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‡Department of Electrical and Computer Engineering, George Mason University
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ABSTRACT

This paper concerns wideband direction of arrival (DoA)
estimation with sparse linear arrays (SLAs). We rely on the
assumption that the power spectrum of the wideband sources
is the same up to a scaling factor, which could in theory
allow us to resolve not only more sources than the number
of antennas but also more sources than the number of degrees
of freedom (DoF) of the difference co-array of the SLA. We
resort to the Jacobi-Anger approximation to transform the co-
array response matrices of all frequency bins into a single
virtual uniform linear array (ULA) response matrix. Based
on the obtained model, two super-resolution DoA estimation
approaches based on atomic norm minimization (ANM) are
proposed, one with and one without prior knowledge of the
power spectrum. Simulation results show that our proposed
methods outperform the state of the art and are indeed capable
of resolving more sources than the number of DoF of the
difference co-array.

Index Terms— Wideband direction of arrival (DoA) estima-
tion, sparse linear array (SLA), Jacobi-Anger approximation,
atomic norm minimization (ANM)

I. INTRODUCTION
Wideband direction of arrival (DoA) estimation using a

sensor array is an extensively studied technology and supports
a wide range of applications in, for instance, wireless commu-
nication, acoustics and passive sonar [1]. Conventional meth-
ods rely on a bank of narrowband filters, which decompose
the received wideband signal into several narrowband signals,
and then employ subspace-based signal processing algorithms
to obtain the DoA estimates. The simplest subspace-based
wideband method is the incoherent signal subspace method
(ISSM) [2], which applies narrowband techniques, such as
MUSIC [3] and ESPRIT [4], independently to the outputs
of the filter bank. Alternatively, in the coherent signal sub-
space method (CSSM) [5], focusing matrices are designed to
combine the information from different frequency subbands,
leading to improved performance compared to ISSM. The
focusing schemes for CSSM are further developed in [6].
Inspired by compressed sensing (CS) theory [7], in the past
decade some wideband DoA estimation approaches based on
sparse signal recovery techniques have also been developed
[8]–[10].

Most of the wideband DoA estimation methods have been
confined to the case of uniform linear arrays (ULAs) and

resolve up to N − 1 sources with an N -element array.
However, the topic of DoA estimation with more sources than
sensors has been receiving considerable attention [11]–[13].
An efficient way to achieve this goal is to use a sparse linear
array (SLA) and to construct a new difference co-array with
more degrees of freedom (DoF) than that directly obtained
from the physical SLA. From the co-array perspective, the
minimum redundancy array (MRA) [14] and sparse ruler array
(SRA) [15] have been considered as optimal SLA designs, yet
their antenna locations cannot be computed in closed form. In
the past decade, several more tractable SLA configurations
have been proposed, such as the nested array [12] and the
coprime array [13]. Based on these SLA configurations, most
of the DoA estimation works focus on developing algorithms
under the narrowband assumption [16]–[18]. For the wideband
scenario, the DoA estimation problem for SLAs becomes
more involved. In [19], a simple combined spatial smoothing
MUSIC (SS-MUSIC) spectrum is constructed to exploit the
spectral information from all frequency bins. In [20], a focus-
ing Khatri-Rao (FKR) subspace-based approach is proposed,
where the way to calculate the focusing matrices is similar
to that in CSSM, but now extended to the difference co-
array. Some DoA estimation methods based on grid-based
CS and sparse reconstruction are also proposed for wideband
sources [21]–[23], yet they suffer from leakage effects when
the sources are off the grid. Note that for all the above
methods, the number of sources to be recovered should be
less than the number of DoF of the difference co-array.

