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Summary
Electrical power systems are becoming more interconnected and technologically di-
verse to accommodate ever increasing shares of non-dispatchable generation. These
changes are imposing new requirements on the simulation of electrical power systems.
One of these requirements is that simulations integrate models of different subsystems,
developed by different experts, from different organizations, which may not wish to
disclose the information embedded in their models. This, to study the interactions be-
tween neighboring, interconnected grids, or between existing grids and new devices.
Another requirement is that they reproduce phenomena in a wider range of timescales,
to study the interactions between subsystems with slow and fast dynamic behavior.
One way for electrical power system simulations to comply with these requirements
is with remote, natural waveform co-simulation. Co-simulation is a model integration
approach in which each subsystem is simulated in a different simulator. These simula-
tors exchange interface variables, at runtime, to represent interactions between the sub-
systems. Since the simulators can interact remotely, over a communication network,
co-simulation has the advantage that the organization that owns the model needs not
disclose it. It also has the advantage that each model can be simulated with the simula-
tor for which it was intended, so organizations that use different simulators can collabo-
ratewithout having to translate theirmodels. If such a co-simulation is performedusing
natural waveformmodels, at a high time resolution, then it is also possible to reproduce
a wide range of timescales, from slow to very fast phenomena. But the fact that such a
co-simulation is performed remotely, with the communication delays this entails, and
that its high time resolution translates into a high communication rate, make it rather
slow. Thus, it is desirable to reduce the need for inter-simulator communication. In
this thesis I explore a solution to this communication challenge, based on the hypoth-
esis that slower phenomena are easier to predict. If the co-simulated phenomena can
be classified as predictable according to some criterion, it should be possible to find ex-
pressions that predict interface variables, and that each simulator can use to compute
its own inputs instead of expecting inputs to be communicated. I propose a criterion for
classifying phenomena as predictable or unpredictable, as well as methods for finding
these expressions based on an interpolated Fourier transform and Taylor-Kalman fil-
ters. Additionally, I propose a co-simulation algorithm where the simulators compute
their own inputs while the co-simulated phenomena are predictable. After applying
these ideas to the co-simulation of two different test systems, I was able to reduce the
need for communication up to 60%. A co-simulation frameworkwith these characteris-
tics is a step towards more descriptive models and better performing simulations, and a
tool that increases our ability to take better advantage of existing energy infrastructure,
as well as to develop it further.
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Samenvatting
Elektrische energiesystemen worden steeds meer onderling verbonden en technolo-
gisch diverser omhet groeiende volume aan energie afkomstig van niet-aan/uitschakel-
bare energiebronnen te kunnen verwerken. Deze veranderingen stellen nieuwe eisen
aan de simulatie van elektrische energiesystemen. Een van deze vereisten is dat simula-
tiesmodellen van verschillende subsystemen integreren, ontwikkeld door verschillende
experts, van verschillende organisaties, die de informatie die hunmodellen bezit moge-
lijk niet willen vrijgeven. Dit om de interacties tussen naburige, onderling verbonden
netwerken of bestaande netwerken en nieuwe apparaten te bestuderen. Een andere
vereiste is dat ze fenomenen reproduceren in een breder scala aan tijdschalen, om zo
de interacties tussen subsystemen met langzaam en snel dynamisch gedrag te bestu-
deren. Een manier voor elektrische energiesystemen simaluties om aan deze vereisten
te voldoen, is met golfvorm co-simulatie op afstand. Co-simulatie is simulatiemethode
waarbij elk subsysteem in een andere simulator wordt gesimuleerd. Tijdens het uit-
voeren van de simulatie wisselen deze simulators variabelen uit via de interface, om zo
interacties tussen de subsystemen weer te geven. Omdat de modellen op afstand kun-
nen communiceren, via een communicatienetwerk, heeft co-simulatie het voordeel dat
de modeleigenaar de informatie die verwoven is in het model niet hoeft te onthullen.
Dit heeft ook het voordeel dat elk model gesimuleerd kan worden met de simulator
waarvoor het was bedoeld, zodat organisaties die verschillende simulators gebruiken
samen kunnen werken zonder dat vertaling van hun modellen vereist is. Als een der-
gelijke co-simulatie wordt uitgevoerdmet behulp van golfvormmodellen, met een hoge
tijdsresolutie, is het ook mogelijk om een breed scala aan tijdschalen te reproduceren,
van langzame tot zeer snelle verschijnselen. Maar het feit dat zulke co-simulaties op
afstand worden uitgevoerd brengt communicatievertragingen met zich mee. Deze vet-
ragingen in combinatie met de hoge tijdsresolutie, die een hoge communicatiesnelheid
vereist, maken het totale systeem traag. Het is dus wenselijk om de benodigde onder-
linge communicatie tussen de simulators te verminderen. In dit proefschrift verken ik
een oplossing voor deze communicatie-uitdaging, gebaseerd op de hypothese dat lang-
zamere fenomenen gemakkelijker te voorspellen zijn. Als de geco-simuleerde feno-
menen volgens een bepaald criterium als voorspelbaar kunnen worden geclassificeerd,
moet het mogelijk zijn om uitdrukkingen te vinden die interfacevariabelen voorspellen
en die vervolgens te gebruiken voor de berekening van de inputs van elke simulator,
in plaats van te verwachten dat inputs worden gecommuniceerd. Ik stel een criterium
voor om fenomenen als voorspelbaar of onvoorspelbaar te classificeren, evenals metho-
den voor het vinden van deze uitdrukkingen op basis van een geïnterpoleerde Fourier-
transformatie en Taylor-Kalman-filters. Daarnaast stel ik een co-simulatie algoritme
voor waarbij de simulators hun eigen inputs berekenen terwijl de co-gesimuleerde fe-
nomenen voorspelbaar zijn. Na deze ideeën toe te passen op de co-simulatie van twee
verschillende testsystemen, kon ik de behoefte aan communicatie tot 60% verminderen.

xiii
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Een co-simulatie framework met deze kenmerken is een stap in de richting van meer
beschrijvende modellen en beter presterende simulaties, en een tool die het mogelijk
maakt om beter te profiteren van bestaande energie-infrastructuur en deze verder te
ontwikkelen.



1
Introduction

To begin, we must emphasize a statement
which I am sure you have heard before,

but which must be repeated again and again.
It is that the sciences do not try to explain,

they hardly ever try to interpret,
they mainly make models.

By a model is meant a mathematical construct which,
with the addition of some verbal interpretations,

describes observed phenomena.
The justification of such a mathematical construct is

solely and precisely
that it is expected to work – that is,
correctly to describe phenomena
from a reasonably wide area.

John von Neumann,
Method in the Physical Sciences, 1955.

Parts of this chapter have been published in [1]–[3].

1
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2 1. Introduction

I n a field like electrical power systems engineering, that for over a century has re-
lied on the insight provided by simulation, having sufficiently descriptive system

models is fundamental. But the expectation that electrical power systems continue to
accommodate larger shares of non-dispatchable generation is redefining the require-
ments these models must fulfill. One of these requirements is that system models take
into account the interactions between more, and more diverse subsystems. Another
requirement is that they represent wider timescales, so they capture the interactions
between subsystems that exhibit slow and fast phenomena. These new requirements
pose challenges that can only be tackled with new simulation methods.

1.1. The Need for Model Integration in Electrical Power Sys-
tems Simulation

Power grids have, and continued to become, more interconnected, interdependent and
technologically heterogeneous. This, to cope with the uncertainty that characterizes
non-dispatchable generation [4]. Power flows across borders and from lower to higher
voltage levels, the pervasiveness of digital information and communication technology,
power electronic converters, energy storage devices, as well as efforts to couple elec-
tricity grids with heat or gas grids, are manifestations thereof. For this reason, power
system models must now take into account the interactions between more, and more
diverse subsystems.

However, higher interconnectivity and technological heterogeneity also mean that
the knowledge required to model an electrical power system is no longer available to
any single party, but partially available to several. Now more than ever, modeling an
electrical power system requires integrating knowledge from different sources and di-
verse fields. As different experts embed their knowledge of particular subsystems in
models, having the capability to integrate these subsystem models is the key to suffi-
ciently descriptive system models.

Some of the challenges that European transmission grid operators (tsos) are cur-
rently facing represent a good example of this situation. European tsos are intercon-
nected, and are continuously becoming more interdependent. For this reason, they
have developed a need for integrating the models of their grids to better understand
how they interact. At the same time, the technological changes occurring within the
girds of each tso have created a need for integrating models of these new technologies
in the existing grid models.

The relevance that standards like the Common Information Model (cim) and the
Common Grid Model Exchange Specification (cgmes) have acquired in this context,
evidence the need for model integration that tsos have developed. The cim is a set
of iec standards for representing power system components [5], suitable for modeling
power systems for static and dynamic simulations [6]. The cgmes on the other hand
is an extension to the cim promoted by the European Network of Transmission System
Operators for Electricity (entso-e), intended for European grid operators to provide
models of their grids to a coordinating entity, so that they can be integrated into a Pan-
European grid model known as the Common GridModel (cgm) [7]. Additionally, both
the cim and the cgmes are extensible, so they are also suitable for modeling new tech-
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nologies.
Although transmission system operators use the cgm for static calculations, such

as adequacy forecasts or coordinated security analyses, having the capability of inte-
grating dynamic models is just as important. For example, for calculating the stabil-
ity‐constrained available transfer capacity between two interconnected grids [8]. Simi-
larly, as generation at the distribution level becomes more prevalent, there are growing
concerns about the impact that distribution grids might have on transmission grids.
Better transmission/distribution coordination requires integrating both static and dy-
namic models of these two types of grids [9].

1.2. The Need for Wider Timescales in Electrical Power Sys-
tems Simulation

Electrical power systems exhibit phenomena at a wide range of timescales, that span
microseconds to years [10]. This has brought about a variety of power system simula-
tion methods that attempt to strike a balance between the level of detail represented
in the model, and the computational cost of simulating it. They do so by targeting the
phenomena that occur within a specific timescale, while deemphasizing the others.

However, the technological changes that grids are experiencing have created a need
for simulations that consider wider timescales. For example, power electronic devices
have inherently fast dynamics, but they must be able to coexist with electromechanical
devices, which have much slower dynamics. Thus, a model that considers how both
of these types of devices interact, must be able to simulate the timescales where their
dynamics lay [11].

There are several techniques for simulating wider timescales. One of them is to
combine simulators that focus on different timescales, one for devices with fast dynam-
ics and one for the rest of the system [12]. Another approach is multiscale simulation,
where the model adapts to the phenomena that are occurring at a given point in sim-
ulation time, so slow phenomena are simulated with low time resolution and fast phe-
nomena with high time resolution [13]. When enough computational power is avail-
able, wider timescales can also be simulated with natural waveform simulators, such as
electromagnetic transient simulators, using detailed models of the grid and generators.
These types of simulations are computationally expensive because they work at a high
rate in order to capture even the fastest of phenomena, but from amodeling perspective
they are the most straightforward solution. This is the type of simulation I will analyze
in this thesis.

1.3. Co-Simulation and Remote Model Integration
There are two main approaches to model integration. One of them is integration at the
data level. In this approach, the models of each subsystem are shared with a central
entity that merges them into a systemmodel, which is then simulated in one simulator.
Both cim and cgmes are examples of this approach.

The other approach is integration at the program level, also known as co-simulation.
In a co-simulation each subsystem is simulated in a different simulator. The interac-
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tions between subsystems are represented by exchangingmodel variables between sim-
ulators at runtime. These variables are referred to as interface variables. In the context
of co-simulation, simulators are considered black boxes that require inputs to calculate
model state and output variables, but whose inner workings are unknown [14].

Integration at the program level has several advantages over integration at the data
level. One requirement for integration at the data level is that all models are expressed
in the same language. If a model is not available in the language of choice, it must be
translated. This is disadvantageous not only because translating a model signifies extra
work, but also because the target language might not be able to express what the source
language does [2]. In contrast, in a co-simulation models do not need to be translated
because they can be simulated with the simulator for which they where originally in-
tended. In addition, in a co-simulation it becomes possible to use the most appropriate
simulator for each model, which opens a possibility for coupling heterogeneous sub-
systems without having to adapt each model to the capabilities of a given simulator.
Integration at the data level also poses a privacy challenge, because sharing models can
potentially reveal the private information embedded in them. Co-simulation offers a
solution to this challenge because simulators can be coupled remotely over a commu-
nication network, so subsystem models do not need to be exchanged. This can be an
attractive feature for organization such as tsos, which are concerned about informa-
tion privacy, and which happen to be located in different geographical regions. For the
same reason, a remote co-simulation can facilitate collaboration between researchers
and industry.

However, co-simulation comes with challenges of its own [2]. Simulator interfac-
ing [15], simulator orchestration [16], [17] and numerical stability [18] are among those
that have received the most attention. But particularly relevant to the case of remote
co-simulation is the challenge of communication [19]. Exchanging variables between
simulators takes time, so if either the exchange rate or the communication delay is high,
the total execution time of the co-simulation will suffer. For example, [1] reports a to-
tal co-simulation execution time in the order of minutes, while a traditional simulation
of the same system is in the order of seconds. Since the communication delay typically
increases with distance, a co-simulation between organizations located in different geo-
graphical regions or even different countries, such as tsos, will have a longer execution
time than one where all simulators execute in the same computer.

The authors of [20] analyzed the challenge of communication for the case of remote,
real-time, natural waveform simulators. In this case, the problem is that with high com-
munication delays and high communication rates it becomes difficult for simulators to
fulfill their real-time constraints; simulator inputs will often arrive too late. The solu-
tion that [20] proposed is to exchange phasors instead of point-on-wave values. This is
equivalent to filtering out the fast phenomena at the co-simulation interface and only
exchanging information for the slower phenomena, which can be done at a reduced
communication rate. The underlying assumption is that the fast phenomena that oc-
cur in one simulator need not propagate to others. But if the goal is to simulate a wider
timescale, this assumption might not hold true. Nevertheless, in the case of non-real
time simulators there are no hard constraints regarding when inputs should arrive, so
an approach that adapts the communication rate to the phenomena that occur should
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be possible.

1.4. Problem Definition
In previous sections I established the need for, and interest in, co-simulation-based re-
mote model integration and dynamic simulations that consider wider timescales. The
problem I address in this thesis lays at the intersection of these two needs. I am in-
terested in addressing the communication challenge for a remote, non-real time co-
simulation, that uses natural waveform simulators at a high communication rate to re-
produce fast phenomena, like electromagnetic transients, and a time horizon suitable
for reproducing slow phenomena, like electromechanical transients. This, in combina-
tion with the larger communication delays associated with remote co-simulation, is a
worst case scenario from the communication viewpoint.

As I mentioned at the end of the previous section, if the simulators are non-real
time, oneway to dealwith the challenge of communication is to develop a co-simulation
framework that communicates frequentlywhile fast phenomenaoccur, and avoids com-
munication as much as possible while only slow phenomena occur. My hypothesis is
that the slower the phenomena, the easier to predict it becomes. So if the phenom-
ena that occur can be classified as predictable according to some criterion, it should
be possible that the co-simulation framework finds closed-form expressions that each
simulator can use to predict (i.e., compute) its own inputs, instead of expecting inputs
to be communicated. To test this hypothesis, I will constraint myself to black box sim-
ulators. This means that as the co-simulation executes, the only information available
to the co-simulation framework are the interface variables the simulators exchange. In
this context, my first research question is related to the possibility of distinguishing be-
tween predictable and unpredictable phenomena, and it reads as follows:

Is it possible to define a criterion so that a co-simulation framework can distinguish
between predictable and unpredictable power system phenomena, based exclusively on in-
terface variables?

If this is indeed possible, the next question I will address is related to the possibility
of finding expressions that predict interface variables, and it reads as follows:

When the co-simulation framework detects the absence of unpredictable phenomena,
can this framework identify closed-form expressions that describe the trajectories followed
by the interface variables, so that each simulator computes its inputs from these expres-
sions instead of them being supplied by other simulators?

And provided that the co-simulation framework is able to find these expressions,
the final question relates to the consequences that using such a co-simulation frame-
work might have, and it reads as follows:

How accurate are these expressions and what proportion of the co-simulation are they
able to describe?
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The objective of this thesis is to provide answers to these three research questions.
To do so, I will follow a mostly experimental approach. I will define models that pro-
duce both fast phenomena, on the timescale of electromagnetic transients, and slow
phenomena, on timescales that range from electromechanical transients to steady state.
I will use thesemodels to test themethods I propose, with the expectation that they will
be able to reproduce the entire range of phenomena, with the least possible communi-
cation between simulators.

1.5. Thesis Outline
This thesis is structured as follows:

In Chapter 2 I provide an overview of continuous-time co-simulation fundamen-
tals, emphasizing those aspects that are relevant to this thesis.

