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All models are wrong,
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Summary

In order to avoid the adverse effects of air pollution, efforts have been made to
monitor when air pollution reaches dangerous levels. A Chemical Transport Model
(CTM) can simulate trace gases and particles concentration in specific areas. These
models are not entirely reliable, owing to incomplete knowledge about emissions
and meteorological conditions. Explaining and predicting variability in air quality
models remains a challenge. In this thesis we want to demonstrate that data as-
similation (DA) can reduce uncertainty in the model process. DA is a mathematical
family of techniques in which observed values are combined with a dynamic model
to improve the accuracy of the model.

Standard DA methods have limitations when there is not a complete character-
ization of the uncertainties. In air quality applications, emission inventories’ accu-
racy is often low, and weather models often do not predict events very well. The
problem is worse in developing countries where the knowledge available is sparse
and of relatively low quality. The thesis’s main contribution is the development of
a DA systems for improving the behavior of complex models in the presence of
high uncertainty. The proposed methods and developments have been tested in
the framework of the LOTOS-EUROS CTM with applications to forecast particular
matter in the Aburrá Valley in Colombia. The use of a less expensive monitoring
network is also discussed. The Aburrá valley represents a good testing scenario
because of its current air quality issues, the difficulty of its terrain, the lack of a de-
tailed emission inventory, and the operational availability of a low-cost monitoring
network.

Our first step was to apply the Ensemble Kalman Filter (EnKF) to assimilate the
official air quality monitoring network. Evaluations of the system were performed
by varying values of the covariance localization influence area. Moreover, various
inheritance strategies were evaluated to optimize the assimilation window’s esti-
mated information into the forecast window. Although the model’s performance
could be improved with application of DA, there were still issues with the emis-
sion inventories, the low number of observations, and the model’s difficulties in
capturing essential transport dynamics within the valley.

Given the significant impact the Aburrá Valley emission inventory has on air
quality modeling and perceived issues with the available inventory, we built a high-
resolution emission inventory for the Aburrá Valley metropolitan area. We also
assessed the ability of a low-cost network’s available in the metropolitan area to
track the dynamics of PM . correctly and use it as observations in the DA process.
With recent developments in the production of low-cost sensors, it is possible to
use these devices for DA. The DA system is composed by the EnKF, LOTOS-EUROS,
the latest emission inventory, and the low-cost monitoring network. The high mea-
surement density of this type of network is an advantage in the DA process, and it
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xii Summary

can be used in places that cannot afford a standard monitoring network. Finally,
the city’s air quality was improved through the revised emission inventory.

Combined with a new emission inventory and a denser observation network, we
have proposed two ensemble-based DA methods to deal with the high uncertainties
in the model. The first is a variant of the EnKF using a covariance-based estimator
called Ensemble Kalman Filter Knowledge-Aided (EnKF-KA). The method’s novelty
is that it allows for incorporating prior knowledge of the system directly in the
assimilation process through a target covariance matrix. The second method, the
Ensemble Time Local H Filter Knowledge-Aided (EnTLHF-KA) is a robust version of
the EnKF-KA that incorporates an adaptive covariance inflation factor to reduce the
impact of uncertainties. Both approaches were first analyzed using simple models
to isolate the proposed technique’s advantages and drawbacks and to compare the
results of this new method with traditional algorithms. The formulation of both new
methods is sufficiently general to be applicable in other contexts.

Finally, we implemented the proposed methods with the LE model and the low-
cost monitoring network in the Aburrá valley. We used the target matrix to limit the
influence of the observations, following the complex topography of the valley. This
reduced the impact caused by a low resolution of the dynamics within the valley
of the meteorological input. The results of the proposed methods were compared
with the results of the Local Ensemble Transform Kalman Filter (LETKF) algorithm.
Both new methods outperformed the LETKF and resulted in a more accurate spatial
representation of the PM concentrations. Thus, by applying the DA method to the
Aburrá Valley, the modeling and forecasting of air quality improved tremendously
when compared with the observations.



Samenvatting

Om nadelige effecten van luchtverontreiniging te verminderen, zijn er veel onder-
zoeken gedaan naar methoden om te kunnen voorkomen dat de luchtverontreini-
ging een gevaarlijk niveau bereikt. Een Chemical Transport Model (CTM) kan de
concentratie van gassen en deeltjes in de atmosfeer in specifieke gebieden simu-
leren. Deze modellen zijn helaas niet altijd betrouwbaar vanwege onnauwkeurige
emissies en meteorologische invoergegevens. De variabiliteit in de luchtkwaliteits-
modellen verklaren en voorspellen blijft een uitdaging. Data assimilatie (DA) kan de
onzekerheid in het model verminderen. Data assimilatie is een wiskundige techniek
waarbij waargenomen waarden worden gecombineerd met een dynamisch model
om de nauwkeurigheid van het model te verhogen.

Standaard methoden voor data assimilatie hebben beperkingen wanneer er
geen volledige karakterisering van de onzekerheden beschikbaar is. Bij luchtkwali-
teitsberekeningen is de nauwkeurigheid van emissies vaak laag, terwijl ook weers-
invloeden vaak niet erg nauwkeurig bekend zijn. Dit probleem is nog groter in
ontwikkelingslanden waar de beschikbare kennis over de luchtkwaliteit schaars en
van relatief lage kwaliteit is. De belangrijkste bijdrage van dit proefschrift is de
ontwikkeling van data assimilatie methoden die het mogelijk maken het gedrag
van complexe luchtkwaliteitsmodellen te verbeteren, ook in de aanwezigheid van
grote onzekerheden. De voorgestelde methoden zijn getest in realistische situaties
met het LOTOS-EUROS CTM dat is toegepast op de Aburrá-vallei in Colombia om
de voorspelling van de fijn stof concentratie te verbeteren. Ook het gebruik van
een groot aantal goedkopere sensoren wordt onderzocht. De Aburrá-vallei vormt
een goede testcase vanwege de problemen met de luchtkwaliteit, de moeilijkheids-
graad van het terrein, het ontbreken van gedetailleerde emissies en de operationele
beschikbaarheid van een goedkoop meetnet.

De eerste stap was het toepassen van het Ensemble Kalman filter (EnKF) om
data van het officiële meetnet voor luchtkwaliteit te assimileren. De aanpak is ge-
ëvalueerd door het gebruikte covariantie lokalisatie schema te variëren. Bovendien
zijn verschillende strategieën geëvalueerd om informatie uit de assimilatieperiode
te gebruiken bij het berekenen van de voorspellingen. Hoewel de prestaties van het
model konden worden verbeterd met de toepassing van DA, waren er nog steeds
problemen met de emissies, het lage aantal waarnemingen, en de problemen met
het model bij het beschrijven van essentiële transportdynamiek in de vallei.

Gezien de aanzienlijke impact die de Aburrá Valley-emissies hebben op de lucht-
kwaliteitsmodellering, hebben we een emissie inventarisatie met hoge resolutie op-
gesteld voor het grootstedelijk gebied van Aburr á Valley. We hebben ook het
gebruikt van het goedkope netwerk in het grootstedelijk gebied geëvalueerd met
betrekking tot het beschrijven van de dynamiek van PM . en de waarnemingen ook
in het DA proces gebruikt. We pasten hierbij het EnKF en LOTOS-EUROS toe met
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de laatste emissie inventarisatie. Met de recente ontwikkelingen in de productie
van goedkope sensoren, is het heel goed mogelijk om deze sensoren zinvol voor
DA te gebruiken. De hoge dichtheid van dit type netwerk is een voordeel bij het
data assimilatie proces en kan worden gebruikt op plaatsen waar een standaard
monitoringnetwerk te duur zou zijn. Ten slotte werd de luchtkwaliteit van de stad
verbeterd door de aangepaste emissie inventarisatie te gebruiken in het model.

In combinatie met een nieuwe emissieinventarisatie en een dichter observa-
tienetwerk, hebben we twee ensemble-gebaseerde data assimilatie methoden ont-
wikkeld om de grote onzekerheid in de modelvoorspellingen aan te kunnen pakken.
De eerste is een variant van het EnKF met behulp van een covariantie gebaseerde
schatter, genaamd het EnKF-KA. De originaliteit van deze methode is dat het nu
mogelijk wordt om voorkennis van het systeem rechtstreeks in het assimilatiepro-
ces op te nemen via een doelcovariantiematrix. De tweede methode (EnTLHF-KA)
is een robuuste versie van het EnKF-KA die een adaptieve covariantie inflatiefactor
bevat om de impact van niet gemodelleerde onzekerheden te verminderen. Beide
benaderingen zijn geanalyseerd met behulp van eenvoudige modellen om de voor-
en nadelen van de voorgestelde techniek te onderzoeken. De formulering van beide
methoden is heel algemeen en ook in veel andere model problemen toepasbaar.

