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Coding Mask Design for Single Sensor
Ultrasound Imaging

Pim van der Meulen , Pieter Kruizinga , Johannes G. Bosch, and Geert Leus

Abstract—We study the design of a coding mask for pulse-echo
ultrasound imaging. We are interested in the scenario of a single
receiving transducer with an aberrating layer, or ‘mask,’ in front
of the transducer’s receive surface, with a separate co-located
transmit transducer. The mask encodes spatial measurements into
a single output signal, containing more information about a re-
flector’s position than a transducer without a mask. The amount
of information in such measurements is dependent on the mask
geometry, which we propose to optimize using an image recon-
struction mean square error (MSE) criterion. We approximate the
physics involved to define a linear measurement model, which we
use to find an expression for the image error covariance matrix.
By discretizing the mask surface and defining a discrete number of
mask thickness levels per point on its surface, we show how finding
the best mask can be posed as a variation of a sensor selection
problem. We propose a convex relaxation in combination with
randomized rounding, as well as a greedy optimization algorithm to
solve this problem. We show empirically that both algorithms come
close to the global optimum. Our simulations further show that
the optimized masks have better a MSE than nearly all randomly
shaped masks. We observe that an optimized mask amplifies echoes
coming from within the region of interest (ROI), and strongly
reduces the correlation between echoes of pixels within the ROI.

Index Terms—Coded aperture, compressed sensing,
experimental design, sparse sensing, ultrasound imaging.

I. INTRODUCTION

IN RECENT years there has been a considerable interest in
reducing the amount of measured sensor data in the ultra-

sound imaging field. Data compression has great potential, for
example, in minimally invasive surgery, where the number of
data cables is limited by the available space inside the catheter.
This prohibits transferring all data from a dense imaging array
through the catheter, making it very challenging to design high
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frame-rate, high quality imaging devices for this scenario. One
possible approach to avoid using a Nyquist-sampled sensor array
(either in time or space), is to have the data somehow compressed
during sensing. That is, to reduce the amount of sampled data
without any complicated electronic hardware actively compress-
ing the measured array signals.

Recently, the field of compressed sensing (CS) showed that
such compression is possible if the signal to be estimated has a
sparse representation in a known domain [1]–[4]. This led to a
large number of studies in ultrasound using CS in an attempt
to get better image reconstructions using less data (see, for
example [5]–[11], amongst others). In compressive sensing, it is
assumed that the compressed data is a linear combination of the
original, uncompressed, signals. Moreover, there are probabilis-
tic performance guarantees if the compression is implemented
by a random linear combination of the original signals. However,
implementing such a random linear combination in hardware
is not necessarily easy, since these compressors might have
to combine samples across both space and time, resulting in
large sample buffers. Another popular compression technique
is randomly subsampling in time and/or space. However, this
means that a large amount of information is not used at all (the
ignored samples are not in any way present in the compressed
measurement), and additionally results in a degradation of SNR.
More importantly, we are currently not aware of a domain where
ultrasound images are very sparse.

Some of the most striking examples of CS for imaging have
been demonstrated in the field of optical imaging, the most
well-known being the single-pixel camera [12]. There, random
linear combinations of the image are obtained by spatial light
modulators (SLM), which basically integrate a different sub-
selection of the image pixels per measurement. This has led
to a great number of works using SLM setups for compressed
imaging for a single sensor ([13]–[15], to name a few). Instead
of subsampling or implementing a (random) linear compressor
in hardware, one could also place a contrasting medium in
front of the sensor array. In optics, for example, researchers
have placed a heterogeneous medium between the sensor array
and the imaging scene, causing multiple scatterings inside this
heterogeneous medium, after which the scrambled light field
is measured [16]–[19]. This scrambled light field can be seen
as a random linear combination of all image pixels, and CS
can be used for image reconstruction. The random compression
thus occurs naturally, and is achieved without any electronic
hardware. Similar techniques (not employing CS) have also
been used in the medical ultrasound community, by transmitting
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Fig. 1. Experimental setup considered in this article. A point source emits a
spherical undistorted wave into the ROI. Reflected echoes propagate through the
coding mask before being measured by a single transducer. The coding mask
has a different speed of sound than its surrounding medium, and distorts the
received wavefield in a DOA-dependent manner. As a result, scatterers can be
resolved based on the information residing in the temporal waveforms of the
pulse-echo signal.

randomized waves and measuring on a single sensor [20], or by
placing a heterogeneous cavity in front of a single sensor [21].

We recently demonstrated a similar approach for 3D ultra-
sound imaging [22], [23], where we have shown how a single
sensor with a ‘coding mask’ can successfully reconstruct 3D
objects from multiple pulse-echo measurements, facilitating
the design of new imaging devices with reduced output data.
Instead of placing a heterogeneous scattering medium in front
of the single sensor, we used a homogenous, but irregularly
shaped piece of plastic, to which we refer as a ‘coding mask’
(Fig. 1). In contrast to CS, we have shown that reconstruction is
possible without sparse regularization techniques, removing the
necessity of an a priori known sparse domain for the ultrasound
images.

The main idea of this imaging approach is the following.
Consider the experimental setup shown in Fig. 1, but without
a coding mask. Due to the lack of spatial sampling, one has
to rely on the information in the temporal dimension of the
measured pulse-echo signal. Only the distance to a reflector
can be determined (based on an echo’s time-of-arrival (TOA)),
but nothing can be said about the direction-of-arrival (DOA),
since the pulse-echo signals will look roughly the same for
all directions.1 However, once we place a small layer of ir-
regularly shaped plastic in front of the receiving sensor, in
which ultrasound waves have a different speed of sound than
the imaging medium, the received wavefields are significantly
distorted. If the mask shape is designed correctly, this distortion
is direction-dependent, and we are now able to infer the DOA in
addition to the distance to the object by exploiting the signal

1To be more accurate, the pulse-echo signal for a flat circular sensor will look
exactly the same for all reflectors on a circle with the same elevation angle, for
all azimuth angles. The azimuth and elevation are with respect to the plane in
which the sensor is positioned. However, pulse-echo signals will only change
slowly with respect to the elevation angle, so there will be high ambiguity for
reflectors with similar DOA.

structure in the time-domain waveforms. Through collecting
additional measurements by rotating or translating the sensor
with the coding mask, the image object is probed from multiple
points of view.

In our experiments so far, we used randomly shaped masks to
remove ambiguities between pixel signals. Naturally, we would
like to know if random masks are a good design choice, and
if not, how the coding mask should be shaped to get the best
possible imaging performance. In this paper, we investigate cod-
ing mask design algorithms using sensor selection techniques,
and propose a convex and a greedy optimization program. As
such, this study falls within the larger framework of (sparse)
ultrasound array design [24], [25]. Using various simulations,
we demonstrate that the masks obtained using our techniques
exhibit better imaging mean square error (MSE) compared to a
random mask design.

To design a mask, we will first introduce an approximate
model, where the mask is discretized in all dimensions (x, y, z).
Based on this model, we want to minimize the imaging MSE,
which is a function of the error covariance matrix, and con-
sequently, of the measurement matrix mapping the discretized
image domain to the sampled pulse-echo measurement domain.
We will show how optimization problems of this form relate
to sensor selection problems. These problems are typically
solved in literature using convex relaxations employing the
�1-norm [26], [27], or using more efficient greedy methods
by formulating a sub-modular cost-function [28]–[32]. These
are relatively well-understood techniques, and various functions
of the reconstruction error covariance matrix can be optimized
near-optimally using such convex and greedy optimization al-
gorithms. There are some fundamental differences however,
between our problem and the typical sensor selection problem.

First, the inverse error covariance matrix of the typical sensor
selection problem is linear with respect to the selection vari-
ables, whereas for our selection problem it is quadratic, making
the cost-function non-convex. We are currently not aware of any
sensor selection literature studying the same problem structure.
Hence, we propose to linearize the problem by lifting the opti-
mization variables to a higher dimensional space and impose a
block-matrix sparsity constraint on the matrix formed by these
lifted coefficients.