In this paper, we focus on wideband DoA estimation with
SLAs. In contrast to existing methods, we rely on the assump-
tion that the power spectrum of the sources is the same up to a
scaling factor, which is the case for many practical scenarios.
Similar with previous works [19]–[23], the difference co-array
response matrices for all frequency bins are constructed first.
But as opposed to focusing, we resort to the Jacobi-Anger
approximation from the manifold separation technique (MST)
[24], [25] in array processing, to transform the difference co-
array response matrices from the different frequency bins into
a single virtual ULA response matrix. This transformation
allows us to combine the data from different frequencies easily,
and could in theory also resolve more sources than the number
of DoF of the difference co-array. Based on the obtained
model, we propose two super-resolution off-the-grid DoA
estimation approaches based on atomic norm minimization
(ANM) [26], one with and one without prior knowledge of
the power spectrum. Simulation results show that, through
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efficiently merging the information from different frequency
subbands, our proposed methods outperform the state of the
art and are capable of resolving more sources than the number
of DoF of the difference co-array.

II. SIGNAL MODEL
Consider K far-field, independent, and wideband sources

impinging on an SLA with N antenna elements. For wideband
processing, at each antenna, the signal is first sampled at
Nyquist rate and partitioned into segments, and then a filter
bank or an M -point sliding discrete Fourier transform (DFT) is
applied to each segment to compute M frequency subbands.
The noiseless received signal for the nth antenna and mth
frequency can be written as

xn,m[l] =
K∑

k=1

an,m(θk)sk,m[l], n ∈ N , m ∈ M, (1)

where N , {1, . . . , N}, M , {1, . . . ,M}, l ∈ N+ denotes
the index of the segment, sk,m[l] represents the source signal
related to the kth source and mth frequency, θk ∈ [0, π) is
the DoA of the kth source signal, and an,m(θ) represents
the channel response at angle θ for the nth antenna and mth
frequency. The channel response can generally be expressed
as

an,m(θ) , e−j2πdn cos(θ)/λm , n ∈ N , m ∈ M, (2)

where dn is the distance from the nth antenna to the first an-
tenna, which is, for simplicity, an integer multiple of the basic
element spacing d, and λm is the wavelength corresponding to
the mth frequency fm. For the nth antenna and mth frequency,
the K source signals {sk,m[l]}Kk=1 are assumed to be mutually
uncorrelated.

Stacking the signals of all antennas for the mth frequency,
i.e, introducing xm[l] , [x1,m[l] x2,m[l] . . . xN,m[l]]T and
am(θ) , [a1,m(θ) a2,m(θ) . . . aN,m(θ)]T , we obtain

xm[l] =
K∑

k=1

am(θk)sk,m[l] = Amsm[l], (3)

where sm[l] , [s1,m[l] s2,m[l] . . . sK,m[l]]T and Am ,
[am(θ1) am(θ2) . . . am(θK)]. Computing the output covari-
ance matrix Rm , E{xm[l]xH

m[l]}, we obtain

Rm = Amdiag{γm}AH
m, (4)

where E{·} represents the expectation operator, and γm =
[γ1,m γ2,m . . . γK,m]T with γk,m the source power related to
the kth source and mth frequency, i.e., γk,m , E{|sk,m[l]|2}.
Vectorizing this expression, we obtain

r̃m , vec{Rm} = B̃mγm, (5)

where B̃m , (A∗
m ◦ Am) denotes the new array response

matrix from the co-array perspective, with (·)∗ and ◦ standing
for the complex conjugate and Khatri-Rao product, respec-
tively. Define the location set of the difference co-array as
D , {di − dj : i, j ∈ N}, and the cardinality of D as

Nco, which indicates the DoF of the co-array, with N2 ≥
Nco ≥ 2N − 1. Denote {ξn}Nco

n=1 as the elements of D and
let Nco , {1, . . . , Nco}. After removing the repeated rows in
B̃m and the related entries in r̃m, we have

rm , Jr̃m = JB̃mγm = Bmγm, (6)

where J ∈ {0, 1}Nco×N2

is the corresponding selec-
tion matrix, and Bm , JB̃m is the (non-redundant)
co-array response matrix related to the mth frequency.
The kth column of Bm can be expressed as bm(θk) =
[b1,m(θk) b2,m(θk) . . . bNco,m(θk)]

T , with

bn,m(θ) , e−j2πξn cos(θ)/λm , n ∈ Nco, m ∈ M. (7)

The problem in this paper is to recover the continuous-valued
DoAs {θk}Kk=1, given {rm}Mm=1. Throughout the remainder
of the paper, the following assumption will be adopted.

