diagonal band of fixed bandwidth is used. The design

problem then becomes

S
∥ − ∥

∈
s A c(P ): min 1

2s
GBP b

(2)
2
2

m (14)

where Ab
(2) = blkdiag2(Ab), D∈A l ub , withDl u, being the set of banded

matrices with l and u as the lower and upper bandwidths, respectively.
This method will be called general banded projection (GBP) method
henceforth. We consider two specific cases:

• GBP (Type-1): when Ab is taken as the identity matrix.

• GBP (Type-2): when Ab is taken as a banded matrix with normal
random entries and rows normalized to add up to 1.

In the GBP (Type-1) method, c is directly projected onto the set of
feasible trajectories S . In the GBP (Type-2) method, a random linear
combination of a few consecutive points in c are projected ontoS . The
effect of the two cases is discussed in Section 3.

2.4.3. Other variations with A = I
It is assumed that each sample is taken in the sampling time ts.

Hence, to reduce the read-out time we need to limit the number of
sample points in the trajectory. However, fewer sample points might
not be enough for a good image reconstruction [25,43]. Hence, there is
a trade-off between the read-out time and image quality. We aim to
reduce the read-out time such that the resultant trajectory provides a
minimal compromise on the image quality. The main idea in the fol-
lowing two methods is that we project c as it is without doing any
reparameterization. Then to obtain feasible trajectories with more
sample points such that the reconstruction quality is improved, we use
interpolation methods.

Here, we discuss two variations of this idea.

(a) Constrained Length Trajectory (COLT)

In this variation, c is not parameterized as was done in the projec-
tion method, i.e., A = I (n = m). In addition to just the projection
function in (12), we here also add a cost on the length of the segments
of s. This method to find a feasible trajectory is hereby called the
constrained length trajectory (COLT) method [44]. It can be formulated
as the following constrained convex optimization problem

S
∥ − ∥ + ∥ ∥

∈

λs c D s(P ): min 1
2 2s

COLT 2
2

1
(2)

2
2

m (15)

where λ ∈ ℝ+ is a weighting parameter, ∥D1
(2)s∥22 is the sum of squares

of the Euclidean distances between consecutive points of s. This im-
poses a cost on the segments of the trajectory s which in turn decides
the overall length of the trajectory. Hence, we project the given curve c
with arbitrary parameterization (i.e., it contains the original randomly
sampled points in any order, for instance the TSP order to construct the
TSP curve) onto the set of feasible curves and include a cost on the
length of the segments of the trajectory. The resultant trajectory
sCOLT ∈ ℝ2m will have the same number of sample points as that of c. As
the final step, to reduce the variation of the velocity in consecutive
points, sCOLT is parameterized using a constant velocity, denoted
sCOLT′ ∈ ℝ2m′. A variable number of sample points, and hence a variable
read-out time is achieved by this parameterization. This is because the
higher the value of the weighting parameter, the smaller the number of
sample points after CVP, and thus the shorter the read-out time. So, in
effect, the second term in the cost function provides control over the
read-out time which provides the motivation to include this additional
term in the cost function. The gradient constraints in this case will still
be satisfied as the velocity chosen for parameterization is feasible and
the curve is smooth without sharp edges. Fig. 1 shows the effect of
varying λ for a 4098 point TSP trajectory with initial points taken from
the density π as before. For larger values of λ, the consecutive points
come closer to each other, resulting in a reduction of the overall length
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of the trajectory. Subsequently, the additional sample points introduced
by CVP will also be less for larger λ. Also note that with increasing λ,
the trajectories tend to become smoother.

(b) Spline Interpolation-based Projection (SIP) method

This variation uses spline interpolation instead of CVP to increase
the number of sample points in the trajectory. First, we solve (12) with
A = I (n = m).

S
∥ − ∥

∈
s c(P ): min 1

2
.

s
SIP 2

2
m (16)

The main difference between this variation and the projection
method is that in (9), instead of c, a parameterized c is used. In this
method, we introduce new points in the trajectory or resample the
trajectory by interpolating the trajectory obtained instead of inter-
polating the trajectory before projection. This reduces the computa-
tional complexity and allows us to choose the interpolation factor by
doing multiple simulations without having to project the trajectory for
each trial. Hence, interpolating the trajectory after projection reduces
the complexity overall. Note that although the trajectory s obtained
from (16) is feasible and can be traversed, the number of sample points
is not enough to result in a good reconstruction. Although linear in-
terpolation is generally used for reparameterization, here we use splines
for interpolation as they provide piece-wise polynomial interpolation
[45]. Although any spline could be used, we have used cubic splines as
they are smooth (C 2 continuous). We rewrite the 2D trajectory s ∈ ℝ2m