In Chapter 3 I propose a general criterion and method for distinguishing between
predictable and unpredictable phenomena based on simulator inputs and outputs. Us-
ing this method, I describe how a co-simulation can operate in two modes, one for
unpredictable phenomena where the simulators communicate frequently, and another
for predictable phenomena where the simulators compute their own inputs to avoid
communication as much as possible.

InChapter 4 I define predictable interface variables as those expectedwhile the sys-
tem is in steady state, and propose a method for finding closed-form expressions that
the simulators can use to compute their inputs in the absence of unpredictable phe-
nomena. In this chapter I analyze the case of the ac circuits used to represent electrical
power systems when the mechanical aspects of the generators can be neglected. The
interface variables of such systems are expected to display either fast transient behavior
or to be in steady state, in which case they can be modeled as a sum of sinusoids with
constant amplitude, frequency and phase.

In Chapter 5 I extend the definition of predictable interface variables to those ex-
pected while the system is experiencing a slow (electromechanical) transient, and pro-
pose a method for finding these closed-form expressions. In this case the interface vari-
ables can be modeled as a sum of sinusoids with variable amplitude, frequency and
phase.

In Chapter 6 I introduce a co-simulation framework based on the PowerFactory
simulation tool, which implements the methods from Chapters 3 and 5.

In Chapter 7 I present the results of using the framework from Chapter 6 to co-
simulate a power system composed of a transmission and a distribution grid. The sys-
tem exhibits fast and slow transient behavior.

Finally, Chapter 8 concludes the thesis.
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This chapter introduces the fundamentals of continuous-time co-simulation, em-
phasizing those aspects relevant to this thesis. It is not meant as an exhaustive

review of the topic, but as the basis for the discussions that follow. A reader looking for
an in-depth review of co-simulation might instead be interested in [4].

2.1. Basic Definitions
Model Amodel is a “mathematical construct which, with the addition of some verbal
interpretations, describes observed phenomena” [5]. In the specific case of this thesis,
these mathematical constructs represent electrical circuits, and can be systems of al-
gebraic, differential, or differential algebraic equations. In general, I will refer to the
model of a (sub)system 𝑠 as the initial value problem

�̇�𝑠 = 𝒇𝑠(𝒙𝑠, 𝒖𝑠) 𝒚𝑠 = 𝒈𝑠(𝒙𝑠, 𝒖𝑠) 𝒙𝑠(𝑡0) = 𝒙𝑠0 , (2.1)

where 𝒖𝑠 are the (sub)system inputs, 𝒙𝑠 are the state variables, 𝒚𝑠 are the (sub)system
outputs, 𝒙𝑠0 is the initial value of 𝒙𝑠 at 𝑡0, and 𝒇𝑠 and 𝒈𝑠 are vector-valued functions.

Solver A solver implements an algorithm that calculates the behavior of the model
over time, that is, the trajectories that the state and output variables follow, given certain
inputs. A well known example of a solver is ode45, which is the implementation of
Runge-Kutta (4,5) provided in the matlab environment.

Simulator A simulator is the composition of a model and a solver. A simulator uses
a solver to calculate the behavior of a given model. From the point of view of co-
simulation, a simulator is regarded as a black box.

InterfaceVariables These are the variables that simulators exchangewith each other
in order to co-simulate a system. They are the collection of the input and output vari-
ables of each simulator. The interface variables represent the interactions between the
subsystems that compose the co-simulated system.

2.2. Composition of a Co-Simulation
A co-simulation is typically composed of a set of simulators, a co-simulation master,
and co-simulation interfaces. Figure 2.1 depicts this composition. In general terms, I
define the master and the interfaces as follows:

Co-Simulation Master The co-simulation master orchestrates the co-simulation.
This entails keeping the simulators synchronized in simulation time, and providing the
right inputs to each simulator, at the right time.

Co-Simulation Interface A co-simulation interface is an adapter that enables the
interaction between possibly heterogeneous simulators and the co-simulation master.
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However, there is no standardized definition of the tasks that either themaster or the
interfaces must carry out. In practice, some implementations favor a thin master with
few responsibilities and expect more of the interfaces, while others are the opposite.

2.3. Simulator Interfacing
The first challenge one may face when setting up a co-simulation is simulator inter-
facing. Although simulators can be internally heterogeneous, coupling and managing
simulators is much simpler when they offer homogeneous interfaces. Unfortunately,
this is rarely the case. In practice, it is usually necessary to develop custom interfaces
for each simulator in order to seamlessly couple and manage them. This is especially
true for electrical power systems simulators, which in most cases have not been de-
veloped with co-simulation in mind. One remarkable effort to standardize simulator
interfacing is the Functional Mock-Up Interface (fmi) [6]. Originally developed for the
automotive industry, this standard is slowly making its way into electrical power sys-
tems co-simulation.

2.4. Orchestration
The second challenge is orchestrating execution of and interactions between simula-
tors. The complexity of this task increases rapidly with the number of participating
simulators. This is why using a dedicated co-simulation master is useful.

Co-simulations can be centrally or decentrally-orchestrated. In a centrally-orches-
trated co-simulation (Figure 2.2a), themaster is in complete control of the co-simulation.
In this case the simulators produce outputs, and await inputs and commands from the
master (e.g., initialize, step, roll back, etc.). An example of this approach is the mosaik
smart grid co-simulation framework [7].

As co-simulations becomemore decentrally-orchestrated, some of the tasks that the
master would normally perform are transfered to each co-simulation interface. This is
the case of frameworks such as the High-Level Architecture (hla) [8] and fncs [9]. In
a purely decentrally-orchestrated co-simulation, the master is absent, and it becomes
the task of the interfaces to agree how to proceed (Figure 2.2b).

Themain reasonwhy adecentrally-orchestrated co-simulation canbe preferred over
a centrally-orchestrated one is scalability. As the number of coupled simulators in-
creases, the master can become a bottleneck. A decentrally-orchestrated co-simulation
does not have this drawback. However, decentrally-orchestrated co-simulations are
more difficult to implement, and more complex algorithms are required to ensure cor-
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Figure 2.1: Composition of a co-simulation.
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Figure 2.2: Co-simulation orchestration.

rect execution [2].

2.5.Management
Once the co-simulation is set up, the next challenge is to create and manage simula-
tion scenarios. Naturally, this is more challenging in the case of a co-simulation than
a monolithic simulation, since the models are distributed over several simulators and
they can be heterogeneous. The mosaik framework [7], which also provides orchestra-
tion features, addresses this challenge. One more aspect to consider is simulator allo-
cation. If the simulators are allocated in different computers, the complexity increases
further.

2.6. Solving Coupled Models
Let us consider a co-simulation of two subsystems, A and B, modeled with

�̇�A = 𝒇A(𝒙A, 𝒖A) 𝒚A= 𝒈A(𝒙A, 𝒖A) 𝒙A(𝑡0) = 𝒙A0 , (2.2)
�̇�B = 𝒇B(𝒙B, 𝒖B) 𝒚B = 𝒈B(𝒙B, 𝒖B) 𝒙B(𝑡0) = 𝒙B0 , (2.3)

that are coupled so the outputs of one subsystem are the inputs of the other, that is, by
enforcing the coupling equations

𝒖A = 𝒚B 𝒖B = 𝒚A. (2.4)

Since in a co-simulation the equations thatmodel each subsystem are solved by a differ-
ent solver, the coupling equations can only be enforced at every point in a discrete time
grid 𝒕 ≔ {𝑡0, 𝑡1… 𝑡𝑘 … 𝑡𝐾}. This time grid defines when the simulators should exchange
interface variables (simulator inputs and outputs). The interval [𝑡𝑘, 𝑡𝑘+1[ is known as
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Figure 2.3: Co-simulation sequences.

the co-simulation macro time step, and𝐻𝑘 ≔ 𝑡𝑘+1 − 𝑡𝑘 as the macro time step size. Al-
though there are accuracy and performance benefits to having a dynamically-adjusted
macro time step size [10], for simplicity it is often chosen to be𝐻𝑘 = 𝐻 a constant.

Within a macro time step, each simulator can perform several micro time steps.
These micro time steps need not be the same for every simulator, and may even be
variable in size. To solve eachmicro time step in the 𝑘th macro time step, the simulators
approximate the inputs of each subsystem𝒖A(𝑡) and𝒖B(𝑡)with the 𝑘th interpolation (or
extrapolation) polynomials �̃�A,𝑘(𝑡) and �̃�B,𝑘(𝑡), which are obtained from the history of
interface variables exchanged until 𝑡𝑘.

2.6.1. Initialization
Before starting a co-simulation, each simulator must be initialized. However, finding a
set of initial conditions that is consistent for all simulators can be challenging. In some
cases this can be solved with an iterative search [11], [12].

2.6.2. Execution Sequences
During a co-simulation, the participating simulators may exchange interface variables
following different sequences. These sequences are determined by the order in which
the simulators are executed. Figure 2.3 shows how simulators A and B proceed in sim-
ulation time using the two basic sequences, namely, parallel (also known as Jacobi)
and serial (also known as Gauss-Seidel). Both of these sequences can be extended to
more than two simulators. As their names suggest, in the parallel sequence simula-
tors execute in parallel during each macro time step, whereas in the serial sequence the
simulators are executed one after the other.

In the parallel sequence fromFigure 2.3a, �̃�A,𝑘(𝑡) and �̃�B,𝑘(𝑡) are extrapolation poly-
nomials because at 𝑡𝑘 neither simulator knows the outputs of the other at 𝑡𝑘+1. In the se-
rial sequence fromFigure 2.3b on the other hand, �̃�A,𝑘(𝑡) is an interpolation and �̃�B,𝑘(𝑡)
and extrapolation polynomial, because at 𝑡𝑘, simulator A receives the outputs that sim-
ulator B produces at 𝑡𝑘+1. Both of these sequences can be made iterative, so that each
macro time step is repeated until a convergence criterion is met. The advantage of this
approach is that the results can be more accurate and the co-simulation can be made
numerically stable. However, this comes at a higher computational cost.
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2.6.3. Accuracy and Numerical Stability
Since the coupling equations can only be enforced once per macro time step and not
every micro time step, it follows that the co-simulation produces results which approxi-
mate those of a monolithic simulation of the same system. The error the co-simulation
incurs in each macro time step may or may not remain constrained, depending on the
characteristics of the models and on the choice of macro time step. If the error is not
constrained, we talk about a numerically unstable co-simulation. In such cases, the co-
simulation might be stabilized by choosing a smaller macro time step. In other cases,
a different set of interface variables might need to be chosen [13]. However, the safest
approach, whenever possible, is to use iterative execution sequences that guarantee sta-
bility [14].

2.7. Discrete Events in Continuous-Time Simulators
Even in a continuous-time co-simulation, where nodiscrete-event simulators are present,
discrete events may occur. There are two types of discrete events.

External Events External events are scheduled, either by the co-simulation user or
another entity, and their time of occurrence is known in advance (e.g., a short circuit).

Internal Events Internal events are a product of the co-simulation itself and their
time of occurrence might be unknown (e.g., a stochastic event, a threshold crossing).

The challenge with discrete events in continuous-time co-simulation is their timely
propagation to other simulators. If an event occurs in a simulator within a macro time
step, its effect will not propagate to the remaining simulators until the next time inter-
face variables are exchanged, which has a negative impact result accuracy. In the case
of external events, it is possible to circumvent this problem by adjusting the discrete
time grid to the event time. On the other hand, internal events can only be discovered
after they occur, so it is not possible to align them with the discrete time grid before-
hand. The classic solution to this problem is rolling back the co-simulation to the event
time and proceed from there, this assuming that the simulators are capable of rolling
back.

2.8. Communication and Execution Time
In the case of a monolithic simulation of (2.1), the total execution time is the time
it takes to solve the model equations from 𝑡0 to 𝑡𝐾 (solver time), whereas in the co-
simulation of (2.2) and (2.3) the total execution time also includes the time it takes to
construct and evaluate �̃�A,𝑘(𝑡) and �̃�B,𝑘(𝑡) (interpolation time) and the time it takes to
enforce (2.4) (communication time). I will refer to the time spent on interpolation and
communication-related operations as co-simulation overhead.

To understand how co-simulation overhead affects total execution time, let us now
consider a simple case in which subsystems A and B are solved with a constant micro
time step of size ℎ, the solver time per micro time step is 𝑇ℎ, and the overhead per
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macro time step is 𝑇O. Then, the time it takes to solve one macro time step in a parallel
co-simulation is

𝑇𝐻 = 𝑇ℎ
𝐻
ℎ + 𝑇O, (2.5)

and the execution time of the entire co-simulation as a function of𝐻 is

𝑇CS(𝐻) = 𝑇𝐻
𝑡𝐾 − 𝑡0
𝐻 = (𝑡𝐾 − 𝑡0) [

𝑇ℎ
ℎ + 𝑇O

𝐻 ] . (2.6)

As (2.6) indicates, 𝑇CS increases rapidly as 𝐻 decreases (lim𝐻→0 𝑇CS(𝐻) = ∞). This
means that co-simulations of systems that have fast dynamics and require frequent com-
munication between subsystems can have their performance heavily penalized. This ef-
fect is especially noticeable when the overhead is large with respect to the solver time,
which is the case when the models are small and/or the solvers are fast, or when the in-
terpolation of inputs or communication between simulators is slow. Conversely, infre-
quent communication canmake up for a large overhead. The presence of this overhead
is why co-simulations can be slower than monolithic simulations of the same model,
even if the subsystems are co-simulated in parallel [12].

2.9. Discussion
There are three aspects of this chapter that I would like to highlight because of their
relevance to the questions I stated in Chapter 1. First is that reducing the number of
times simulators exchange variables helps mitigate the overhead introduced by com-
munication delays, but also by other co-simulation-specific operations. This should
have a positive impact on the execution time of a co-simulation. Another aspect is that
co-simulations do typically use closed-form expressions to compute their inputs within
each macro time step, namely interpolation or extrapolation polynomials. But these
expressions are meant to be valid for one macro time step only, so other types of closed-
form expressions with longer validity are needed to further reduce the need for com-
munication. Lastly, and although not entirely within the scope of this thesis, is that the
operations required to find these expressions, and any other operations that might add
overhead to the co-simulation, are better assigned to the interfaces to prevent the co-
simulation master from becoming a bottleneck. With this in mind, the next step I will
take is to define how a co-simulation framework could determine when predictable or
unpredictable phenomena occur, and how it should operate to take advantage of these
closed-form expressions that can predict interface variables, assuming they exist. I will
address these two issues in the next chapter.
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I f each simulator has the capability of predicting its own inputs, at least dur-
ing a portion of the co-simulation, the need for communication between simulators

can be reduced. In this chapter I explore this idea, propose a method for distinguish-
ing between predictable and unpredictable interface variables, and describe how a co-
simulation could operate if the simulators were capable of predicting their inputs. I will
refer to this co-simulation method as selective simulator decoupling, because the objec-
tive is that simulators execute autonomously (i.e., decoupled from each other) when-
ever possible.

3.1. Predictability of Interface Variables
Intuitively, one can argue that the predictability of the interface variables changes as the
co-simulation runs. For example, when the co-simulated system is in steady state it is
easier to guess what the outputs of each subsystem will be on the next macro time step.
On the contrary, guessing the outputs of each simulator becomes more difficult when
the system is experiencing a fast transient. If the simulators could identify, at runtime,
closed-form expressions that describe the trajectories followed by the interface variables
over time, each simulator could predict its own inputs. I will refer to these expressions
as trajectory models to distinguish them from the interpolation/extrapolation polyno-
mials used within each macro time step, as trajectory models are meant to be valid for
more than one macro time step. Using the concept of trajectory models I will now in-
troduce the more precise Definitions 3.1.1 and 3.1.2 for predictable and unpredictable
interface variables.
Definition 3.1.1 (Predictable interface variables). Interface variables are considered
predictable when their trajectories can be computed with sufficient accuracy from a given
trajectory model or set thereof.

Definition 3.1.2 (Unpredictable interface variables). Interface variables are considered
unpredictable if they do not comply with Definition 3.1.1.

Note that according to Definitions 3.1.1 and 3.1.2 interface variables are classified
as predictable or unpredictable based on an available trajectory model or set of mod-
els, not on whether those models exist. This distinction has as consequence that the
same trajectory could be classified as predictable or unpredictable depending on the
method used for finding the trajectory model. Furthermore, what constitutes sufficient
accuracy is entirely dependent on the requirements of the co-simulation application.