Second, in our optimization problem we want to select one
sensor from a specific set, select another one from another set,
etc., for a given number of such sets. This second obstacle is also
considered in [33], but we are not aware of any similar studies.
In [33], each sensor position is associated with a small pool
of candidate sensors, corresponding to different sensor types.
However, since the inverse covariance matrix in [33] is still a
linear function of the selection variables, we cannot employ
similar techniques to solve our problem.

In [34], we made a first attempt at mask optimization. There,
we proposed a model similar to the one in this work, but using
a different convex relaxation, utilizing �1-reweighting [35]. In
this paper, we use a different convex relaxation with a smaller
feasible set, without �1-reweighting, and we also propose a
more efficient greedy coordinate-descent optimization scheme.
Furthermore, we provide an analysis of the optimized masks,
lacking in our previous work.
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Fig. 2. Left: We approximate the physics of a transducer with a mask by discretizing the transducer surface into separate propagation channels. Right: Approximate
signal model. Each channel delays the incident wavefield, and the spatial integration by the transducer surface is approximated by summing all delayed channel
signals.

The remainder of this paper is organized as follows. In
Section II, we describe an approximate linear measurement
model for a masked transducer. In Section III, we show how this
model can be parameterized using a discrete selection variable.
Using this parameterization, we then formulate the mask opti-
mization problem and propose a convex relaxation, and greedy
selection algorithm to find the best mask parameters. Simulation
results are discussed in Section IV, where we show various
examples to evaluate the performance of the optimized masks
as compared to the true optimum and a large set of randomly
generated masks. In Section V the resulting masks are discussed,
and the paper is concluded in Section VI.

A. Notation

Throughout this paper we use the following notational con-
ventions. Bold lower-case variables (e.g., x) represent vectors,
and bold upper-case variables (e.g., A) represent matrices. The
transpose and Hermitian transpose are denoted by T and H,
respectively. We use W � 0 to indicate that W is positive
semi-definite. Alternatively, the set S+ is the set of positive
semi-definite matrices. By diag(W) we represent the vector
formed by taking the coefficients on the diagonal ofW, whereas
diag(w) is the diagonal matrix with the vectorw on its diagonal.
Next, ‖w‖0, ‖w‖1 and ‖w‖2 denote the cardinality, �1-norm,
and Euclidean norm of w, respectively. To index matrices or
vectors, we use [W]i,j to represent the (i, j)-th entry of W.
In the case of a 3D vector representing a (x, y, z)-coordinate
in Cartesian space, we use [r]z to index the z-component in r.
Finally, 1 is the all-one vector, I denotes the identity matrix,
and E(·) represents the expectation operator. The Gaussian and
complex Gaussian distribution with mean μ and covariance
matrix C are written as N (μ,C) and CN (μ,C), respectively.

II. SIGNAL MODEL

We will assume a pulse-echo setup with separate co-located
transmit and receive transducers (Fig. 1), and the coordinate

system shown in the same figure. Throughout this paper, we
assume that a point source is located at (x, y, z) = (0, 0, 0), and
the masked receive transducer in a plane at z = 0. As will be
explained at the end of this section, we cannot easily take into
account the effect of the mask on the transmitted wave, so we
will assume that the transmit transducer emits a spherical wave
that is unaffected by the mask.

We first discretize the mask surface in the width and length
(x and y) dimensions into many small patches, and regard
each of these discrete points as an independent sensor channel.
Each channel delays the reflected echo field according to the
thickness of the mask at the channel and the speed of sound inside
the mask. Put differently, we assume that every channel takes
the received pulse-echo ultrasound field at the mask-medium
interface as channel ‘input’. The ultrasound field propagates
through each channel independently to arrive at the transducer.
This approximate model is visualized in Fig. 2.

The basic idea behind the approximate physical model just
described is based on ray-tracing physics, and relies on the
assumption that the mask is thin enough to assume that if a
part of the echo wavefront is incident on the mask at position
(x, y), it will reach the transducer surface in a sufficiently close
neighborhood of (x, y), even with strong wave refraction. Con-
sequently, only a phase change occurs proportional to the mask
thickness around (x, y), leading to the independent channels as
shown in Fig. 2. Further assuming that scattering sources are not
extremely close to the transducer, the incident wave angle will be
limited, reducing the effect of refraction. This requires a proper
discretization of the mask surface: if the mask patches (and
consequently, the patch size on the transducer surface) are taken
too large, they do not sufficiently sample the incident wavefield,
and will neither accurately approximate the incident wave on the
transducer surface, nor the output signal of the transducer. On
the other hand, as patches get smaller, it becomes possible that
most of the wave starts interfering into other channels, causing
the model to lose its validity. To avoid both cases, we will use a
patch size of around 0.3 to 0.5 times the wavelength inside the
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mask material throughout this work, i.e., wavefields are sampled
close to the required spatial sampling (Nyquist) rate of 0.5 λ, but
not strongly exceeding it.

This approximate model has been succesfully applied in
the design of holographic masks, where it was experimentally
verified that these approaches can be used to design phase masks
that generate a desired pressure pattern [36], [37], and we partly
base the validity of our model on these studies. We have also
compared this model to a true simulated wavefield obtained
using the k-wave simulator [38] in the Supplementary Material
accompanying this paper.

Next, we will formalize the model laid out in the previous
paragraphs into a linear signal model. Assume that the output
signal of the transducer, ignoring the electro-mechanical transfer
function for now, is the integral of the pressure field over the
transducer surface (after propagation through the mask). If we
denote the spatial 3D coordinate-vectors that include all points in
space on the transducer surface by X , then the transducer output
signal y(t), given the spatio-temporal pressure field y(t, r) on
the receiving transducer surface (after propagating through the
mask), is:

y(t) =

∫
r∈X

y(t, r)dr, (1)

where r is a 3D spatial vector. For our model, if the sensor surface
X is discretized into S channels, this can be approximated by

y(t) =

S−1∑
s=0

y(t, rs), (2)

where {rs}S−1
s=0 are the sampled positions on the transducer

surface.
In the remainder of this work we will work in the frequency

domain instead of the time domain. Needless to say, equations
(1) and (2) are equally valid in the frequency domain if y(t) and
y(t, rs) are replaced by their frequency domain equivalents. We
will denote the sampled continuous time Fourier transform of
y(t) and y(t, rs) by y[ω] and ys[ω], respectively, with ω ∈ Ω,
sampled at frequencies in the set Ω = {ω0, ω1, . . . , ωN−1}. We
will use equidistantly taken samples in the pulse bandwidth of
the positive side of the frequency spectrum.

Next, we want to express the pressure fields ys[ω] on the
transducer surface in terms of the image we try to recover.
The pixelized image consists of M pixel reflection coefficients,
denoted by the vector x ∈ RM . We assume that the transmitted
wavefield to each pixel is known. By using the Born approxima-
tion (see e.g. [39], [40]), we can define a measurement model that
is linear with respect to the reflection coefficients; any measure-
ment ys[ω] is a superposition of the individual pulse-echo signals
{as,m[ω]}M−1

m=0 of all scatterers, ignoring multiple reflections
between scatterers:

ys[ω] =

M−1∑
m=0

x[m]as,m[ω]. (3)

Here, x[m] is the m-th component of x, corresponding to the
scattering intensity of pixel m, and as,m[ω] is the pulse-echo
signal of pixel m at frequency ω measured at position rs.