Tenslotte hebben we de voorgestelde nieuwe methoden geïmplementeerd in
het LOTOS-EUROS model en toegepast door gebruik gemaakt van het goedkope
meetnetwerk in de Aburrá-vallei. We gebruikte hierbij de doelmatrix om de invloed
van de waarnemingen te beperken tot een aantal modelcomponenten, gebaseerd
op de complexe topografie van de vallei. Dit hielp ons om de effecten die worden
veroorzaakt door de lage resolutie van de meteorologische dynamiek in de vallei te
verminderen. De voorgestelde methoden zijn vergeleken met het bekende LETKF
algoritme. Beide nieuwe methoden presteerden beter dan het LETKF en produ-
ceerde nauwkeuriger ruimtelijke representaties van de PM-concentraties. Door de
data assimilatiemethode toe te passen op de Aburrá Valley, zijn de modellering en
de voorspelling van de luchtkwaliteit enorm verbeterd.



1
Introduction

Particulate matter (PM) is one of the most problematic pollutants in urban
air. PM’s effects on human health, associated with PM of ≤2.5𝜇m in diame-
ter, include asthma, lung cancer, and cardiovascular disease. Consequently,
major urban centers commonly monitor PM . as part of their air quality man-
agement strategies.
Monitoring could be done using a static network of high-quality but expensive
measurement devices. The use of low-cost air quality networks has been in-
creasing in recent years to study urban pollution dynamics with more spatial
detail. In addition to monitoring, Chemical Transport Models (CTM’s) allow
for permanent simulation and evaluation of pollutant behavior for all loca-
tions in a region of interest. Validated with observations should ensure their
quality.

Part of this chapter is under review in: Data assimilation as a tool to improve Chemical Transport Models
performance in developing countries (Chapter Book), Air Quality 2021, IntechOpen

1
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2 1. Introduction

1.1. Air quality in the Aburrá Valley
Air pollution is defined as the presence of solid, liquid, or gaseous components in
the atmosphere that can cause risk and trouble for living beings or goods in general.
Air pollution is one of the major environmental problems in modern human history
(Green and Sánchez, 2012). Environmental pollution can be produced by natural or
human actions. Natural sources include forest fires, volcanic emissions, dust, sand,
vegetation (as pollen), and wetlands (as methane). The main human sources of air
pollution are industry, power generation, transportation, deforestation, and cattle
raising (Borrego et al., 2015).

The current exponential growth in world population heightens the importance
of public health issues related to air quality (Akimoto, 2003; Gurjar et al., 2008). In
developing countries, decision makers must cope with the environmental demands
of expanding and overpopulated urban centers. Short term air quality forecasts and
long term mitigation strategies for these centers are usually based on specialized
assessments of particulate matter dynamics (Bell et al., 2011; Sallis et al., 2016).
The Aburrá Valley houses the city of Medellín and neighboring municipalities. It is
the second most populous urban agglomeration in Colombia, and the third densest
in the world. The valley traces the course of the Medellín River along 60 km of
a deep mountain canyon that ranges in width between 3 and 10 km, and with a
height difference of up to 1800 m. Air quality conditions deteriorate severely within
the valley twice a year around the time of the arrival of the Intertropical Conver-
gence Zone (March-April, and with lower intensity in October-November), when
the atmospheric inversion layer persists throughout the day below the rim of the
canyon, thus trapping all of the urban atmospheric contaminants within the lower
atmosphere (Jiménez, 2016). During these periods, the concentrations of partic-
ulate matter below 10µm (PM ) and 2.5µm (PM . ) remain at levels considered
hazardous for vulnerable populations and even for the general population.

Figure 1.1: Perspective of the air quality in the city of Medellín. (August 26, 2016, www.elmundo.com)
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3

1.2. Using Chemical Transport Models for air qual-
ity modeling

Due to the large stress on human health induced by this air pollution, efforts have
been made to monitor, reduce, and prevent episodes in which concentrations of
pollutants reach hazardous levels. Before measures for reducing air pollution can be
implemented, it is important to know the current concentration levels and how these
evolve over time within the area of interest. This could be done using a Chemical
Transport Model (CTM) to simulate concentrations of trace gasses and particulate
matter (Thunis et al., 2016; Lateb et al., 2016). In the last 20 years, CTMs have
seen huge growth and development; in consequence, a diversity of models exists,
differing in their complexity, size of the region of study, and methods used for
their development. CTMs can be broken down into four categories according to
their dynamic behavior: i) Gaussian, ii) statistic, iii) Lagrangian and iv) Eulerian
(Thunis et al., 2016). Eulerian models are the most widely used and reported for
monitoring and predicting the pollution behavior and define the air quality in bigger
areas (Lateb et al., 2016). These are frequently used in areas as large as countries
or continents, and have been less used in areas such as cities. There have not
been many applications of CTM’s to study the air quality in Colombia yet. Most of
the efforts have focused on the development of emission inventories and pollutant
characterization (Toro et al., 2005, 2006; Zarate et al., 2007; Nedbor-Gross et al.,
2018; Pachón et al., 2018). Applications of a CTM have however been reported too.
An early study on atmospheric pollution in Colombia used the WRF-CHEM model
(Weather Research and Forecasting with Chemistry) to simulate the concentrations
of PM over the Bogotá metropolitan area (Kumar et al., 2016). The Emissions
Database for Global Atmospheric Research (EDGAR) global emission inventory was
used as input. The simulations underestimated the PM concentrations by an
order of magnitude compared to observations. The WRF-CHEM model has also
been applied to study the behavior of O over the medium-size, mountainous city
of Manizales (Gonzalez et al., 2018). By using high-resolution simulations (1 km
x 1 km), the study compared the performance of the model when using either
the EDGAR emission inventory or a high-resolution emission inventory previously
developed (Gonzalez et al., 2017). In Henao et al. (2020) the WRF-Chem model in
a sub-kilometer configuration was used to reproduce the CO dynamics in the valley.
The emission inventory was spatially dissagregated from the AMVA Official Emission
Inventory (UPB and AMVA, 2017). Although the meteorological fields showed a high
similarity with observations, the model underestimated the CO concentrations. The
underestimation is attributed to mismatches in the official emission inventory and
uncertainties generated by the simplifications of disaggregation methodologies.

This thesis uses simulations of the LOTOS-EUROS (LE) CTM for studying the
atmospheric contaminant dynamics within the Aburrá valley . The model setup for
the region of interest is described in Section 2.1.1. As a novelty for the region,
this study not only uses a CTM, but also applies data assimilation to improve the
forecast skills of the model. LE is equipped with several Ensemble-based data
assimilation applications focused on the reanalysis and forecasting of gasses over
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Europe (Manders et al., 2017).

1.3. Data assimilation as a tool to improve model
performance

Data assimilation (DA) is a mathematical process that provides integration between
measured values (observations) and a dynamic model to improve the operation of
the model. With DA, the output value provided by the model has a smaller error
than the output value provided by the model without observations. DA has two key
objectives: to improve the operation in predictions of model states; and estimate
unknown parameters of the model (Berardi et al., 2016). DA is used in different
scientific fields such as oceanography, meteorology, air quality, greenhouse gas
studies, and reservoir characterization (Van Loon et al., 2000). DA allows integrat-
ing models and observations with different scales of size and temporal sampling
(Lahoz and Schneider, 2014). When two sources of information are combined, DA
assumes that both are subject to errors. These errors are intrinsically unknown and
need to be specified in probabilistic terms. DA aims to reduce the model error in
space or time with observations, but its mission is also to digest the observation
based on the laws given by the model and to determine the dynamic evolution of
the model state that represents better measurements (Bocquet et al., 2015).