3.2. Two Modes of Co-Simulation Operation
Given that the predictability of the interface variables changes during execution, the
co-simulation should be able to operate in two different modes and transition between
them as needed. The first mode is the coupled mode. The co-simulation operates in
this mode when the interface variables are considered unpredictable. In this mode, the
simulators exchange interface variables at everymacro time step. During the 𝑘th macro
time step, subsystem 𝑠 is simulated using as inputs the 𝑘th interpolation polynomials
�̃�𝑠,𝑘(𝑡), where 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1[ and 𝑠 ∈ 𝒔 the set of all subsystems. The coupled mode is
the default mode of operation.
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The second mode is the decoupled mode. The co-simulation operates in this mode
when the interface variables are considered predictable. In this mode, the simulators
do not exchange variables, but predict their own inputs using trajectory models. For
a decoupled mode that starts on the 𝑘th macro time step and lasts 𝜅 macro time steps,
subsystem 𝑠 is simulated using as inputs the 𝑘th trajectory models �̂�𝑠,𝑘(𝑡), 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝜅[
and 𝑠 ∈ 𝒔.

This bimodal co-simulation poses two main challenges. The first one is to iden-
tify appropriate trajectory models. The second one is to seamlessly transition between
modes. In this chapter Iwill only discuss the latter challenge, as the former is application-
dependent.

3.2.1. Simulator Decoupling
Any pair of coupled simulators can be decoupled if the interface variables they share
follow predictable trajectories. One way of determining when an interface variable is
following a predictable trajectory is to attempt to identify its trajectory model and to
measure the deviation between the trajectory this model predicts and the true trajec-
tory. If the deviation falls below a given threshold, the trajectory can be considered
predictable in the sense of Definition 3.1.1. Since the inputs of a subsystem are the out-
puts of another, this idea can be expressed either in terms of inputs or outputs. Thus,
any output 𝑦 ∈ 𝒚𝑠, 𝑠 ∈ 𝒔 can be considered predictable if

max |||
̂𝑦(𝑡) − 𝑦(𝑡)

max ̂𝑦(𝑡) −min ̂𝑦(𝑡)
||| < 𝜖p, 𝑡 ∈ 𝒕w, (3.1)

where 𝒕w ≔ {𝑡𝑘−𝑁s+1, 𝑡𝑘−𝑁s+2… 𝑡𝑘} is a discrete moving time window of length𝑁s sam-
ples and duration 𝑇w, ̂𝑦 is the trajectory model of 𝑦, and 𝜖p is the allowed normalized
deviation. The number of samples 𝑁s should be selected according to the needs of the
trajectory model identification method.

Note that (3.1) measures deviation relative to the dynamic range of the trajectory
model. Using a relative deviation measure simplifies the choice of a suitable 𝜖p. Using
the dynamic range instead of ̂𝑦(𝑡𝑘) or 𝑦(𝑡𝑘) prevents that (3.1) becomes indeterminate
when the outputs approach zero. One caveat is that constantly recomputing ̂𝑦 to eval-
uate (3.1) can be computationally expensive if 𝐻 is small. This means that the window
hop size 𝑅w, that is, the number of samples 𝒕wmoves every time (3.1) is evaluated, might
need to be adjusted. An 𝑅w = 1 requires (3.1) to be evaluated at every macro time step,
which incurs the highest computational expense. Higher values of 𝑅w reduce the com-
putational expense but might delay the transition to decoupled mode. However, this
should not negatively impact the accuracy of the co-simulation, only its total execution
time.

3.2.2. Simulator Recoupling
Any pair of decoupled simulators must be recoupled if one of the interface variables
they share stops following a predictable trajectory, which in the sense of Definition 3.1.2
happens when the trajectory model in place is no longer representative of the interface
variable. Since Definitions 3.1.1 and 3.1.2 are mutually exclusive, a pair of simulators
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needs to be recoupled when

max |||
̂𝑦(𝑡) − 𝑦(𝑡)

max ̂𝑦(𝑡) −min ̂𝑦(𝑡)
||| ≥ 𝜖p, 𝑡 ∈ 𝒕w, (3.2)

which is complementary to (3.1). As opposed to the case of simulator decoupling, de-
laying simulator recoupling would likely have a negative impact on the accuracy of the
co-simulation, so an 𝑅w = 1 is recommendable.

In this case it is possible to reduce the computational expense of evaluating (3.2)
at every macro time step taking into account that when a transition from predictable
to unpredictable interface variables occurs, the maximum deviation between the true
outputs and those calculated from the trajectory model occurs at the last sample in 𝒕w
(provided that 𝑅w = 1). Thus (3.2) can be reduced to

|||
̂𝑦(𝑡𝑘) − 𝑦(𝑡𝑘)

max ̂𝑦(𝑡) −min ̂𝑦(𝑡)
||| ≥ 𝜖p, 𝑡 ∈ 𝒕w, (3.3)

which is more computationally efficient. Every time (3.3) is evaluated, ̂𝑦 and 𝑦 are
evaluated only at 𝑡𝑘. Furthermore, ̂𝑦 does not need to be recomputed.

The importance of expressing (3.1) and (3.3) in terms of subsystem outputs instead
of inputs becomes apparent when considering that in decoupled mode the inputs are
obtained from trajectory models that are not updated to reflect possible changes in the
operating conditions of other subsystems. On the contrary, a change in the operating
conditions of a subsystem does reflect on its outputs, causing them to deviate from their
trajectory model.

A trajectory model can cease to be representative of an interface variable either due
to its own limitations (e.g., limited model accuracy) or due to a change in the operating
conditions of a subsystem (e.g., change of amodel parameter). Changes in the operating
conditions are caused by simulation events. External events are the most favorable for
simulator recoupling because their occurrence is known in advance. Aside from mode
transitions caused by external events, all other transitions back to the coupled mode
pose an additional challenge for non-real time co-simulation.

In a non-real time environment there are no guarantees on the time it takes to ex-
ecute a process. This means that as soon as the simulators decouple, they will likely
progress at different rates. When a transition to the coupled mode becomes necessary,
the simulator that discovers the need for recoupling can either be ahead of all the others
in simulation time or behind at least one simulator. In the first case recoupling is sim-
ple; the simulator that discovers the need for recoupling informs the others and waits
for them to catch up so they can all resume coupled execution from the same point in
simulation time. In the second case the simulators that are ahead in simulation time
must roll back before recoupling is possible. This is unfavorable not only because rolling
back comes with a performance penalty, but also because in practice not all simulators
support the roll-back operation. A possible solution to this problem is to slow down the
execution of the faster simulators during decoupled execution so all simulators advance
at the same rate, but in a non-real time environment this is difficult to implement.
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3.3. Algorithmic Description of the Method
Algorithm 3.1 presents a pseudocode description of the selectively-decoupled co-simu-
lation from the point of view of a simulator. In the algorithm, the simulators start in
coupled mode. Each simulator must attempt to identify a trajectory model of its inputs
and outputs. When all simulators find trajectory models that predict their inputs and
outputs in the sense of (3.1), they decouple and continue execution obtaining their own
inputs from the trajectory models. As they progress in decoupled mode, they continu-
ously test if their outputs have become unpredictable in the sense of (3.3). As soon as
one simulator determines that its outputs are unpredictable, it notifies all other simu-
lators so that they can recouple at a point defined by the unpredictable simulator.

Algorithm 3.1 Selectively-decoupled co-simulation (part 1)
1: Define: subsystem 𝑠, macro time step index 𝑘, recoupling macro time step index
𝑘r, 𝑡𝑘 ∈ {𝑡0, 𝑡1… 𝑡𝑘 … 𝑡𝐾} a discrete time grid, 𝒕w = {𝑡𝑘−𝑁s+1, 𝑡𝑘−𝑁s+2… 𝑡𝑘} a discrete
moving time widow, hop size 𝑅w, and 𝜖p the allowed normalized deviation.

2:
3: Initialize �̇�𝑠 = 𝒇𝑠(𝒙𝑠, 𝒖𝑠), 𝒚𝑠 = 𝒈𝑠(𝒙𝑠, 𝒖𝑠)
4: mode← COUPLED
5: 𝑘 ← 0
6:
7: while 𝑘 < 𝐾 do
8: if mode = COUPLED then
9:
10: if 𝑘 mod 𝑅w = 0 then
11: Find trajectory models �̂�𝑠,𝑘(𝑡) and �̂�𝑠,𝑘(𝑡)
12: end if
13:
14: if 𝒚𝑠(𝑡), 𝑡 ∈ 𝒕w are predictable according to (3.1) then
15: Request decoupling
16: end if
17:
18: Send 𝒚𝑠(𝑡𝑘) and receive 𝒖𝑠(𝑡𝑘)
19:
20: if Decoupling request accepted then
21: Update trajectory models �̂�𝑠,𝑘(𝑡)
22: 𝒖𝑠(𝑡) ← �̂�𝑠,𝑘(𝑡)
23: mode← DECOUPLED
24: else
25: Create interpolation polynomials �̃�𝑠,𝑘(𝑡)
26: 𝒖𝑠(𝑡) ← �̃�𝑠,𝑘(𝑡)
27: end if ▷ Continues in Algorithm 3.2
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Algorithm 3.2 Selectively-decoupled co-simulation (part 2)
28: else if mode = DECOUPLED then
29:
30: if Recoupling requested then
31: Receive recoupling index 𝑘r
32: Roll back or catch up to 𝑘 = 𝑘r
33: mode← COUPLED
34: else if ∃𝑦(𝑡𝑘) ∈ 𝒚𝑠(𝑡𝑘) ∶ 𝑦(𝑡𝑘) is unpredictable according to (3.3) then
35: 𝑘r ← 𝑘 − 1
36: Request recoupling at 𝑘r
37: else if Event in next macro time step then
38: mode← COUPLED
39: end if
40:
41: end if
42:
43: Solve �̇�𝑠 = 𝒇𝑠(𝒙𝑠, 𝒖𝑠(𝑡)), 𝒚𝑠 = 𝒈𝑠(𝒙𝑠, 𝒖𝑠(𝑡)) until 𝑡 = 𝑡𝑘+1
44:
45: 𝑘 ← 𝑘 + 1
46: end while

3.4.Method Speedup
To understand how selective decoupling can speed up a co-simulation, let us consider
a simple case where 𝑇S is solver time for one macro time step, 𝑇P is the time spent on
calculating and evaluating interpolation polynomials for one macro time step, 𝑇C is the
time it takes to exchange interface variables (i.e., communication time), 𝑇D is the total
time spent on operations related to simulator decoupling (i.e., calculating and evaluat-
ing trajectory models), 𝑛𝐻 is the total number of macro time steps, 𝑛C is the number of
coupled time steps and 𝑛D is the number of decoupled time steps, with 𝑛𝐻 = 𝑛C + 𝑛D.
Then the execution time of a traditional co-simulation is

𝑇CS = (𝑇S + 𝑇P + 𝑇C)𝑛𝐻 , (3.4)

and the execution time of the selectively-decoupled co-simulation is

𝑇SDCS = 𝑇S𝑛𝐻 + (𝑇P + 𝑇C)𝑛C + 𝑇D. (3.5)

Thus, the speedup as a function of communication delay is

𝑆(𝑇C) =
𝑇CS
𝑇SDCS

= (𝑇S + 𝑇P + 𝑇C)𝑛𝐻
𝑇S𝑛𝐻 + (𝑇P + 𝑇C)𝑛C + 𝑇D

. (3.6)

Assuming that the solver time and the communication time are dominant, since mini-
mizing 𝑇P and 𝑇D should be an implementation objective, the speedup can be approxi-
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mated by

𝑆(𝑇C) ≈
(𝑇S + 𝑇C)𝑛𝐻
𝑇S𝑛𝐻 + 𝑇C𝑛C

. =
𝑇S
𝑇C

+ 1
𝑇S
𝑇C

+ 𝑛C
𝑛𝐻

. (3.7)

In addition, the maximum theoretical speedup is

lim
𝑇C→∞

𝑆(𝑇C) =
𝑛𝐻
𝑛C

. (3.8)

Although this is a simplified analysis, what (3.7) and (3.8) indicate is that for a given
ratio between solver and communication time, and disregarding other sources of over-
head, there is speedup as long as the number of coupled macro time steps is smaller
than the total number ofmacro time steps. Also, when the communication time is large
with respect to solver time, the speedup approximates the ratio between total number
of macro time steps and coupled macro time steps.

3.5. Discussion
The main assumption I made in this chapter is that it is possible to find trajectory mod-
els that predict interface variables. If this is not true, then phenomena cannot be classi-
fied as predictable or unpredictable. Whether a selectively-decoupled co-simulation is
possible depends on this very fact.

One aspect worth highlighting is that the method I proposed in this chapter is inde-
pendent from the system it is applied to. Although the focus of this thesis is on natural
waveform simulation of electrical power systems, the method could be applied to other
systems if suitable trajectory models are found.

However, the fact that the method relies on rolling simulators back is a disadvan-
tage. There are three challenges related to this operation. First, rolling a simulator back
implies restarting it with the set of model states valid for that point in time. This means
that each simulator must store the history of all of its states, which substantially in-
creases the requirement for memory, especially for large systems. Second, rolling back
is a time consuming operation. And finally, rollback capabilities do not seem to be a
common feature of most electrical power system simulators.

Having defined how the simulators partaking in a co-simulation could selectively
decouple and predict their own inputs, the next step is finding trajectory models that
make this prediction possible. I will begin to address this matter in the next chapter.
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I n this chapter I propose amethod for finding a trajectory model that predicts sim-ulator inputs while the co-simulated subsystems are in steady state. I focus on the
case of the ac circuits used to represent power systems when the mechanical aspects of
the generators can be neglected. Although this exercise is of limited applicability con-
sidering that dynamic simulations are not meant to simulate steady states, it is a useful
first step because it provides insight into the feasibility of the selectively-decoupled co-
simulation I proposed in Chapter 3.

4.1. A Trajectory Model for Steady State
In ac circuit co-simulation, the interface variables are typically voltage and current,
although in some cases power is used as well [2]. These interface variables mainly fol-
low sinusoidal trajectories that may contain harmonic distortion caused by non-linear
devices, such as transformers and power electronic converters. Defining predictable in-
terface variables as those that follow these sinusoidal trajectories, the trajectory model
would have the form

�̂�(𝑡) =
𝑁
∑
𝑛=0

𝐴𝑛 sin (2𝜋𝑓𝑛𝑡 + 𝜙𝑛) , (4.1)

where 𝐴𝑛, 𝑓𝑛 and 𝜙𝑛 are the amplitude, frequency and phase of the 𝑛th harmonic, and
𝑁 is the total number of harmonics. This trajectory model is valid when the circuit is
in steady state. Thus, finding a suitable trajectory model �̂�(𝑡) implies estimating the
parameters 𝐴𝑛, 𝑓𝑛, 𝜙𝑛 and 𝑁 in (4.1).

4.2. Fourier-Based Trajectory Model Identification
In the case of continuous trajectories, a Fourier Transform would yield the required
trajectory model parameters. However, in a discrete case such as a co-simulation, nei-
ther the Discrete Fourier Transform (dft) nor its more efficient implementation, the
Fast Fourier Transform (fft), are likely to produce accurate results due to their dis-
crete frequency resolution. Some special considerations are required to overcome the
limitations of these discrete methods.

4.2.1. Accuracy of Discrete Fourier Methods
When estimating the frequency of a harmonic, the accuracy of a dft is restricted to

±Δ𝑓DFT2 = ± 𝑓s
2𝑁s

,

where Δ𝑓DFT is the frequency resolution of the dft, 𝑓s is the sampling frequency, and
𝑁s is the number of acquired samples.

As a reference, a macro time step of 0.1ms is a common choice for co-simulations
of a 50Hz electrical power system ac circuit, which means that the interface variables
are sampled at a frequency 𝑓s = 1/0.1ms = 10kHz. At that sampling frequency, 25 periods
need to be acquired to obtain a dft accuracy within ±1Hz. Taking into account that
a frequency deviation of 0.1Hz is significant for these systems, an accuracy of ±1Hz is
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Figure 4.1: QIFFT of a discrete spectrum.

unacceptably low, especially considering how many periods need to be acquired. For
applications that require more accuracy, methods that interpolate the dft (or the fft)
to better approximate a continuous Fourier Transform exist.

4.2.2. Interpolated Fourier Methods
TheQuadratically InterpolatedFast Fourier Transform (qifft) [3] is one of themethods
that approximate a continuous Fourier Transform. The idea behind the qifft is to
fit a parabola to the tuple (|𝑋(𝑏 − 1)|, |𝑋(𝑏)|, |𝑋(𝑏 + 1)|), where |𝑋(𝑏)| is a peak in the
discrete spectrum and 𝑏 its location in normalized frequency 𝑓/∆𝑓DFT (bin number), as
Figure 4.1a shows. In the figure neither the true peak value |𝑋t| nor its location 𝑏t can
be directly obtained from the discrete spectrum, but the vertex of the fitted parabola
( ̂𝑏t, |�̂�t|) provides a good approximation. To estimate the phase of each harmonic ̂𝜙t
one must find the intersection between the spectrum phase and ̂𝑏t using interpolation,
as in Figure 4.1b.