as a complex trajectory, denoted as sc ∈ ℂm. The trajectory sc can be
assumed to be sampled from a trajectory sc(p), p ∈ [0,m − 1] such that
[sc]i = sc(i), i = {0,1,2,…,m − 1} where [sc]i are the original points
from (16) and sc(i) are uniformly sampled points on sc(p). We want to
approximate sc(p) by piece-wise cubic polynomial curves, i.e., between
every two consecutive points [i, i + 1], we have sc(p) = Pi3(p),
p ∈ [i, i+ 1] where Pi3(p) = ci, 0 + ci, 1p+ ci, 2p2 + ci, 3p3 with ci, k ∈ ℂ,
k ∈ {0,1,2,3}. Interpolation is done by evaluating the trajectory loca-
tions using the obtained piece-wise polynomials at points finer than the
given i’s depending on the oversampling factor (OSF). The interpolated
trajectory is rewritten as a 2m ⋅ OSF length vector by concatenating the
real and imaginary parts, denoted as sSIP′ ∈ ℝ2m⋅OSF. Such interpolation
using cubic splines provides enough sample points to ensure good
image recovery. This also provides another advantage of being able to
control the read-out time by varying the interpolation factor. The for-
mulation of the SIP method in (16) is mathematically similar to the one
of the projection method in the discrete domain.

In case we use the SIP method with a random-like input, certain
permutations of the points might result in a better performance than
others. Hence, the method can be modified to permute the sequence of
points until a permutation with a desired reconstruction quality is ob-
tained. Note that this does not have to be the permutation leading to the
TSP sequence in order to perform well. This also holds for all the
methods described previously.

2.4.4. A designed as a permutation matrix
When c is a TSP solution (denoted as cTSP) to the randomly sampled

points, we can consider it as a special permutation (∏TSP) of the sam-
pled points such that the path covers the shortest distance. This may or
may not be a feasible trajectory. Thus, we propose to find a different
permutation matrix ∏ ∈ ℝm×m that is not necessarily a TSP solution but
leads to a feasible trajectory. The idea is to obtain a random-like tra-
jectory by alternatively optimizing over ∏ and s. This is done by first
initializing c by randomly sampling points from the density function
π ∝ 1/|k|2 [27,46]. Then we initialize s similar to c by randomly
sampling points from the same density function π and then find a
permutation matrix ∏ such that points in c that are close to points in s
are paired together. By doing this, a feasible s is obtained using the
resultant ∏. This is repeated until updates of s converge
(e = ∥ sit − sit−1∥

2 < ε, where it is the current iteration and ε is a
small positive number). The related problem can be written as

S
∏

∏
∏

∏

∏ ∏
∥ − ∥

=

=

∈

∈ =

s c

1 1

1 1

min 1
2

subject to

{0, 1}

T T

i j

s , blkdiag ( )

(2)

2
2

,

m (2)
2

(17)

Note that (17) is convex in s for fixed ∏(2) as it is the projection of
∏(2)c onto the convex set Sm. On the other hand, although for fixed s
the problem is not convex in ∏(2) due to the Boolean constraints in the
entries of ∏(2), the solution for ∏(2) can be obtained efficiently by sol-
ving a bipartite matching problem1 [47]. This method will be called the
projection with permutation (PP) method henceforth.

Fig. 1. Trajectories for different values of the weighting parameter λ in the COLT method for (a) a TSP curve and (b) a random curve. The read-out time and the
number of sample points are denoted by T and N, respectively. α = 0.5.

1 https://in.mathworks.com/matlabcentral/fileexchange/24134-gaimc-
graph-algorithms-in-matlab-code
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2.5. Experiments

We discuss the methods used to test and compare the performance
of the various methods discussed previously in the following subsec-
tions.

2.5.1. k-space data estimation
The k-space data for an image is generated by taking the non-uni-

form Fourier transform of the image at the trajectory points. The non-
uniform fast Fourier transform (NUFFT) is used because the k-space
points do not necessarily lie on the Cartesian grid. The NUFFT is im-
plemented using Fessler’s Michigan image reconstruction toolbox
(MIRT) [48]. It is assumed that the data thus obtained is the under-
sampled data from an MRI machine and is then used to reconstruct the
image as described below.

2.5.2. Reconstruction of image
An MRI image is sparse in various transform domains such as the

wavelet domain, finite difference domain or discrete cosine transform
(DCT) domain [12]. Let X be the desired image to be estimated. Then,
by CS theory, the image can be non-linearly reconstructed from a
sparsely and incoherently sampled k-space using, for example, [12]:

W = ∥ − ∥ + ∥ ∥ + ∥ ∥λ λX X Y X Xarg min NUFFT( ) ( )
X

2
2

1 1 2 TV
(18)

where Y is the observed k-space data, W ⋅( ) is the wavelet transform
and ∥ ⋅ ∥TV is the total variation (TV) norm:

∑ ∑∥ ∥ = − + −+ +X X X X X| | | |
i j

i j i j i j i jTV 1, ,
2

, 1 ,
2

(19)

Numerous sparsity penalties have been used in MRI such as wave-
lets and finite differences. Note that (18) is a convex optimization
problem which can be solved using a non-linear conjugate gradient
method with a fast and cheap backtracking line-search [12,49].