Using the approximate model described earlier, and illustrated
in Fig. 2, we have the following expression for the term as,m[ω]
in (3):

as,m[ω] =
p[ω]

4π(‖rpx,m‖2 + ‖rpx,m − rch,s‖2 + ‖[rch,s]z‖2)

× exp

(
−j

ω

c0
(‖rpx,m‖2 + ‖rpx,m − rch,s‖2)

−j
ω

c1
‖[rch,s]z‖2

)
. (4)

Here, rpx,m is the 3D position vector of pixel m, and rch,s is the
3D position vector of the mask-medium interface of channel s.
The variables c0 and c1 are the medium and mask speed of sound,
respectively. The signal p[ω] is the frequency domain represen-
tation of the excitation pulse p(t). The first term accounts for the
geometric spreading of the pressure field, and the exponential
term is the phase shift due to the travelling distance from the
transmitting transducer to the pixel and back to the masked
receive sensor. In other words, it is the total delay of a single
path from transmit to the ‘output’ of a single mask channel, as
visualized in Fig. 2. This total path and its corresponding delays
can be broken down into several parts, following next. The dis-
tance ‖rpx,m‖2 is the transmit path length from the transmitter
to pixel m, and the sum ‖rpx,m − rch,s‖2 + ‖[rch,s]z‖2 is the
total receive path from pixel m to the mask-medium interface
of channel s, and the echo propagation through the channel.
Similarly, the first terms in the exponent yield a phase shift due
to the transmit/receive paths in the medium, whereas the last
term represents the phase shift due to the propagation through
mask channel s.

Storing all samples {ys[ω]}ω∈Ω in the vector ys ∈ CN , and
all {as,m[ω]}ω∈Ω in the vectors as,m ∈ CN , we can use matrix-
vector notation to write (3) as:

ys = [as,0 as,1 . . . as,M−1]x

= Asx. (5)

Similarly, we can rewrite (2) into its discretized, frequency
domain counterpart as:

y =

S−1∑
s=0

ys =

S−1∑
s=0

Asx = Ax, (6)

with A =
∑S−1

s=0 As. Assuming that measurements are cor-
rupted by complex Gaussian noise in the frequency domain,
our final measurement model becomes:

y = Ax+ n, (7)

where n ∈ CN represents complex Gaussian noise with covari-
ance matrix Cn: n ∼ CN (0,Cn). Thus, the imaging problem
consists of estimating x from y. If additional measurements are
acquired by, for example, translation of the masked transducer,
they can be easily incorporated by adding additional rows to this
system of equations (see (10) in the next section). In the next
section, we parameterize A as a function of the mask shape in
order to optimize for the mask geometry.
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Fig. 3. Each mask channel is discretized in the mask thickness dimension,
and each mask thickness level is associated with a specific measurement matrix
for that channel. The goal of the mask optimization problem is to select one
thickness level per channel such that the imaging MSE is minimized.

In (6), the total measurement matrix A is separated into
independent channels, resulting in a summation of matrices. Our
convex mask optimization algorithm in the next section relies on
the fact that we can pre-compute each As for a pre-determined
number of mask thickness levels. However, it is impossible
to pre-compute As if it is not known what pressure field is
emitted by each scatterer, which in turn can only be known if
the transmit mask is known. Although in [22], [23] we used the
same mask in transmit and receive, in this work we assume that
a separate (co-located) transducer is used for transmit, and the
masked transducer for receive. This makes it always possible
to pre-compute any As using (4), circumventing this problem.
Specifically, throughout this paper, we will assume that a point
source (without a mask), located in the center of the receiver,
transmits a spherically diverging wave.

Finally, we point out that the greedy algorithm proposed in
this paper does not suffer from this limitation. However, for the
sake of consistency and comparison to the convex algorithm, we
will use the non-masked co-located transmitter setup throughout
this paper for all simulations.

III. MASK OPTIMIZATION BY SENSOR SELECTION

Having formulated the linear measurement model in the pre-
vious subsection, we now want to use it to find how to optimally
choose the mask thickness levels, i.e., we want to find the
best channel lengths or delays. We will again use discretization
(of the channel lengths), and show that channel length design
can be posed as a sensor selection problem. Such problems
are hard to optimize exactly, but can be either relaxed into a
convex problem formulation, or approximately solved using a
greedy optimization algorithm. Using a specific thickness level
for a channel is equivalent to using a particular matrix As for
that channel (Fig. 3). Consequently, our goal is to choose one
particular As per mask channel, such that the trace of the error
covariance matrix of the mask-encoded measurement system is
optimal.

First, we rewrite (5) in terms of the measurement matrices
for all thickness levels. Suppose there are R potential thickness
levels for each channel s. Hence, there are R candidate matrices
{As,0,As,1, . . . ,As,R−1} that can be used for As at channel s.
Let w[r +Rs] ∈ {0, 1} indicate whether sensor candidate r ∈
{0, 1, . . . , R− 1} is used for channel s or not. Then (7) can be
rewritten as

y(w) =

S−1∑
s=0

R−1∑
r=0

w[r +Rs]As,rx (8)

wherew = [w[0], w[1], . . . , w[RS − 1]]T. To make our notation
simpler, we define A[r +Rs] = As,r, and linearize s and r into
a single index t = r +Rs. Consequently we can write (8) as:

y(w) =

RS−1∑
t=0

w[t]A[t]x

= A(w)x, (9)

where A(w) =
∑RS−1

t=0 w[t]A[t] =
∑S−1

s=0

∑R−1
r=0 w[r +Rs]

As,r. Note that in this formulation only one sensor should be
selected per channel, resulting in only S non-zero values for
w, and each non-zero value has to be within a specific support
range of w. The vector w is the mask optimization variable,
and has to lie within the constraints just described.

In caseK different pulse-echo events are taken using the same
coding mask, the corresponding measurement equations can be
stacked into a single system of equations, assuming x does not
change in between measurements:

y(w) =

⎡
⎢⎢⎢⎣

y0(w)
y1(w)

...
yK−1(w)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

A0(w)
A1(w)

...
AK−1(w)

⎤
⎥⎥⎥⎦x = A(w)x. (10)

For example, the sensor and the mask can be rotated (as in [22]),
or translated (as in [23]) to obtain additional information of x.
Note however, that the same mask is used in each case, and that
A(w) is still linear in w.

This model can also be generalized to include multiple mea-
surements involving differently shaped masks. In that case, a
number of Q measurements with Q distinct masks are stacked
vertically into a larger system of equations:

⎡
⎢⎢⎢⎣

y(w0)
y(w1)

...
y(wQ−1)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

A(w0)
A(w1)

...
A(wQ−1)

⎤
⎥⎥⎥⎦x, (11)

which we denote as

y(W) = A(W)x,

where W represents the set {wq}q∈Q, Q = {0, 1, . . . , Q−
1}. Again, A(W) is still linear in W . The aforementioned
constraint on the number of selected channels means that
if wq,s only contains the entries of wq that correspond
to the R selection coefficients for channel s, i.e., wq,s =
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[wq,s[0], wq,s[1], . . . , wq,s[R− 1] ]T, then we want ‖wq,s‖0 =
1 for all channels s.

To optimally select mask thickness levels, we use x̂ to denote
an estimate of x, and define the image estimation error as
e = x− x̂. We will utilize the covariance matrix of this image
estimation error throughout this work, defined as

Ce = E
(
(x− x̂)(x− x̂)H) . (12)

We will try to find an optimized mask by minimizing the mean
squared error (MSE) under additive zero-mean i.i.d. white Gaus-
sian measurement noise, which is a function ofCe. SinceA(W)
is typically ill-conditioned, some prior information about the
solution is required. We assume that the covariance matrix Cx

ofx is known, and that a Wiener estimate of the image is used, so
that we can minimize the Bayesian MSE (the error covariance
associated with the Wiener estimator). More specifically, we
minimize

f(W) =
1

M
trace(Ce) (13)

=
1

M
trace

((
C−1

x +A(W)HC−1
n A(W)

)−1
)

(14)

where Cx and Cn are the image and noise covariance matrices,
respectively. Throughout this paper we assume that Cx = σ2

xI
and Cn = σ2

nI.
With these choices for the covariance matrices, the Wiener

estimator can be rewritten as a regularized least squares estima-
tor, i.e., x̂ = argminx̂ ‖y(W)−A(W)x‖22 + λ‖x‖22, where λ

depends on the ratio between σ2
x and σ2

n. In this case, λ‖x‖22
only serves to make sure that a unique solution is found without
large outliers in x̂, due to the ill-posedness of the inverse imaging
problem, as well as to increase robustness to noise. From this
perspective, minimizing f(W) can also be seen as a way to
decrease the ill-posedness of the inverse imaging problem, by
finding a mask that increases the orthogonality between the
columns ofA(W). As a result, we expect that the resulting mask
will also be beneficial for other (non-linear) imaging algorithms
besides the Wiener estimator used here, since it is expected to
decrease the ill-posedness of the problem.