The eXponentially weighted qifft (xqifft) [4] differs from the qifft in that it
weighs |𝑋(𝑏 − 1)|, |𝑋(𝑏)| and |𝑋(𝑏 + 1)| using an exponential function before fitting
the parabola. This modification improves the accuracy of the estimates ̂𝑏t and |�̂�t|with
negligible impact on computational performance. By defining

𝛼 = |𝑋(𝑏 − 1)| (4.2)
𝛽 = |𝑋(𝑏)| (4.3)
𝛾 = |𝑋(𝑏 + 1)|, (4.4)
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the values of ̂𝑏t and |�̂�t| can be obtained from

̂𝑏t = 𝑏 + 1
2

f (𝛼) − f (𝛾)
f (𝛼) − 2f (𝛽) + f (𝛾) (4.5)

|�̂�t| = f −1 (f (𝛽) − 1
8

[f (𝛼) − f (𝛾)]2

f (𝛼) − 2f (𝛽) + f (𝛾)) , (4.6)

where f (Θ) = Θ𝑝 and f −1(Φ) = Φ
1
𝑝 are the exponential weighing function and its in-

verse. According to [4], 𝑝 = 0.2308 is a good choice for an accurate ̂𝑏t and 𝑝 = 0.2318 is
a good choice for an accurate |�̂�t|. Experimentally both of these values seemed appro-
priate for this application. Finally, ignoring the negative frequencies in the spectrum,
equations (4.5) and (4.6) can be applied to the 𝑛th peak in the discrete spectrum, and
𝐴𝑛, 𝑓𝑛 and 𝜙𝑛 can be estimated as

�̂�𝑛 = 2|�̂�t| (4.7)
̂𝑓𝑛 = ̂𝑏tΔ𝑓DFT (4.8)
̂𝜙𝑛 = ̂𝜙t. (4.9)

4.2.3. Spectrum Preprocessing
In practice, the trajectories followed by the interface variables need to be preprocessed
to maximize the accuracy of the xqifft. The two main challenges that need to be ad-
dressed are the possibility of an insufficient frequency resolution, which is detrimental
to spectrum interpolation, and spectral leakage [5], which modifies the shape of the
spectrum.

Figure 4.2a shows the spectrummagnitude of a 0.06s window of a current trajectory
sampled at a 10kHz rate. The trajectory has one frequency component around 50Hz,
that appears as the most prominent peak, and one around 250Hz that is almost indis-
tinguishable. In the case of the most prominent magnitude peak, the large separation
betweenmagnitude sampleswouldmake it difficult to fit a parabola to themas precisely
as in Figure 4.1. This problem can be mitigated by zero-padding the trajectory before
obtaining its spectrum. This results in the smoother spectrum magnitude shown in
Figure 4.2b, where the actual location of both frequency components becomes easier to
estimate from the main lobes, that is, the most prominent lobes in a frequency range.

However, the resulting spectrum is affected by spectral leakage, as the presence of
side lobes around each main lobe indicates. These side lobes are a challenge for peak
detection because they are difficult to distinguish from the main lobes without super-
vision, and because they modify the amplitude of the main lobes. Spectral leakage can
be mitigated by applying a windowing function to the zero-padded trajectory. Figure
4.2c shows the result of applying a Blackman window [5] to the zero-padded trajectory.
The resulting spectrum has two smooth and easily distinguishable main lobes around
50Hz and 250Hz. For each main lobe it is now straightforward to identify |𝑋(𝑏 − 1)|,
|𝑋(𝑏)| and |𝑋(𝑏 + 1)| and to apply the xqifft.



4.2. Fourier-Based Trajectory Model Identification

4

33

Frequency (Hz)

M
ag
ni
tu
de

(k
A
)

(a) Original trajectory

Frequency (Hz)

M
ag
ni
tu
de

(k
A
)

(b) Zero-padded trajectory

Frequency (Hz)

M
ag
ni
tu
de

(k
A
)

(c) Zero-padded and Blackman-windowed trajectory

Figure 4.2: Spectrum preprocessing of a current trajectory with one frequency compoent at 50Hz and another
at 250Hz, sampled for 0.06s at a 10kHz rate.
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4.2.4. Parameter Postprocessing
Experimentally I found that the 𝜙𝑛 that the xqifft produces are not accurate enough
for this application. To remedy this, I resorted to curve fitting based on least squares
optimization. I transformed the trajectory model �̂�(𝑡) of the true trajectory 𝑢(𝑡) into a
function of time an phase, and solved

{𝜙1, … , 𝜙𝑁} = argmin
𝜑1,…,𝜑𝑁

∑
𝑡∈𝒕w

[𝑢(𝑡) − �̂�(𝑡, 𝜑1, … , 𝜑𝑁)]
2 , (4.10)

using an iterative method. I used the 𝜙𝑛 obtained from the xqifft as starting point for
the first iteration, and let the algorithm refine them further. To solve (4.10) I applied
the Levenberg-Marquardt algorithm [6].

4.3. Testing
To evaluate the performance of this trajectory model identification method I first de-
fined an ac test circuit and run a monolithic simulation, a traditional co-simulation
and a selectively-decoupled co-simulation of the same circuit. I quantified accuracy
by measuring the deviation (error) of the state variables computed with co-simulation
from those obtained from a monolithic simulation. In every case I present the error of
a given state variable in percent of the dynamic range of said state variable. I calculated
speedup as the ratio between the execution time of a traditional co-simulation and a
selectively-decoupled co-simulation.

4.3.1. Test Circuit
Figure 4.3 shows the test circuit. This circuit represents one phase of a simple electrical
power system, composed of a generator, a transmission line and a load, and it is based
on the electromagnetic transient models from [7]. The switch connected between the
transmission line and the load simulates line-to-ground short circuits, and the current
source connected in parallel to the load injects 3rd and 5th harmonics to simulate the
presence of non-linear devices. Table 4.1 specifies the parameters of this test circuit.

For co-simulation, I split the test circuit in two subsystems as in Figure 4.4, where
𝑣𝜋1 and 𝑖𝜋 are the interface variables. At every macro time step, subsystem A sends 𝑣𝜋1
to subsystem B, and subsystem B enforces 𝑣𝜋1 with a controlled voltage source. At the
same time, subsystem B sends 𝑖𝜋 to subsystem A, and subsystem A enforces 𝑖𝜋 with a
controlled current source.

4.3.2. Test Environment
I implemented the circuitmodel, the simulators and the co-simulationmaster in Python
3.6, aided by the numerical methods provided by SciPy [8], and by the ømq [9] messag-
ing library for communication between the simulators. I ran all the (co-)simulations on
a desktop computer with a 3.5GHz Intel Xeon cpu and 8GB of ram. All processes (i.e.,
both simulators and the co-simulation master) run in parallel, each on a different cpu
core. In this implementation, the simulators are in charge of analyzing their own inputs
and outputs and of requesting mode transitions to the co-simulation master. In turn,
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Table 4.1: Test Circuit Parameters

Symbol Value Unit
𝑒G 60 sin(100𝜋𝑡) kV
𝑅G1 0.1 Ω
𝑅G2 100 Ω
𝐿G 0.2 mH
𝐶G 1 µC
ℓ𝜋 15 km
𝑟𝜋 0.01273 Ω/km
𝑙𝜋 0.9337 mH/km

𝑐𝜋1 , 𝑐𝜋2 6.37 µC/km
𝑅𝜋 𝑟𝜋ℓ𝜋 Ω
𝐿𝜋 𝑙𝜋ℓ𝜋 mH

𝐶𝜋1 , 𝐶𝜋2 𝑐𝜋1ℓ𝜋 or 𝑐𝜋2ℓ𝜋 µC
𝑅L 20 Ω
𝐿L 4 mH
𝐶L 20 µC
𝑖H 100 sin(300𝜋𝑡) + 60 sin(500𝜋𝑡) A

𝑒G

𝑅G1 𝐿G

𝑖G

𝐶G

−

+

𝑣G 𝑅G2 𝐶𝜋1

−

+
𝑣𝜋1

𝑅𝜋 𝐿𝜋

𝑖𝜋

𝐶𝜋2

−

+
𝑣𝜋2 𝐶L

−

+

𝑣L
𝐿L

𝑖L

𝑅L
𝑖H

Generator
Transmission line

(𝜋-section)
Short circuit

switch Load
Harmonic
source

Figure 4.3: Diagram of the test circuit.
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(b) Subsystem B

Figure 4.4: Diagram of the co-simulated test circuit split in two subsystems that exchange the interface vari-
ables 𝑣𝜋1 and 𝑖𝜋 .

the co-simulation master has the additional task of synchronizing mode transitions at
the request of the simulators.

4.3.3. Case 1: Validation
To validate this trajectorymodel identificationmethod, I compared a selectively-decou-
pled co-simulation to a monolithic simulation and a traditional co-simulation of the
test circuit. The (co-)simulated scenario includes a short circuit event at 𝑡 = 0.05s that
clears at 𝑡 = 0.15s, and a load event at 𝑡 = 0.25s represented as a step reduction of 𝑅L
to 5Ω. For the selectively decoupled co-simulation I considered two cases: one where
these events are known in advance and another where they are unknown and must be
detected. This is to study how the method reacts to external and internal events. It is
important to note that in practice it is not necessary to detect all events, only internal
events. This simplifies some of the mode transitions and increases result accuracy.

To solve the differential equations that model the test circuit I used the dopri5
solver, which is a Runge-Kutta solver of order (4,5) with step size control [10], and
limited its maximum step size to the size of the macro time step. For the co-simulations
I used a macro time step 𝐻 = 0.1ms, an acquisition window size 𝑇w = 2/50Hz = 0.04s, a
window hop size 𝑅w = 1 sample, and a predictability threshold 𝜖p = 0.02p.u.

Table 4.2 presents the execution time of each method. The table shows that the co-
simulation ismore than four times slower than themonolithic simulation. It also shows
that the selectively-decoupled co-simulation provides a speedup of about 20% with re-
spect to the traditional co-simulation. Even though this is a substantial improvement, it
is not enough to come close to the execution time of the monolithic simulation. Unex-
pectedly, the selectively-decoupled co-simulation with unknown event times provides
a higher speedup than the one with known event times, despite the additional opera-
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Table 4.2: Execution times and speedup for Case 1

Method Execution time
(s)

Speedup
(p.u.)

Monolithic 3.12 –
Co-simulation 13.7 –

Selective decoupling
(known event times) 11.5 1.19

Selective decoupling
(unknown event times) 11.35 1.2

tions the former executes. This is because an event can only be detected after it hap-
pens, which causes the co-simulation with unknown event times to remain decoupled
for slightly longer than its counterpart. Nevertheless, I do not believe this result would
necessarily extend to larger models, where the penalty for rolling back a simulator is
higher and could offset the gains from longer decoupled execution.

Figure 4.5 compares the trajectories of all the state variables in the test circuit, com-
puted with each (co-)simulation method. The colored background indicates that the
co-simulation is decoupled. The figure shows that all the trajectories overlap to the
point where they are practically indistinguishable from each other, even when the co-
simulation is decoupled. The selectively decoupled co-simulations are able to seam-
lessly transition between modes, and of accurately reproducing fast transients, such as
the peaks in 𝑣L and 𝑖L at 𝑡 = 0.15s, or the small oscillations in 𝑣L at 𝑡 = 0.25s.

It is not until one examines the error of each co-simulationwith respect to themono-
lithic simulation in Figure 4.6, that the differences between the methods become clear.
With the exception of a few peaks that occur at mode transitions, the errors obtained
from the selectively decoupled co-simulations are well below 1%. The error plots show
that all three co-simulations are similarly accurate in coupled mode, and that the er-
ror increases as soon as the simulators decouple. During the longest decoupled mode
it is also possible to see that the error has a tendency to increase, which I attribute to
the limited accuracy of the trajectory models. Although both selectively-decoupled co-
simulations show similar accuracy, after recoupling the error is slightly higher for the
co-simulation with unknown event times. The delay between event occurrence and
event detection appears to cause this additional deviation.

4.3.4. Case 2: Influence of the Macro Time Step
The objective of this case is to study the influence of the macro time step 𝐻 on the
accuracy and execution time of a selectively decoupled co-simulation. For this purpose,
I considered the same scenario and settings as inCase 1, but repeated the co-simulations
for different values of𝐻. Figure 4.7 shows the results of these (co-)simulations in terms
of state variable errors and speedupwith respect to𝐻. The figure summarizes the errors
using box plots that mark the 25th, 50th, 75th and 100th error percentiles.

The results showan overall tendency for both the error and the speedup to growas𝐻
grows. It is possible to observe thatmost of the error of the traditional co-simulation lays
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Figure 4.5: State variables computed with a monolithic simulation, a traditional co-simulation, a selectively-
decoupled co-simulation with known event times, and a selectively-decoupled co-simulation with unknown
event times. The colored background indicates when the co-simulation is in decoupled mode (green for
known event times, red for unknown event times). Note that 𝑣L = 𝑣𝜋2 and 𝑣G = 𝑣𝜋1 .
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Figure 4.6: State variable errors of the traditional co-simulation, the selectively-decoupled co-simulationwith
known event times, and the selectively-decoupled co-simulationwith unknown event times fromCase 1. The
errors are measured with respect to the monolithic simulation and are in percent of the dynamic range of the
corresponding state variable. The colored background indicateswhen the co-simulation is in decoupledmode
(green for known event times, red for unknown event times).
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in a lower range than the error of the selectively-decoupled co-simulations, with some
exceptions for large 𝐻, where the ranges are approximately the same. This tendency
can be observed most clearly if by comparing the 75th error percentiles.

Surprisingly, there are cases where a smaller𝐻 produces a higher error range. One
example of this is the error in 𝑣G, which lays in a lower range for 𝐻 = 0.1 × 2−2ms
than for 𝐻 = 0.1 × 2−1ms. In all of these cases, the 25th, 50th and 75th do not follow
this tendency, indicating that only a few error points cause the higher error range. By
examining the results of each co-simulation individually, I found that the error points
that cause the higher error range come from small oscillations that occur at the mode
transition right after 𝑡 = 0.15s, the amplitude of which does not show a clear tendency
with respect to𝐻.

Now, comparing both selectively decoupled co-simulations, it is possible to observe
that the 75th error percentile is similar for every value of𝐻, but that the 25th percentile
drops much lower for the co-simulation with known event times as 𝐻 decreases. This
is because the upper error bound is mostly influenced by the accuracy of the trajec-
tory model, whereas the lower error bound is mostly influenced by the accuracy of the
coupled co-simulation (see Figure 4.6). The accuracy of the trajectory model does not
significantly improve as 𝐻 decreases, because the accuracy of the dft depends on the
size of the acquisition window (number of acquired periods), not the sample rate (see
Section 4.2.1), provided that the minimum sample rate requirement is met. Since the
co-simulation with unknown event times spends more time in decoupled mode for the
reasons exposed in Case 1, a larger portion of its error lays towards the higher extreme
of the error range.

Regarding the speedup, a selectively decoupled co-simulation can become slower
than a traditional co-simulation if 𝐻 is sufficiently low. As 𝐻 decreases, (3.1) must be
evaluated more often. Additionally, the trajectory model identification method has to
process a larger number of samples. As a result, the overhead of detecting predictable
interface variables grows to the point where the selectively decoupled co-simulation
yields no benefit.

4.3.5. Case 3: Influence of the Predictability Threshold
The objective of this case is to study the influence of the predictability threshold 𝜖p
on the accuracy and execution time of a selectively decoupled co-simulation. For this
purpose, I considered the same scenario and settings as in Case 1, but repeated the
(co-)simulations for different values of 𝜖p. Figure 4.8 shows the results of these (co-)
simulations in the same style as in Case 2. Although the traditional co-simulation does
not depend on 𝜖p, I show its error for each 𝜖p for ease of visual comparison.

The results in Figure 4.8 share some characteristics with those from Figure 4.7. One
observes that the 75th error percentile of the selectively-decoupled co-simulations grows
with 𝜖p. One can also observe that there is no clear tendency for the 100th error per-
centile, although higher error ranges do tend to appear for higher 𝜖p. In addition, in
most cases both the 25th and 75th error percentiles are lower for the selectively decou-
pled co-simulation with known event times.