2.5.3. Performance metrics
To compare the reconstruction performances of different methods,

we use structural similarity index (SSIM) and peak signal-to-noise ratio
(PSNR) as measures. SSIM provides a comparison in perception of the
two images using local statistics over windows ̂x and x of X and X,
respectively as

̂ ̂ ̂
̂ ̂

=
+ +

+ + + +
μ μ c σ c

μ μ c σ σ c
x xSSIM( , )

(2 )(2 )
( )( )

x x 1 xx 2

x
2

x
2

1 x
2

x
2

2 (20)

where, ̂ ̂ ̂μ μ σ σ σ, , , ,x x x x xx are the local means, standard deviations, and
cross-covariance. c1 = 10−4 and c2 = 9 × 10−4 are constants. The

SSIM of the whole image is calculated by taking the mean of SSIMs over
all windows. PSNR is a measure of the error in intensity values and is
given by

=
i jX

PSNR 10log
(max ( , ))

MSE
i j

10
,

2

(21)

where, MSE = ∑ −= i j i jX X[ ( , ) ( , )]
N i j

N1
, 0

2
2 . Mean SSIM and mean PSNR

are calculated from 100 different trials for each method for better
comparison.

2.5.4. T2 decay
T2 decay is the decay of the transverse magnetization (Mxy) due to

interactions among the close by spins. This is an exponential decay with
time-constant T2 which depends on the tissue. Long read-out times re-
sult in blurring and loss of SNR due to T2 decay [50]. Since most of the
trajectories discussed here have long read-out times, we study the effect
of T2 decay by comparing the amplitude loss (AL) of the peak of the
point spread function (PSF) [50]. To obtain the PSF, the NUFFT S(kx,ky)
of a 256 × 256 point image I(x,y) is calculated first using trajectories
by different methods. The PSF is then obtained by

= − S k kPSF NUFFT ( ( , )),1
x y

where NUFFT−1 is the inverse NUFFT operator. To include the effect of
T2 decay, PSFdecay is calculated by weighting the k-space signal S(kx,ky)
by the exponential function e(−t/T2), 0 ≤ t ≤ T and then taking the
inverse NUFFT.

= ≤ ≤− −S k k e t TPSF NUFFT ( ( , ) ), 0 ,t T
decay

1
x y

/ 2

where T is the total read-out time. The percentage amplitude loss is
then calculated as

=
−

×AL
max(PSF) max(PSF )

max(PSF)
100%.decay

2.5.5. Algorithm to solve the general projection problem
A proximal gradient descent based iterative algorithm is used to

solve the general projection problem (11) and is described in Appendix
C. The algorithm

2.5.6. Simulation framework
In this section, we test the performance of the methods discussed in

the previous sections for the reconstruction of a 128 × 128 Shepp-
Logan phantom, a 256 × 256 realistic analytical head phantom [51]
and a T1-weighted sagittal brain MRI image (obtained using Cartesian
imaging) as shown in Fig. 2:. All the simulations are performed in

Fig. 2. Reference images (256 × 256) for simulation results: (a) realistic analytical phantom, (b) an MRI image.
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MATLAB 2018b in a 64 bit UBUNTU system using an Intel Core i5-4460
CPU, with 16 GB RAM. The test images are made complex by adding
complex Gaussian random noise. The gradient constraints are taken as
Gmax = 40mT/m and Smax = 150mT/m/ms to be consistent with the
TOC and projection methods. The sampling frequency is taken to be
250 kHz. The variable density function π ∝ 1/|k|2 is used for all tra-
jectories. The k-space data for the test images is then obtained by using
NUFFT [48] along the feasible trajectories. The results are computed
over multiple trials (each trial consists of a new selection of reference
curve c). We define the sampling factor in the same way as in [36] as
N2/m × 100%. Here, N corresponds to the image size and m is the
number of sample points in the k-space trajectory. The initial reference
trajectory c in the TOC and projection methods are taken such that the
sampling factor is about 50%.

3. Results and discussion

In this section, we compare and discuss the performance of the
proposed methods for different test images.

