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ARTICLE OPEN

Variational preparation of finite-temperature states on a
quantum computer
R. Sagastizabal1,2,8, S. P. Premaratne 3,8, B. A. Klaver1,2, M. A. Rol 1,2,6, V. Negîrneac 1,4, M. S. Moreira 1,2, X. Zou3, S. Johri3,7,
N. Muthusubramanian 1,2, M. Beekman1,5, C. Zachariadis1,2, V. P. Ostroukh 1,2, N. Haider1,5, A. Bruno1,2, A. Y. Matsuura3 and
L. DiCarlo 1,2✉

The preparation of thermal equilibrium states is important for the simulation of condensed matter and cosmology systems using a
quantum computer. We present a method to prepare such mixed states with unitary operators and demonstrate this technique
experimentally using a gate-based quantum processor. Our method targets the generation of thermofield double states using a
hybrid quantum-classical variational approach motivated by quantum-approximate optimization algorithms, without prior
calculation of optimal variational parameters by numerical simulation. The fidelity of generated states to the thermal-equilibrium
state smoothly varies from 99 to 75% between infinite and near-zero simulated temperature, in quantitative agreement with
numerical simulations of the noisy quantum processor with error parameters drawn from experiment.

npj Quantum Information           (2021) 7:130 ; https://doi.org/10.1038/s41534-021-00468-1

INTRODUCTION
The potential for quantum computers to simulate other quantum
mechanical systems is well known1, and the ability to represent
the dynamical evolution of quantum many-body systems has
been demonstrated2. However, the accuracy of these simulations
depends on efficient initial state preparation within the quantum
computer. Much progress has been made on the efficient
preparation of non-trivial quantum states, including spin-
squeezed states3 and entangled cat states4. Studying phenomena
like high-temperature superconductivity5 requires preparation of
thermal equilibrium states, or Gibbs states. Producing mixed states
with unitary quantum operations and measurements is not
straightforward, and has only recently begun to be explored6,7.
In this work, we demonstrate the use of a variational quantum-
classical algorithm to realize Gibbs states using (ideally unitary)
gate control on a transmon quantum processor.
Our approach is mediated by the generation of thermofield

double (TFD) states, which are pure states sharing entanglement
between two identical quantum systems with the characteristic
that when one of the systems is considered independently (by
tracing over the other), the result is a mixed state representing
equilibrium at a specific temperature. TFD states are of interest not
only in condensed matter physics but also for the study of black
holes8,9 and traversable wormholes10,11. We use a variational
protocol12 motivated by quantum-approximate optimization
algorithms (QAOA) that relies on alternation of unitary intra- and
inter-system operations to control the effective temperature,
eliminating the need for a large external heat bath. Other
methods have been studied for generation of Gibbs states, such
as quantum metropolis sampling13 and imaginary time evolution
using variational quantum simulation14,15. However, the advan-
tage of QAOA compared to these proposals is that the form of the
ansatz is relatively straightforward and low-depth, whereas the
metropolis sampling involves phase estimation which leads to a

high-depth circuit, and the imaginary time evolution proposal
does not have a clear proposal for the form of the ansatz. Recently,
verification of TFD state preparation was demonstrated on a
trapped-ion quantum computer6. Our work experimentally
demonstrates the generation of finite-temperature states in a
superconducting quantum computer by variational preparation of
TFD states in a hybrid quantum-classical manner.

RESULTS
Theory
Consider a quantum system described by Hamiltonian H with
eigenstates jj i and corresponding eigenenergies Ej:

H jj i ¼ Ej jj i: (1)

The Gibbs state ρGibbs of the system is

ρGibbsðβÞ ¼
1
Z

X
j

exp �βEj
� �

jj i jh j; (2)

where β= 1/kBT is the inverse temperature, kB is the Boltzmann
constant, and

Z ¼
X
j

exp �βEj
� �

(3)

is the partition function. Except in the limit β→∞, the Gibbs state
is a mixed state and thus impossible to generate strictly through
unitary evolution. To circumvent this, we define the TFD state12 on
two identical systems A and B as

TFDðβÞj i ¼ 1ffiffiffi
Z

p
X
j

exp
�βEj
2

� �
jj iB jj iA: (4)