Furthermore, it is expected that the optimal solution of f(W)
is not overly sensitive to incorrect values for σ2

x and σ2
n, as long

as the following two extreme cases are avoided. The first one
where the ratio of these variances causes the inverse term in
f(W) to be dominated by C−1

x , and the second case where C−1
x

is negligible, so that no regularizing term is present. By choosing
these values sufficiently in between these two extreme cases, we
hope to find a mask that is relatively robust to the variances of
x and n.

Ideally, the optimization problem is then posed as

min
W

f(W)

s.t. ‖wq,s‖0 = 1

wq ∈ {0, 1}RS (15)

for all q ∈ Q and s ∈ S . However, neither the objective func-
tion nor the constraints are convex with respect to W , and it is
hard to solve this problem exactly. Hence, we will relax (15)
into a problem that is convex, and also propose a more efficient
coordinate descent type algorithm.

A. Mask Optimization by Convex Relaxation

To find a convex relaxation of (15), both the cost function and
the two constraints in (15) have to be relaxed. We will discuss
each of these separately.

1) In the typical sensor selection problem, A(W)HA(W) is
an affine function of the selection variables W , and the
resulting cost function is convex since the composition of
a convex function with an affine function is convex. In our
case, however, the input matrix is not affine with respect to
the selection variables, and hence our objective function
is not necessarily convex. To see that it is indeed not, note
that, using (9) and (11), A(W)HA(W) is equal to:

A(W)HA(W) =

Q−1∑
q=0

RS−1∑
t=0

RS−1∑
u=0

wq[t]wq[u]A[t]HA[u],

(16)

which is quadratic w.r.t. W . As a simple counter-example
of the convexity of (13), consider the simple case where
Q = 1, so that A(W) only depends on a single selection
vector w, and consider that each A[t] ∈ C1×1. Then

C−1
e = σ−2

x + σ−2
n A(w)HA(w) (17)

= σ−2
x + σ−2

n wTBw, (18)

where the coefficients ofB ∈ SRS×RS
+ consist of the1× 1

matrices {A[t]HA[u]}RS−1
t,u=0 (using (16)). Consequently,

trace(Ce) = 1/(σ−2
x + σ−2

n wTBw), and it is straightfor-
ward to see that this function is not convex with respect
to w.

To circumvent this problem, we absorb the quadratic
terms wq[t]wq[u] into a single variable Wq[t, u]:

A(W)HA(W) =

Q−1∑
q=0

RS−1∑
t=0

RS−1∑
u=0

Wq[t, u]A[t]HA[u].

(19)

Whereas the cost-function (13) was quadratic in the el-
ements of wq , it is linear with respect to the variables
Wq[t, u]. Expression (16) is only equivalent to (19) if the
variables Wq[t, u] have a certain structure. Specifically,
if we store the variables Wq[t, u] in a matrix Wq such
that [Wq]t,u = Wq[t, u], then equivalence between (16)
and (19) only holds if Wq = wqw

T
q . In other words,

Wq has to be a matrix with rank(Wq) = 1. Although
the cost-function is now convex with respect to Wq ,
the additionally required rank constraint is not. Keeping
in mind that if wq ∈ {0, 1}RS , then diag(wqw

T
q ) = wq ,

a common technique [41], [42] to relax the constraint
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Wq −wqw
T
q = 0 is:

Wq −wqw
T
q � 0, (20)

diag(Wq) = wq (21)

for all q ∈ Q.
2) For the second relaxation, we relax the l0 quasi-norm to

the �1 norm:

‖wq,s‖1 = 1. (22)

Since each Wq � 0, the diagonals of each Wq are
non-negative, and thus we can write this constraint as
wT

q,s1=1.
3) Finally, we have to relax the binary constraint wq ∈

{0, 1}RS . We relax it to the box constraint

wq ∈ [0, 1]RS . (23)

This constraint is already implied by the previous two
relaxations. Since each Wq � 0, the diagonals of each
Wq are non-negative. Hence the entries of wq are all
greater or equal to zero. Together with this observation,
due to the constraint wT

q,s1 = 1, the diagonal elements
of each Wq cannot be larger than one. Consequently, the
constraint wq ∈ [0, 1]RS does not have to be explicitly
enforced in our optimization routine.

So far we have not taken into account the full structure that
a rank-1 matrix with entries in {0, 1} and ‖wq,s‖0 = 1 has. We
will thus further exploit the following two properties that Wq

should exhibit.
1) First, if wq is a solution to the original problem (15), the

matrix

Wq = wqw
T
q

=

⎡
⎢⎢⎢⎢⎣

Wq|0,0 Wq|0,1 . . . Wq|0,S−1

Wq|1,0 Wq|1,1 . . . Wq|1,S−1

...
...

. . .
...

Wq|S−1,0 Wq|S−1,1 . . . Wq|S−1,S−1

⎤
⎥⎥⎥⎥⎦

(24)

will have S block-matrices of size R×R on its diagonal
that are themselves diagonal. In other words, each matrix
Wq|s,s is in the set D of R×R diagonal matrices.

2) If ‖wq,s‖0 = 1 for all s and q, then there is only one non-
zero entry in each submatrix of (24), and that entry should
be equal to one. This implies

1TWq|s,s′1 = 1 (25)

for all s, s′ ∈ {0, 1, . . . , S − 1}. Seen from a different
point of view, we impose an �1 sparsity constraint on all
the R×R block-matrices Wq|s,s′ instead of just on all
vectors wq,s. In fact, the sparsity constraint 1Twq,s = 1
is implied by the two constraints we just described, and
hence can be omitted now.

3) It is straightforward to see that each entry of W should be
non-negative, so we add the constraint

W ≥ 0. (26)

We will use the setW′ = {W0,W1, . . . ,WQ−1} to summa-
rize the relaxed problem as follows:

min
W′

f(W′)

s.t. Wq − diag(Wq)diag(Wq)
T � 0

Wq|s,s ∈ D
1TWq|s,s′1 = 1

W ≥ 0 (27)

for all s, s′ ∈ S and q ∈ Q. Note that, as discussed before, the
box and sparsity constraints are implicitly included. Since all
the constraints on wq are now enforced through constraints on
the matrices Wq , we replaced the constraints (20) and (21) by
the first constraint in (27).

B. Random Rounding Scheme

The solution to the convex program above is not guaranteed
to have rank 1 with entries according to the original discrete
problem (15). One could take the leading eigenvector of Ŵq as
the closest solution rank-1 estimate, however it will not neces-
sarily obey the constraints in the original problem formulation
(15), and one would still have to round the vector to the discrete
solution set in (15). Instead, we will interpretŴq as a covariance
matrix to generate multiple candidate solutions, and project
those solutions to the original constraint set. This approach is
favored in literature since it has proven itself in many studies,
and even has theoretical performance guarantees for a number
of discrete optimization problems [43]–[45]. Although we are
currently unable to provide a lower bound on the optimality of
this approach, we have observed that this approach typically
outperforms solutions obtained from the leading eigenvector.
Note that, if Ŵq turns out to be rank-1, the random vectors
generated using Ŵq as covariance matrix will anyway be equal
to the leading eigenvector of Ŵq , up to a scalar value.

To describe this in more detail, we use Ŵq as a covariance
matrix, and generate many random w̃q ∈ RRS from a Gaussian
distribution:

w̃q ∼ N (0,Ŵq), (28)

and round each w̃q by selecting the mask thickness level per
channel with the highest absolute value:

[ŵq,s]r =

{
1, if r = argmaxv | [w̃q,s]v |
0, otherwise

, (29)

assuming each ŵq,s has a unique maximum. If there are multiple
maxima, we randomly pick one of them.