Even though the 75th error percentile increases with 𝜖p, it always remains below
0.5%. However, the 100th error percentile reaches values above 10% for high 𝜖p. By
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Figure 4.7: Error with respect to the monolithic simulation and speedup with respect to the traditional co-
simulation for differentmacro time step sizes. The error is in percent of the dynamic range of the correspond-
ing state variable. Each box plot marks the 25th, 50th, 75th and 100th error percentiles.
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examining the results of each co-simulation individually, I found that the error points
that cause such a high 100th percentile come, once more, from small oscillations that
occur at the mode transition right after 𝑡 = 0.15s. This indicates that variations of 𝜖p
do not affect all mode transitions the same way, and that while some remain seamless,
others do not.

Figure 4.9 shows how changes in 𝜖p affect when mode transitions occur. Accord-
ing to the figure, as 𝜖p increases, the transitions to the decoupled mode happen earlier,
whereas the transitions to the coupled mode happen later. The figure also confirms
that not all mode transitions are equally affected by changes in 𝜖p. For example, the
2nd decoupling happens around 300 macro time steps earlier for 𝜖p = 0.15 than for
𝜖p = 0.01, whereas all the other transitions are shifted by 20 macro time steps or fewer.
This means that this transition alone produces most of the additional speedup.

How much a mode transition shifts in time as a consequence of a change in 𝜖p has
to do with how quickly an interface variable deviates from (or converges towards) its
trajectory model. Figure 4.10 shows the deviation of 𝑖𝜋 from its trajectory model ̂𝑖𝜋 .
Here one can see that the transitions to decoupled mode with the largest shift are those
where the deviation decreases slowly (second and fourth), whereas the least affected
transitions are those where there is virtually no deviation (first) or the deviation falls
sharply (third).

4.3.6. Case 4: Influence of the Window Hop Size
The objective of this case is to study the influence of the acquisition window hop size
𝑅w on the accuracy and execution time of a selectively decoupled co-simulation. Once
more, I considered the same scenario and settings as in Case 1, but repeated the (co-)
simulations for different values of 𝑅w. Figure 4.11 shows the results of these (co-) simu-
lations in the same style as in Cases 2 and 3. Since a change in 𝑅w only affects the tran-
sitions to decoupled mode, I omit the results of the selectively decoupled co-simulation
with unknown events. Although the traditional co-simulation does not depend on 𝑅w,
I show its error for each 𝑅w for ease of visual comparison.

The results in Figure 4.11 show that the error does not change significantly for dif-
ferent values of 𝑅w. Additionally, the maximum speedup that can be achieved by in-
creasing this parameter is more modest than in Case 3. As opposed to previous cases,
where the speedup shows a tendency to settle at a certain value, in this case I found that
the speedup drops significantly for large 𝑅w. This happens because as 𝑅w increases, so
does the probability of delaying transitions to the decoupled mode.

4.3.7. Case 5: Selecting Parameters for Additional Speedup
The objective of this case is to tune the selectively decoupled method to obtain a higher
speedup than that of Case 1, guided by the results of Cases 2 to 4. Here, I considered
the same scenario and settings as in Case 1 but set 𝜖p = 0.07 and 𝑅w = 24 based on
the relationship between error and speedup found in Cases 3 and 4. I chose this value
for 𝜖p because it provides higher speedup that the value from Case 1 and only a slightly
higher error, and this value for 𝑅w because it provides the highest speedup.

Table 4.3 shows the speedups for Case 5, which are around 10% and 20% higher than
in Case 1. Observing Figure 4.12, one can see that the first and third transitions to the
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Table 4.3: Speedup for Case 5

Method Speedup
(p.u.)

Selective decoupling
(known event times) 1.31

Selective decoupling
(unknown event times) 1.42

coupled mode occur much later for the co-simulation with unknown event times that
for the one with known event times, which explains the speedup difference between
them. In addition, by comparing Figure 4.12 to Figure 4.5 it is visible that much of the
additional speedup comes from the second and fourth time the simulators decouple,
which is in accordance with the results from Figure 4.9.

Regarding the accuracy of the results, it is still difficult to perceive the differences
between the results fromdifferentmethods in Figure 4.12. Oncemore, these differences
become clear when observing the error in Figure 4.13. Indeed, the error is higher in
this case than in Case 1, and the differences between both selectively decoupled co-
simulations are also more prominent. Nevertheless, the error remains under or around
1% for all state variables, with the exception of some peaks that reach almost 10% at
the second transition to the coupled mode. These errors might be acceptable if one
considers the appearance of the trajectories in Figure 4.12.

4.4. Discussion
What this chapter shows is that even for the simplest case, finding a trajectory model is
not trivial, but still possible. The results also show that it is possible to speed up a co-
simulation by decoupling the simulators, provided that the interface variables are pre-
dictable for a large enough portion of the co-simulation. Furthermore, there are cases
where detecting predictable interface variables becomes so computationally expensive
that the selectively-decoupled co-simulation turns out to be slower than the traditional
co-simulation. However, in these test cases both simulators run on the same computer,
making the communication delay between them rather small. For a large enough com-
munication delay, speedup will nevertheless be possible.

The selective decoupling method as presented in Chapter 3 requires that the simu-
lators are able to roll back in time. As I already mentioned, this can be memory con-
suming, time consuming, and unlikely to be a feature of most electrical power system
simulators. An alternative to rolling back could be that all simulators run at the same
rate while in decoupled mode. Yet, this is difficult to ensure in a non-real time environ-
ment. Another alternative could be to have all simulators catch up to the simulator that
has progressed the most. However, this would lead to a loss of accuracy when the sim-
ulator that has progressed the most is not the one requesting recoupling. Additionally,
such approach would yield non-deterministic results because on every run, the simula-
tors would recouple at a different point in simulation time. Perhaps the most practical
approach would be for the simulators to exchange synchronization messages at a low
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Figure 4.12: State variables computedwith amonolithic simulation, a traditional co-simulation, a selectively-
decoupled co-simulation with known event times, and a selectively-decoupled co-simulation with unknown
event times. The colored background indicates when the co-simulation is in decoupled mode (green for
known event times, red for unknown event times). Note that 𝑣L = 𝑣𝜋2 and 𝑣G = 𝑣𝜋1 .
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Figure 4.13: State variable errors of the traditional co-simulation, the selectively-decoupled co-simulation
with known event times, and the selectively-decoupled co-simulation with unknown event times from Case
5. The errors are measured with respect to the monolithic simulation and are in percent of the dynamic
range of the corresponding state variable. The colored background indicates when the co-simulation is in
decoupled mode (green for known event times, red for unknown event times).
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rate, to prevent any one of them from advancing too far ahead from the rest.
Finally, I must once more acknowledge how this test is limited by the simplicity of

the chosen trajectory model. The circuit model that I used for these tests is meant for
representing only fast electromagnetic phenomena, so once an electromagnetic tran-
sient fades away, the circuit returns quickly to steady state. This is not the case with
power system models that consider electromechanical generators. In their case, after
an electromagnetic transient fades, an electromechanical transient might still be occur-
ring. Under such circumstances, the steady state trajectory model will undoubtedly fall
short. Thus, it is important to find a trajectory model that can describe interface vari-
ables in a wider range of conditions. I will address this issue, as well as the rollback
issue, in the next chapter.
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The practicality of the selective decouplingmethod depends on the availability of
a trajectory model that is valid under conditions beyond steady state. In this chap-

ter I propose a trajectory model that describes interface variables while the system is
experiencing a slow, electromechanical transient. I also propose a criterion for preven-
tive recoupling to avoid rollbacks, and describe how the co-simulation must operate to
take advantage of these ideas.

5.1. A Trajectory Model for Slow Transients
For a power system subject to electromechanical transients, the interface variables are
of the form

�̂�(𝑡) =
𝑁
∑
𝑛=0

𝐴𝑛(𝑡) cos (2𝜋𝑓𝑛𝑡 + 𝜙𝑛(𝑡)) , (5.1)

where 𝐴𝑛(𝑡), 𝑓𝑛 and 𝜙𝑛(𝑡) are the amplitude, frequency and phase of the 𝑛th harmonic,
and 𝑁 is the total number of harmonics. In contrast to the trajectory model for steady
states described by (4.1), which is defined by a set of parameters, the trajectorymodel for
electromechanical transients described by (5.1) is defined by two functions of time. This
makes it much more challenging to identify. One way to overcome this challenge is to
transform this function identification problem into a parameter identification problem.

Let us consider the trajectory model for the 𝑛th harmonic

�̂�𝑛(𝑡) = 𝐴𝑛(𝑡) cos (𝜔𝑛𝑡 + 𝜙𝑛(𝑡)) (5.2)

= 1
2 (𝑝𝑛(𝑡)𝑒

𝑗𝜔𝑛𝑡 + 𝑝𝑛(𝑡)𝑒−𝑗𝜔𝑛𝑡) (5.3)

= ℜ(𝑝𝑛(𝑡)𝑒𝑗𝜔𝑛𝑡) , (5.4)

where 𝜔𝑛 = 2𝜋𝑓𝑛 and 𝑝𝑛(𝑡) = 𝐴𝑛(𝑡)𝑒𝑗𝜙𝑛(𝑡) is a dynamic phasor. Approximating 𝑝𝑛(𝑡)
with an𝑀th order Taylor expansion about an arbitrary 𝑡𝑘 ∈ 𝒕 yields

𝑝𝑛,𝑀(𝑡) =
𝑀
∑
𝑚=0

𝑝(𝑚)
𝑛 (𝑡𝑘)

(𝑡 − 𝑡𝑘)𝑚
𝑚! , (5.5)

where 𝑝(𝑚)
𝑛 (𝑡𝑘) is the 𝑚th derivative of 𝑝𝑛(𝑡) at 𝑡 = 𝑡𝑘, so the trajectory model can be

approximated as

�̂�(𝑡) =
𝑁
∑
𝑛=0

�̂�𝑛(𝑡) (5.6)

≈
𝑁
∑
𝑛=0

ℜ(𝑝𝑛,𝑀(𝑡)𝑒𝑗𝜔𝑛𝑡) (5.7)

=
𝑁
∑
𝑛=0

𝑀
∑
𝑚=0

ℜ(𝑝(𝑚)
𝑛 (𝑡𝑘)𝑒𝑗𝜔𝑛𝑡) (𝑡 − 𝑡𝑘)𝑚

𝑚! . (5.8)
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Using this approximation, identifying the trajectory model �̂�(𝑡) is equivalent to iden-
tifying the set of parameters 𝑝(𝑚)

𝑛 (𝑡𝑘), 𝑛 ∈ {0, 1…𝑁}, 𝑚 ∈ {0, 1…𝑀}, which can be
accomplished with a dynamic phasor estimation method.

5.2. Dynamic Phasor Estimation with Taylor-Kalman Filters
The Taylor-Kalman filter, originally proposed in [2], [3], and later improved in [4], [5],
is an application of the discrete Kalman filter to the problem of estimating a dynamic
phasor from a measurement of its associated waveform. Out of the existing dynamic
phasor estimationmethods, the Taylor-Kalman filter is particularly interesting because
it can estimate a dynamic phasor and 𝑀 of its derivatives, without delay [6]. Since
the Taylor-Kalman filter is an application of the discrete Kalman filter, at this point it
becomes helpful to briefly discuss the discrete Kalmanfilter algorithm and how to apply
it.

5.2.1. The Discrete Kalman Filter Algorithm
A discrete Kalman filter is a recursive filter that estimates the states 𝔁 of a system af-
fected by Gaussian noise, using a discrete, linear, stochastic model of said system, and
a noisy measurement of its outputs𝔃. The model takes the form

𝔁[𝓀 + 1] = 𝓕𝔁[𝓀] + 𝓖𝓾[𝓀] +𝔀[𝓀] (5.9)
𝔂[𝓀 + 1] = 𝓗𝔁[𝓀 + 1] + 𝓿[𝓀 + 1], (5.10)

where𝓾 are the model inputs,𝔂 are the model outputs,𝔀 represents process noise,𝓿
represents output measurement noise, and𝓀 is the discrete index. Note that according
to this description, 𝔂 is an estimation of the system outputs based on a model of the
real system, whereas𝔃 is a measurement of the real outputs.

If both a model of the system in the form of (5.9) and (5.10), and the system outputs
are available, the states can be estimated by applying the discrete Kalman algorithm
described in Algorithm 5.1.

5.2.2. Derivation of the Taylor-Kalman Filter
To derive the Taylor-Kalman filter, a state transition equation in the form of (5.9) and
an output equation in the form of (5.10) must be found. The equations must describe
a process whose output is a waveform (i.e., an interface variable), and whose states are
related to the dynamic phasor that produces the waveform. For this, it is possible to
start from the Taylor expansion of the 𝑛th harmonic described by (5.5), this time about
a time origin 𝑡𝓀. By defining 𝜏 ≔ 𝑡 − 𝑡𝓀, it follows that the dynamic phasor and its first
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Algorithm 5.1 Discrete Kalman filter
1: Define: discrete index 𝓀, number of output measurements 𝒦, state error covari-
ance matrix𝓟, process noise covariance matrix𝓠, measurement noise covariance
matrix 𝓡, Kalman gain 𝓚, estimated states �̂�, ◽− prediction of any variable ◽,
and ◽H Hermitian of ◽.

2:
3: �̂�[0] ← �̂�0
4: 𝓟[0] ← 𝓟0
5: 𝓀 ← 0
6:
7: while 𝓀 < 𝒦 do
8:
9: ▷ time update (prediction)
10: �̂�−[𝓀 + 1] = 𝓕�̂�[𝓀] + 𝓖𝓾[𝓀] ▷ state prediction
11: 𝓟−[𝓀 + 1] = 𝓕𝓟[𝓀]𝓕H +𝓠 ▷ covariance prediction
12:
13: ▷measurement update (correction)
14: 𝓚[𝓀 + 1] = 𝓟−[𝓀 + 1]𝓗T (𝓗𝓟−[𝓀 + 1]𝓗T +𝓡)−1 ▷ gain update
15: �̂�[𝓀+1] = �̂�−[𝓀+1]+𝓚[𝓀+1] (𝔃[𝓀 + 1] −𝓗�̂�−[𝓀 + 1])▷ state update
16: 𝓟[𝓀 + 1] = (𝑰 −𝓚[𝓀 + 1]𝓗)𝓟−[𝓀 + 1] ▷ covariance update
17:
18: 𝓀 ← 𝓀+ 1
19:
20: end while

𝑀 derivatives can be approximated as

𝑝(0)𝑛,𝑀(𝑡) = 𝑝(0)𝑛,𝑀(𝑡𝓀) + 𝑝(1)𝑛,𝑀(𝑡𝓀)𝜏 +⋯+ 𝑝(𝑀)
𝑛,𝑀(𝑡𝓀)

𝜏𝑀
𝑀!

𝑝(1)𝑛,𝑀(𝑡) = 𝑝(1)𝑛,𝑀(𝑡𝓀) + 𝑝(2)𝑛,𝑀(𝑡𝓀)𝜏 +⋯+ 𝑝(𝑀)
𝑛,𝑀(𝑡𝓀)

𝜏𝑀−1

(𝑀 − 1)!
⋮

𝑝(𝑀)
𝑛,𝑀(𝑡) = 𝑝(𝑀)

𝑛,𝑀(𝑡𝓀).

(5.11)

Defining

𝒑𝑛,𝑀(𝑡) ≔

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑝(0)𝑛,𝑀(𝑡)

𝑝(1)𝑛,𝑀(𝑡)
⋮

𝑝(𝑀)
𝑛,𝑀(𝑡)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(5.12)



5.2. Dynamic Phasor Estimation with Taylor-Kalman Filters

5

57

and

𝜱𝑀(𝜏) ≔

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 𝜏 … 𝜏𝑀

𝑀!

1 … 𝜏𝑀−1

(𝑀−1)!
⋱ ⋮

1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (5.13)

equation (5.11) can be expressed in matrix form as

𝒑𝑛,𝑀(𝑡) = 𝜱𝑀(𝜏)𝒑𝑛,𝑀(𝑡𝓀). (5.14)

Finally, a state transition equation in the form of (5.9) can be obtained by substituting
𝑡𝓀 = 𝓀𝜏 and 𝑡 = (𝓀 + 1)𝜏 in (5.14), and adding noise to the discrete equation that
results, which produces

𝒑𝑛,𝑀[𝓀 + 1] = 𝜱𝑀(𝜏)𝒑𝑛,𝑀[𝓀 + 1] +𝔀[𝓀]. (5.15)

Comparing (5.15) to the state transiton equation stated in (5.9) it becomes apparent that
𝔁 = 𝒑𝑛,𝑀 ,𝓕 = 𝜱𝑀 and𝓖 = 0.

