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ABSTRACT
The development of compressed sensing (CS) techniques for
magnetic resonance imaging (MRI) is enabling a speedup of
MRI scanning. To increase the incoherence in the sampling,
a random selection of points on the k-space is deployed and a
continuous trajectory is obtained by solving a traveling sales-
man problem (TSP) through these points. A feasible trajec-
tory satisfying the gradient constraints is then obtained by pa-
rameterizing it using state-of-the-art methods. In this paper, a
constrained convex optimization based method to obtain fea-
sible trajectories is proposed. The method is motivated by
the fact that the readout time is proportional to the number
of sample points and includes the lengths of the segments of
the trajectory in the cost function to obtain variable length tra-
jectories. The proposed method provides a reduction in read-
out time by more than 50% for random-like trajectories with
an improvement of about 1.5 dB in peak signal-to-noise ra-
tio (PSNR) and 0.0762 in structural similarity (SSIM) index
on average for a realistic brain phantom MRI image adopting
single-shot trajectories.

Index Terms— MRI, k-space trajectories, compressed
sensing

1. INTRODUCTION

Magnetic resonance imaging (MRI) is a noninvasive diagnos-
tic imaging technique [1]. It consists of a large homogeneous
magnet (B0) and three linear gradient coils along with RF
transceiver coils. The gradients are used for spatial encod-
ing and the signal maps directly to the 2D/3D frequency do-
main, commonly known as the k-space in the MRI commu-
nity. The image matrix X is reconstructed by simply taking
the 2D inverse Fourier transform (F−1) of the 2D k-space
data Y, i.e., X = F−1(Y). The traversed k-space from
a given gradient function g(t) = (gx(t), gy(t), gz(t)) is ob-
tained as k(t) = γ

∫ t

0
g(τ)dτ [1] where γ is the gyromagnetic

ratio (42.58MHz/T for Hydrogen). The gradients are limited
in magnitude (Gmax) and slew rate (Smax) due to physical
and safety constraints. Hence, while designing a k-space tra-
jectory, the gradient constraints need to be satisfied.

The time during which the k-space data is measured is
called the readout time. Reducing the MRI acquisition time
has been a subject of research in the MRI community and

methods like compressed sensing (CS) [2] and parallel imag-
ing [3, 4, 5] have been proposed. CS techniques facilitate the
recovery of highly undersampled signals if the signal is sparse
by itself or in a transform domain and the measurements are
observed incoherently. There has been a lot of research on
efficient sparsifying transform designs such as those based on
curvelets [6] and trained dictionary-based methods [7]. In
this paper, we consider the less studied problem of a feasi-
ble trajectory design under the CS framework with the aim to
reduce readout time without compromising the reconstruction
performance. Traditionally, undersampling is achieved by op-
timally choosing phase encodings for Cartesian sampling [2].
Similarly, for non-Cartesian trajectories such as spiral and ra-
dial, undersampling is achieved by using a reduced number
of interleaves [2, 8] and spokes [9], respectively. However,
these trajectories do not really conform with the traditional
CS theory and new methods are being developed to improve
the performance of MRI systems [10, 11]. To overcome the
coherence barrier in the MRI problem due to high global co-
herence between the wavelet and Fourier bases, variable den-
sity (VD) sampling is used which is motivated by the fact
that the coherence decreases with an increasing frequency or
wavelet scale [10]. Hence, the center of the k-space (low-
frequency region) is more densely sampled as compared to
the boundaries (high-frequency region).