3.1. Simulation results

3.1.1. 128 × 128 Shepp-Logan phantom
Simulation results of all methods are summarized in Table 1. For the

TOC method, c is considered a 400 point TSP curve to get a sampling
factor of about 50%. For the projection-CVP method, c is a TSP curve
with 128 × 128/4 = 4096 points. The same initial trajectory c is used
for the projection-CAP, COLT-TSP and SIP-TSP methods. A velocity of
0.5vmax and an acceleration of 0.3amax are used for parameterizing c to
get a sampling factor of about 50% for the projection-CVP and pro-
jection-CAP methods, respectively. The projection-CAP provides a
better reconstruction quality compared to its CVP counterpart. An im-
provement of about 0.1951 in SSIM is observed on average. In case of
the COLT-TSP method, with increasing velocity v of the parameteriza-
tion and λ, the mean read-out time reduces and so does the re-
construction performance as shown in Fig. 4:(a). A decline in perfor-
mance is expected since the number of sample points in the trajectory
reduces. As can be observed from the figure, the read-out time reduces
drastically with α but the decline in performance is not as drastic.
Hence, this method can be used as a method to reduce read-out time
with λ = 1. The same is observed for the COLT-random method as well,
however, the COLT-random method provides a better reconstruction
compared to COLT-TSP. A mean improvement of about 0.2757 in SSIM
is observed with a 50% reduction in read-out time over the COLT-TSP
method. Similarly, the SIP-random provides a much better

reconstruction performance than the SIP-TSP with an improvement of
0.2545 in SSIM. The GBP methods (Type-1 and Type-2) are used to
obtain TSP-based and random-like trajectories with
8192 = 128 × 128/2 points. In both types of methods, random-like
trajectories perform better than TSP-based trajectories. For random-like
trajectories, the GBP (Type-2) method performs better than the GBP
(Type-1) method. For TSP-based trajectories, the two types of GBP
methods show very similar performance. The PP method with 5461
points outperforms all other methods with just 21.84 ms read-out time.
In Fig. 3, the simulation results for one trial of all methods are shown.
The feasible TSP-based trajectories for these methods are shown in
Fig. 3(a), (b), (c), (d), (e), (h) and (j). Trajectories obtained from the
COLT, SIP, GBP (Type-1) and GBP (Type-2) methods when random
points are used as c are shown in Fig. 3(f), (g), (i) and (k), respectively.
The trajectory from the PP method is shown in Fig. 3(l).

3.1.2. 256 × 256 analytical phantom and brain MRI images
For higher resolution images, we compare the methods for single-

shot and multi-shot (2-shot and 4-shot) trajectories. Multi-shot trajec-
tories are constructed only for TSP-based trajectories. To obtain the
multi-shot trajectories, we divide the points sampled from the density
function π ∝ 1/|k|2 into two halves and four quadrants for 2-shot and 4-
shot trajectories, respectively with some overlap between the regions. A
TSP-based trajectory is obtained for each region and a corresponding
feasible TSP-based trajectory is to be traversed in one RF excitation. The
performance of all methods is summarized in Table 2 (also see Fig. 6:).
For the TOC method, 2500 points are sampled on the k-space such that
the feasible single-shot trajectory takes a read-out time of about 133 ms.
For projection-CVP, projection-CAP, COLT-TSP and SIP-TSP methods,
16384 (256 × 256/4) points are sampled to get c. The velocity and
acceleration used for the parameterization are taken as 0.5vmax,
0.25vmax and 0.8amax for the projection-CVP, COLT-TSP and projection-
CAP methods, respectively. The projection-CAP method performs better
than the projection-CVP method and comparable with the TOC method.
Similar to the lower resolution phantom image, random-like trajec-
tories using the COLT and SIP methods perform better than the TSP-
based trajectories obtained by these methods. The GBP method is used
to create 21845 (256 × 256/3) point TSP-based and random-like tra-
jectories. GBP (Type-1) random-like trajectories perform comparable to
the GBP (Type-2) TSP-based trajectories on average with a read-out
time of nearly 87 ms. The PP method provides a good reconstruction
with an SSIM of 0.8191 and a significantly lower read-out time of
nearly 43 ms in a single shot.

Fig. 4(b) compares the performance of the projection-CVP and
COLT-TSP methods for the 256 × 256 Shepp-Logan phantom image
reconstruction with the same TSP-based trajectories as discussed above.
The mean read-out times, PSNRs and SSIMs are plotted as functions of
the fraction α of vmax used for CVP in both methods. The variation with
respect to λ in the COLT-TSP method is also depicted. For lower values
of α (< 0.5), the projection method performs really well with SSIMs
greater than 0.9 and high PSNRs. However, these values are achieved at
very high read-out times. The effect of α is not observed to be as pro-
minent for the COLT-TSP method. For a similar mean PSNR of 29dB,
the read-out time for the COLT-TSP method is 37.60 ms as compared to
137.13 ms for the projection-CVP method.