Large-scale model uncertainty is difficult to characterize, and even more diffi-
cult to reduce. Increasing the accuracy of initial conditions, such as accurate land
cover representations or updated emissions inventories, or using observations and
DA, may reduce uncertainty. DA an alternative that is dynamically driven to reduce
the lack of knowledge about the behavior of air pollution. The addition of surface,
satellite, in situ, and laser-based remote sensing data to a model will enhancethe
simulation skill, and with that improve the thrust in proper scenario simulation and
online decision-making. A further promise lies in the incorporation of the DA, not
only for its contribution to the reduction of uncertainty, but also for opening the door
to more accurate air quality forecasting in atmospheric pollution modeling (Quin-
tero Montoya et al., 2020). CTM based forecasting presents us with interesting and
complex challenges associated with the uncertainty of weather forecasts, the lack
of precise inventory of emissions, and the scarcity and sparsity of monitoring net-
works for air quality. Such challenges require creative solutions; these challenges
are opportunities for knowledge advancement. Due to the scarcity of data and high
uncertainty in the model inputs, a mathematical, analytical, and computational ef-
fort is needed to push the frontiers of knowledge in the field.

1.4. A Low-cost alternative for Particulate Matter mon-
itoring

Public air quality monitoring networks often consist of fixed measuring stations
equipped with expensive sensors and maintained under rigorous operational and
calibration regimes in order to provide high quality data. The high costs associated
with establishing and maintaining such stations means that not all cities in develop-
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Figure 1.2: Ciudadanos cientificos (Scientific Citizen) measurement device used in the low-cost sensor
network deployed on the Aburrá Valley, Colombia. Taken from https://www.metropol.gov.co/
ambiental/siata/Paginas/ciudadanos-cientificos.aspx.

ing countries can afford monitoring networks of sufficient spatial coverage (Kumar
and Gurjar, 2019). Even in large cities in developed countries, the official air quality
monitoring networks do not always provide information at the spatial and temporal
resolution required to assess the impact of pollution sources on health (Ahangar
et al., 2019), as the cost of the equipment makes the necessary density prohibitive.
In the city of Medellín (Colombia) and its conurban municipalities for example, there
are 21 main PM . monitoring stations, at an average density of 8.25 km over the
entire area of the 10 municipalities. This has motivated the expansion and improve-
ment of low-cost systems and programs to measure PM (Kumar et al., 2015). The
limited number of studies that have evaluated newer generations of low-cost PM .
sensors have shown that the most widely used low-cost sensors attain high accu-
racy when compared to standard monitoring stations (R value ranging from 0.93
to 0.95) (Liu et al., 2019). The data provided by these sensors can complement
those generated by conventional systems, increasing the data resolution and al-
lowing for studies of exposure at the human level (Ahangar et al., 2019; Schneider
et al., 2017). By DA, the incorporation of air pollution data into CTM increases the
ability to grasp local and regional patterns and fill spatial coverage gaps. Addition-
ally, the combination of different sources of information and knowledge (data and
model) increases the robustness and reliability of low-cost observations (Lahoz and
Schneider, 2014; Castell et al., 2017).

1.5. Aim and Research Questions
As described in the previous sections, the uncertainties in the inputs and the scarcity
of observations impose a challenge on the assimilation of data in a CTM, especially

https://www.metropol.gov.co/ambiental/siata/Paginas/ciudadanos-cientificos.aspx
https://www.metropol.gov.co/ambiental/siata/Paginas/ciudadanos-cientificos.aspx
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in regions with complex conditions and developing countries. Therefore, this thesis
aims to develop a DA scheme for high-uncertainty systems toward the improvement
of forecast capabilities, using alternative and more accessible sources of measure-
ments. In this thesis, we use the LE model and the Aburrá Valley air quality case to
evaluate the proposed methods and techniques. Several research questions should
be addressed to achieve the main aim of this thesis. The proposed research ques-
tion and the methodological approaches are:

RQ1: How to integrate all the possible information captured in the
Ensemble-based DA process (state value, parameters value and dynamic,
etc.) into the forecast simulation of systems with high uncertainty?
To answer this question, we implement the standard ensemble-based DA technique
EnKF, with the LE model over the Aburrá valley using the configuration shown in
Chapter 5.2. We evaluate the improvements in the particulate matter’s representa-
tion after assimilation, and compare different information inheritance schemes be-
tween the assimilation window and the forecast window (Chapter 3). Additionally,
we study different sources of error present in the assimilation system to formulate
new assimilation algorithms.

RQ2: Can low-cost monitoring networks assimilated into a CTM be a
more accessible alternative to standard air quality monitoring systems?
The metropolitan area of the Aburrá Valley has a low-cost operational network to
monitor PM . . We evaluate the network’s capacity to correctly represent the dy-
namics of PM . by comparing it with the city’s official monitoring network. After
evaluation, we use the low-cost network measurements as observations in the stan-
dard DA system. The performance of the system using different configurations of
the low-cost network and the official network is compared. The results and conclu-
sions are shown in Chapter 4.

RQ3: How can a covariance localization scheme that uses direct knowl-
edge of the system, for instance, a very complex topography, improve the
performance of an Ensemble-based Data Assimilation method?
The results shown in Chapters 3 and 4 suggest a poor representation of the valley’s
pollutant transport dynamics, caused by the low resolution and high uncertainty in
the meteorological fields. In Chapter 5, we introduce alternatives in estimating the
state covariance that allow us to introduce prior knowledge of the system directly
into the assimilation, e.g., spatial localization based on distance and orography. An
efficient implementation of the EnKF based on shrinkage-estimator is formulated
and evaluated using toy models to understand the new technique’s advantages
and possibilities.

RQ4: How does the performance of robust estimators compared to the
EnKF under a scenario of high uncertainty sources like emissions, mete-
orology and observations?
This question is addressed in two chapters. In Chapter 6, we propose a robust
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version of the algorithm proposed in Chapter 5. The idea of a robust method is
approached given its capabilities to exploit the information from observations in
high uncertainty scenarios. On the other hand, in Chapter 7, the implementation,
evaluation, and comparison of the proposed techniques (robust and not robust)
are carried out against standard assimilation techniques, using the PM . low-cost
network.

1.6. Organization of this thesis
The thesis is organized as follows: Chapter 2 describes the LE model and the ex-
perimental setup used for all the PM simulation, the developed emission inventory,
and introduces the preliminaries concepts of ensemble-based DA used among the
thesis. In Chapter 3, the LE model coupled with the EnKF using covariance lo-
calization is implemented for PM concentration and emission estimations. Chapter
4 shows the evaluation and utilization of an alternative low-cost sensor network
for DA proposes. In Chapter 5, we propose a new implementation of the EnKF
using shrinkage-based covariance estimation that allows the incorporation of prior
knowledge. Chapter 6 presents a robust and non-gaussian version of the EnKF
implementation introduced in Chapter 5. In Chapter 7, we implement and evalu-
ate the proposed robust and non-gaussian algorithm using the LE model over the
Aburrá Valley. Finally, Chapter 8 summarizes the conclusions of this thesis, and the
recommendations for further study.
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2.1. Particulate Matter modelling
2.1.1. LOTOS-EUROS model
The chemical transport model that is used to simulate atmospheric concentrations of
pollutants is the LOTOS-EUROS model (Manders et al., 2017). The model computes
concentrations of trace gasses and aerosols in three dimensions for the lower parts
of the atmosphere: the boundary layer and (part of) the free troposphere. The
simulated trace gasses include ozone, nitrogen and sulphuric oxides, and hydro-
carbons; aerosols include primary matter, secondary inorganic aerosol, elemental
and organic carbon, sea-salt, and dust. There is the possibility to calculate sec-
ondary organic aerosol with a 1-D VBS scheme (Manders et al., 2017; Sauter et al.,
2012). The LOTOS-EUROS model has been used for air quality studies in different
projects around the world (Manders et al., 2017), demonstrating the adaptability
of the model for different regions.