Tracing out either system yields the desired Gibbs state in
the other.
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To prepare the TFD states, we follow the variational protocol
proposed by12 and consider two systems each of size n. In the first
step of the procedure, the TFD state at β= 0 is generated by
creating Bell pairs Φþ

i

�� � ¼ 0j iBi 0j iAi þ 1j iBi 1j iAi
� �

=
ffiffiffi
2

p
between

corresponding qubits i in the two systems. Tracing out either
system yields a maximally mixed state on the other, and vice
versa. The next steps to create the TFD state at finite temperature
depend on the relevant Hamiltonian. Here, we choose the
transverse field Ising model in a one-dimensional chain of n
spins16, with n= 2 [Fig. 1(a)]. We map spin up (down) to the
computational state 0j ið 1j iÞ of the corresponding transmon. The
Hamiltonian describing system A is

HA ¼ ZZA þ gXA; (5)

where Z ZA= ZA2ZA1, XA= XA2+ XA1, and g is proportional to the
transverse magnetic field. The Hamiltonian for system B is the
same. We focus on g= 1, where a phase transition is expected in
the transverse field Ising model at large n17. We use a QAOA-
motivated variational ansatz12,18, where intra-system evolution is
interleaved with a Hamiltonian enforcing interaction between the
systems:

HBA ¼ XXBA þ ZZBA; (6)

where X XBA= XB2XA2+ XB1XA1, and analogously for ZZBA. For
single-step state generation, the unitary operation describing the
TFD protocol is

U α; γð Þ ¼ Uinter αð ÞUintra γð Þ; (7)

where

UintraðγÞ ¼ exp �iγ2 ZZB þ ZZAð Þ=2½ �
´ exp �iγ1 XB þ XAð Þ=2½ �; (8)

UinterðαÞ ¼ exp �iα2ZZBA=2ð Þ exp �iα1XXBA=2ð Þ: (9)

The variational parameters γ ¼ γ1; γ2ð Þ, α ¼ α1; α2ð Þ are opti-
mized by the hybrid classical-quantum algorithm to generate
states closest to the ideal TFD states. A single step of intra- and
inter-system interaction ideally produces the state
ψðα; γÞj i ¼ U α; γð Þ Φþ

2

�� �� Φþ
1

�� �� �
19.

The variational algorithm extracts the cost function after each
state preparation. We engineer a cost function C to be minimized
when the generated state is closest to an ideal TFD state19.
Following recent work on the concentration of control parameters
for QAOA20,21, we expect engineering the cost function based on
the target state for small-sized systems to lead to a general
expression for the cost function of an arbitrary-sized system. The
engineered cost function is given by:

CðβÞ ¼ hXAi þ hXBi þ 1:57 hZZAi þ hZZBið Þ
�β�1:57ðhXXBAi þ hZZBAiÞ:

(10)

We compare the performance of this engineered cost function
C1:57 to that of the non-optimized cost function C1:00, using the
reduction of infidelity to the Gibbs state as the ultimate metric of
success [see Supplementary Note 1]. The engineered cost function
achieves an average improvement of 54% across the β range
covered ([10−2, 102] in units of 1/g), as well as a maximum
improvement of up to 98% for intermediate temperatures (β ~ 1).
Our choice of the class of cost functions to optimize lets us trade
off a slight decrease in low-temperature performance with a
significant increase in performance at intermediate temperatures.
See ref. 19 for further details on the theory.
The quantum portion of the algorithm prepares the state

according to a given set of angles α; γð Þ, performs the
measurements, and returns these values to the classical portion.
The classical portion then evaluates the cost function according to
the returned measurements, performs classical optimization,
generates and returns the next set of variational angles to
evaluate the quantum portion.

Experiment
We implement the algorithm using four of seven transmons in a
monolithic quantum processor [Fig. 2(a)]. The four transmons
(labeled A1, A2, B1, and B2) have square connectivity provided by
coupling bus resonators, and are thus ideally suited for
implementing the circuit in Fig. 1(b). Each transmon has a
microwave-drive line for single-qubit gating, a flux-bias line for
two-qubit controlled-Z (CZ) gates, and a dispersively coupled
resonator with dedicated Purcell filter22,23. The four transmons can
be simultaneously and independently read out by frequency
multiplexing, using the common feedline connecting to all Purcell
filters. All transmons are biased to their flux-symmetry point (i.e.,
sweetspot24) using static flux bias to counter residual offsets.
Device details and a summary of measured transmon parameters
are provided in Supplementary Note 3. Details on the experi-
mental setup can be found in Supplementary Note 4.
In order to realize the theoretical circuit in Fig. 1(b), we first map