3.1.3. 256 × 256 phantom MRI images
Fully sampled k-space data using Cartesian trajectory was acquired

by scanning a spherical (10496625) and a cylindrical (08624186)
Siemens phantom placed side-by-side on a 3T Siemens Prisma machine.
The scan was done by placing the arrangement inside a 20 channel head
coil. A single image is obtained by combining the reconstructed images
from each channel by root-sum-of-squares (RSS) method. In the RSS
method, firstly, inverse FT is applied to k-space data of each coil and
then the individual images are combined as

Table 1
Mean read-out time and SSIM over 100 trials for the 128 × 128 phantom image
reconstruction using different methods under a single-shot scheme to obtain
feasible trajectories.

Method Read-out
time (ms)

Sampling
factor

SSIM PSNR (dB)

TOC 33.11 50.50% 0.7607 25.46
Projection-CVP

(v = 0.5vmax)
33.95 51.80 % 0.6813 28.25

Projection-CAP
(a = 0.3amax)

31.19 47.59 % 0.8764 32.20

COLT-TSP (v = 0.2vmax) 16.76 25.57 % 0.5620 22.70
COLT-random

(v = 0.8vmax)
15.46 23.57 % 0.8377 27.43

SIP-TSP (OSF = 2) 32.77 50 % 0.6726 25.81
SIP-random (OSF = 2) 32.77 50 % 0.9271 32.22
GBP (Type-1) c= random 32.77 50 % 0.9113 29.25
GBP (Type-1) c= TSP 32.77 50 % 0.8845 34.08
GBP (Type-2) c= random 32.77 50 % 0.9362 28.96
GBP (Type-2) c= TSP 32.77 50 % 0.8800 33.63
PP method 21.84 33.33 % 0.9942 42.54
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where Xi is the image reconstructed using the ith coil and nc is the total
number of coils (here, nc = 20). We obtain 256 × 256 images of re-
solution 1 × 1 × 4 mm using TSE sequence with TR/TE of 600/6.4 ms.
We use the single reconstructed image Xrss to get the k-space data at the
proposed non-Cartesian trajectories and reconstruct the images back
using (18). The two images considered here are shown in Fig. 5:. Fig. 5:
(a) is a sagittal image of the arrangement of the two phantoms and (b) is
a coronal image. The trajectories used here are the same as the ones
used for 256 × 256 images previously for the analytical phantom and
brain MRI images. The results are summarized in in Table 3.

3.2. Robustness of methods

To test the robustness of the methods discussed in this paper, we
compare the histograms of SSIMs of the reconstructed 256 × 256
analytical realistic brain phantom image over 100 trials for different
reference curves c as shown in Fig. 7:. It is observed that the TSP-based
trajectories obtained using the TOC and GBP (Type-2) methods and
random-like trajectories obtained using COLT, SIP and PP methods
provide consistent performances over trials. SSIMs from other methods
vary a lot where some trials result in a really poor performance with an
SSIM less than 0.5 and some have a really good performance with SSIM
greater than 0.95. Similar to most methods that require an initializa-
tion, the proposed methods are also susceptible to such initializations,
such as the sample points on the k-space, choice of c from the sampled
points (in random-like trajectory case). Since selection of a trajectory is
done offline, it is advised to do multiple simulations and finally choose

a trajectory that leads to the best reconstruction performance on the
test images: phantom and MRI of different anatomical structures.

3.3. Effect of T2 decay

Table 4 shows the percentage AL for T2 = 90 ms and 400 ms (values
typical for gray matter and cerebrospinal fluid, respectively at 1.5T
field strength [1]) for trajectories obtained by different methods.
Methods resulting in shorter trajectories suffer less from T2 decay.
Hence, proposed methods like COLT, SIP, GBP and PP with shorter
read-out times are expected to be robust to the effects of T2 decay,
especially in single-shot trajectories.

3.4. Discussion

The problem of finding short yet feasible trajectories for MRI sam-
pling has been addressed here. The results indicate that random-like
trajectories are better than TSP-based trajectories under the proposed
projection-based method. For 128 × 128 images, the PP method is
observed to be better than other existing and proposed methods in
terms of reconstruction performance and read-out time. This method is
suggested to be used in lower resolution scans. For 256 × 256 images,
the PP method provides the shortest trajectories that can be im-
plemented in practice. Although COLT-random and SIP-random provide
better reconstruction than other proposed methods, these cannot be
implemented in the multi-shot scenario. The single-shot scheme of
COLT-random and SIP-random may not be practical in all cases because
of longer read-out times. The same is true for the GBP methods. Hence,
for high resolution single-shot imaging, the PP method and COLT-
random methods are recommended to be used if the read-out time can

Fig. 3. Comparison of performance of TOC, projection-CVP, projection-CAP, COLT, SIP, GBP and PP method for 128 × 128 phantom image. λ= 1 for COLT method.
OSF =1.5 for SIP method.