The intuition behind the random rounding method comes from
the following observation (adapting the interpretation in [43] for
the problem discussed here). Consider again the example in (17),
where Q = 1, and each A[t] ∈ C1×1. The original optimization
problem cost function can then be rewritten as

min
w

(σ−2
x + σ−2

n wTBw)−1.
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One could instead replace w by a random variable ν which has
covariance W, ν ∼ N (0,W), and try to minimize:

min
W∈S+

Eν

(
(σ−2

x + σ−2
n νTBν)−1

)
. (30)

That is, find a covariance matrix W for the random variable
ν, such that the expected value of the cost function above is
minimized. Since all terms are now scalar values, this can be
rewritten as (maximizing the inverse of the above equation, using
the properties of the trace, and using EννT = W):

max
W∈S+

(σ−2
x + σ−2

n Eν

(
νTBν

)
)

= max
W∈S+

(σ−2
x + σ−2

n Eν

(
trace(νTBν)

)
)

= max
W∈S+

(σ−2
x + σ−2

n Eν

(
trace(ννTB)

)
)

= max
W∈S+

(σ−2
x + σ−2

n trace(WB)). (31)

This is similar in form to a lifted problem, since we have replaced
ννT by a matrix W. This result suggests that random solutions
generated using W will give good solutions on average, when
W is a higher-dimensional, lifted, version of w.

C. Greedy Mask Optimization

In this subsection we further describe a much more efficient
greedy selection algorithm, since the convex program (27) scales
polynomially with increasing problem size (more channels,
thickness levels, etc.). It is based on the observation that mini-
mizing over only a single channel has a low computational cost,
since we would only have to solve the problem

min
wq,s

f(W), s.t. ‖wq,s‖0 = 1, (32)

which is easily solved by trying all R possible solutions for the
current channel s and measurement q. The algorithm operates
by iterating through all channels, selecting the thickness level
that most decreases the adopted cost function per channel. This
is repeated, until either a local minimum or a maximum number
of iterations Kmax is reached. The algorithm is described in
Algorithm1. In Algorithm1, we use f(wq,s) to indicate that f
is evaluated with wq,s as a variable, but keeping all other wq,′s′

fixed.
Referring back to the description of the approximate mask

model, we point out that one could also directly define each
{As}s∈S as a function of the mask thickness parameter for each
channel. We were able to cast it as a discrete selection problem
by sampling the continuous variable for the mask thickness, say
z ∈ RS , inside the valid mask thickness range. Keeping this in
mind, Algorithm1 acts as a coordinate descent algorithm on z,
by optimizing only one element (channel) in z at a time. Instead
of doing a line search over the allowed mask thickness range, it
uses a one-dimensional grid search over R pre-defined values.
This line search is relatively cheap, since the maximum mask
thickness is typically confined to a small number. Using a grid
search has major advantages, since the proposed algorithm now
easily avoids local minima in the current [z]s it is optimizing
(if the grid on [z]s is sufficiently dense). In this way, many

Algorithm 1: Greedy Optimization Scheme.

1: Input: W = {wq}Q−1
q=0 , Imax

2: Output: Ŵ = {ŵq}Q−1
q=0

3: ŵq = wq , q = 0, 1, . . . , Q− 1
4: i = 0
5: do
6: fmin = f(Ŵ)
7: for q = 0, 1, . . . , Q− 1 do
8: for s = 0, 1, . . . , S − 1 do
9: ŵq,s=argminwq,s

f(wq,s), s.t. ‖wq,s‖0=1
10: i = i+ 1
11: end for
12: end for
13: while f(Ŵ) < fmin, and i ≤ Imax

local minima are easily avoided, nor does the algorithm need to
compute the cost-function gradient or higher order derivatives.

The greedy routine can either be used to refine the rounded
solution (29) or it can be initiated using an appropriate start-
ing mask. In the first case, the convex solution forms a good
starting point, and Algorithm1 will improve it slightly using
few iterations. In the latter case, running the convex program
(27) is avoided at the risk of arriving at a local minimum. In
the following numerical experiments, we will use a flat starting
mask as an initial guess for the greedy algorithm.

Finally, we point out that this algorithm is not dependent on
pre-computing allA[t], and can be used for configurations where
the transmitted pulse passes through the mask both on transmit
and receive, using the same transducer for both events. This
is due to the fact that A can be re-computed for the current
selection of mask-channels per inner iteration of Algorithm 1.
For the sake of comparison to the convex program, we have not
further investigated this situation.

IV. SIMULATION RESULTS

To evaluate the proposed mask design algorithms, we consider
various imaging scenarios. We first consider two scenarios with
a small problem size, where we show that our methods perform
well, compared to the true optimum, which we find using an
exhaustive search. After these example problems, we consider
some larger problems where we design masks for more realistic
imaging scenarios. In all simulations, except the first one, we use
a Gaussian-modulated excitation pulse e(t) = w(t) cos(2πf0t),
with f0 = 4 MHz. The function w(t) = exp (−(t/fs)

2/(2σ2
w))

is a smooth Gaussian window, with fs the sampling frequency,
and σw = 3.74. This pulse is shown in Fig. 4. For the greedy al-
gorithm, we set Imax = 5QS in all simulations. For the medium
we use a speed of sound of c0 = 1491 m/s, and we assume
that the plastic mask has a speed of sound c1 = 2730 m/s.
We consider the following simulation scenarios throughout this
section:

Scenario 1: Rotation of a masked circular transducer in the
(x, y) plane.
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Fig. 4. Frequency spectrum and time-domain signal of the transmit pulse used
in our simulated experiments.

Scenario 2: Linear translation of a masked linear transducer
in the x direction, moving in the x dimension.

Scenario 3: Using a different mask per measurement, with
fixed transducer position.

A. Small Example 1

In this example (using scenario 2), we choose all parameters
such that we can find the true optimal mask of (15) by an
exhaustive search within reasonable time. Although the resulting
problem parameters do not correspond to a physically meaning-
ful scenario (due to a very small ROI, and using only a few
temporal frequencies), it is the only way to compare how our
algorithms perform compared to the true optimum (and hence
mostly tests the mathematical validity of our methods). To do
this, we investigate a 2D problem, meaning that all pixel and
channel positions are within the (x, z) plane with y = 0. We use
a Cartesian pixel grid of 8 × 2 (M = 16), with pixel coordinates
equidistantly placed between −2 and 2 mm in the x-dimension,
and at 0.5 and 1.0 cm in the z-dimension, with y = 0 for
all pixel positions. The non-zero measurement frequencies are
equidistantly spaced between 5 and 6 MHz (N = 11), which
corresponds to taking 120 samples in the time-domain for a
sampling frequency of 12 MHz. The mask channels (S = 8, R =
7) are equidistantly spaced between −45 and. 45 mm in the
x-dimension, at y = 0 and z = 0, with a maximum mask thick-
ness of 0.39 mm. This corresponds to discretization steps 2.8
times smaller than the centre wavelength in water (.37 mm) in
thex-dimension (0.13 mm channel width), and 5.7 times smaller
in the mask thickness dimension (0.065 mm per channel height
segment). The noise variance was chosen such that the output
SNR

SNR = trace{E{yyH}}/trace{E{nnH}} (33)

= trace{σ2
xAAH}/trace{σ2

nI} (34)

of a random mask is approximately2 0 dB. To add more structure
to the problem, we add more measurements using the same mask

2Note that, even if σ2
x is known, we can only determine ‖y‖22 once the mask

is known, since each mask can have a different measurement energy for the
same image x. Hence, we cannot choose σ2

n to give an exact output SNR. In
this example, the exact output SNR of the optimized mask is 2.8 dB.

Fig. 5. Left: Optimal solutionŴ to problem (27) for the simulation described
in Section IV-A. Right: Sorted eigenvalue spectrum of the matrix to the left.