• A1: The power spectrum of all the K sources is the same
up to a scaling, i.e., γk,m = αkpm, with αk the power
of the kth source and pm the normalized power spectrum
of every source.

This is for instance the case in a wireless communication
system where all sources use the same modulation format and
pulse shaping functions [27]. Defining α = [α1 α2 . . . αK ]T ,
we thus obtain γm = pmα. We will later on develop methods
for the case {pm}Mm=1 is known as well as for the case it is
unknown.

III. JOINT DATA MODEL

In order to merge the data models in (6) for all M different
frequencies, we make the following assumption.

• A2: We assume that all co-array response matrices Bm

can be transformed into a single virtual ULA response
matrix V = [v(θ1) v(θ2)) . . . v(θK)], i.e., Bm =
GmV , where v(θ) , [e−jθNvirt . . . ejθNvirt ]T , Gm ∈
CNco×(2Nvirt+1) denotes the corresponding transforma-
tion matrix which depends on the mth frequency fm
only, and Nvirt is an odd number denoting the number
of antennas in the virtual ULA.

One way to achieve this is by focusing, which generally
requires an initial estimate of the DoAs or the signal sub-
space. We however rely on the more accurate Jacobi-Anger
expansion, which provides a general infinite series expansion
of exponentials of trigonometric functions in the basis of their
harmonics [24], [25], and hence leads to a signal-independent
transformation. Specifically, from the definition in (7), the
(n, k)th entry of the co-array response matrix Bm can be
written as

bn,m(θk) =
∞∑

nv=−∞
jnvJnv

(
2π

ξn
λm

)
ejθknv (8)

where Jnv (·) is the Bessel function of the first kind of order
nv . Note that although (8) indicates an infinite sum, the
amplitude of Jnv (·) decays very rapidly as the value of nv

increases beyond the argument of the related Bessel function
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Jnv (·). In practice, the infinite series can hence be truncated
by considering only a limited number of modes as

bn,m(θk) ≈
Nvirt∑

nv=−Nvirt

jnvJnv

(
2π

ξn
λm

)
ejθknv

= gT
n,mv(θk), (9)

where gn,m , [g
(n,m)
−Nvirt

. . . g
(n,m)
Nvirt

]T , and g
(n,m)
nv , jnv ·

Jnv (2πξn/λm). We can make the resulting truncation error
arbitrarily small by increasing the number of modes. However,
beyond some precision, increasing the number of modes does
not increase the number of DoF of the virtual ULA and only
increases the complexity. This specific precision is hard to
determine and is usually chosen by some rule of thumb. For
example, in [25], the lower bound on the mode order Nvirt is
determined as

Nvirt ≥
2π

minm {λm}
·max

n
{ξn}. (10)

Now, according to (9) and (10), the kth column of the co-array
response matrix Bm can be expressed as bm(θk) = Gmv(θk),
where Gm , [g1,m g2,m . . . gNco,m]T , which corroborates
Assumption A2.

Under Assumptions A1 and A2, we can rewrite (6) as

rm = pmGmV α = HmV α, (11)

where Hm , pmGm. Hence, up to the matrix factor Gm

or Hm, all frequencies yield the same model, which will be
very useful for DoA estimation. On the other hand, it is still
challenging to jointly utilize rm from all frequencies in an
efficient manner, because Gm (or Hm) of size Nco×(2Nvirt+
1) is not invertible for large Nvirt. To tackle this challenge, a
couple of effective wideband DoA estimators will be discussed
in the next section.

IV. SUPER-RESOLUTION DOA ESTIMATION

Based on the joint data model derived in Section III, we
here investigate super-resolution techniques for wideband DoA
estimation. In Assumption A1, we have assumed that all K
sources share the same normalized power spectrum {pm}Mm=1.
In the following, both the scenarios with and without prior
knowledge of the power spectrum {pm}Mm=1, are considered.