Fig. 6. Trajectories and reconstructed 256 × 256 analytical realistic brain phantom and brain MRI images for the TOC, projection-CVP, projection-CAP, COLT, SIP,
GBP and PP methods.
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be close to 40 ms and 60 ms, respectively. In the multi-shot scheme, the
4-shot TSP trajectory with TOC method performs the best.

A drawback of the TSP and random-like trajectories from projec-
tion-based methods is that the sampled points do not follow the density
function. This is solved using the PP method which provides a trajectory
with points close to the original density. The better performance of the
PP method compared to other existing and proposed methods proves
that the TSP-based trajectory is not necessarily the best trajectory to
follow the density.

The proposed trajectories have not yet been tested on an MRI
scanner. Since the trajectories are designed to satisfy the physical
constraints and are feasible, they should be implementable in a scanner
without any difficulty. Since the trajectories are smooth, there should
not be very loud acoustic noise. Some possible sources of image artifacts
might occur due to eddy currents and deviation from the desired tra-
jectory which are common in non-Cartesian trajectories. There could
also be motion-related errors in case of trajectories with longer read-out
times. Various methods exist in literature to address these potential
issues [38,52].

4. Conclusion

We focus on a recent method for obtaining feasible trajectories
which uses the projection of a CVP curve onto a convex set and we
propose a generalization of this method to obtain faster trajectories. We
have discussed some special instances of this generalized method

starting from some TSP-based and random-like trajectories. We have
proposed a new parameterization scheme based on constant accelera-
tion which is observed to perform better than CVP. Using the COLT, SIP,
GBP and PP methods, we have shown the effectiveness of random-like
trajectories in reducing the read-out time while maintaining a good
reconstruction performance. The general framework opens many more
possibilities for trajectory design. The considered methods consist of
solving a constrained convex optimization problem for which an
iterative algorithm in the dual space has been provided. They also give
the designer the freedom to choose from various design parameters (the
weighting parameter, OSF) in order to tune the trade-off between read-
out time and reconstruction performance. The choice of method in
practice would be determined according to the application at hand. The
trajectories designed here are feasible under the gradient constraints
and hence can be implemented in a real scanner. However, the results
discussed here are preliminary and may vary in practice due to im-
precisions in trajectories because of eddy currents and other scanner
related errors. Faster acquisition using the proposed methods would be
useful in applications such as dynamic imaging, cardiac imaging, etc.

Acknowledgment

The authors would like to thank the Ministry of Electronics and
Information Technology (MeitY), India for the financial support to
conduct this work. We are also grateful to the IISc-TU Delft collabora-
tion agreement.

Appendix A. Design of the CVP operator

As discussed in Section 2.2.2, the CVP matrix is the product of an interpolation matrix L and a selection matrix ∏α, c. The design method for the
two matrices is described below.

Interpolation matrix L:
Let x ∈ ℝn be a vector of n points x1, x2, , xn. To interpolate this by a factor of N, i.e., to have N points between all two consecutive points, we

design the interpolated points

= − ++x
j

N
x x x( )i j i i i, 1 (A.1)

where xi, j denotes the (j + 1)th interpolated point between xi and xi+1, 1 ≤ i ≤ N − 1, 0 ≤ j ≤ N − 1. This operation on all points of x can be
written in matrix form as

Table 2
Mean read-out time and SSIM over 100 trials for the 256 × 256 analytical realistic brain phantom and brain MRI image reconstruction using different methods under
single-shot and multi-shot schemes to obtain feasible trajectories. Results in bold indicate best reconstruction performance in a single-shot scheme.

Method #shots Read-out Sampling Phantom image MRI image

time (ms) Factor SSIM PSNR (dB) SSIM PSNR (dB)

1 133.35 50.86 % 0.8131 28.59 0.8325 29.94
TOC 2 89.95 68.62 % 0.8628 29.86 0.8566 30.72

4 37.27 65.86 % 0.8357 37.27 0.8427 30.24
Projection-CVP

(v = 0.5vmax)
1 137.13 52.31 % 0.5352 23.53 0.6105 25.82
2 86.51 66.00 % 0.6492 26.30 0.6892 27.15
4 37.88 57.80 % 0.3738 17.55 0.4492 21.22

Projection-CAP
(a = 0.4amax)

1 136.05 51.89 % 0.8133 29.67 0.8134 30.36
2 86.22 65.78 % 0.9395 31.66 0.8912 29.87
4 34.27 52.29 % 0.4291 19.67 0.4594 21.90

COLT-TSP
(v = 0.25vmax)