In the following sections, the dynamic time step of the LOTOS-EUROS model
will be denoted by:

c =M (c ,c ,e ) (2.1)

In here, the state vector c contains the concentrations of all trace gases and
aerosols in each cell of the three dimensional grid valid for time 𝑡 , e is the nominal
emission from the emission inventory. The model operatorM computes the state
at time 𝑡 from the concentrations at 𝑡 , and using the model input which is yet not
further specified; note that in following equations some arguments of M might
be omitted to simplify notations. The processes included in the model operator
include three dimensional transport by wind, vertical diffusion due to turbulence,
entrainment and detrainment by changing boundary layer heights, emissions from
anthropogenic and biogenic sources, chemical reactions, aerosol physics, and dry
and wet deposition. The gas-phase chemistry is a condensed version of CBM-IV
proposed in (Manders-Groot et al., 2016) and for secondary inorganic chemistry
Isorropia II (Fountoukis and Nenes, 2007) is used. The default meteorology of the
model is 3-hourly ECMWF short-term forecast, but the models has also been run
with meteorological input from WRF and COSMO, and has been coupled semi-online
to the regional climate model RACMO2 (Manders et al., 2017).

2.1.2. Domain and experimental setup
Simulations were conducted with the LE model, adopting a nested domain config-
uration as depicted in Figure 2.1 and detailed in Table 2.1. Four nested domains
were used to have a smooth transition on the dynamics from the regional scales
(Caribbean and Northern part of South America) to the local conditions of the Aburrá
Valley. The first Domain (D1) spans from the coast of Nicaragua in the West, to
the Caribbean Dutch Islands and Venezuela in the East; model resolution was set
to 0.27° (about 28 km). For this domain, meteorological data from ECMWF was
used at a resolution of 0.14°; also the orography was obtained from this data set.
The inner domain D2 is centered over the valley and includes the Northwest part of
Colombia, encompassing most of the Colombian Andes; model resolution was set to
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0.09°(about 9 km). For this and the following inner domains, meteorological data
were obtained from ECMWF at 0.07°resolution, while for the elevation model was
derived from the Global Multi Resolution Terrain Elevation Data set (GMTED2010)
(Danielson and Gesch, 2011) at a resolution of 0.002°(approx. 220 m). The third
inner domain D3 includes the department of Antioquia, at a model resolution of
0.03°(about 3 km). The innermost domain D4, the focus of the present study,
includes primarily the region of the Aburrá Valley using model resolution of 0.01°
(about 1 km).

Figure 2.1: Four nested domains for Metropolitan Area of Aburra Valley assesment.

The data sets used in the model are summarized in Table 2.2.

2.1.3. Local Emissions Inventory
An anthropogenic urban emission inventory for 2016 specific to Medellín and the
other nine municipalities of the Aburrá Valley was used for the simulations on the
D4 domain. This inventory provides a complete set of emitted trace gases such as
carbon monoxide (CO), nitrogen oxides (NO ), sulphur oxides (SO ), and volatile
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Domain Longitude Latitude Cell size
D1 84°W-60°W 8.5°S-18°N 0.27°× 0.27°
D2 80.5°W-70°W 2°N-11°N 0.09°× 0.09°
D3 77.2°W-73.9°W 5.2°N-8.9°N 0.03°× 0.03°
D4 76°W-75°W 5.7°N-6.8°N 0.01°× 0.01°

Table 2.1: Nested domain specifications

Period 31-March-2016 to 25-April-2016
Metereology ECMWF; Temp.res: 3h; spat.res: 0.07∘ × 0.07∘
Initial and boundary LOTOS-EUROS (D3). Temp.res: 1h.
conditions Spat.Res: 0.03∘ × 0.03∘
Anthropogenic emissions EDGAR v4.2. Spat.res:10 km × 10 km
Biogenic emissions MEGAN Spat.res:10 km × 10 km
Fire emissions MACC/CAMS GFAS Spat.res:10 km × 10 km
Landuse GLC2000. Spat.res:1 km × 1 km
Orography GMTED2010. Spat.res: 0.002°× 0.002°

Table 2.2: Data set used in the D4 domain.

organic compounds (VOC’s), as well as particulate matter with diameter less than
2.5 𝜇m (PM . ) or less than 10 𝜇m (PM ). The construction of the inventory fol-
lowed a bottom-up methodology, combining activity data (traffic intensities, indus-
trial production) with emission factors. Only traffic and industrial point sources
were considered, without accounting for neither household nor commercial emis-
sions (UPB and AMVA, 2017).

For integration into LOTOS-EUROS, the emission inventory was disaggregated
over the Aburrá Valley (76°W-75°W and 5.7°N-6.8°N) at a resolution of 0.01°×
0.01°(approximately 1 km × 1 km), using a method based on road density as
in Ossés de Eicker et al. (2008). The road network map was obtained from the
OpenStreetMap database (Haklay and Weber, 2008), and simplified by removing
segments classified as residential, as recommended in (Tuia et al., 2007; Gómez
et al., 2018). The simplification of the road network can reduce errors in the spatial
disaggregation since residential roads correspond to a high portion of the road
network length but carry a low percentage of total vehicular traffic. For each grid
cell 𝑗, the corresponding dissagregation factor 𝐷𝐹 was calculated as in (Ossés de
Eicker et al., 2008):

𝐷𝐹 =
∑ 𝑆 ,

∑ ∑ 𝑆 ,
(2.2)

where 𝑆 , is the length of road segment 𝑖 in the grid cell 𝑗, 𝐼 is the number of
road segments in cell 𝑗, and 𝐽 is the total number of grid cells. The point-source
emissions were distributed on the grid using their known location, obtained from the
official emissions inventory (UPB and AMVA, 2017). Figure 2.2 shows the resulting
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emissions maps for PM . and PM .

(a) PM . . (b) PM .

Figure 2.2: Local particulate matter emission inventories for the Aburrá Valley: (a) PM . , and (b) PM .
The values correspond with the estimated annual emissions.

2.2. Ensemble-based Data Assimilation
2.2.1. Stochastic and uncertainty representation
For implementation of the data assimilation algorithm a stochastic representation of
the model uncertainty is needed. A major source of uncertainty are the emissions,
which might in reality differ strongly from the inventory in both space and time.
The emissions that are used in the model operator are therefore modelled as a
stochastic process using a randomly varying deviation factor:

ê = e ⋅ ( 1 + 𝛿e ) (2.3)

The emission deviation is modelled as an autoregressive model of order one
(AR-1), following the structure of a colored noise process (Jazwinski, 1970):

𝛿e = 𝛼 ⋅ 𝛿e + 𝜎 ⋅ √1 − 𝛼 ⋅w (2.4)

where w is a white noise process with zero mean and unity standard deviation:

w ∼ 𝑁(0, 1) (2.5)

Over an infinite number of samples, the stochastic factors are drawn out of a
normal distribution with zero mean and standard deviation 𝜎. The temporal corre-
lation coefficient 𝛼 ∈ [0, 1] is used to describe the temporal variation, where the
value should be set between two extremes: for 𝛼 = 0, the deviation is pure white
noise with completely different values for every sample; for 𝛼 = 1 there is no tem-
poral variation at all and the deviation factor is a single sample out of the normal
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distribution. In this study the correlation parameter is described using a temporal
length scale 𝜏 following (Barbu et al., 2009):

𝛼 = exp (−|𝑡 − 𝑡 |/𝜏) (2.6)

A stochastic model state is formed by augmenting the state vector (2.1) with
the correction factor 𝛿e:

[ c
𝛿e ] = [ M (c ,c , ê )

𝛼 ⋅ 𝛿e ] + [ 0
𝜎 ⋅ √1 − 𝛼 ]w (2.7)

or simply:
x = M(x ) + G ⋅w (2.8)

With the augmented vector (2.7), it is possible to apply a sequential data assimi-
lation scheme to estimate both the state and the emission correction factor. The
non-linear operator M propagates the augmented state vector x in time, while G
distributes the stochastic forcing w over the elements of the state.

2.2.2. Ensemble Kalman Filter
The Ensemble-Based DA is a family of methods that uses an ensemble to model
the statistics of the first guess (background). In each assimilation step, a forecast
from the previous model simulation is used as a first guess, and using the avail-
able observation this forecast is then modified to bring it in better agreement with
these observations. Due to its rather easy implementation (compared with other DA
techniques), and its very general statistical formulation, it is one of the most widely
used approaches for tackling assimilation problems (Fu et al., 2017). The Ensemble
Kalman filter (EnKF) is the most frequently used ensemble-based data assimilation
method (Evensen, 2003). The EnKF is a Monte Carlo ensemble method, based on
the representation of the probability density of the state estimates in an ensemble
of 𝑁 states:

x( ),x( ), … ,x( ) (2.9)

Each ensemble member is assumed to be a single sample out of a distribution
of the true state (Fu, 2017).