it to the optimized depth-13 equivalent circuit shown in Fig. 2(b),
which conforms to the native gate set in our control architecture.
This gate set consists of arbitrary single-qubit rotations about any
equatorial axis of the Bloch sphere, and CZ gates between nearest-
neighbor transmons. Conveniently, all variational angles are
mapped to either the axis or angle of single-qubit rotations.
Further details on the compilation steps are reported in Methods
and Supplementary Note 2. Bases pre-rotations are added at the
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Fig. 1 Principle and generation of Thermofield Double state.
a Two identical systems A and B are variationally prepared in an
ideally pure, entangled joint state such that tracing out one system
yields the Gibbs state on the other. b Corresponding qubits in the
two systems are first pairwise entangled to produce the β= 0 TFD
state. Next, intra- and inter-system Hamiltonians are applied with
optimized variational angles α; γð Þ to approximate the TFD state
corresponding to the desired temperature.
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end of the circuit to first extract all the terms in the cost function C
and finally to perform two-qubit state tomography of each system.
Prior to implementing any variational optimizer, it is helpful to

build a basic understanding of the cost-function landscape. To this
end, we investigate the cost function C at β= 0 using two-
dimensional cuts Fig. 3: we sweep γ while keeping α= 0 to study
the effect of Uintra and vice versa to study the effect of Uinter. Note
that owing to the β−1.57 divergence, the cost function reduces to
−〈HBA〉 in the β= 0 limit. Consider first the landscape for an ideal
quantum processor, which is possible to compute for our system
size. The γ landscape at α= 0 is π-periodic in both directions due
to the invariance of TFDðβ ¼ 0Þj i under bit-flip (X) and phase-flip
(Z) operations on all qubits. The cost function is minimized to −4
at even multiples of π/2 on γ1 and γ2: TFDðβ ¼ 0Þj i is a
simultaneous eigenstate of X XBA and Z ZBA with eigenvalue +2
due to the symmetry of the constituting Bell states Φþ

i

�� �
. In turn,

the cost function is maximized to +4 at odd multiples of π/2,
at which the Φþ

i

�� �
are transformed to singlets Ψ�

i

�� � ¼
0j iBi 1j iAi � 1j iBi 0j iAi

� �
=

ffiffiffi
2

p
. The α landscape at γ= 0 is constant,

reflecting that TFDðβ ¼ 0Þj i is a simultaneous eigenstate of XXBA
and ZZBA and thus also of any exponentiation of these operators.
The corresponding experimental landscapes show qualitatively
similar behavior. The γ landscape clearly shows the π periodicity
with respect to both angles, albeit with reduced contrast. The α
landscape is not strictly constant, showing weak structure
particularly with respect to α2. These experimental deviations
reflect underlying errors in our noisy intermediate-scale quantum

(NISQ) processor, which include transmon decoherence, residual
ZZ coupling at the bias point, and leakage during CZ gates. We
discuss these error sources in detail further below.
The task of the variational algorithm is to balance the mixture of

the states at each β, in order to generate the corresponding Gibbs
state. Although thermal states are well understood, it is
challenging to accurately generate them in NISQ devices for
studies of finite temperature systems. When working with small
systems, it is possible and tempting to predetermine the
variational parameters at each β by a prior classical simulation
and optimization for an ideal or noisy quantum processor. We
refer to this common practice6,25 as cheating, since this approach
does not scale to larger problem sizes and skips the main quality
of variational algorithms: to arrive at the parameters variationally.
Here, we avoid cheating altogether by starting at β= 0, with initial
guess the obvious optimal variational parameters for an ideal
processor (γ= α= 0), and using the experimentally optimized
α; γð Þ at the last β as an initial guess when stepping β in the range
0; 5½ � (in units of 1/g). This approach only relies on the assumption
that solutions (and their corresponding optimal variational angles)
vary smoothly with β. At each β, we use the Gradient-Based
Random-Tree optimizer of the scikit-optimize26 Python package to
minimize C, using 4096 averages per tomographic pre-rotation
necessary for the calculation of C. After 200 iterations, the
optimization is stopped. The best point is remeasured two times,
each with 16384 averages per tomographic pre-rotation needed
to perform two-qubit quantum state tomography of each system.
A new optimization is then started for the next β, using the
previous solution as the initial guess.
To begin comparing the optimized states ρExp produced in an