1 75.21 28.69 % 0.5742 25.53 0.6557 26.85
2 56.86 43.38 % 0.7274 27.25 0.7453 27.59
4 21.15 32.27 % 0.4236 19.47 0.5088 23.13

SIP-TSP (OSF = 1.5) 1 98.30 37.49 % 0.5726 24.55 0.6641 26.98
2 66.66 50.85 % 0.7348 27.65 0.7592 27.61
4 27.90 42.57 % 0.4187 19.26 0.5172 23.13

COLT-random
(v = vmax)

1 61.59 23.49 % 0.8893 30.11 0.8728 29.55

SIP-random (OSF = 1.5) 1 98.30 37.49 % 0.9624 31.52 0.9350 31.21
GBP (Type-1) 1 (c = TSP) 87.38 33.33 % 0.6994 27.39 0.7484 28.96

1 (c = random) 87.38 33.33 % 0.8095 29.58 0.8278 31.16
GBP (Type-2) 1 (c = TSP) 87.38 33.33 % 0.7919 28.35 0.8115 29.76

1 (c = random) 87.38 33.33 % 0.6792 26.93 0.7164 28.32
PP 1 43.69 16.66 % 0.8535 28.73 0.8191 27.10
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Fig. 4. Effect of velocity and λ in COLT-TSP method for (a) 128 × 128 and (b) 256 × 256 Shepp-Logan phantom and its comparison with projection-CVP method.

Fig. 5. (a) Phantom MRI image-1: Sagittal image and (b) Phantom MRI image-
2: Coronal image.
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= +
N

L DI D I1
E E1 (A.2)

where D ∈ ℝnN×nN = I ⊗ diag (0,1,2,…,N − 1), and IE ∈ ℝnN×n = I ⊗ 1N. We denote cL = L(2)c ∈ ℝ2nN, where L(2) = blkdiag2(L).
Selection matrix, ∏α, c:
As discussed in Section 2.1, consecutive points in c are assumed to be traversed in time ts. Since the distance between points is not the same, this

results in varying velocity through the trajectory. To achieve CVP, we need the distance between consecutive points to be the same. To do this, let us
introduce ti as the time taken to traverse two consecutive points in cL in terms of instantaneous velocity, which is given by

= − ≤ ≤ − −+t l l
αv

i n N, 1 ( 1) 1i
i i1

max (A.3)

where li = ∑j=1
i‖cLj+1 − cLj‖2 as defined in (5) with cLj = [[cLx]j [cLy]j]T. Points from cL are then chosen using a selection matrix ∏α, c such that

the total time between consecutive selected points is ts. For this, we define the set

C = − ≃ ≤ ≤ −+j t t t j n{ : , 1 1}j j s1

and the selection matrix ∏α, c = [e1 0 e2 0 e3 0 … 0 em] with ei’s at the column positions given by the setC . Here, {ei}i=1
m are the columns of an

m × m identity matrix.
The procedure to obtain ∏α, c is summarized in Algorithm 1.
Algorithm 1: Algorithm to construct CVP matrix Av(α,c)
Input: c, α, N
Result: Av(α,c)c = ∏α, cL

1. Construct = +L DI D IN E E
1

1 .
2. Construct cL = Lc.
3. Construct = = ∑ − ≤ ≤ −−

= +
+t l i n Nc c, where ‖ ‖ , 1 ( 1)i

l l
αv i j

i
j jL L1 1 2

i i1
max

.
4. Obtain set C = − ≃ ≤ ≤ −+j t t t j n{ : , 1 1}j j s1 .
5. Construct ∏α, c as a selection matrix to select indices in C .

Table 3
Mean read-out time and SSIM over 100 trials for the 256 × 256 phantom MRI
image reconstruction using different methods under single-shot scheme to ob-
tain feasible trajectories.

Method Read-out time
(ms)

MRI image-1 MRI image-2

SSIM PSNR SSIM PSNR

TOC 133.35 0.9589 37.54 0.9611 39.13
Projection-CVP

(v = 0.5vmax)
137.13 0.6826 26.35 0.6608 24.49

Projection-CAP
(a = 0.4amax)

136.05 0.8871 34.99 0.8884 35.32

COLT-TSP (v = 0.25vmax) 75.21 0.7720 30.10 0.7601 28.60
SIP-TSP (OSF = 1.5) 98.30 0.7813 30.21 0.7680 28.78
COLT-random (v = vmax) 61.59 0.9022 33.50 0.8994 33.87
SIP-random (OSF = 1.5) 98.30 0.9510 35.11 0.9493 35.61
GBP (Type-1) (c = TSP) 87.38 0.8240 32.05 0.7986 30.31
GBP (Type-1) (c = random) 87.38 0.8482 32.11 0.8508 32.22
GBP (Type-2) (c = TSP) 87.38 0.9118 34.77 0.9093 34.71
GBP (Type-2) (c = random) 87.38 0.7333 28.49 0.7204 27.31
PP 43.69 0.8932 33.57 0.9056 34.12

Fig. 7. Histograms with bin size of 0.05 of SSIMs of 256 × 256 analytical realistic brain phantom image using different methods.