The density ∝ 1/|k|2 is experimentally observed to per-
form better than the theoretically optimal density for Fourier
and wavelet bases [11]. However, to suit the physical con-
straints of the gradients, a smooth and continuous trajectory
is needed. A recently proposed method to find a trajec-
tory through the randomly sampled points, although uncom-
mon in practice, is by solving a traveling salesman problem
(TSP) [12]. Such TSP-based trajectories are considered in
this work as they provide the shortest path through the sam-
pled points and hence, ensure a small readout time. The
readout time, during which the k-space data is sampled, de-
pends on the (potentially varying) speed at which the curve
is traversed as well as the fixed sampling period Ts. If there
is finally a total of n sample points, the readout time is
T = nTs. Note in this context that the final sample points
are different from the original sample points obtained from
the VD sampling. If the TSP curve is traversed with a con-

1120978-1-5090-6631-5/20/$31.00 ©2020 IEEE ICASSP 2020

Authorized licensed use limited to: TU Delft Library. Downloaded on August 26,2021 at 08:55:34 UTC from IEEE Xplore.  Restrictions apply. 



stant speed, it may be infeasible to be implemented in an
MRI machine because of its sharp turns. There are various
methods in the literature that provide ways to traverse a given
infeasible trajectory [13, 14, 15]. The time-optimal control
(TOC) method [13] uses optimal control theory to provide the
fastest way to traverse the trajectory satisfying the gradient
constraints. For trajectories like the TSP trajectory with sharp
corners more time and hence more samples are needed at the
corners and this, in turn, increases the total readout time. A
projection-based method [15], in which the given trajectory
is first parameterized and then projected on the set of feasible
trajectories is used as a basis to build the proposed method.
The motivation for using the projection method is that it al-
lows the trajectory to deviate from the original trajectory,
hence smoothing out the sharp turns in a TSP trajectory. In
this paper, we propose an alternative method than [15] by
including the lengths of the segments of the trajectory in the
optimization problem. This gives the designer the flexibility
to alter the readout time by choosing a different weighting
parameter. This paper assumes that the effects of field in-
homogeneity, T2* decay and other irregularities including
gradient errors due to eddy currents are negligible and can be
ignored.

2. TRAJECTORY DESIGN

Assume the set of feasible trajectories with kx- and ky-
coordinates (sx ∈ Rm and sy ∈ Rm, respectively) stacked in
a vector s ∈ R2m = [sTx sTy ]

T is given by

Sm = {s ∈ R2m : ∥D(2)
1 s∥∞ ≤ Tsα, ∥D(2)

2 s∥∞ ≤ T 2
s β}

(1)
where α = γGmax, β = γSmax, D(2)

1 is the block diagonal
matrix constructed from the first order difference matrix D1

and D
(2)
2 is the block diagonal matrix constructed from the

second order difference matrix D2, D2 = −DT
1 D1. The fea-

sible trajectory from the projection method [15] is then given
by

sP = argmin
s∈Sm

1

2
∥s− cpar∥22 (2)

where cpar ∈ R2m is the trajectory obtained after constant
velocity parameterization (CVP) of the original trajectory
c ∈ R2n, n < m. CVP is equivalent to arc-length parame-
terization for a constant sampling frequency. CVP essentially
interpolates c by introducing new sample points such that the
consecutive points attain a velocity v proportional to a frac-
tion of the maximum velocity vmax = γGmax. This increases
the total number of sample points compared to the origi-
nal points that were used to make the TSP trajectory, which
increases the readout time. However, to ensure a satisfac-
tory reconstruction of an image one does need more sample
points than in the original TSP trajectory. Keeping this in
mind, we propose to find a feasible trajectory, hereby called
the constrained length trajectory (COLT) by first solving the
following constrained convex optimization problem

Input TSP curve

n = 4096

 = 0, t = 9.31ms

n = 2328

 = 1, t = 9.29ms

n = 2323

 = 100, t = 7.96ms

n = 1991

 = 500, t = 5.51

n = 1379

 = 1000, t = 4.51ms

n = 1129

Fig. 1: Trajectories for different values of the weighting pa-
rameter λ in the COLT method for a TSP curve found us-
ing 4096 randomly sampled points. The readout time and the
number of sample points are denoted by t and n, respectively.
v = 0.15vmax.

sCOLT = argmin
s∈Sn

1

2
∥s− c∥22 +

λ

2
∥D(2)