A. Known Power Spectrum

If the power spectrum {pm}Mm=1 is known a priori, we can
stack the different vectors rm into r , [rT1 rT2 . . . rTM ]T

and merge the different equations (11) into r = HV α,
where H , [HT

1 HT
2 . . . HT

M ]T . We can then develop an
algorithm to recover α under the ANM framework. Note that
the term c , V α includes a linear combination of K complex
sinusoids, and hence it has a sparse representation over the
atom set A , {v(θ) : θ ∈ [0, π)}. Evidently, c has a sparse
linear representation over A. As a penalty function specially
catered to the structure of the atom set A, the atomic norm of
c over A is defined as ∥c∥A , inf{t > 0 : c ∈ t · conv(A)},

where conv(A) denotes the convex hull of A. We can first
recover c by solving the ANM problem as

min
c

λ1

2
∥r −Hc∥22 + ∥c∥A, (12)

where λ1 denotes the regularization parameter to balance the
tradeoff between the ANM and the data fitting error. The joint
ANM problem (12) can be represented in an equivalent semi-
definite programming (SDP) form as

min
t,u,c

λ1

2
∥r −Hc∥22 + trace(T (u)) + t (13)

s.t.

[
t cH

c T (u)

]
≽ 0,

where T (u) is a Hermitian Toeplitz matrix with the first
column being u. This SDP problem can be solved by some off-
the-shelf solvers such as SeDuMi and SDPT3 [28], or some
first-order fast algorithms such as the accelerated proximal
gradient or alternating direction method of multipliers. Given c
or T (u), DoA estimation can be performed using, for instance,
any subspace-based method. In the simulations, root MUSIC
[29] is used to obtain the final DoA estimates.

B. Unknown Power Spectrum

If the power spectrum {pm}Mm=1 is unknown, we can first
transform (11) into rmqm = GmV α, where qm , 1/pm.
Note that we here assume that only frequencies are con-
sidered for which pm is not too small. Next, stacking the
vectors rm as R = blkdiag{r1, r2, . . . , rM} and introducing
q = [q1 q2, . . . qM ]T , we can form Rq = GV α, where
G , [GT

1 GT
2 . . . GT

M ]T , and blkdiag{·} denotes the block
diagonal operator.

We now seek to jointly estimate the angles {θk}Kk=1 and the
unknown power profile {pm}Mm=1. The unknown vectors c and
q can be solved from the following least squares problem with
atomic-norm regularization:

min
c,q

λ2

2
∥Rq −Gc∥22 + ∥c∥A, s.t. 1Tq = 1, (14)

where the linear constraint 1Tq is added to avoid the trivial
solution q = 0, with 1 and 0 denoting the vector of ones and
zeros respectively. As before, the joint ANM problem (14) can
be reformulated as an SDP problem as:

min
t,u,c,q

λ2

2
∥Rq −Gc∥22 + trace(T (u)) + t (15)

s.t.

[
t cH

c T (u)

]
≽ 0, 1Tq = 1.

Based on q and c, the power spectrum {pm}Mm=1 and the
angles {θk}Kk=1 can be readily obtained. For the simulations,
we use element-wise inversion to obtain the power spectrum
and root MUSIC [29] to obtain the angles.
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Fig. 2. MUSIC spectra, estimated DoAs and the groundtruth DoAs, L =
5000 and SNR = 20 dB.

V. SIMULATION RESULTS
For the simulations, we will generate the received signals

as a superposition of several harmonics corrupted by addi-
tive white Gaussian noise under a finite observation time.
More specifically, we consider model (3) with the extra
noise term wm[l] ∼ N (0, σ2

wI) and with sources distributed
as sm[l] ∼ N (0, diag{pmα}). In total, L segements are
considered. The signal-to-noise ratio (SNR) is defined as
SNR ,