Fig. 6. MSE distribution for the problem described in Section IV-A. We show
the MSE distribution for a set of 10 000 randomly generated masks, and 10 000
masks generated using the proposed random rounding procedure, the MSEs of
the proposed methods, the MSE of the best mask, as well as a flat mask.

(Q = 1,K = M = 16), by spatially shifting the masked trans-
ducer to the same x-coordinates as the pixels in the x-dimension
(scenario 2).

In Fig. 5, the solution Ŵ to the convex problem (27) is
visualized. The constraints are able to obtain a matrix that is
already quite sparse, and of low rank. Fig. 6 shows the MSE (13)
distribution for a set of 10,000 randomly generated sets of masks,
10,000 masks generated using random rounding based on the
solution of the convex problem (27), the MSEs of the proposed
methods, the MSE of the true optimum, as well as a the MSE of a
completely flat mask. The latter can still reconstruct images since
multiple spatial measurements are obtained by translation of the
transducer. The random rounding procedure generates solutions
with a higher MSE concentration close to the true optimum than
the distribution of completely random masks, and the majority of
these masks also outperform the flat mask scenario. The greedy
algorithm is able to find the true optimum, and provides a mask
that is slightly better than the mask obtained using the convex
program (27), while being much more computationally efficient.

For a complete performance description, we take the opti-
mized and random masks from Fig. 6, and compute their MSE
if the SNR changes, but the same mask is used. The resulting
MSEs are shown in Fig. 7 (Fig. 6 shows the MSE distribution for
one particular SNR in Fig. 7). The vertical bars in Fig. 7 indicate
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Fig. 7. Performance of various mask design strategies in terms of MSE for
various output SNR scenarios, for the problem described in Section IV-A. Each
curve shows the performance of a single mask that was optimized for an SNR of
0 dB. The crosses represent the mean MSE of 1 000 randomly designed masks,
with the vertical bars showing the standard deviation. The MSE of the true
optimal mask per SNR is shown, as well as the MSE obtained by using a greedy
algorithm for each SNR.

Fig. 8. PSF for a pixel at x = −1.4 mm, z = 5 mm for the scenario of
Section IV-A. The subfigures show slices of the PSF at different depths.

the mean MSE plus or minus the MSE standard deviation for
1,000 randomly generated masks. Even though all methods are
optimized for a particular SNR, Fig. 7 shows that all methods
are able to generate a mask that performs well over the entire
SNR range, although most of the MSE can be gained in the
−15 to 10 dB range. As a benchmark, we also show the MSE
of the optimal mask per SNR, as well as the MSE of the mask
obtained using the greedy algorithm by optimizing per SNR (the
best mask can be different for each SNR). In this example, we
can see that all proposed masks, even if they are optimized for a
single SNR, are able to perform close to optimal over the entire
SNR range, demonstrating the robustness of the optimization
method to incorrect values of the noise and image covariance
matrices.

Finally, we show the PSF in dB (computed as 10 log10) for
the second pixel (Fig. 8). We define the PSF for pixel n as the
image when the measurement is equal to: y = an(W), the n-th
column ofA(W). For comparison, we took the PSF of a random

Fig. 9. MSE distribution for the problem of Section IV-B, for a set of 1 000
randomly generated masks, as well as 1 000 masks generated using the proposed
random rounding procedure, and the MSEs of the proposed methods.

mask with an expected MSE of 0.106, close to the average
performance of random masks according to the distribution in
Fig. 6. The PSFs of the different masks re-affirm the performance
as predicted by Fig. 6.

B. Small Example 2

In the previous example, we constrained the problem param-
eters to be able to use an exhaustive search to find the global
optimum. In this second small example, we make the problem
slightly larger, by using more channels and multiple masks, and
using scenario 3 as described in Section II. As a result, the
global optimum cannot be found within reasonable time, and
is not shown in the results of this experiment. Furthermore, the
distribution of random masks will be further away from the true
optimum, unlike in Fig. 6. Using random rounding, however, we
can still do well.

Instead of shifting the transducer, it remains in the same
position, but uses Q = 12 different masks to obtain different
measurements. We optimize the mask for 5 pixels on a line at
z = 5 mm, located between -1 and 1 mm. The mask channels
are located between -.45 and. 45 mm (S = 8), with a maximum
mask thickness of. 26 mm (R = 5). The measurement frequen-
cies are equidistantly spaced between 5 and 6 MHz (N = 101).

We generate 1,000 random masks and 1,000 randomly
rounded masks, as well as a greedily generated mask. The MSE
distributions are shown in Fig. 9. As mentioned before, the
random mask design strategy does not work well, and covers
a higher range of MSEs. In Fig. 10 the PSF is shown for
the optimized image domain. As predicted by Fig. 9, some
performance gain is possible, although not as great as in the
previous simulation in Section IV-A.

C. Mask Design for a Single Rotating Mask

In this subsection we optimize a single rotating mask
(scenario 1). We assume that all the channels are located within
a 5 mm disc. The only difference between the measurements is a
rotation of the sensor and the mask relative to the pixels. We only
consider the greedy approach so that we can use realistic problem
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Fig. 10. PSF for the simulations of Section IV-B for a pixel at x = 0 mm,
z = 5 mm.

Fig. 11. MSE performance for the scenario of Section IV-C, for various SNR
scenarios, optimizing for a single rotating mask. The crosses represent the mean
MSE of 100 randomly designed masks, with the vertical bars showing the
standard deviation. The IASA method is discussed in the Discussion section
of this article.

sizes with acceptable computation times. We discretize the mask
into 1245 square channels of equal size (0.13 mm), equivalent
to approximately 2.9 channels per wavelength. Each channel
was divided into 11 uniformly distributed mask thickness levels
(0.13 mm per mask thickness segment), with a maximum mask
thickness of 0.65 mm, equivalent to approximately 5.7 channels
per wavelength. The 2D ROI of 5 by 5 mm is discretized into
20 by 20 pixels at a depth of 6 mm. The transducer is rotated
40 times, evenly divided over 360 degrees (K = 40). Note that,
although there are multiple measurements, we optimize for a
single mask (Q = 1). During optimization, σ2

n was chosen such
that the expected SNR of a random mask is approximately 10 dB.
We use the transmit pulse shown in Fig. 4, sampling it in the
frequency domain using Δf = 40 kHz, or N = 101.

The imaging performance for various SNRs is shown in
Fig. 11, although the mask was optimized for a single SNR.
Again, it is clear that the optimized mask is able to consistently
outperform all random masks. Moreover, the MSE distribution
of the random masks is relatively narrow, meaning that it would
take an enormous amount of tries to randomly generate a mask
that performs just as well as our proposed techniques. Further-
more, the expected SNR (33) for the optimal mask is equal to

Fig. 12. Optimized and random mask used for the results in Fig. 13, using a
single sensor with a rotating mask, for the simulation scenario of Section IV-C.
The mask thickness values are displayed as a fraction of the wavelength inside
the mask.

Fig. 13. Reconstruction of a letter R image for a single sensor with a rotating
mask, using 40 rotations, for the simulation of scenario Section IV-C. The top
figures show the true image and its reconstructions using both the optimized
mask and a random mask. The bottom figures show the error maps for each
reconstruction result.

15.5 dB, whereas the SNR averaged over 100 random masks, is
equal to 9.0 dB, a gain of 6.5 dB for the optimized setup.

To illustrate the imaging performance, we take a letter-shaped
test image (zero-mean and unit-energy, averaged over all pixels)
to generate a noisy test measurement y. Fig. 12 shows the
greedily optimized mask and a particular randomly generated
mask. Fig. 13 shows some example estimated images using the
masks in Fig. 12, choosing σ2

n such that the optimized mask has
an SNR of 20 dB for the test phantom. The random mask, in
contrast, causes measurements to have an SNR of 13.1 dB using
the same noise variance and test phantom. We see from Fig. 13
that the optimized mask is better able to correctly estimate the
phantom.