1 s∥22 (3)

where λ ∈ R+ is a weighting parameter and ∥D(2)
1 s∥22 is the

sum of squares of the Euclidean distances between consecu-
tive points of s. This imposes a cost on the segments of the
trajectory s which in turn decides the overall length of the
trajectory. Hence, we project the given trajectory c without
any parameterization (i.e., it contains the original points of
the TSP trajectory) onto the set of feasible trajectories and in-
clude a cost on the length of the segments of the trajectory.
The resultant trajectory sCOLT will have the same number of
sample points as that of c. As the final step, to increase the
number of sample points and to reduce the velocity variation
in consecutive points, sCOLT is parameterized using a con-
stant velocity v which is a factor of vmax, denoted s′COLT. A
variable number of sample points, and hence a variable read-
out time is achieved by this parameterization. This is because
the higher the value of the weighting parameter, the smaller
the number of samples points after constant velocity parame-
terization, and thus the shorter the readout time. So, in effect,
the second term in the cost function provides control over the
readout time which provides the motivation to include this ad-
ditional term in the cost function. The gradient constraints in
this case will still be satisfied as the velocity chosen for pa-
rameterization is feasible and the trajectory is smooth without
sharp edges. Fig. 1 shows the effect of varying λ for a 4098
point TSP trajectory with initial points taken from the density
∝ 1/|k|2. With increasing λ, the trajectories tend to become
smoother. Note that (3) can be easily extended to 3D.

Convex optimization techniques in the dual space are used
to optimally solve the problem in (3). Notations are borrowed
from [15] for consistency. Using the standard definitions of
the dual norm and the indicator function, for the set Bα =
{x ∈ Rn, ∥x∥∞ ≤ α}, the indicator function is obtained as

IBα
(x) = sup

y∈Rn

xTy − α∥y∥1 (4)

Hence, the optimization problem (3) can be formulated in
the dual domain as
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Algorithm 1: COLT Algorithm

Input: c ∈ R2n, λ > 0, ϵ > 0, L, α, β
Initialization: q(0) = (q

(0)T

1 q
(0)T

2 )T = (0T 0T )T ,
y(0) = q(0), t = 1/L, e = c, k = 0

while ∥e∥22 ≤ ϵ do
k = k + 1
q(k) = proxF,t(y

(k−1) + t∇F (y(k−1)))

y(k) = q(k) + k−1
k+2 (q

(k) − q(k−1))

e = q(k) − q(k−1)

end
Output: sCOLT = s∗(q

(k)
1 ,q

(k)
2 )

min
s

1

2
∥s− c∥22 +

λ

2
∥D(2)

1 s∥22 + sup
q1,q2

[
(D

(2)
1 s)Tq1

+(D
(2)
2 s)Tq2 − α∥q1∥1 − β∥q2∥1

] (5)

= sup
q1,q2

min
s

1

2
∥s− c∥22 +

λ

2
∥D(2)

1 s∥22 + ((D
(2)
1 s)Tq1

+(D
(2)
2 s)Tq2 − α∥q1∥1 − β∥q2∥1

(6)

The minimization expression above can be written as

F (q1,q2) = min
s

1

2
∥s− c∥22 +

λ

2
∥D(2)

1 s∥22
+(D

(2)
1 s)Tq1 + (D

(2)
2 s)Tq2

(7)

whose solution s∗(q1,q2) can be computed as

s∗(q1,q2) = (I+λD
(2)T

1 D
(2)
1 )−1(c−D

(2)T

1 q1−D
(2)T

2 q2)
(8)

The optimization problem in (6) can then be reduced to
inf

q1,q2

(
− F (q1,q2) +G(q1,q2)

)
(9)

where G(q1,q2) = α∥q1∥1 + β∥q2∥1. This is equivalent to
the classical problem of minimizing the sum of a convex dif-
ferentiable function and a convex function which is not neces-
sarily differentiable [16]. The solution can be obtained using
proximal gradient descent [17] and the algorithm is described
in Algorithm 1 where L = ∥D(2)T

1 D
(2)
1 +D

(2)T

2 D
(2)
2 ∥ is the

Lipschitz constant of ∇F (q1,q2) and proxf (·) is the proxi-
mal map of f . The algorithm converges at a rate O(1/p2) for
a fixed step size p ∈ (0, 1/L] [17, 18].