experiment to the target Gibbs states ρGibbs, we first visualize their
density matrices (in the computational basis) for a sampling of the
β range covered (Fig. 4). Starting from the maximally-mixed state I
I/4 at β= 0, the Gibbs state monotonically develops coherences
(off-diagonal terms) between all states as β increases. Coherences
between states of equal (opposite) parity have 0 (π) phase
throughout. Populations (diagonal terms) monotonically decrease
(increase) for even (odd) parity states. By β= 5, the Gibbs state
is very close to the pure state ϒj i ϒh j, where ϒj i �ffiffiffiffiffiffiffiffiffi
0:36

p
01j i þ 10j ið Þ � ffiffiffiffiffiffiffiffiffi

0:14
p

00j i þ 11j ið Þ. The noted trends are
reproduced in ρExp. However, the matching is evidently not
perfect, and to address this we proceed to a quantitative analysis.
We employ two metrics to quantify experimental performance:

the fidelity F of ρExp to ρGibbs and the purity P of ρExp, given by

F ¼ Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ
1=2
GibbsρExpρ

1=2
Gibbs

q� �
; (11)

P ¼ Tr ρ2Exp

	 

: (12)

At β= 0, F= 99% and P= 0.262, revealing a very close match to
the ideal maximally-mixed state. However, F smoothly worsens
with increasing β, decreasing to 92% at β= 1 and 75% by β= 5.
Simultaneously, P does not closely track the increase of purity of
the Gibbs state. By β= 5, the Gibbs state is nearly pure, but P
peaks at 0.601.
In an effort to quantitatively explain these discrepancies, we

perform a full density-matrix simulation of a four-qutrit system
using quantumsim27. Our simulation incrementally adds calibrated
errors for our NISQ processor, starting from an ideal processor
(model 0): transmon relaxation and dephasing times at the bias
point (model 1), increased dephasing from flux noise during CZ
gates (model 2), crosstalk from residual ZZ coupling at the bias
point (model 3), and transmon leakage to the second-excited state
during CZ gates (model 4). The experimental input parameters for
each increment and details of modeling are described in Methods
and Supplementary Notes 5–9. The added curves in Fig. 5 clearly
show that model 4 quantitatively matches the observed
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Fig. 2 Device and optimized quantum circuit. a Optical image of
the transmon processor was used in this experiment, with false color
highlighting the four transmons employed and the dedicated bus
resonators providing their nearest-neighbor coupling. Scale bar
corresponds to 1 mm. b Optimized circuit equivalent to that in Fig. 1
(b) and conforming to the native gate set in our architecture. All
variational parameters are mapped onto rotation axes and angles of
single-qubit gates. Tomographic pre-rotations R1–R4 are added to
reconstruct the terms in the cost function C and to perform two-
qubit state tomography of each system following optimization.
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dependence of F and P over the full β range, and identifies
leakage from CZ gates as the dominant error.

DISCUSSION
The power of variational algorithms relies on their adaptability: the
optimizer is meant to find its way through the variational
parameter space, adapting to mitigate coherent errors as allowed
by the chosen parametrization. For completeness, we compare in
Fig. 5 the performance achieved with our variational strategy to
that achieved by cheating, i.e., using the pre-calculated optimal
α; γð Þ for an ideal processor. Our variational approach, whose sole
input is the obvious initial guess at β= 0, achieves comparable
performance at all β. This aspect is crucial when considering the
scaling with problem size, as classical pre-simulations will require
prohibitive resources beyond ~50 qubits, but variational optimi-
zers would not. Given the dominant role of leakage as the error
source, which cannot be compensated by the chosen parame-
trization, it is unsurprising in hindsight that both approaches yield
nearly identical performance.
In summary, we have presented the generation of finite-

temperature Gibbs states in a quantum computer by variational
targeting of TFD states in a hybrid quantum-classical manner. The
algorithm successfully prepares mixed states for the transverse
field Ising model with Gibbs-state fidelity ranging from 99% to
75% as β increases from 0 to 5/g. The loss of fidelity with
decreasing simulated temperature is quantitatively matched by a
numerical simulation with incremental error models based on
experimental input parameters, which identifies leakage in CZ
gates as dominant. This work demonstrates the suitability of

variational algorithms on NISQ processors for the study of finite-
temperature problems of interest, ranging from condensed-matter
physics to cosmology. Our results also highlight the critical
importance of continuing to reduce leakage in two-qubit
operations when employing weakly-anharmonic multi-level sys-
tems such as the transmon.
During the preparation of this manuscript, we became aware of

related experimental work25 on a trapped-ion system, applying a
non-variationally prepared TFD state to the calculation of a
critical point.