Having found a suitable state transition equation, the following step is to find an
output equation in the form of (5.10), whose states are𝔁 = 𝒑𝑛,𝑀 . To put this derivation
in context, let us consider that the output waveform is the 𝑛th harmonic 𝑦𝑛 of a co-
simulation interface variable 𝑦. Thus, an𝑀th order approximation of 𝑦𝑛 is

𝑦𝑛,𝑀(𝑡) = ℜ(𝒉T𝒑𝑛,𝑀(𝑡)𝑒𝑗𝜔𝑛𝑡) (5.16)

where 𝒉T = [1 0… 0] ∈ ℕ1×(𝑀+1). However, even if (5.16) were discretized, it would
not be possible to identify a𝓗 for two reasons: the presence of theℜ operator and the
𝑒𝑗𝜔𝑛𝑡 factor, whichmakes the equation time-variant. The first problem can be solved by
taking advantage of the propertyℜ(𝑐) = 1/2(𝑐 + 𝑐), 𝑐 ∈ ℂ, and including the conjugate
of the dynamic phasor and derivatives in the state vector. The second problem can be
solved by not using the dynamic phasor as a state variable, but instead a rotating dyamic
phasor defined as

𝑟𝑛,𝑀(𝑡) = 𝑝𝑛,𝑀(𝑡)𝑒𝑗𝜔𝑛𝑡, (5.17)

as to absorb the time-variant factor 𝑒𝑗𝜔𝑛𝑡 into the state variables. With these two changes,
the state vector and all the matrices that define (5.9), (5.10), must be derived again. Fol-
lowing the same logic as before, the derivatives of 𝑟𝑛,𝑀(𝑡) are

𝑟(0)𝑛,𝑀(𝑡) = 𝑝(0)𝑛,𝑀(𝑡)𝑒𝑗𝜔𝑛𝑡

𝑟(1)𝑛,𝑀(𝑡) = 𝑗𝜔𝑛𝑝(0)𝑛,𝑀(𝑡)𝑒𝑗𝜔𝑛𝑡 + 𝑝(1)𝑛,𝑀(𝑡)𝑒𝑗𝜔𝑛𝑡

𝑟(2)𝑛,𝑀(𝑡) = (𝑗𝜔𝑛)2𝑝(0)𝑛,𝑀(𝑡)𝑒𝑗𝜔𝑛𝑡 + 2𝑗𝜔𝑛𝑝(1)𝑛,𝑀(𝑡)𝑒𝑗𝜔𝑛𝑡 + 𝑝(2)𝑛,𝑀(𝑡)𝑒𝑗𝜔𝑛𝑡

⋮

(5.18)
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which rearranged in matrix form becomes

𝒓𝑛,𝑀(𝑡) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑟(0)𝑛,𝑀(𝑡)

𝑟(1)𝑛,𝑀(𝑡)
⋮

𝑟(𝑀)
𝑛,𝑀 (𝑡)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 𝑒𝑗𝜔𝑛𝑡𝓜𝑛,𝑀𝒑𝑛,𝑀(𝑡), (5.19)

where

𝓜𝑛,𝑀 =
⎡
⎢
⎢
⎢
⎢
⎣

1
𝑗𝜔𝑛 1
⋮ ⋮ ⋱

(𝑗𝜔𝑛)𝑀 𝑀(𝑗𝜔𝑛)𝑀−1 … 1

⎤
⎥
⎥
⎥
⎥
⎦

∈ ℂ(𝑀+1)×(𝑀+1) (5.20)

is a non-singular matrix whose element in row 𝑝 and column 𝑞 is

𝑚𝑝𝑞 =
⎧
⎨
⎩

(𝑝 − 1
𝑞 − 1 ) (𝑗𝜔𝑛)

𝑝−𝑞, 𝑝 ≥ 𝑞

0, 𝑝 < 𝑞
. (5.21)

The next step is to establish a relationship between 𝒓𝑛,𝑀(𝑡) and 𝒓𝑛,𝑀(𝑡𝓀). Evaluating
𝒓𝑛,𝑀(𝑡) at 𝑡𝓀 produces

𝒓𝑛,𝑀(𝑡𝓀) = 𝑒𝑗𝜔𝑛𝑡𝓀𝓜𝑛,𝑀𝒑𝑛,𝑀(𝑡𝓀), (5.22)

and solving for 𝒑𝑛,𝑀(𝑡𝓀) yields

𝒑𝑛,𝑀(𝑡𝓀) = 𝑒−𝑗𝜔𝑛𝑡𝓀𝓜−1
𝑛,𝑀𝒓𝑛,𝑀(𝑡𝓀). (5.23)

Substituting (5.14) in (5.19)

𝒓𝑛,𝑀(𝑡) = 𝑒𝑗𝜔𝑛𝜏𝓜𝑛,𝑀𝜱𝑀(𝜏)𝒑𝑛,𝑀(𝑡𝓀), (5.24)

and substituting (5.23) in (5.24)

𝒓𝑛,𝑀(𝑡) = 𝑒𝑗𝜔𝑛𝑡𝑒−𝑗𝜔𝑛𝑡𝓀𝓜𝑛,𝑀𝜱𝑀(𝜏)𝓜−1
𝑛,𝑀𝒓𝑛,𝑀(𝑡𝓀) (5.25)

= 𝑒𝑗𝜔𝑛𝜏𝜳𝑛,𝑀(𝜏)𝒓𝑛,𝑀(𝑡𝓀), (5.26)

with 𝜳𝑛,𝑀(𝜏) = 𝓜𝑛,𝑀𝜱𝑀(𝜏)𝓜−1
𝑛,𝑀 . Now, (5.26) can be discretized by substituting

𝑡𝓀 = 𝓀𝜏 and 𝑡 = (𝓀 + 1)𝜏 to produce

𝒓𝑛,𝑀[𝓀 + 1] = 𝑒𝑗𝜔𝑛𝜏𝜳𝒏,𝑴(𝜏)𝒓𝑛,𝑀[𝓀]. (5.27)
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To build a state transition equation in the form of (5.9), it is necessary to include the
conjugate of 𝒓𝑛,𝑀 in the state vector for the reasons explained above, which gives

[
𝒓𝑛,𝑀[𝓀 + 1]
𝒓𝑛,𝑀[𝓀 + 1]

] = [
𝑒𝑗𝜔𝑛𝜏𝜳𝒏,𝑴(𝜏)

𝑒−𝑗𝜔𝑛𝜏𝜳𝑚,𝑀(𝜏)
] [
𝒓𝑛,𝑀[𝓀]
𝒓𝑛,𝑀[𝓀]

] +𝔀[𝓀]. (5.28)

Comparing (5.28) to (5.9) it becomes apparent that

𝔁 = [
𝒓𝑛,𝑀[𝓀 + 1]
𝒓𝑛,𝑀[𝓀 + 1]

] , (5.29)

𝓕 = [
𝑒𝑗𝜔𝑛𝜏𝜳𝑛,𝑀(𝜏)

𝑒−𝑗𝜔𝑛𝜏𝜳𝑛,𝑀(𝜏)
] , and (5.30)

𝓖 = 0. (5.31)

Having defined the state vector as 𝔁 = [𝒓𝑛,𝑀 𝒓𝑛,𝑀]T, an𝑀th order approximation
of 𝑦𝑛 is

𝑦𝑛,𝑀(𝑡) = ℜ(𝒉T𝒓𝑛,𝑀(𝑡)) =
1
2 [𝒉

T 𝒉T] [
𝒓𝑛,𝑀(𝑡)
𝒓𝑛,𝑀(𝑡)

] , (5.32)

where 𝒉T = [1 0… 0] ∈ ℕ1×(𝑀+1). Discretizing (5.32) and adding Gausian noise pro-
duces

𝑦𝑛,𝑀[𝓀 + 1] = 1
2 [𝒉

T 𝒉T] [
𝒓𝑛,𝑀[𝓀 + 1]
𝒓𝑛,𝑀[𝓀 + 1]

] + 𝓿[𝓀 + 1], (5.33)

which when compared to (5.10) reveals that𝓗= 1/2[𝒉T 𝒉T].
The last step needed before applying Algorithm 5.1 to the dynamic phasor estima-

tion problem is defining the noise covariance matrices, which can be set to 𝓠 = 𝑰𝜎2𝑣
and𝓠 = 𝜎2𝑤, where 𝑰 is an identity matrix of size 2𝑀, and 𝜎2𝑣 and 𝜎2𝑤 are the variances
of the process and output measurement noise.

Finally, the estimated dynamic phasor is

̂𝒑𝑛,𝑀[𝓀 + 1] = 𝑒−𝑗𝜔𝑛(𝓀+1)𝜏𝓜−1
𝑛,𝑀 ̂𝒓𝑛,𝑀[𝓀 + 1]. (5.34)

Each element in the ̂𝒑𝑛,𝑀 vector is an estimation of the dynamic phasor or one of its
derivatives, which define the trajectory model from (5.8).
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5.3. Extension to Harmonics
To extend the Taylor-Kalman filter to waveforms with harmonic infiltration, it is neces-
sary to define a state vector that considers all harmonics of interest. Defining

𝒓𝑀 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝒓1,𝑀
𝒓1,𝑀
⋮

𝒓𝑁,𝑀

𝒓𝑁,𝑀

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (5.35)

it is possible to build an output equation as

𝑦𝑀[𝓀 + 1] = 1
2 [𝒉

T 𝒉T …𝒉T 𝒉T]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝒓1,𝑀[𝓀 + 1]
𝒓1,𝑀[𝓀 + 1]

⋮
𝒓𝑁,𝑀[𝓀 + 1]
𝒓𝑁,𝑀[𝓀 + 1]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ 𝓿[𝓀 + 1], (5.36)

so it follows that 𝔁 = 𝒓𝑀 and𝓗 = 1/2[𝒉T 𝒉T …𝒉T 𝒉T], and that the state transition
matrix should be

𝓕 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝓕1

𝓕2

⋱
𝓕𝑛

⋱
𝓕𝑁

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (5.37)

with

𝓕𝑛 = [
𝑒𝑗𝜔𝑛𝜏𝜳𝑛,𝑀(𝜏)

𝑒−𝑗𝜔𝑛𝜏𝜳𝑛,𝑀(𝜏)
] . (5.38)

5.4. Rollback Prevention
Rollbacks are undesirable and better avoided. One of the reasons why simulators need
to recouple, and thus roll back, is limitations of the trajectory model. To prevent this
type of rollback, it would be useful to determine when a trajectory model will deviate
from the true trajectory beyond 𝜖p, so that the simulators can determine in advance
when to recouple. Since the estimation of the dynamic phasor is based on a Taylor
expansion, one way to do this is to rely on an upper error bound of the Taylor series.
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Considering an𝑀th order expansion, it is possible to define the upper error bounds for
the real and imaginary parts of 𝑝𝑛(𝑡) as

𝑅𝑀ℜ(𝑡) = 𝑃(𝑀+1)
𝑛ℜ

(𝑡 − 𝑡𝑘)𝑀+1

(𝑀 + 1)! (5.39)

𝑅𝑀ℑ(𝑡) = 𝑃(𝑀+1)
𝑛ℑ

(𝑡 − 𝑡𝑘)𝑀+1

(𝑀 + 1)! , (5.40)

where 𝑃(𝑀+1)
𝑛ℜ is the upper bound of ℜ(𝑝(𝑀+1)

𝑛 ), and 𝑃(𝑀+1)
𝑛ℑ is the upper bound of

ℑ(𝑝(𝑀+1)
𝑛 ), in the interval between 𝑡 and 𝑡𝑘. For simplicity I will assume that 𝑝(𝑀+1)

𝑛 is
constant in the interval of interest, so 𝑃(𝑀+1)

𝑛ℜ = ℜ(𝑝(𝑀+1)
𝑛 ) and 𝑃(𝑀+1)

𝑛ℑ = ℑ(𝑝(𝑀+1)
𝑛 ).

This means that the deviation of the trajectory model from the true trajectory fulfills

| ̂𝑦𝑛(𝑡) − 𝑦𝑛(𝑡)| ≤ |ℜ ((𝑅𝑀ℜ(𝑡) + 𝑗𝑅𝑀ℑ(𝑡))𝑒𝑗𝜔𝑛𝑡) |, (5.41)

which can be related to 𝜖p as

𝜖p =
|||

̂𝑦𝑛(𝑡) − 𝑦𝑛(𝑡)
max ̂𝑦(𝑡) −min ̂𝑦(𝑡)

||| ≤
|
|
|
ℜ ((𝑅𝑀ℜ(𝑡) + 𝑗𝑅𝑀ℑ(𝑡))𝑒𝑗𝜔𝑛𝑡)

max ̂𝑦(𝑡) −min ̂𝑦(𝑡)
|
|
|
, (5.42)

so the trajectory model should not deviate from the true trajectory more than 𝜖p before
𝑡R, which is the largest 𝑡 ∈ {𝑡𝑘, 𝑡𝑘+1 … 𝑡𝐾} that fulfills (5.42), that is

𝑡R = max 𝑡 ∈ {𝑡𝑘, 𝑡𝑘+1 … 𝑡𝐾} ∶ 𝜖p ≤
|
|
|
ℜ ((𝑅𝑀ℜ(𝑡) + 𝑗𝑅𝑀ℑ(𝑡))𝑒𝑗𝜔𝑛𝑡)

max ̂𝑦(𝑡) −min ̂𝑦(𝑡)
|
|
|
. (5.43)

This is a transcendental inequality, but it can be easily solved by trial and error since
the solution lays in {𝑡𝑘, 𝑡𝑘+1… 𝑡𝐾}, which is a discrete and finite set.

To implement this idea, a Taylor-Kalman filter of order𝑀 + 1 is required. Instead
of using two filters, one of order𝑀 to find the trajectory model and one of order𝑀 + 1
to determine its validity, I will use only one filter of order𝑀 + 1. I will use the first𝑀
derivatives to build the trajectory model, and the (𝑀 + 1)th derivative to determine 𝑡R.

5.5. Trajectory Model Exchange and Preventive Recoupling
Strictly speaking, it is not necessary that each simulator models both its inputs and
outputs, as in Algorithm 3.1. Since the outputs of a subsystem become the inputs of
another, it is sufficient that each simulator models only its own outputs, and that it ex-
changes these trajectory models with the rest, whenever needed. The advantage of this
approach is that fewer Taylor-Kalman filters are needed. Combining this idea with the
preventive recoupling criterion I proposed in the previous section produces Algorithm
5.2.

5.6. Discussion
In this chapter I introduced main points. The first one is the trajectory model for slow
transients, and the method for estimating its parameters. The second one is the crite-
rion for recoupling simulators preventively and reducing the need for rollbacks. And
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Algorithm 5.2 Selectively-decoupled co-simulation with predictive recoupling (part 1)
1: Define: subsystem 𝑠, macro time step index 𝑘, recoupling macro time step index
𝑘r, 𝑡𝑘 ∈ {𝑡0, 𝑡1… 𝑡𝑘 … 𝑡𝐾} a discrete time grid, 𝒕w = {𝑡𝑘−𝑁s+1, 𝑡𝑘−𝑁s+2… 𝑡𝑘} a discrete
moving time widow, hop size 𝑅w, and 𝜖p the allowed normalized deviation.

2:
3: Initialize �̇�𝑠 = 𝒇𝑠(𝒙𝑠, 𝒖𝑠), 𝒚𝑠 = 𝒈𝑠(𝒙𝑠, 𝒖𝑠)
4: mode← COUPLED
5: 𝑘 ← 0
6:
7: while 𝑘 < 𝐾 do
8: if mode = COUPLED then
9:
10: if 𝑘 mod 𝑅w = 0 then
11: Find trajectory models �̂�𝑠,𝑘(𝑡) and their validities ̂𝒗𝑦,𝑠,𝑘 using (5.43)
12: end if
13:
14: if 𝒚𝑠(𝑡), 𝑡 ∈ 𝒕w are predictable according to (3.1) then
15: Request decoupling
16: Send trajectory models �̂�𝑠,𝑘(𝑡) and and their validities ̂𝒗𝑦,𝑠,𝑘
17: end if
18:
19: Send 𝒚𝑠(𝑡𝑘) and receive 𝒖𝑠(𝑡𝑘)
20:
21: if Decoupling request accepted then
22: Receive trajectory models �̂�𝑠,𝑘(𝑡) and their validities ̂𝒗ᵆ,𝑠,𝑘
23: 𝒖𝑠(𝑡) ← �̂�𝑠,𝑘(𝑡)
24: Create recoupling event at 𝑡 = min{ ̂𝒗ᵆ,𝑠,𝑘, ̂𝒗𝑦,𝑠,𝑘}
25: mode← DECOUPLED
26: else
27: Create interpolation polynomials �̃�𝑠,𝑘(𝑡)
28: 𝒖𝑠(𝑡) ← �̃�𝑠,𝑘(𝑡)
29: end if ▷ Continues in Algorithm 5.3

the third one is that the simulators can exchange trajectory models before decoupling,
to reduce the number of Taylor-Kalman filters required for finding the parameters of
trajectory models. Although the co-simulation framework I used in Chapter 4 could be
extended to test these ideas, includingmodels of ac systems that exhibit slow transients
would be challenging. A co-simulation framework that uses specialized power system
simulators would be more suitable. I will introduce this framework in the next chapter.
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Algorithm 5.3 Selectively-decoupled co-simulation with predictive recoupling (part 2)
30: if Recoupling requested then
31: Receive recoupling index 𝑘r
32: Roll back or catch up to 𝑘 = 𝑘r
33: mode← COUPLED
34: else if ∃𝑦(𝑡𝑘) ∈ 𝒚𝑠(𝑡𝑘) ∶ 𝑦(𝑡𝑘) is unpredictable according to (3.3) then
35: 𝑘r ← 𝑘 − 1
36: Request recoupling at 𝑘r
37: else if Event in next macro time step then
38: mode← COUPLED
39: end if
40:
41: end if
42:
43: Solve �̇�𝑠 = 𝒇𝑠(𝒙𝑠, 𝒖𝑠(𝑡)), 𝒚𝑠 = 𝒈𝑠(𝒙𝑠, 𝒖𝑠(𝑡)) until 𝑡 = 𝑡𝑘+1
44:
45: 𝑘 ← 𝑘 + 1
46: end while





Bibliography
[1] C. D. López, A. A. van der Meer, M. Cvetković, and P. Palensky, “Reducing the

need for communication in natural waveform co-simulations of electrical power
systems using adaptive interfaces”, Submitted to IEEE Access.