∑M
m=1

(∑K
k=1 γk,m

)
/
(
Mσ2

w

)
. An unbiased es-

timate for the covariance matrix Rm can be obtained as
R̂m =

(∑L
l=1 xm[l]xH

m[l]
)
/L. Throughout the simulations,

we consider a 2-level nested array of 4 antennas with locations
{d1, d2, d3, d4} = {0, d, 2d, 5d} where we set d = 0.04 m
as the basic element spacing. Note that under this setup, the
co-array will consist of Nco = 11 antennas. In addition, the
speed of the signal wave is assumed to be c = 340 m/s and the
wavelength corresponding to the mth frequency fm is given
by λm = c/fm. Here we set M = 64 and consider evenly-
spaced frequency points {fm}Mm=1 over the frequency range
of the signal. In our experiments, for a fair comparison, we
assume that the knowledge of K is available to all algorithms.

In the first simulation, each signal has the common center
frequency fc = 24 kHz and a common bandwidth of 8
kHz. The mode order of the Jacobi-Anger approximation
is chosen as Nvirt = 120, which satisfies (10). We
consider the case where K = 13 uncorrelated wideband
sources impinge on the 2-level nested array mentioned
above. The DoAs of these 13 sources are given by
{12, 24, 33, 42, 65, 75, 85, 95, 112, 135, 150, 165, 175}π/180.
The normalized power spectrum of each source, i.e.,
{pm}Mm=1, is shown in Fig. 1 (marked with ‘×’), and, as
stated in Assumption A1, we assume that the power spectrum
of all K sources is the same up to a scaling. Here, we generate

50 100 150 200 250 300

Number of snapshots L

10-4

10-3

10-2

10-1

M
S

E

Known PS
Unknown PS
FKR

Fig. 3. MSE vs. the number of snapshots, SNR = 20 dB.

each scaling factor αk independently with αk ∼ χ2(1). The
number of snapshots is set to L = 5000, with SNR = 20
dB. We use the formulation proposed in Section IV-B with
λ2 = 0.5 to jointly recover the vector c, which contains the
information of the angles {θk}Kk=1, and the unknown power
profile {pm}Mm=1. The estimated power spectrum is presented
in Fig. 1 (marked with ‘�’), and Fig. 2 depicts the MUSIC
spectrum of c, the estimated DoAs and the groundtruth DoAs.
We can see that, under this setup, the basic element spacing
is larger than half the largest wavelength, and the number of
DoF of the co-array is smaller than the number of sources,
i.e., d > maxm{λm/2} and Nco < K. Still, our proposed
DoA and power spectrum estimation method works well.

To better evaluate the performance, we calculate the mean
square error (MSE) for the DoAs as MSE ,

∑K
k=1 |θk− θ̂k|2.

In this example, we set the number of sources to K = 5 with
DoAs given by {55, 65, 73, 105, 150}π/180. The frequency
range of the sources is from 2 kHz to 8 kHz and the mode
order of the Jacobi-Anger approximation is set as Nvirt = 40.
We here consider both the scenarios with and without prior
knowledge of the power spectrum, and for our proposed
methods in (13) and (15), the regularization parameters are
set as λ1 = 0.1 and λ2 = 0.5, respectively. The FKR
subspace approach [20] is introduced as a benchmark, where
the true DoAs are used in the simulations to construct the
focusing matrices. Fig. 3 depicts the MSE vs. the number of
snapshots L, where we set SNR = 20 dB and the results are
averaged over 1000 independent runs. Our proposed methods
are referred to as the Known PS for (13) and Unknown PS
for (15), respectively. We observe that our proposed methods
achieve a higher DoA estimation accuracy than the FKR.
Furthermore, as expected, Known PS provides better DoA
estimates than Unknown PS but the gap is very small.

VI. CONCLUSIONS

In this paper we studied wideband DoA estimation with
SLAs, exploiting the additional assumption that the power
spectrum of the sources is the same up to a scaling factor. To
combine the data from different frequencies, we resorted to the
Jacobi-Anger approximation to transform the difference co-
array response matrices form all frequency bins into a single
virtual ULA response matrix. Simulation results showed that
our proposed algorithms outperform the benchmark and are
capable of resolving more sources than the number of DoF of
the difference co-array.
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