METHODS
Quantum circuit
We map the theoretical circuit in Fig. 1(b) to an equivalent circuit
conforming to the native gate set in our control architecture and
exploiting virtual Z-gate compilation28 to minimize circuit depth. Single-
qubit rotations RXY(ϕ, θ), by arbitrary angle θ around any equatorial axis
cosðϕÞxþ sinðϕÞy on the Bloch sphere, are realized using 20ns DRAG
pulses29,30. Two-qubit CZ gates are realized by baseband flux pulsing31,32

using the Net Zero scheme33,34, completing in 80ns. In the optimized
circuit [Fig. 2(b)], CZ gates only appear in pairs. These pairs are
simultaneously executed and tuned as one block. Single-qubit rotations
R1-R4 are used to change the measurement bases, as required to measure
C during optimization and to perform two-qubit tomography35 in each
system to extract F and P. A summary of single- and two-qubit gate
performance [see Supplementary Note 5] and a step-by-step derivation of
the optimized circuit is provided [see Supplementary Note 2].

Fig. 3 Landscape of the cost function for infinite temperature. Panels (a) and (c): Landscape cuts obtained in noiseless simulation and in
experiment, respectively, when varying control angles γ while keeping α= 0 (the ideal solution value). Panels (b) and (d): Corresponding cuts
obtained when varying control angles α while keeping γ= 0 (the ideal solution value). See text for details. These landscape cuts are sampled
at 100 points and interpolated using the Python package adaptive41.
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Modeling and simulations
Noiseless simulations were performed prior to experiments, for verification
of algorithm convergence. During simulations, experimental conditions
were maintained exactly for the algorithm and the control software, while
the outcome from readout hardware (Zurich Instruments UHFQC) was
replaced with a simulated readout [see Supplementary Note 10 for details].
The models used to simulate the performance of the algorithm are

incremental: model k contains all the noise mechanisms in model k− 1
plus one more, which we use for labeling in Fig. 5. Model 0 corresponds to
an ideal quantum processor without any error. Model 1 adds the measured
relaxation and dephasing times measured for the four transmons at their
bias point. These times are tabulated in Supplementary Table 1. Model 2
adds the increased dephasing that flux-pulsed transmons experience
during CZ gates. For this, we extrapolate the echo coherence time Techo2 to
the CZ flux-pulse amplitude using a 1/f noise model36,37 with amplitudeffiffiffi
A

p ¼ 1μΦ0. This noise model is implemented following38. Model 3 adds
the idling crosstalk due to residual ZZ coupling between transmons. This
model expands on the implementation of idling evolution used for
coherence times: the circuit gates are simulated to be instantaneous, and

the idling evolution of the system is trotterized. In this case, the residual ZZ
coupling operator uses the measured residual ZZ coupling strengths at the
bias point [see Supplementary Note 6 for details]. Finally, model 4 adds
leakage to the CZ gates, based on randomized benchmarking with
modifications to quantify leakage33,39, and implemented in simulation
using the procedure described in ref. 38.

Leakage in transmons
Leakage to transmon second-excited states is found essential to
quantitatively match the performance of the algorithm by simulation. To
reach this conclusion it was necessary to thoroughly understand how
leakage affects the two-qubit tomographic reconstruction procedure
employed. The readout calibration only considers computational states
of the two transmons involved. Moreover, basis pre-rotations only act on
the qubit subspace, leaving the population in leaked states unchanged.
Using an overcomplete set of basis pre-rotations for state tomography,
comprising both positive X; Y; Zð Þ and negative �X;�Y;�Zð Þ bases for
each transmon, leads to the misdiagnosis of a leaked state as a maximally

Fig. 4 Qualitative comparison of optimized states to the Gibbs state. Visualization of the density matrices (in the computational basis) for
the targeted Gibbs states ρGibbs (left) and the optimized experimental states ρExp (right) at (a, b) β= 0, a–d β= 1 and (e–f) β= 5. As β increases,
the Gibbs state monotonically develops coherence between all states, with phase 0 (π) for states with the same (opposite) parity. Populations
in even (odd) parity states decrease (increase). The optimized experimental states show qualitatively similar trends.
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mixed state qubit state for that transmon. See Supplementary Note 8 for
further details.
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Fig. 5 Performance of the variational algorithm. a Fidelity to the
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states obtained by optimization and cheating. b Purity of experi-
mental states as a function of β, and comparison to the purity of the
Gibbs state. Added curves in both panels are obtained by numerical
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models based on calibrated error sources for our device: qubit
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leakage during CZ gates. Leakage is identified as the dominant error
source.
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