[2] J. A. de la O Serna and J. Rodriguez-Maldonado, “Instantaneous oscillating pha-
sor estimates with Taylor𝐾 -Kalman filters”, IEEE Transactions on Power Systems,
vol. 26, no. 4, pp. 2336–2344, Jun. 2011.

[3] J. A. de la O Serna and J. Rodríguez-Maldonado, “Taylor-Kalman-Fourier filters
for instantaneous oscillating phasor and harmonic estimates”, IEEETransactions
on Instrumentation and Measurement, vol. 61, no. 4, pp. 941–951, Jan. 2012.

[4] J. Liu, F. Ni, J. Tang, F. Ponci, and A. Monti, “A modified Taylor-Kalman filter
for instantaneous dynamic phasor estimation”, in 2012 3rd IEEE PES Innovative
Smart Grid Technologies Europe (ISGT Europe), Oct. 2012, pp. 1–7.

[5] J. Liu, F. Ni, P. A. Pegoraro, F. Ponci, A. Monti, and C. Muscas, “Fundamental
and harmonic synchrophasors estimation using modified taylor-kalman filter”,
in 2012 IEEE InternationalWorkshop onAppliedMeasurements for Power Systems
(AMPS) Proceedings, 2012, pp. 1–6.

[6] J. Khodaparast and M. Khederzadeh, “Least square and Kalman based meth-
ods for dynamic phasor estimation: A review”, Protection and Control of Modern
Power Systems, vol. 2, no. 1, pp. 1–18, Jan. 2017.

65





6
Co-Simulation Framework for

Fast and Slow Transients

Parts of this chapter have been published in [1]–[4].

67



6

68 6. Co-Simulation Framework for Fast and Slow Transients

T esting themethods I proposed in Chapter 5 requires a co-simulation framework
capable of simulating power system models that represent fast and slow phenom-

ena. Specialized electrical power system simulators, such as DIgSILENT PowerFactory,
can easily do so. But creating a framework that operates as I described in Chapter 5,
based on a closed-source simulator, poses several implementation challenges. After
experimenting with different approaches, such as those from [2], [3], I settled on the
design I describe in this chapter. Some readers might find useful information in the
descriptions of the interfaces, which can be used for purposes other than co-simulation
[4], the limitations of this solution, and the workarounds I found to overcome them.

6.1. Requirements
The co-simulation framework has to complywith the following requirements to be suit-
able for testing the methods I proposed in Chapter 5:

R1 It must be able to reproduce electromagnetic (fast) and electromechanic (slow)
transients.

R2 It must be flexible enough for implementing complex co-simulation interfaces,
with non-standard functionality.

R3 The simulators must run with a constant macro time step for the Taylor-Kalman
filters to work.

R4 The co-simulation must be able to roll back in time.

DIgSILENT PowerFactory complies with R1. With this simulator it is possible to run
naturalwaveform simulations using full generatormodels, so that both electromagnetic
and electromechanical phenomena are reproduced. Its unique model enhancement
facilities can also be used to create complex co-simulation interfaces, which makes it
compliant withR2. However, PowerFactory does not comply withR3 andR4. I discuss
workarounds to overcome these limitations in Section 6.4.

6.2. Design and Implementation
Figure 6.1 shows the structure of the co-simulation framework. Each subsystem is (co-)
simulated in an different instance of PowerFactory 2019, running on a different Win-
dows Server 2012 virtual server.

6.2.1. Communication
The simulators communicate with each other via amessage bus, using a publisher/sub-
scriber pattern implemented with the ømq messaging library [5]. In this pattern, each
simulator publishes output messages, and subscribes to relevant input messages. The
messages are encoded in JavaScript Object Notation (json).

6.2.2. Orchestration
Unlike in previous implementations of this framework [2], [3], in this case I opted for
a design without a co-simulation master. As I explained in Chapter 2, this has the ad-
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Figure 6.1: Co-simulation framework. The framework is based on the PowerFactory simulator. Each simu-
lator runs on an independent Windows virtual server. They communicate via publisher/subscriber sockets.
There is no co-simulation master, so the co-simulation interfaces are also in charge of orchestration.

vantage of eliminating a possible bottleneck. It also has the advantage that there is one
less program tomaintain. With a co-simulation master, a change in the interface might
require a change in the master as well. The disadvantage is that the interfaces must
take care of all orchestration tasks, which increases their complexity.

The orchestration method works as follows. In coupled mode, each simulator pub-
lishes its outputs and waits until all necessary inputs have arrived before it executes the
next macro time step. When a simulator is ready to transition to decoupled mode, it
publishes this information. When all simulators are ready to transition, the transition
happens. To transition back to coupled mode, it is sufficient that only one simulator
publishes this information for all simulators to recouple.

6.2.3. Interfacing
Interfacing requires amechanism for settingmodel variables based on simulator inputs,
and getting the model variables that become simulator outputs. Figure 6.2 shows the
structure of a co-simulation interface, displaying the flow of interface variables right
before simulator decoupling, when the interface sends and receives trajectory models.
Since the interface variables are voltage and current, controlled voltage and current
sources can be used for setting variables. PowerFactory provides both of them in the
standard model library. This appears at the bottom of Figure 6.2 for the case of an in-
terface based on a current source.

The DIgSILENT Simulation Language (dsl) provides mechanisms for controlling
these sources. dsl is a language intended formodeling dynamic systems, mainly aimed
at modeling control structures. This means that with dsl it is possible to provide set
points to voltage and current sources (i.e., setting inputs), and to measure model vari-
ables (i.e., getting outputs). Figure 6.2 also shows this interaction between a controlled
source and a dsl block. In addition, dsl provides a library of commonly used macros,
and allows the user to define newmacros in C++. This means that all the functionality
needed for creating trajectory models, evaluating them, and communicating with other
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Figure 6.2: Structure of a co-simulation interface based on a controlled current source, displaying the flow of
interface variables right before simulator decoupling. At this point the interface sends and receives trajectory
models.

simulators can be embedded in a dsl macro.
Initially, I set out to implement all the required interface functionality in C++ [2],

[3]. However, it soon became apparent that the development effort required was exces-
sive. For this reason I developed the digexfunPyDSL library, which makes it possible to
execute arbitrary Python code directly from dsl (see Section 6.3). Using this library I
was able to implement the remaining interface functionality directly in Python. Aside
from the fact that it is usually quicker to develop an interface in Python than in C++,
this library also has the advantage that during development, there is not need for recom-
piling and restarting PowerFactory every time a change is introduced in the interface
code, which speeds up the development process.

The portion of this interface I implemented in Python is composed of two objects,
one facing inwards and one facing outwards, both show in Figure 6.2 as well. Both of
these objects have an interface method that, when called, triggers the tasks each object
is in charge of. The dsl macros I defined in digexfunPyDSL call the interface method
from the inward-facing object once everymicro time step. At the same time, thismethod
calls the interfacemethod from the outward-facing object once permacro time step. The
inward-facing object is in charge of evaluating the input interpolation polynomials or
the trajectory models it gets from the outward-facing object, and passing the calculated
inputs to the dsl block that controls the current and voltage sources. It is also in charge
of passing the outputs the dsl model measures to the outward-facing object. The res-
ponsibilities of the outward-facing object are to create trajectory models of the output
variables, and interpolation/extrapolation polynomials of the input variables, as well as
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orchestration and handling communication with other simulators.

6.2.4. Initialization
Initializing an unbalanced co-simulation in PowerFactory poses a challenge because
three phase current sources cannot impose unbalanced initial conditions. To overcome
this challenge, I implemented an interface composed of four current sources. The first
one is a three phase current source and is used during the co-simulation. The other
three are single phase current sources used only for initialization. These four sources
must be connected to the grid node where the models are interfaced. At initialization,
the three single phase sources are connected to the grid to impose initial conditions at
the interface node, and as soon as the co-simulation begins, they disconnect from the
grid and the three phase source connects instead. This happens automatically.

For finding the initial conditions it is possible to follow an iterative approach as the
one I implemented in [2]. However, in this case I did not implement an initialization
routine. Instead, I use the initial conditions from a monolithic simulation of the same
system, which I have available as a benchmark for result accuracy.

6.2.5.Management
Tomanage the simulators, I reused the Python scripts I developed for [1]. These scripts
take advantage of the PowerFactory Python api, and provide functionality to set up
and run a simulator, and then retrieve its results. It is possible to execute these scripts
remotely via a terminal or directly in each virtual server.

6.3. digexfunPyDSL
The digexfunPyDSL library [4] makes it possible to call arbitrary code from a Power-
Factory dsl model. For this, it relies on the fact that it is possible to define new dsl
macros in C++, and that Python is implemented in C, which for practical purposes is
a subset of C++. The only requirement this library imposes on the Python code is that
it must be callable from a Python function or method that takes an arbitrary number of
floating point arguments, and returns an arbitrary number of floating point values.

The library provides four dsl macros to interact with such Python functions or
methods. The first macro is LoadPyFun, which loads a Python function or method
into PowerFactory. DSL macros do not support a variable number of arguments, so the
arguments must be set one by one with sequential calls to the SetPyFunArg macro.
Once all the arguments are set, the CallPyFunmacro can be used to call the Python
function or method. Finally, sequential calls to the GetPyFunRetVal macro can be
used to retrieve the returned values one by one.

6.4. Simulator Limitations and Workarounds
As previously mentioned, PowerFactory complies neither with R3 about constant time
step nor R4 about rollback. For this reason, I developed two workarounds to test the
methods from Chapter 5. I describe these workarounds in the following sections.
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6.4.1. Constant Time Step Limitation
PowerFactory does not provide a way to enforce a constant time step at runtime. Even if
the option for adjustable time step is not selected, PowerFactorymay still reduce its time
step size. I identified two cases where this happens, both related to the occurrence of
fast phenomena. One is when an event causes a discontinuity (e.g., a short circuit), and
the other is when there are power electronic devices connected to the grid. Although
it is possible to equip the co-simulation interface with output interpolation capabilities
to make it seem, from the outside, as if the simulator had a constant time step size, this
approach added numerical artifacts that interfere with the objectives of this thesis. For
this reason, I decided to abstain fromusing the event and power electronicmodeling ca-
pabilities that PowerFactory provides, and to develop an alternative short circuit model
and pv system model, both of which do not interfere with the time step size.

Short Circuit Model The first model is meant to recreate a short circuit event. This
short circuit model is based on three variable resistors, one per phase, connected be-
tween a node and ground. When a short circuit happens at said node, the resistors
drop from a large 𝑅open that represents an open circuit between the node and ground,
to a small 𝑅closed that represents a highly-conductive connection between the node and
ground. For a short circuit that occurs at 𝑡SC and clears at 𝑡CSC the resistors are described
by

𝑅SC(𝑡) =
⎧⎪
⎨⎪
⎩

𝑅open, 𝑡 < 𝑡SC
𝑅closed, 𝑡SC ≤ 𝑡 ≤ 𝑡CSC
(𝑅closed − 𝑅open)(1 − 𝑒(𝑡CSC − 𝑡)/𝜏CSC) + 𝑅open, 𝑡 > 𝑡CSC

(6.1)

were 𝜏CSC is the time it takes to transition between 𝑅closed and 𝑅open while clearing the
short circuit. Both that 𝑅closed is not zero and that the short circuit is cleared with a
smooth transition from 𝑅closed to 𝑅open are to avoid numerical divergence. One limita-
tion of this approach is that the short circuit is not necessarily cleared when the current
is zero. However, I consider this to be irrelevant for this thesis, since the objective of the
short circuitmodel is to cause a disturbance and not tomimic the behavior of protection
devices. For this model I chose 𝑅closed = 1Ω, 𝑅open = 100kΩ and 𝜏CSC = 10ms.

PV System Model The second model is meant to approximate a pv system that in-
jects current harmonics. The pv systems is modeled as a current source that for each
phase 𝑝 injects a current

𝑖PV𝑝(𝑡) = 𝒷(𝑡) ∑
𝑛∈N

𝐼𝑛(𝑡) cos (2𝜋𝑓𝑛𝑡 + 𝜙PV𝑝) , (6.2)

where N is the set of harmonics and 𝒷(𝑡) is a boolean function that represents the dis-
connection behavior of the pv system during voltage sags. When the rms voltage at the
point of common coupling drops below the disconnection threshold, 𝒷(𝑡) changes its
value from1 to 0, andwhen the voltage recovers and crosses the reconnection threshold,
𝒷(𝑡) changes from 0 to 1 after a preset delay. Since both disconnection and reconnection
depend on threshold crossings, they are internal events.
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6.4.2. Rollback Limitation
It was clear from the onset that PowerFactory was inappropriate to implement time
rollback. In fact, I am not aware of any off-the-shelf power systems simulation tool
that supports this operation. To roll a simulator back it must be possible to restart the
simulator at an arbitrary point in time, with an arbitrary set of model states valid for
that point in time. But PowerFactory does not provide direct access to model states.
The states can only be set automatically by a power flow calculation, which means the
simulator assumes a steady state as a starting point. Nevertheless, if a co-simulation
method requires rollback, it is still possible to replicate its results with the following
steps.

1. Run the co-simulation until the need for rolling back arises.

2. Record this time as an external event.

3. Stop the co-simulation and go back to point 1.

Once all the rollback events are identified and recorded, it is possible to run the co-
simulation until the end and obtain the same results that would be obtained if rollback
were possible. The drawback is that following this method the execution time of the
co-simulation is no longer a meaningful result.
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I n this chapter I test the methods I proposed in Chapter 5, using the co-simulationframework I described in Chapter 6. For this, I use a test system composed of a trans-
mission and a distribution grid. This test system considers the mechanical aspects of
the generators, and includes distributed generation at the distribution level.

7.1. Testing Approach
To test the methods from Chapter 5 I will use the same approach to measure accu-
racy that I used in Chapter 4. However, in contrast to Chapter 4, and in line with my
research questions, I will not measure execution time. Instead, I will only focus on
the percentage the co-simulation remains decoupled. There are two main reasons for
this. First, and most importantly, the co-simulation framework I described in Chapter
6 does not support rollback, so the execution time will not reflect the penalty for rolling
back a simulator. Second, execution time is implementation dependent. In the imple-
mentation I described in Chapter 6, I did not pay particular attention to, for example,
optimizing the Taylor-Kalman filters, I preferred the Python language over C++, and
did not implement filter parallelization. For these reasons I consider that the percent-
age the co-simulation remains decoupled is a better measure of the potential benefit a
selectively-decoupled co-simulation can provide.

7.2. Test System
A good test systemmust be suitable for testing the trajectory model, so it must produce
interface variables that are

• three phase,

• unbalanced,

• have variable amplitude and phase, and

• contain harmonics.
The systemmust also be suitable for testing how the co-simulation transitions between
coupled anddecoupledmodes, so it should experience both internal and external events.
With these requirements inmind I chose the test system from Figure 7.1, which is com-
posed of two subsystems, one transmission and one distribution grid. These grids are
slightly modified versions of the grids from [2]. The interface between both subsystems
is located at node 650 in the distribution grid and at node 6 in the transmission grid.
During co-simulation, the controlled voltage source in Figure 7.1b represents the trans-
mission grid in the distribution grid, while the controlled current source in Figure 7.1a
represents the distribution grid in the transmission grid.