The EnKF is initialized by generating a random ensemble x( ) to represent the
uncertainty in the initial condition x . Then, the forecast step of the EnKF prop-
agates each ensemble member in time using the state-space operator from Eq.
(2.8) and a random forcing:

x ( ) = M(x ( )) + G ⋅w( ) (2.10)

where x ( ) is the 𝑖 − 𝑡ℎ member of the forecast ensemble at time 𝑡 . The
forecast ensemble describes a stochastic distribution with mean and covariance
respectively:
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x = 1
𝑁 ∑x ( ) (2.11)

P = 1
𝑁 − 1 ⋅ ΔX ⋅ ΔX (2.12)

where the matrix ΔX is formed by deviations of the ensemble members from
the mean:

ΔX = [x ( ) − x , … ,x ( ) − x ] (2.13)

When observations are available, the EnKF uses them to update the forecast
ensemble into an analysis ensemble, which has a smaller covariance since it incor-
porates observation information. The vector with observation values is described
as a linear mapping from the state vector plus a random error:

y = H ⋅ x + v , v ∼ 𝑁(0,R ) (2.14)

The observation operator H describes how the observations are sampled from
the concentration fields in the state. The observation representation error v
describes the difference between the observations and the sampling, which are
present due to both instrumental errors but also due to sampling errors. In this
applications the sampling errors are for example present since the state describes
concentrations as averages in (large) grid boxes, while the observations concern
point observations. The vectors v are assumed to be samples out of a random
distribution with zero mean and covariance R .

The analysis update of the ensemble members is proportional to the differences
between the observations y and the observation simulation H ⋅ x ( ) from the
ensemble member following:

x ( ) = x ( ) +K ⋅ [y −H ⋅ x ( ) + v( )] (2.15)

The difference between observations and simulations is distributed over the
state elements using a matrix called the Kalman gain:

K = P ⋅H ⋅ [H ⋅ P ⋅H +R ] (2.16)

The Kalman gain is defined such that the sample covariance of the analysis
ensemble is minimal with respect to 𝑙 matrix norm (Asch et al., 2016). Note that
the sample covariance P cannot be computed in this application given its large
size (∼ 𝒪(10 )×𝒪(10 )). However, for the actual implementation it is sufficient to
store only the factorization ΔX from Eq. (2.13).
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2.2.3. Covariance Localization
Due to the approximation of the state space covariance by a finite number of en-
semble members, it is unavoidable that spurious correlations between elements of
the state will appear. These spurious correlations can be removed by a procedure
called localization (Ott et al., 2004). The localization method used in this work is the
covariance localization (Houtekamer and Mitchell, 2001). The covariance localiza-
tion or Schur localization, focuses on the forecast error covariance matrix, cutting
off correlations in the error covariances after a specified distance (Houtekamer and
Mitchell, 2001; Petrie, 2008). The localization is implemented with a point wise
multiplication called a Schur product and denoted by ∘:

[f ∘ P ] , = [P ] , ⋅ [f] , (2.17)

The Schur product theorem ensures that if f and P are positive semi-definite,
then the Schur product, f ∘ P , is positive semi-definite too. A cutoff function to fill
f would be defined by 𝑟 ∈ ℝ → 𝐺(𝑟/𝜌), where 𝑟 is the Euclidean distance between
two state members and 𝜌 is a length scaling called the localization radius (Sakov
and Bertino, 2011). The localization radius is defined such that beyond this the
correlation reduces from 1 and at a distance of more than 3.5 ⋅ 𝜌 the correlation
reduces to zero (Petrie, 2008). The cutoff function utilized in this work has the
following form:

𝑓 , = exp(−0.5 ⋅ (𝑟 , /𝜌) ) (2.18)

This regularized covariance matrix f ∘ P is used in the EnKF analysis as well as in
the generation of the posterior ensemble of perturbations, as a replacement for Pb:

K = (f ∘ P ) ⋅H ⋅ [H ⋅ (f ∘ P ) ⋅H +R]
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3
Forecasting PM10 and PM2.5

via EnKF based Data
Assimilation

In this chapter a data assimilation system for the LOTOS-EUROS chemical
transport model has been implemented to improve the simulation and fore-
cast of PM and PM . in a densely populated urban valley of the tropical
Andes. The Aburrá Valley in Colombia was used as a case study, given
data availability and current environmental issues related to population ex-
pansion. The data assimilation system is an Ensemble Kalman filter with
covariance localization based on specification of uncertainties in the emis-
sions. Observations assimilated were obtained from a surface network for
the period March-April of 2016, a period of one of the worst air quality crisis
in recent history of the region. In a first series of experiments, the spatial
length scale of the covariance localization and the temporal length scale of
the stochastic model for the emission uncertainty were calibrated to optimize
the assimilation system. The calibrated system was then used in a series
of assimilation experiments, where simulation of particulate matter concen-
trations was strongly improved during the assimilation period, which also
improved the ability to accurately forecast PM and PM . concentrations
over a period of several days.

Part of this chapter has been published in (Lopez-Restrepo et al., 2020): Forecasting PM and PM . in
the Aburrá Valley (Medellín, Colombia) via EnKF based Data Assimilation Atmospheric Environment,
232, 117507
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3.1. Introduction
This study uses simulations of the LOTOS-EUROS (LE) chemistry transport model
(CTM) for studying the atmospheric contaminant dynamics within the Aburrá valley,
spanning a set of 10 municipalities including the city of Medellín.

LE is equipped with several Ensemble-based data assimilation applications fo-
cused on the reanalysis and forecasting of gasses over Europe (Manders et al.,
2017). In Barbu et al. (2009) the EnKF is used with the covariance localization
technique for assimilating ground based observations to represent the dynamics of
SO and SO over the European continent. In their work, two different sources of
uncertainty were studied, the reaction rate in the production of SO from SO and
the emissions of SO and SO . The uncertainty was modeled as a colored noise
process and estimated following the method presented in (Heemink and Segers,
2002) (explained in detail in the Section 2.2.1). Barbu et al. (2009) concluded that
by improving the description of the emission and reaction rate uncertainties, the
performance of the data assimilation was enhanced.

In (van Velzen and Segers, 2010), the performance of the data assimilation
software package COSTA was evaluated with a LOTOS-EUROS application for a
number of ensemble-based methods such as EnKF (without localization), ensemble
square root filter (EnSRF) (Whitaker and Hamill, 2002), Complementary Orthogo-
nal subspace Filter For Efficient Ensembles (COFFEE) (Heemink et al., 2001) and
the RRSQRT Kalman filter (Verlaan and Heemink, 1997). The model uncertainty
was prescribed for emissions originating from different countries in the European
domain.

A scheme of data assimilation using LOTOS-EUROS and a network of ground
based sensors over Europe of O is presented in (Curier et al., 2012). A colored
noise process was used to model the uncertainty in the NO and VOC emissions,
the O deposition rate and the exchange of O between the troposphere and the
stratosphere. The model performance and the quality of the forecasts generated
improved significantly with data assimilation using the estimated emission factors.

In the Aburrá valley, observations of particulate material are available from Sis-
tema de Alerta Temprana del Valle de Aburrá (SIATA), a ground-based sensor net-
work with stations along the valley. A preliminary exercise is performed on as-
similation of these observations within the simulations, and evaluating the forecast
potential of this system. From the scientific point of view, this implementation rep-
resents a challenge due to the different sources of uncertainty present. The physical
conditions of the region of interest such as the topography and the size of the valley
demand an extra effort to conduct a regional high-resolution model simulation. Cur-
rently model inputs (emission inventory and meteorology) are not freely available
with the desired resolution and quality, increasing the uncertainty present in the
experiments. The results of the experiment suggest that the simulation and assim-
ilation system is able to describe the dynamics of atmospheric pollutants in Medellín
rather well, considering that the above mentioned issues remain challenging.

This chapter is organized as follows. In Section 3.2 we present the materials
and methods, including the theoretical framework for the ensemble-based data
assimilation technique and the covariance localization that was used for improving



3.2. Material and methods

3

25

the model results. Section 3.3 presents the experimental set up, and the data
assimilation calibration with different radii for covariance localization, and several
factors for the stochastic processes in the LE model. It also presents the observation
error covariance matrix estimation from ground-based sensor network data. Section
3.4 presents the main results of the paper in terms of investigating the ability to
forecast particulate matter concentrations over a few days. Section 3.5 offers some
concluding remarks and outlines the needed future work.