Once the trajectory is obtained, k-space data is acquired
by taking a non-uniform Fourier transform (NFT) along this
trajectory for the test images. This k-space data is then used to
reconstruct the images back as described in the next section.

3. SIMULATIONS AND RESULTS

3.1. Image reconstruction
The MRI images are sparse in the finite difference domain
and wavelet domain [2]. Hence, with incoherent sampling,
images can be reconstructed using:

X̂ = argmin
X

∥NFT(X)−Y∥22 + λ1∥W(X)∥1 + λ2∥X∥TV

where Y is the observed k-space data, W(·) is the wavelet
transform and ∥ · ∥TV is the total variation (TV) norm. This
is solved using non-linear conjugate gradient with a fast and
cheap backtracking line-search [2, 19]. λ1 and λ2 are taken
as 0.01 for the reconstruction of the phantom and the MRI
images. A Daubechies-4 wavelet is used as the sparsifying
basis and the NFT is calculated using the NUFFT package by
Fessler [20].

3.2. Simulation setup
To evaluate the COLT method, we consider the reconstruc-
tion of two test images of size 256 × 256, a realistic ana-
lytical brain phantom image [21] and a T1-weighted sagittal
brain MRI image (obtained using Cartesian imaging). The
maximum gradient magnitude Gmax and slew rate Smax are
taken as 40mT/m and 200mT/m/ms, respectively. The sam-
pling frequency is taken to be 250MHz. Two types of trajecto-
ries are created using the COLT method: (a) TSP-based, and
(b) random-like trajectories. These are compared with TSP-
based trajectories using the TOC and the projection meth-
ods. For both trajectories, samples from the k-space are taken
from density ∝ 1/|k|2 as before. For TSP-based trajecto-
ries, the shortest path is found through these sampled points
and that is taken as c in Eq. (3). For random-like trajectories
for the COLT method, the sampled points are taken directly
as c in any random order. Comparisons of the methods are
done based on the readout time, SSIM and PSNR for the re-
constructed images. The performance measures are averaged
over 100 trials (different set of random points in each trial)
for all methods and are summarized in Table 1. For the TOC
method, the number of initial sample points is 2500. For the
projection and the COLT method the number of initial sample
points is 16384 (25% of 256×256) leading to a total of about
1000 iterations to converge in both methods.

3.3. Simulation results and discussion
Figure 2 shows sample trajectories obtained by different
methods and corresponding reconstructed phantom and MRI
images. For the projection method, the velocity for CVP
is adjusted to have a readout time close to that of the TOC
method, which was found to be 0.5vmax. For the COLT
method, it was observed that the performance becomes poorer
as λ increases with little reduction in readout time. Hence, λ
is chosen as 1. The velocity for CVP for COLT with TSP is
taken as 0.25vmax such that the performance is close to the
projection method. For COLT with random-like trajectories,
the velocity for CVP is chosen as vmax as it was observed that
the performance did not improve much for a lower velocity.
The simulations using the algorithm confirm that the gradient
constraints are satisfied in the COLT method. It is observed
that the COLT with random-like trajectories outperforms the
TOC and projection methods. In terms of readout time, the
trajectories obtained by the COLT method are more than 40%
faster than the TOC method and the projection method. The
COLT method with random-like trajectories performs better
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Method #
shots

Readout
time (ms)

Phantom image MRI image
SSIM PSNR (dB) SSIM PSNR (dB)

Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

TOC
1 133.35 1.41 0.8131 0.0008 28.59 0.30 0.8325 0.0011 29.94 0.38
2 89.95 0.91 0.8628 0.0108 29.89 0.23 0.8566 0.0045 30.72 0.13
4 54.00 0.61 0.8918 0.0114 30.89 0.29 0.8699 0.0043 31.17 0.14

Projection
1 137.13 0.60 0.5352 0.0840 23.53 3.55 0.6105 0.0747 25.82 2.75
2 86.51 0.40 0.6492 0.1135 26.30 3.41 0.6892 0.0759 27.15 1.60
4 52.31 0.18 0.4692 0.0784 19.55 2.26 0.5382 0.0794 23.27 2.21