Table 4
Effect of T2 decay.

Method Amplitude Loss

T2 = 90 ms T2 = 400 ms

TOC 47.85 % 14.96 %
Projection-CVP 48.67 % 15.34 %
Projection-CAP 48.44 % 15.23 %
COLT-TSP 32.22 % 8.84 %
COLT-random 27.58 % 7.32 %
SIP 39.16 % 11.34 %
GBP 36.01 % 10.17 %
PP 30.22 % 5.27 %
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Appendix B. Design of the CAP operator

The first step for the construction of the linear CAP operator is the same as that for the CVP operator, i.e., interpolation of c using L as given in
(A.2). The difference is in the second step, i.e., in picking the points from the interpolated c using the selection matrix ∏β, c. To obtain ∏β, c for this
case, we do the following. First, find the time taken between consecutive points in cL = Lc assuming acceleration a = βamax, where β is the fraction
of the maximum acceleration amax = γSmax needed for the parameterization. This results in

= − ≤ ≤ − −+t v v
βa

i n N, 1 ( 1) 1i
i i1

max (B.1)

where = −+vi t
c c‖ ‖i i

s
L L1 2 as defined in (6) with cLi = [[cLx]i [cLy]i]T. Then, a setC is defined as before. Finally, define ∏β, c as the selection matrix ∏β,

c = [e1 0 e2 0 e3 0 … 0 em] with ei’s at the column positions given by the set C . This procedure is summarized in Algorithm 2.
Algorithm 2: Algorithm to construct CAP matrix Aa(β,c)
Input: c, β, N
Result: Aa(β,c) = ∏β, cL

1. Construct = +L DI D IN E E
1

1 .
2. Construct cL = Lc.
3. Construct = ≤ ≤ − −−+t i n N, 1 ( 1) 1i

v v
βa
i i1

max
.

4. Obtain set C = − ≃ ≤ ≤ −+j t t t j n{ : , 1 1}j j s1 .
5. Construct ∏β, c as a selection matrix to select indices in C .

Appendix C. Algorithm to solve the general projection problem

An iterative algorithm based on proximal gradient descent on the dual is used to solve the following general projection problem.

�
−

≤
≤

∈

∞

∞
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2
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where α1 = γGmax, α2 = γSmax, A �= ∈ ≤∞ αs s s( ) { : ‖ ‖ }α
m
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where ‖⋅‖∗ is the dual norm, (C.2) can be written as
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where
�

= − + +
∈

F q q s A c D s q D s q( , ) min ‖ ‖ , ,
s1 2

1
2

(2)
2
2

1
(2)

1 2
(2)

2m2
is differentiable and convex and Q(q1,q2) = α‖q1‖1 + β‖q2‖1 is non-differentiable

and convex. Hence, the dual Eq. (C.3) can be solved using proximal gradient descent [53].
To evaluate F(q1,q2), we need to find

�

= − + +∗

∈
s q q s A c D s q D s q( , ) arg min 1

2
‖ ‖ , ,

s
c1 2 2

2
1
(2)

1 2
(2)

2
m2 (C.4)

which has the closed form solution

= − −∗s q q A c D q D q( , ) T T
c1 2 1

(2)
1 2

(2)
2 (C.5)

With this, the proximal gradient descent algorithm to solve (C.3) is summarized below in Algorithm 3. Here, L= ‖D1
(2)TD1

(2) + D2
(2)TD2

(2)‖ is the
Lipschitz constant of ∇F(q1,q2). The algorithm converges at a rate O(1/t2) for a fixed step size t ∈ (0,1/L] [53,54].

Algorithm 3:
Input: c ∈ ℝ2n, λ > 0, ε > 0, L, α, β

1. Initialization: q(0) = [q1
(0)Tq2

(0)T]T = 0, y(0) = q(0), t = 1/L, e = c, k = 0
2. while ‖e‖22 < = ε do
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3. k = k + 1
4. z(k) = y(k−1) + t ∇ F(y(k−1))
5. = ∥ − ∥ + Qq z q qarg min ( )k

t
k

q

( ) 1
2

( )
2
2

6. = + −−
+

−y q q q( )k k k
k

k k( ) ( ) 1
2

( ) ( 1)

7. e = q(k) − q(k−1)

8. end

Output: s = s∗(q1
(k),q2

(k))
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