3.2. Material and methods
3.2.1. The LOTOS-EUROS Model setup for Aburrá Valley
The LOTOS-EUROS simulations were performed using the modeling setup described
in 2.1.2. For each of the domains, anthropogenic emissions were obtained from
the global EDGAR inventory (Petrescu et al., 2012). Although previous works have
shown that there is a considerable gap in the information in EDGAR for the Colom-
bian territory, this database is the only one available with all the necessary species
to run the model in the selected domains (Gonzalez et al., 2017; Pachón et al.,
2018; Nedbor-Gross et al., 2018). The resolution of the EDGAR database is 10×10
km, which is approximately 10 times coarser than the resolution of the innermost
domain. The low resolution of the emission data compared to the high resolution
of the model simulation can produce an unrealistic spatial distribution of emissions
and concentrations. This emphasizes the importance of considering emissions as a
major source of uncertainty for the DA system. The behavior of our data assimi-
lation scheme is studied using EnKF with 15 ensemble members (𝑁 = 15 in eqns.
2.9-2.13 in Section 2.2.2) for both periods of assimilation. Previous experiments
in related works and using LOTOS-EUROS model showed that using an greater en-
semble members the performance of the algorithm did not increase significantly to
justify the additional computational cost and 12-15 ensemble members are suffi-
cient to describe the local covariance and to produce assimilation with stable results
(Barbu et al., 2009; Curier et al., 2012).

3.2.2. Ground based data for assimilation
The Sistema de Alerta Temprana del Valle de Aburrá (SIATA) network of sensors
provides high quality measurements for different air pollutants in the atmosphere
over the Aburrá Valley region, monitoring species such as O , SO , PM , PM . and
PM . The network is distributed in the five most populated Aburrá Valley’s munic-
ipality, with the majority of the measuring stations located in the city of Medellín.
The distribution of the observation sites is shown in Figure 3.1.

In this work, only PM and PM . measurements were used for the assimilation
experiments, obtained from 8 PM stations, 3 PM . stations, and 1 combined
station on a total of 12 observation sites. The observation time series have an
hourly temporal resolution, with full coverage for most days. Measurements for
one station for each species (represented with a star in Figure 3.1) were used for
validation, taking two stations with a considerable distance between them to obtain
a acceptable spatial representation, namely Universidad San Buenaventura (located
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Figure 3.1: SIATA sensor network for PM and PM . . The stars represent observation points for
validation and the circles represent observations points for assimilation.

within the city of Medellín, near the geographic center of the valley; station 37 in
Figure 3.1) for PM , and Casa de la Justicia Itagui (Southwest of the valley, in a
mostly industrial zone; station 28 in Figure 3.1) for PM . . During air quality crises,
these stations tend to reach some of the highest values measured during the year.
The metrics from section 3.2.3 are calculated only over these two stations.

3.2.3. Performance metrics
In this work, the performance of the LOTOS-EUROS simulations and the assimilation
scheme were calculated by comparison with a subset of the ground observations not
used in the assimilation. As described in Section 3.2.2, the collection of observations
available in this study is rather small, and therefore only two time series were
used to quantify the performance. Three metrics were computed to compare the
simulations (assimilations) with the validation data; in addition, diurnal cycles were
also compared.

The mean fractional bias (MFB) normalizes the bias for each model-observation
pair using division by the average of the model and observation before taking the
sample mean:

MFB = 2
𝑀∑

(𝐻(𝑐)) − 𝑦
(𝐻(𝑐)) + 𝑦 (3.1)

with 𝑀 the number of elements in the set. In this application, 𝑀 equals the
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number of observations from all valid monitoring station data for the comparison
time period of interest. The simulation 𝐻(𝑐) of an observation 𝑦 is taken either
from a model output, or from the ensemble mean in case of an assimilation run.
The MFB ranges from −2 to +2, and has the advantage preventing the bias from
being dominated by few high value observations/simulation pairs in case of strong
variations, for example due to a strong diurnal cycle (Boylan and Russell, 2006).

The root mean square error (RMSE) represents the sample standard deviation
of the differences between predicted values and observed values (equation 3.2).
The RMSE penalizes a high variance as it gives errors with larger absolute values
more weight than errors with smaller absolute values (Chai and Draxler, 2014):

RMSE = √ 1
𝑀∑((𝐻𝑐) − 𝑦 ) (3.2)

The last metric is the correlation coefficient (Corr), which shows how the values
from one data set (simulations) relate to value of a second data set (observations).
A high value (approaching +1.0) is a strong direct relationship, values near 0.5
are considered moderate and values below 0.3 are considered to show weak rela-
tionships. A low negative value (approaching -1.0) is a strong inverse relationship,
and values near 0.0 indicate little, if any, relationship. The correlation coefficient is
calculated following (Yu et al., 2006):

Corr =
∑ ((𝐻(𝑐) − (𝐻(𝑐) ) (𝑦 − 𝑦)

√∑ ((𝐻(𝑐) − (𝐻(𝑐) ) √∑ (𝑦 − 𝑦)
(3.3)

where the overline denotes a sample mean over the𝑀 elements of the validation
set.

3.2.4. Standard model run results
In this section we described the simulated PM and PM . concentration for the
two-week period between 31-March-2016 and 13-April-2016 using the model pa-
rameterization shown in Table 2.2 for domain D4. The evaluation against the val-
idation stations are presented in figures 3.2 and 3.3. All the figures in this work
are presented using the local time zone UTC-5. The statistical errors are shown in
Table 3.1

Species MFB RMSE CF
PM -1.5 49.6369 0.3287
PM . -1.6 46.2302 0.3318

Table 3.1: Statistical error evaluation for PM and PM . via MFB, RMSE and CF for model standard
Free-Run
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Figure 3.2: Time series and diurnal cycle of PM in validation site 37 for a standard model Free-Run.
The time axis corresponds with the local time zone UTC-5.

It is evident that the model presents a considerable underestimation of the par-
ticulate matter concentration (around of 20 fold). These results are similar to the
previous works of CTM implementation in Colombian cities (Kumar et al., 2016).
The causes of this gap can be attributed to two important factors: emissions and
meteorology. As mentioned before, the EDGAR inventory is inaccurate over the
Colombian territory (Gonzalez et al., 2017) and the resolution is too coarse for the
high-resolution model implementation. For these reasons, the emission of precur-
sors and the particulate matter are considered as uncertainty parameters to be
estimated in the DA system. The version of EDGAR used in this work (v4.2) only
includes total particulate matter emissions, which in the model are distributed over
the fine and coarse aerosol tracers. Therefore, only a single emission deviation
field was used that was applied to all particulate matter emissions. The capability
of the LE to use the last EDGAR version (v4.3) that differentiates between PM .
and PM emissions is an upcoming feature of the model. NH and SO emissions
were estimated as precursors of secondary particulate matter. The mechanics of
particle transport and the behavior of the boundary layer in the Aburrá Valley and
its implications for concentration levels are not yet clear, nor is there a reliable high
resolution meteorology for the region of interest: For this reason, we do not include
meteorology as a source of uncertainty to estimate in the DA system.

3.3. Calibration of the data assimilation system
This section presents the results obtained from the data assimilation experiments
with the LE model during a two-week episode. Simulations were conducted with the
LE model in a nested domain configuration as described in Section 2.1.2. Default
initial and boundary conditions were used, and data for assimilation was obtained
and processed as described in Section 3.2.2. The goal of the experiments was to
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Figure 3.3: Time series and diurnal cycle of PM . in validation site 28 for a standard model Free-Run.
The time axis corresponds to the local time ( UTC-5).

obtain insight into the sensitivity of the assimilation system for the configuration
parameters such as the temporal correlation of the emission uncertainty (Section
3.3.2), the localization length scale (Section 3.3.1), and the observation represen-
tation errors (Section 3.3.3). Also the impact of other parameters such as the
standard deviation of the parameter uncertainty was evaluated, but for the chosen
configuration their impact was minor. To see the impact of each configuration pa-
rameter, these are calibrated and analyzed independently. Based on the results, the
best values for the assimilation parameters were selected for use in subsequent as-
similation experiments. A series of emission deviation factors were obtained during
the two-week episode using the calibrated assimilation system and used as nomi-
nal emissions for the next two-week test period. The forecast skill of the calibrated
assimilation system was evaluated throughout the episode as described in Section
3.4. The summarized experimental setup is presented in the Figure 3.4.