The aforesaid SNR gain is caused by a focusing effect that
becomes apparent if we visualize the pulse-echo amplitude per
pixel for a large region and a single frequency, shown in Fig. 14.
The mask acts as a spatial filter that boosts energy of echoes
originating from the ROI, whereas a random mask does not have
this capability, resulting in a lower SNR.

In addition to an increased SNR, the optimized mask also
causes lower similarity between pulse-echo signals of different
pixels. We visualize this in Fig. 15 by plotting the normalized
PSF (computed as AHai, with each column of A normalized
so that the Euclidean norm is one) for various points in space.
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Fig. 14. Normalized amplitude per pixel at f = 4 MHz for an optimized
rotating mask (Section IV-C) in Fig. 12, and a random mask. Note that the
visualized energy extends beyond the imaging ROI, which is only 5 by 5 mm.

Fig. 15. Absolute PSFs for various points in space, indicated by the red circle.
Top: using the greedily optimized mask. Bottom: Using a randomly selected
mask. The columns in A are energy-normalized before computing the PSFs.
Simulation scenario of Section IV-C.

The optimized mask strongly decorrelates between pulse-echo
signals from different pixels, whereas the random mask always
has relatively high correlation across almost the entire ROI. The
PSF is typically best at the edges, where the difference between
different measurements obtained by rotation is the largest.

These results show that the proposed design algorithm makes
columns of A(W) more orthogonal. This implies that other,
possibly non-linear imaging methods will also benefit from
the designed mask, since the increased orthogonality generally
reduces ambiguity about x, making the estimation of x easier
for any imaging method.

D. Mask Design for Multiple Masks

For our final simulation example, we consider an experiment
where the transducer is not rotated or translated in any way, but
instead the mask is changed between pulse-echo measurements
(scenario 3). We use the greedy method to find Q = 40 masks,
and compare the performance to 40 randomly generated masks.
All other parameters are the same as in the previous simulation
for a single rotating mask (Section IV-C). We choose σn such
that the SNR of a random mask is approximately 10 dB.

Using the greedy approach with a flat starting mask, we
obtain the masks shown in Fig. 16. In Fig. 18 we show the
corresponding SNR curves. The expected SNR of the optimized
mask is 13.7 dB, whereas the random mask SNR is 9.8 dB,
averaged over 100 random masks, an SNR gain of nearly 4 dB.

Fig. 17 shows an example reconstruction for an SNR of 20 dB.
We can see that using the optimized masks, the true image is

Fig. 16. A subset of the optimized masks for the problem of Section IV-D
with Q = 40, using Algorithm1. The mask thickness values are displayed as a
fraction of the wavelength inside the mask. The algorithm optimizes one mask
at a time. The first mask is shown in the top left corner, while the third mask is
shown to the right of the first mask, etc. (every second mask is plotted).

better reconstructed compared to a set of random masks. From
Fig. 18 we observe an MSE improvement for all SNRs. Since
the random masks show a very narrow MSE distribution, the
optimized mask outperforms nearly all random masks in terms
of the MSE (13). Although the MSE gain may not seem like
much, the example reconstruction in Fig. 17 visualizes that a
small MSE difference can have a non-negligible impact on the
visual reconstruction quality. We observe that the multiple mask
setup exhibits better imaging performance than a rotating mask
with the same amount of measurement data. Finally, we remark
that the imaging performance for this setup is better than the
rotating mask configuration, since it does not restrict all masks
to be related by rotation (although the algorithm is free to output
such a set of masks).

E. Mask Design for a Rotating Mask With Pixels on a Circle

In this subsection we analyse a particular example that admits
an intuitive physical interpretation of the results. We use a single
mask (Q = 1), and obtain new measurements by rotating the
mask (K = 30). To make the results easily interpretable, we
only consider pixels uniformly spaced on a circle with a radius of
1.8 mm (M = K = 30), where the center of the circle coincides
with the center of rotation of the masked transducer.
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Fig. 17. Reconstruction of a letter R image combining the measured data of
40 masks obtained using the greedy optimization scheme, for an output SNR
of 20 dB, for the simulation scenario of Section IV-D. The top figures show the
true image and its reconstructions using both the optimized mask and a random
mask. The bottom figures show the error maps for each reconstruction result.

Fig. 18. MSE performance distribution for various SNR scenarios, optimizing
for Q = 40 masks. The optimized mask was designed assuming an SNR of
10 dB, but performs relatively well across the entire SNR range. The crosses
represent the mean MSE of 100 randomly designed masks, with the vertical bars
showing the standard deviation. Simulation scenario of Section IV-D.

Consider the measurement matrix Aωk
, containing only the

measurements for frequency ωk. Assuming the angle of rotation
is equivalent to the angle between pixels, each row or column
is a circular shift of the previous row. As a result, each Aωk

is a circulant matrix, and the total measurement matrix is a
concatenation of circulant matrices:

A =
[
AT

ω0
AT

ω1
. . . AT

ωK−1

]T
. (35)

Consequently, the singular values s ∈ RM
+ of the SVD of A

can be expressed as the square root of the element-wise sum
of the squared magnitude of the eigenvalues over all circulant
submatrices:

s =

√∑K−1

k=0
|sωk

|2, (36)

Fig. 19. Spatial frequency and singular value spectra for the optimized mask
and a particular random mask with pixels on a circle (Section IV-E). The color-
coded curves show the spatial frequency spectrum of the complex pressure field
of each temporal pulse frequency ωk (starting with low temporal frequencies in
red, ending with high frequencies in blue). The black curve is the compounded
spatial frequency spectrum of all temporal frequencies, as computed per (37),
which is equivalent to the singular values ofA. The red curve shows the singular
values of A, sorted by magnitude.

where sωk
is the vector of eigenvalues of submatrix Aωk

. Since
each submatrix is circulant, its eigenvalues are equivalent to the
DFT spectrum of its first column. Therefore, we can replace
each sk by the DFT of the first column of Aωk

:

s =

√∑K−1

k=0
|âωk

|2, (37)

where âωk
is such a DFT. Note that in (36) and (37), the square

root and magnitude operators are assumed to be taken element
wise.

This yields an intuitive way of comparing two masks. Due
to the reciprocity principle, the columns/rows of Aωk

can be
interpreted in two ways. First, they can be viewed as the trans-
ducer output signal for each pixel, if only that single pixel is
transmitting a wavefield p(ω). Alternatively, they can be seen
as the complex pressure field measured at the pixel locations if
the transducer is transmitting the pulse p(ω) through the mask
towards the pixel locations. Since the singular values ofA can be
expressed as a function of the Fourier transformed columns of the
sub-matrices Aωk

, the mask with the best (i.e., slowest decrease
of the) singular value spectrum is the mask that generates a
pressure field that has high spatial bandwidth, i.e., has a balanced
spectrum with its energy spread across all the spatial frequencies
as evenly as possible and has a high total energy.

For this particular case, the mask can also be analyzed from
another point of view: the measured signal (per temporal fre-
quency) equals a circular convolution of the image map, and a
good mask results in a filter that preserves as much frequency
content of the image as possible.

We illustrate the preceding with a simulated example. In
addition to the parameters mentioned, we use the same transmit
pulse as in Fig. 4 (N = 101 or Δf = 40 kHz). All channels
(S = 1245) are located on a circle of 5 mm radius. We define
R = 6 mask thickness levels up to a thickness of 0.65 mm, and
M = 30 pixels on a ring of 5 mm diameter.

In Fig. 19, we show the spatial frequency spectra of the
columns of allAωk

, ωk ∈ Ω, in addition to s as computed in (37),
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Fig. 20. Optimized masks for various depths. For simplicity, pixels are posi-
tioned on a ring, and the excitation signal is a single frequency.

and the singular values s sorted according to their magnitude. We
do this for the greedily optimized mask as well as for a particular
random mask. From Fig. 19 we observe that the optimization
algorithm tries to find a mask such that the total spatial frequency
bandwidth over the ring of pixels is increased. As a result, the
singular values of the optimized matrix decrease more slowly,
and are better conditioned. This is achieved due to each temporal
frequency generating energy in a specific spatial frequency.
For example, in the left panel of Fig. 19, the blue temporal
frequencies generate high spatial frequencies, whereas temporal
frequencies in the red spectrum focus energy in the lower spatial
frequencies. The random mask is unable to accomplish the same
result, and depressions in the blue curve are not compensated
by any other temporal frequencies. We further observe that the
total energy is much higher for the optimized mask, resulting in
an increased SNR.