COLT
TSP

1 75.21 1.06 0.5742 0.0786 24.53 3.09 0.6557 0.0790 26.85 3.22
2 48.73 0.56 0.7295 0.0686 27.32 1.36 0.7433 0.0462 27.48 0.90
4 29.26 0.31 0.6100 0.1260 23.84 3.68 0.6604 0.0940 26.56 2.43

COLT
random 1 61.59 0.36 0.8893 0.0760 30.11 2.09 0.8728 0.0877 29.55 2.79

Table 1: Mean and standard deviation (S.D.) of readout time,
SSIM and PSNR over 100 trials for the brain phantom and
MRI image reconstructions using different methods under
single and multi-shot schemes to obtain feasible trajectories.

than all other methods as it contains overlapping in the trajec-
tories and this results in much denser sampling of the center
of the k-space.

For random-like trajectories, it was observed that out of
100 trials, 42 trajectories resulted in an SSIM higher than 0.95
and about 17 trajectories resulted in an SSIM less than 0.8 for
brain phantom image. This happens because there is a lot of
randomness involved and for practical purposes, a trajectory
that leads to a higher SSIM during simulations is proposed to
be used.

The proposed method provides a way to obtain a feasible
trajectory from an otherwise infeasible trajectory, such as a
TSP-based one. For a more generally used spiral trajectory,
we would like to mention that the projection-based methods
(COLT and the projection method) perform better in recon-
struction as compared to the TOC method at the cost of in-
creasing the readout time. This is because the initial set of
points is critical in the spiral trajectory for projection-based
methods. The trajectory could be distorted wherever the phys-
ical constraints are not satisfied. Hence, to avoid this, the
fraction of vmax for CVP needs to be small for the projection
method and the initial points need to be interpolated at a high
rate for the COLT method. This results in more sample points
and hence in a better reconstruction [22].

3.4. Multi-shot trajectories
A readout time of about 140 ms (in case of TSP trajecto-
ries) is not practical for MRI due to subsequent loss in sig-
nal strength, off-resonance effects and other acquisition er-
rors. Hence, it is more useful to acquire different regions of
k-space in multiple RF excitations. This is known as multi-
shot acquisition. Multi-shot (2-shot and 4-shot) TSP-based
curves with some overlap between the trajectories are shown
in Fig. 3. Simulations were also performed to test the per-
formance of various methods in the multi-shot scenario as
shown in Table 1. Note that the readout time displayed is
per-shot and the total scan time will depend on the repetition
time (TR) and will be 2 × TR and 4 × TR in the 2-shot
and 4-shot cases, respectively. For the 2-shot trajectories, the

Fig. 2: (a) Reference images used for simulations (brain
phantom image and MRI image). Trajectories and recon-
structed reference images using (b) TOC method, (c) projec-
tion method, (d) COLT with TSP method, (e) COLT with ran-
dom method.

(a)

(b)
Fig. 3: Multi-shot TSP trajectories: (a) 2-shot, and (b) 4-shot.

readout time is more than 85 ms for the TOC and projection
methods, whereas the readout time for the COLT with TSP
method is about 48 ms with an improvement in reconstruc-
tion performance compared to the projection method. For the
4-shot trajectories, the readout time for the TOC and projec-
tion methods is about 50 ms whereas it is about 30 ms for
the COLT with TSP method. Here also, the performance im-
proves compared to the projection method.

4. CONCLUSION

We have provided an alternative method for obtaining much
faster and feasible k-space sampling trajectories in MRI. We
have shown the effectiveness of interpolating the trajectory
post-projection in reducing the readout time for TSP-based
and random-like trajectories. The method consists of solving
a constrained convex optimization problem for which an iter-
ative algorithm in the dual space has been provided. The re-
sultant curve is then constant velocity parameterized to obtain
a continuous trajectory which is much shorter than the TOC
and the projection methods. The proposed method provides
an acceleration of about 50% which is significant. The pro-
posed method also gives the designer the freedom to choose
the weighting parameter in order to tune the trade-off between
readout time and reconstruction performance.
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