3.3.1. Calibration of covariance localization radius
The covariance localization as described in Section 2.2.3 requires the definition of
a localization radius 𝜌. In summary, the larger the radius chosen, the more ob-
servations are used to analyze a single element of the state. In this application,
the state consists of concentrations and emission deviation factors, and the local-
ization radius therefore has an impact on both. The influence of this parameter
was evaluated by running the assimilation system with different values for 𝜌: 5,
10, 20, and 30 km. The temporal correlation length was fixed in 𝜏 = 3 days for
all the experiments. Figure 3.5 shows maps of the average value over the 2 week
assimilation window emission deviation factor 𝛿𝑒.

Figures 3.6 and 3.7 show time series of the average diurnal cycle of particulate
matter concentrations in the two validation sites for the assimilation period.

For small localization radii, the concentrations in the validation sites were less
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Figure 3.4: Graphic representation of the experimental setup.

𝜌 MFB RMSE CF
5 km -1.0718 49.6369 0.3287
10 km -0.9220 46.2302 0.3318
15 km -0.8564 44.8106 0.3273
30 km -0.7815 43.4758 0.3082

Table 3.2: Statistical error evaluation for PM via MFB, RMSE and CF for variation.

influenced by the analysis since the number of analyzed observations was limited for
these locations. If the localization radius increases, the simulations become more
in line with the observations, although even for a 𝜌 of 30 km the simulations are
lower than what is observed. In both stations, the assimilated model progressively
approaches the observations towards the end of the assimilation window. The
day cycles for both species show that the temporal dynamics are not significantly
affected by the different values of 𝜌 and the change is mostly reflected in the
magnitude. For the available sensor network, the value of 𝜌 = 30 km presented
the best overall performance for both species. As shown in tables 3.2-3.3, the
improvement of the error statistics related to the absolute error (MFB and RMSE)
was more significant than the change in correlation factor (CF). The lack of accurate
emissions inventories seems to have had a similar impact on simulations in all sites
of the network, and therefore the best performance was obtained by changing
emissions in the same way over the entire domain. It is expected that when using
a sensor network with a higher spatial density, smaller values for 𝜌 will become
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Figure 3.5: Maps of mean emission deviation factors for particle matter emissions during assimilation
experiments with different localization radii.

beneficial.

3.3.2. Calibration of temporal correlation length
With a similar experiment as for the covariance localization, the temporal correlation
parameter 𝜏 of the emission uncertainty described in section 2.2.1 was calibrated.
The uncertainty on the emissions was modeled via equation (2.4). To evaluate
the impact of the temporal correlation parameter, the assimilation experiment was
performed with 𝜏 set to either 1, 2, 3, or 5 days. The localization radius was fixed
in 𝜌 = 30 km for all the experiments.

Figures 3.8 and 3.9 show the time series and average diurnal cycles of PM or
PM . in the two validation sites, obtained from the observations, a standard model
run, and analyzed ensemble means from assimilation experiments with different
𝜏. Compared with the results shown in Figures 3.6 and 3.7 for variation of the
localization radius, the impact of changes in the temporal correlation length are
rather small. The assimilation results hardly differ from each other when 𝜏 changes,
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𝜌 MFB RMSE CF
5 km -0.7264 25.7513 0.4118
10 km -0.5232 23.1410 0.4204
15 km -0.4456 22.2336 0.4171
30 km -0.3731 21.8653 0.4019

Table 3.3: Statistical error evaluation for PM . via MFB, RMSE and CF for variation.
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Figure 3.6: Time series and diurnal cycle of PM in validation site 37. Dots denote observations, dashed
black lines are simulations by the standard model, and solid lines are analyzed ensemble means from
the assimilation for different localization radii. The diurnal cycles were obtained from 13 samples for
each hour. The shadows and the bars represent the standard deviation of the 13 samples. The time
axis corresponds with the local time zone UTC-5.

indicating that in the current application this parameter is of minor importance.
Tables 3.4 and 3.5 show the values of the metrics defined in section 3.2.3 for

the assimilation experiments with different 𝜏. The MFB, RMSE and CF for both lo-
calization radius and correlation length showed good behavior in estimations for the
PM and PM . . Variations in the local analysis radius tended to diminish the MFB,
RMSE and CF for the PM and PM . estimates in figures 3.4 and 3.5. The increase
in correlation time does not seem to have improved statistical measurements and
in general presents a smaller impact in the data assimilation performance than the
localization radius.

3.3.3. Calibration of observation error covariance
Since the observation network described in section 3.2.2 has not been previously
used for a data assimilation experiment, no suitable formulation for the observation
error representation covariance was present yet. We implemented the method
proposed in (Desroziers et al., 2005) to estimate the observation error covariance
matrix R. Desroziers et al. (2005) showed that the relation:
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Figure 3.7: Time series and diurnal cycle of PM . in validation site 28. Lines as in Figure 3.6.

𝜏 MFB RMSE CF
1 day -0.6353 40.8918 0.2603
2 day -0.7815 43.4758 0.3082
3 day -0.7096 42.1953 0.2834
5 day -0.6832 41.6843 0.2802

Table 3.4: Statistical error evaluation for PM via MFB, RMSE and CF for both localization radius variation
and correlation length

E [d (d ) ] = R (3.4)

is valid if the matrices specified in

HK = HP H (HP H +R) (3.5)

are the true covariances for background and observation error. Here K is the
Kalman gain, d is the difference between observations and forecast state in ob-
servation space and d is the difference between observations and analysis state
in observation space. One application of this relationship is that it can be used to
diagnose the observation error variance after the analysis cycle has been completed
(Li et al., 2009). In practice, the requirements for the relationship in Eq.(3.5) are
never fully satisfied because the background covariance matrix is only an approx-
imation of the real one. Nevertheless, the relationship could be used to obtain a
useful first estimate of the observation error covariance matrix. For any subset of
observations 𝑖 with 𝑀 observations, it is possible to compute an estimate of the
error variance
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Figure 3.8: Time series and diurnal cycle of PM in validation site 37. Dots denote observations, dashed
black lines are simulations by the standard model, and solid lines are analyzed ensemble means from
the assimilation for different temporal correlation lengths. The diurnal cycles were obtained from 13
samples for each hour. The shadows and the bars represent the standard deviation of the 13 samples.

𝜏 MFB RMSE CF
1 day -0.2183 38.0219 0.3455
2 day -0.3731 21.8252 0.4019
3 day -0.2854 21.8653 0.3774
5 day -0.2513 21.4967 0.3746

Table 3.5: Statistical error evaluation for PM . via MFB, RMSE and CF for both localization radius variation
and correlation length

(�̂� ) =
(d ) (d )

𝑀

= ∑
(𝑦 − 𝐻(xa) )(𝑦 − 𝐻(xf) )

𝑀 (3.6)

where �̂� correspond with the diagonal of the matrix R.

The assimilation period from March 31 through April 13 was again used for cali-
bration, in this case of R. As an initial estimate the matrix R was filled with random
Gaussian numbers to make the result independent of the initial value (Desroziers
et al., 2005; Li et al., 2009)

For the subsequent experiment (test period, April 13-25), the off-line estimated
matrix was used in the assimilation exercise. Once the DA scheme was calibrated,
the estimated values for emissions correction factors were applied to the emissions
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Figure 3.9: Time series and diurnal cycle of PM . in validation site 28. Lines as in Figure 3.8.

inventory in EDGAR V4.2 and taken as the nominal emissions inventory for the test
period. The new DA iteration was done using the estimated values for R, the radius
size in the covariance localization scheme and 𝜏.

3.4. Emissions estimation and particulatematter fore-
casting

A crucial requirement for an air quality simulation and assimilation system to con-
tribute to the decision making process is that it be able to forecast pollution dy-
namics a few days in advance. The ability of the calibrated assimilation system to
forecast concentrations of PM and PM . in the short term was evaluated during
forecast experiments. Both weekend and weekday forecast starting points were
assessed.