V. DISCUSSION

In Figs. 14 and 19 we showed that an optimized mask (for
a rotating measurement configuration) acts as a spatial filter,
enhancing echoes coming from within the ROI. In the angular
frequency domain this means that the mask should act as an
angular filter with a passband for directions within the ROI.
Hence, as a rule of thumb, the structure within the mask should
contain spatial features within the same angular frequency band.
For example, if pixels are located in the far-field at an incident
angle of 0 degrees, the mask can coherently sum signals from
this ROI using a flat mask. On the other hand, if pixels are located
at an incident angle of 90 degrees, a sinusoidal profile with the
same period as the pulse wavelength will coherently sum echoes
from that direction, and average out echoes originating from 0
degrees. This is more complicated in the near field, but the same
principle holds. To illustrate this point, we show several masks
optimized for ROIs parallel to the transducer (for simplicity, we
only define pixels on a circle with the same (x, y)-coordinates
as the edge of the mask) at different depths (Fig. 20). As the

ROI is located further away, its angular range decreases, and
consequently, spatial features in the mask profile contain a lower
range of spatial frequencies.

Beside angular filtering, the mask should decorrelate echoes
from different pixels. Optimized masks thus don’t consist of
pure harmonics, but of more complex patterns, in order to bring
about this decorrelation. As discussed in Section IV-E, for a ring
of pixels this means that the optimized mask should cause high
variation of the wavefield w.r.t. this ring. Generalizing this to a
fully sampled ROI by adding more rings is more complicated,
but one could imagine that different wavelength intervals in
the transmitted pulse can focus on different rings. One should,
roughly speaking, try to design a mask that if used for transmit,
causes a high spatial variation in the transmitted wavefield.
Hence, an alternative design methodology would consist of first
defining a wavefield at the ROI with high spatial bandwidth,
and propagate it back in time towards the transducer to obtain a
phase mask (similar to [36], [37]). Needless to say, this should be
co-designed with the desired angular filtering discussed before,
and algorithms presented in this paper try to find a balance
between these two criteria.

Still, we have explored this alternative design strategy as
suggested in the above study. First, we designed a pressure field
for a single frequency (f = 4 MHz at z = 6 mm), with high
spatial bandwidth, and which has most energy focused inside the
pixel ROI within this z-plane. We then use the Iterative Angular
Spectrum Approach (IASA) to approximate a phase mask that
generates this pressure plane, following the method proposed
in [36]. This method starts with a flat mask, finds the associated
pressure field in the image plane, and compares it to the desired
pressure field. It then changes the complex amplitudes in the
obtained forward field to the desired amplitudes, but keeping the
phases unchanged. The field is then propagated back in time to
the transducer plane, where the mask profile is adapted to cause
the required phase changes to generate the back-propagated
pressure field. This is repeated until the algorithm converges
to a phase mask. For further details on this method, we refer to
the original paper [36]. As a desired pressure field we generated
a white complex Gaussian field, and applied a Gaussian window
in both the space and k-space domain to obtain a focused
bandlimited target field for the image plane. The exact details
for the target field are shown in Appendix A.

The general performance of the resulting mask for Gaussian
images is included in Fig. 11. We also visualize the reconstructed
image for the resulting mask in Fig. 21, where it is compared
to the mask obtained with the proposed greedy method. The
IASA-based design is superior to random mask design, but is
not able to surpass the method proposed in this work, although
the difference in reconstruction quality for the non-Gaussian
(sparse) phantom in Fig. 21 is relatively small (the reconstruction
MSEs for this particular phantom are 0.65 and 0.70 for the
greedy and IASA-based method, respectively). Of course, the
crucial design step in this strategy amounts to choosing a proper
target field for the phase mask to produce, and in this experiment
we have tried to find a good target field by trial-and-error.
However, it is not clear what the ‘best’ forward field would
be. Although initial investigation agrees with our suggestions
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Fig. 21. Bottom left: Coding mask obtained using the IASA-method [36], by
finding a phase mask that gives a focused pressure field in the image ROI with
high spatial bandwidth. Top/bottom: Image reconstruction comparison between
the IASA-based mask design method and the proposed method in this work.

in this paragraph, (e.g., a focused forward field seemed to give
better results than an unfocused beam), broad-bandedness of
the spatial target distribution does not seem to be sufficient
to acquire a good mask with this method. Hence, this design
strategy can probably be significantly improved by choosing a
more intelligent pressure distribution than the one used in this
section.

A. Mask Design for Multiple Sensors

The optimization framework discussed in this work could also
be extended to include multiple sensors, each with possibly
their own mask. In that case, one would have the following
measurement equation for L sensors, combining equations (10)
and (11):

y(W) =

⎡
⎢⎢⎢⎣

y0(w0)
y1(w1)

...
yL−1(wL−1)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

A0(w0)
A1(w1)

...
AL−1(wL−1)

⎤
⎥⎥⎥⎦x = A(W)x,

(38)

where each Al, (l = 0, 1, . . . , L) represents the measurement
equations for sensor l. The equations are still linear with respect
to W , and the same proposed techniques can be applied.

VI. CONCLUSION

Using an approximate linear signal model, we formulated
mask optimization as an additive sensor selection problem by
discretizing each mask channel in the thickness dimension, and
optimizing for the imaging MSE, which is a function of the
measurement matrix A. Each candidate sensor corresponds to
a full measurement matrix, and the final measurement model is
the summation of the individual sensors’ measurement matrices.
We have shown that this is not a conventional sensor selection
problem, and proposed to solve this problem by transforming
the original variables into a larger amount of ‘lifted’ variables.
By further relaxing the problem, and by exploiting the structure

Fig. 22. Top: Target pressure field for f = 4 MHz in the image plane. Bottom:
The field in the image plane produced with the mask obtained through the IASA
method. All figures show the magnitude of the complex pressure fields. The red
box indicates the pixel ROI used for optimization in Section IV-C.

among the lifted optimization variables, a convex problem is
formulated. To get a solution that is feasible in the original prob-
lem formulation, a random rounding technique was proposed.
In addition to the convex approach, we also proposed a greedy
algorithm to solve the same problem.

Although the proposed algorithms are not guaranteed to pro-
vide the globally optimal mask, a small numerical experiment
showed that our mask design algorithms come close to the
true optimum, and all experiments showed that they outperform
randomly generated masks in terms of imaging MSE, even for
images with non-white and non-Gaussian statistics. The distri-
bution of masks using the combination of convex optimization
and random rounding has a lower MSE range than the distri-
bution of completely random masks. Furthermore, the proposed
greedy coordinate-descent algorithm obtained good results close
to the global optimum. Our experiments demonstrate that a
good mask is able to filter in the angular domain, enhancing
echoes coming from within the ROI, while strongly decreasing
correlation between the pulse-echo signals of pixels within the
ROI.

APPENDIX A
IASA-BASED MASK DESIGN

To obtain a mask using the IASA method, one has to first
choose a target pressure field in the image plane that the phase
mask is supposed to produce. We designed a focused wave-
field with maximum spatial bandwidth, by first generating a
completely complex Gaussian random pressure field. Next, we
filtered this field by applying a circular, symmetric Gaussian
window in the 2D DFT of this field. The radius of this window
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was chosen approximately equal to the wavenumber in water,
choosing f = 4 MHz, the central frequency of the transmit
pulse. After transforming back to the spatial domain, we again
applied a circular Gaussian window, so that most energy is
focused in the pixel ROI. We show the resulting pressure field
in Fig. 22. The pressure field produced by the resulting mask
is limited in spatial bandwidth due to the limited size of the
aperture.
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