The test system has a nominal frequency of 60Hz. At the distribution level, it has
a 3.5MW synchronous generator that represents a co-generation unit, whose role is to
cause oscillations during disturbances. It also includes a 3.6MW pv system, based on
the model from Section 6.4.1, whose role is to inject current harmonics and to produce
internal events. The generators at the transmission level cause oscillations as well, but
of smaller magnitude in comparison to the co-generation unit, given their much higher
inertia.
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Figure 7.1: One-line diagrams of the two subsystems that compose the test system. The subsystems exchange
the interface variables 𝑣a, 𝑣b, 𝑣c, which are the phase voltages at node 6 in the transmission system, and 𝑖a,
𝑖b, 𝑖c, which are the phase currents at node 650 in the distribution feeder.

7.3. Case 6: No Harmonic Infiltration
In this case I compare a selectively-decoupled co-simulation to amonolithic simulation
and a traditional co-simulation of the test system. For the selectively-decoupled co-
simulation I use Algorithm 3.1. This algorithm relies exclusively on simulator rollback
for recoupling, so I use the workaround from Section 6.4.2.

The (co-)simulated scenario includes a short circuit event at 𝑡 = 0.1s that clears at
𝑡 = 0.2s. These are external events. When the short circuit causes the voltage at the
point of common coupling to drop bellow 0.8p.u., the pv system disconnect from the
grid. Once the voltage recovers above 0.6p.u., the pv system reconnects with a delay of
0.5s. Both disconnection and reconnection are internal events because the times when
the voltage at the point of common coupling crosses the given thresholds is unknown.

For the co-simulations I used a macro time step 𝐻 = 0.1ms and a micro time step
ℎ = 10µs, an acquisition window size 𝑇w = 1/60Hz = 16.7ms, a window hop size 𝑅w = 10
samples, and a predictability threshold 𝜖p = 0.05p.u. Based on the values proposed in
[3], I chose 𝜎2𝑣 = 1 × 10−6, 𝜎2𝑤 = 1 × 10−6,𝑀 = 2, and 𝜏 = 1ms as Taylor-Kalman filter
parameters.

Figure 7.4 compares a subset of the results obtained with a selectively decoupled
co-simulation to those obtained with a monolithic simulation of the test system. The
results are one phase of the interface voltage and current, and the speeds of generator
G1 and the co-generation unit. In this case, the co-simulation remains decoupled 34%
of the time. Although this is far from negligible, the co-simulation never remains de-
coupled for long. In comparison to the steady state case, the trajectory models for slow
transients have a much shorter lifespan. This means that several rollbacks are neces-
sary, which is highly undesirable.

Nevertheless, the results appear to be accurate. Figure 7.3 compares the error of
the variables from Figure 7.4 to the errors obtained from a traditional co-simulation.
The error in the selectively decoupled co-simulation is higher, albeit not considerably,
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Figure 7.2: Phase a of the interface voltage and current, speed of generator G1 (transmission) and the co-
generation unit (distribution), computed with a monolithic simulation and the selectively-decoupled co-
simulation from Case 6. The colored background indicates when the co-simulation is in decoupled mode.
The selectively-decoupled co-simulation remains decoupled 34% of the time.

and both high and low frequency phenomena are reproduced successfully. Addition-
ally, the selectively decoupled co-simulation is able to transition between modes rather
seamlessly. The pv disconnection event happens while the co-simulation is in coupled
mode, so it does not need to be detected, but the reconnection event happens while the
co-simulation is decoupled, and is successfully detected.

7.4. Case 7: Harmonic Infiltration
In this case I modified the (co-)simulated scenario from Case 6 so the pv system injects
a 5th current harmonic with a constant amplitude 5% of the fundamental, and constant
phase. Figure 7.4 shows that using a 𝒕w = 1/60Hz (one fundamental period) limits the
possibilities to transition to decoupledmode; the trajectorymodel is not able to describe
both the fundamental and the 5th harmonic for such a long time window, which results
in a co-simulation that remains decoupled only 15% of the time.

One way to understand why this is, is to consider that the trajectory model is in
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Figure 7.3: Errors of phase a of the interface voltage and current, speed of generator G1 (transmission) and the
co-generation unit (distribution), computed with the selectively-decoupled co-simulation from Case 6. The
errors are measured with respect to the monolithic simulation and are in percent of the dynamic range of
the corresponding state variable. The colored background indicates when the co-simulation is in decoupled
mode.
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Figure 7.4: Phase a of the interface voltage and current, speed of generator G1 (transmission) and the co-
generation unit (distribution), computed with a monolithic simulation and the selectively-decoupled co-
simulation from Case 7, with 𝒕w = 1/60Hz. The pv system injects 5% 5th current harmonic. The colored
background indicateswhen the co-simulation is in decoupledmode. The selectively-decoupled co-simulation
remains decoupled 15% of the time.

fact a superposition of two trajectory models, one for the fundamental and one for the
5th harmonic. Since both of these are based on a Taylor series, each can only remain
accurate for a given number of periods before diverging. However, one period of the
5th harmonic is much smaller than that of the fundamental, so the trajectory model for
this harmonic diverges much sooner.

By reducing the acquisition window size to 𝒕w = 1/(300Hz) (one 5th harmonic period),
the situation improves, as Figure 7.5 shows. In this case the co-simulation stays de-
coupled 29% of the time, but it never stays decoupled for long, and rollbacks become
extremely frequent. Adding higher frequency harmonics would naturally worsen the
situation.

One important differencewith the steady state case fromChapter 4 is that theTaylor-
Kalman filter does not detect which harmonics are present in the interface variable.
However, this could be automated using the same method from Chapter 4 as a pre-
modeling stage, although at a higher computational cost.
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Figure 7.5: Phase a of the interface voltage and current, speed of generator G1 (transmission) and the co-
generation unit (distribution), computed with a monolithic simulation and the selectively-decoupled co-
simulation from Case 7, with 𝒕w = 1/300Hz. The pv system injects 5% 5th current harmonic. The colored
background indicateswhen the co-simulation is in decoupledmode. The selectively-decoupled co-simulation
remains decoupled 29% of the time.
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Figure 7.6: Phase a of the interface voltage and current, speed of generator G1 (transmission) and the co-
generation unit (distribution), computed with a monolithic simulation and the selectively-decoupled co-
simulation from Case 8. The colored background indicates when the co-simulation is in decoupled mode.
The selectively-decoupled co-simulation remains decoupled 35% of the time.

7.5. Case 8: Preventive Recoupling and TrajectoryModel Ex-
change

In this case I used the (co-)simulated scenario from Case 6, but co-simulated it with
Algorithm 5.2. The only change required here is increasing the order of the Taylor-
Kalman filter to𝑀 = 3. Figure 7.6 shows the results obtained with this algorithm. In
this case the co-simulation remains decoupled 35% of the time and the error remains
low, as Figure 7.7 shows. This is in line with the results from Case 6, which indicates
that the recoupling criterion is appropriate. In this co-simulation, only one rollback is
necessary, and it is caused by the internal event which cannot be predicted by (5.43).

In an attempt to increase the percentage the co-simulation remains decoupled, I
halved the difference between the decoupling time and the predicted recoupling time,
so that the trajectorymodels deviate less from the true trajectories and the co-simulation
does not need to stay coupled for long before being able to decouple again. Figure 7.8
shows these results. Based on the co-simulationmode shown in the background the fig-
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Figure 7.7: Errors of phase a of the interface voltage and current, speed of generator G1 (transmission) and the
co-generation unit (distribution), computed with the selectively-decoupled co-simulation from Case 8. The
errors are measured with respect to the monolithic simulation and are in percent of the dynamic range of
the corresponding state variable. The colored background indicates when the co-simulation is in decoupled
mode.
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Figure 7.8: Phase a of the interface voltage and current, speed of generator G1 (transmission) and the co-
generation unit (distribution), computed with a monolithic simulation and the selectively-decoupled co-
simulation from Case 8. The colored background indicates when the co-simulation is in decoupled mode.
The selectively-decoupled co-simulation remains decoupled 60% of the time.

ure, it would appear that the trajectory model is able to describe the interface variables
for longer periods of time than in previous cases. However, what is actually happen-
ing is that the simulators are exchanging trajectory models and immediately returning
to decoupled mode. In this case the proportion the co-simulation remains decoupled
increases to 60%. In addition, Figure 7.9 shows that the error remains comparable to
previous cases.

7.6. Discussion
With the trajectorymodel and identificationmethod I proposed inChapter 5, the results
are accurate, even in the presence of harmonics. However, the co-simulation must roll
back rather frequently, and even more so when harmonics are present. This is a highly
undesirable situation. Nevertheless, applying the criterion for preventive recoupling,
the co-simulation required only one rollback, caused by an internal event. With suffi-
cient knowledge about the co-simulated system, it could be possible to roughly estimate
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Figure 7.9: Errors of phase a of the interface voltage and current, speed of generator G1 (transmission) and the
co-generation unit (distribution), computed with the selectively-decoupled co-simulation from Case 8. The
errors are measured with respect to the monolithic simulation and are in percent of the dynamic range of
the corresponding state variable. The colored background indicates when the co-simulation is in decoupled
mode.
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when an internal event might occur, and completely eliminate the need for rollbacks.
Nevertheless, this would not be a general solution. Although the criterion for preven-
tive recoupling produced good results, it is not optimal. The results suggest that finding
a better criterion is worthwhile, as this could substantially reduce the need for commu-
nication. Finally, and at least for this test system, there are no apparent disadvantages
to exchanging trajectory models instead of interface variable scalars.
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A t the beginning of this thesis I set out to determine whether it is possible to re-
duce the need for communication in a remote electrical power system co-simulati-

on betweennaturalwaveform simulators. This, by implementing a co-simulation frame-
work that is able to distinguish between predictable and unpredictable phenomena, and
that can find closed-form expressions that describe the trajectories of the interface vari-
ables while phenomena are predictable. The idea being that the simulators compute
their own inputs from these expressions instead of expecting them to be communicated.

To achieve this goal, I proposed methods for classifying phenomena as predictable
or unpredictable, for finding these closed-form expressions, and described how a co-
simulation can take advantage of these methods. Additionally, I designed and im-
plemented a co-simulation framework for experimentation. With this framework, a
co-simulation operates in two modes, one for unpredictable interface variables, which
behaves as a traditional co-simulation, and one for predictable interface variables. In
the mode for predictable interface variables, the simulators exchange expressions that
describe their outputs over time, then decouple from each other, and proceed by com-
puting their own inputs from these expressions until the interface variables become
unpredictable again. Having run a set of experiments with the framework, I can now
answer the research questions that motivated this thesis, describe the limitations of my
findings, their possible applications and implications, and suggest directions for further
research.

8.1. Answers to Research Questions
In Chapter 1 I stated three research questions that I will now answer.

Is it possible to define a criterion so that a co-simulation framework can distinguish
between predictable and unpredictable power system phenomena, based exclusively on in-
terface variables?

This is possible with a precise definition of what constitutes predictable interface
variables. With sufficient knowledge about the co-simulated system, this definition
can be stated in terms of a trajectory model that can be fitted to the true trajectories the
interface variables exhibit during co-simulation. Such a trajectory model expresses an
expectation of what the interface variables must look like while the co-simulated phe-
nomena are predictable, so the co-simulation framework can test whether the interface
variablesmatch this expectation to distinguish predictable fromunpredictable interface
variables. Naturally, depending on the chosen definition, the same phenomena could
be classified as predictable or unpredictable.

When the co-simulation framework detects the absence of unpredictable phenomena,
can this framework identify closed-form expressions that describe the trajectories followed
by the interface variables, so that each simulator computes its inputs from these expres-
sions instead of them being supplied by other simulators?

The answer to the previous question hints that this must be possible as well. I
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worked with two definitions of predictable interface variables. In Chapter 4, I defined
them as variables that can be described by a finite sum of sinusoids with constant am-
plitude, frequency and phase, which is the behavior expected from a system in steady
state. Thus, fitting this trajectory model to the true trajectories means identifying three
parameters: the amplitude, frequency and phase of each sinusoid. For this, an interpo-
lated Fourier transform was effective.

In Chapter 5, I defined them as variables that can be described as a finite sum of
sinusoidswith variable amplitude, frequency and phase, which is the behavior expected
from a system experiencing a slow (electromechanical) transient. The challenge here is
that fitting such a trajectory model means identifying three functions of time, namely,
the amplitude, frequency and phase. To circumvent this issue, I approximated the sum
of sinusoids with a Taylor series, which transforms the function identification problem
into a parameter identification problem. A Taylor-Kalman filters proved effective for
fitting this trajectory model.

Implicit in the research question is that the co-simulation framework must be able
to operate in two modes, one where the simulators exchange interface variables at ev-
ery macro time step, and another where they compute their own inputs. I referred to
these modes as coupled and decoupled. Transitioning from coupled to decoupled is the
simplest of the two transitions; when the trajectory models accurately describe the true
trajectories of all interface variables, the transition is allowed. However, the inverse
transition is complicated by the fact that, when decoupled, each participating simula-
tor runs at a different pace in a non-real time environment, so recouplingmight require
simulator rollback. This is undesirable because rolling a simulator back is time con-
suming, memory consuming, and because most off-the-shelf power system simulators
do not support this feature. I was able to avoid rollbacks by preemptively recoupling
simulators. However, this approach does not solve the problem when recoupling is
needed because an internal event has occurred.

How accurate are these expressions and what proportion of the co-simulation are they
able to describe?

Regarding the accuracy, it is difficult to distinguish the difference between the re-
sults obtained with these expressions and those obtained with a traditional co-simulati-
on. Differences do exist, but considering that comparable differences usually appear
when simulating a model with two different simulators, or when comparing simulated
results to real phenomena, I deem the results to be accurate enough for electrical power
system simulation. Having said that, the results I obtained in this thesis cannot guaran-
tee that the methods are accurate for every system. Co-simulations do pose numerical
challenges, and having simulators find expressions they can use to compute their inputs
should have consequences I was not able to observe in my experiments.

Regarding the proportion of the co-simulation the expressions are able to describe,
this depends on the specific simulated scenario. I studied cases where a short circuit
produced fast and slow transients, and was able to reduce the need for communication
up to 60%. However, if the cases had had more events, the proportion would have been
lower.
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8.2. Applications
Although this thesis focused on ac systems, the main idea about a co-simulation that
decouples the simulators while the interface variables are predictable can be applied to
other systems, as long as suitable trajectory models can be identified. This means that
there is a possibility for these methods to also be applicable to the case of dc systems.
It is also possible that it can be applied in other industries, for example automotive and
aerospace.

The application I had in mind at the beginning of this work was remote collabo-
rative co-simulation between different organizations. The idea being that, in remote
co-simulation, each organization can continue using its simulator of choice and avoid
exchangingmodels, thus circumventing data privacy limitations. Organizations such as
neighboring grid operators could find this approach beneficial. Additionally, this could
also open up more possibilities for collaboration between researchers and industry.

8.3. Implications
The motivation for reducing the need for communication in a remote co-simulation is
that the delay associated with communication over long distances could add significant
overhead to the co-simulation, thus slowing it down. Whether the methods I proposed
lead to speedup actually depends on the magnitude of the method overhead and the
communication delay. If the method overhead is small (i.e., the overhead related to
identifying and evaluating trajectory models) and the communication delay is large,
speedup should be possible. An advantage of the approach I proposed is that a part of
the co-simulation overhead is transfered from the communication channel, which is
not under the control of the co-simulation developer, to the co-simulation interfaces,
which are. So making appropriate implementation decisions, the co-simulation devel-
oper could minimize the method overhead and maximize the speedup.

Our ability to take full advantage of the existing energy infrastructure, and to de-
velop it further economically, reliably and sustainably, is in part constrained by the
availability of sufficiently descriptive models and high-performing computations. A re-
mote co-simulation that is less affected by the communication channel is a step forward
in this direction. With such a tool, different organizations can collaboratively create
better models, and gather deeper insight into the systems they wish to improve.

8.4. Suggestions for Further Research
The work I presented has several limitations, some of which I consider more pressing
to address. I consider that the biggest disadvantage of the method I proposed is that
it relies on simulator rollback. Although the criterion for preventive recoupling does
produce good results, it is not optimal. Furthermore, it does not address the case of
rollbacks caused by internal events. Another aspect that deserves more attention is the
consequences of using these trajectory models to compute inputs. This approach will
likely have a bigger impact on some systems that others, and it would be beneficial to
quantify it. Finally, there is the application to hvdc systems. These systems are be-
coming ubiquitous, so for this method to be truly useful to transmission grid operators,
it is imperative to find expressions that predict the trajectories of dc variables as well.
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