3.4.1. Model data assimilation with a calibrated scheme
Once the calibration process was completed, a new model run was conducted using
the corrected emissions as nominal emission values, and a new 12-day data assim-
ilation exercise was performed using the chosen fixed radius (for local analysis),
time correlation length 𝜏 and the estimated observation error covariance R as was
shown in Figure 3.4. In this second period the emissions were again estimated, but
starting for the estimated emissions in the first period. Thus, the emissions were
updated twice. It is important to note that experiments with other combinations of
𝜌 and 𝜏 were performed but, in all the cases the results using the selected values in
the previous section presented the best performance.The comparison between the
nominal emissions of PM (from EDGAR data base) used in the first experiments
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and the estimated emissions of PM used as nominal emissions for this new model
runs is presented in Figure 3.10. Beyond the clear different in terms of magnitude
and resolution between the estimated emissions and EDGAR that allow a better
spacial representation of the emissions, the location of the hotspots in EDGAR ap-
pears in rural zones of the valley with minimal influence of human activity. The
estimated emissions try to correct this behavior centring most of the emission in
the urban zone of the valley, giving a more realistic representation.

(a) Mean PM EDGAR emissions. (b) Mean PM estimated emissions.

Figure 3.10: Comparison between EDGAR PM and estimated PM emissions.

The results of the assimilation for PM follow closely the measurements from
validation station Universidad San Buenaventura (center of the valley) from April
13 at 19:00 UTC-5 through April 25 at 11:00 UTC-5 (see Figure 3.11). The peak
near 18-00:00 (and in general almost all the day close to that hour) can be caused
by an incorrect time profile in the emissions factors from EDGAR database, that
does not reflect the real temporal dynamics of the emissions. Additionally, the
meteorological fields can cause and increment of the concentrations levels. Note
that the daily cycle for the assimilated model remains closer to the observations
than the model without assimilation and with the previously estimated emissions.

Figure 3.12 shows a similar comparison for the PM . station. The model in
a free run tends to over estimate the PM . concentrations (see peaks in 15 April
at 23:00 UTC-5, 24 April at 22:00 and 25 April at 23:00 UTC-5). The results of
the assimilation process offer a better average estimation. The daily cycle of PM .
within the Aburrá valley is related to the industrial and mobile sources emissions
profile and the meteorological conditions inside the valley.

The second period of assimilation provides a good representation not only of the
dominant dynamics, but also offer an opportunity to forecast taking into account the
profiles of emission sources. The next section will address the results from forecasts
for the assimilated model with different radii in local analysis and correlation time
lengths for the emissions.In the Appendix is presented a validation of the model for
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Figure 3.11: PM validation for the second DA iteration. Estimated emissions were used as nominal
emissions, the estimated observation error covariance is used in the assimilation step. Red points are
observations, solid black line is the free run model and the solid blue line is the analysis step for the
assimilated model. The diurnal cycles were obtained from 13 samples for each hour. The shadows and
the bars represent the standard deviation of the 13 samples. The time axis corresponds with the local
time zone UTC-5.

O and NO concentrations for the second study period.

3.4.2. Forecasting PM profiles during weekdays and weekends
Using the second assimilation period (twice estimated emissions and the analysis
state as initial condition, see Figure 3.4) three forecasts experiments were per-
formed for up to three days, under the following scenarios: i) forecast starting on
a Saturday night (19:00 UTC-5), with an assimilation window of the nine (9) days
prior; ii) forecast starting on Tuesday night (19:00 UTC-5), with an assimilation
window of the five (5) days prior; and iii) as in ii), but using a localization radius of
5 km instead of 30 km.

Three different inheritance schemes (propagation of data assimilation informa-
tion into forecast) for the emission correction factors were compared, namely:

1. Forecast default: Retaining only the state values from the end of the assim-
ilation window. The correction factors estimated in the assimilation window
are not used in the forecast.

2. Forecast hourly: Starting from the state values of the end of the assimilation
window and using the hourly profile from the last 24 hours in the assimilation
window.

3. Forecast average: Starting from the state values of the end of the assimila-
tion window and using the average state values from the entire assimilation
window.
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Figure 3.12: PM . validation for the second DA iteration. Estimated emissions were used as nominal
emissions, the estimated observation error covariance was used in the assimilation step. Red points are
observations, solid black line the free run model and solid blue line the analysis step for the assimilated
model. The diurnal cycles were obtained from 13 samples for each hour. The shadows and the bars
represent the standard deviation of the 13 samples. The time axis corresponds with the local time zone
UTC-5.

For both PM species, forecasts starting on a weekend failed to reflect the ob-
served dynamics. Forecasts initiating on a weekday were able, in general, to repli-
cate the observed dynamics, having better performance in reproducing the dynam-
ics of PM (Figure 3.14). All three inheritance schemes used in the PM weekday
forecast (Figure 3.14) reproduced the observed dynamics, but the hourly scheme
tracked the measured concentrations the closest. For the PM . weekday forecast,
again the hourly profile tracked the measured concentrations more closely than the
other two during the forecast period.

Figure 3.15 presents a comparison of the forecasts for PM and PM . under
different local analysis radii. The smaller 5 km radius for local analysis, does not im-
prove either forecast. We can interpret this phenomenon if we look at the forecast
with 30 km radius in local analysis, taking into account that including more sensors
in the assimilation it is possible to improve the correction factors in emissions. Con-
sequently, if the emissions correction factors are higher for the latter two weeks in
local analysis with 30 km radius, it can reduce the real emissions at a higher rate
than the local analysis of 5 km radius via DA.

In order to provide quantitative measurements of forecast performance under
various scenarios, the following error statistics were calculated and presented in the
Figure 3.16: Mean Factoral Bias(MFB), Root Square Mean Error (RSME); and Corre-
lation Factor (CF). The error statistics are calculated over a single forecast for each
scenario and over the validations stations described in Figure 3.1. Since there were
no considerable changes in the error statistics between the forecast days, the pre-
sented values correspond to the three-day average. Only PM are presented; the



3.5. Conclusions

3

39

22-Apr-00:00 23-Apr-00:00 24-Apr-00:00 25-Apr-00:00 26-Apr-00:00

Date

0

100

200

300

P
M

1
0
 C

o
n
c
e
n
tr

a
ti
o
n
 [
u
g
 m

-3
]

Validation in Station Universidad San Buenaventura-37

Observations

Free-Run

EnKF analysis

Forecast windows

Forecast Default

Forecast Hourly

Forecast Average

22-Apr-00:00 23-Apr-00:00 24-Apr-00:00 25-Apr-00:00 26-Apr-00:00

Date

0

50

100

150

200

P
M

2
.5

 C
o
n
c
e
n
tr

a
ti
o
n
 [
u
g
 m

-3
]

Validation in Station Casa de Justicia Itagui-28

Figure 3.13: PM Forecast Starting on Saturday 19:00 UTC-5. The red points indicate observations; the
dotted black line indicates the Free-Run; the solid black line shows the analysis of the EnKF; blue, purple
and yellow lines show the forecasts under the different scenarios; vertical green line indicates the start
of the forecasts.

behavior of PM . is very similar. Weekday forecasts (initiating on Tuesday) under a
30 km local analysis ratio scenario, presented the best error statistics. Independent
of the inheritance scheme and the localization radius, weekend forecasts performed
worse than weekday forecasts. For weekday forecasts, scenarios with localization
radius of 5 km tended to perform worse than scenarios using a localization radius
of 30 km.

3.5. Conclusions
Poor air quality is an environmental problem that many Colombian cities currently
face. To avert the bi-annual deterioration in air quality due to the arrival of the
Intertropical Convergence Zone, and in general to devise strategies to improve the
quality of urban air, policy makers in Colombia and Northwest South America need
accurate and reliable scientific information on atmospheric pollution dynamics for
their decision making process. This study demonstrates that the LOTOS-EUROS
model is suitable for use in regions of complex topography such as the Aburrá Val-
ley, and paves the way for the creation of atmospheric pollution forecast systems
fine tuned to the region that may assist the stated goal.
The use of regional, ground based atmospheric pollutant data from the SIATA sen-
sor network, in data assimilation of the LOTOS-EUROS model via the use of the
Ensemble Kalman Filter with covariance localization, improved the representation
of PM and PM . dynamics and the estimation of their atmospheric concentrations
within the Aburrá Valley.
Calibration of the radius for local analysis, the correlation time length 𝜏 and the
estimation of the observation covariance error matrix R, led to a better tuned DA
scheme with improved performance, approaching more closely the available ob-
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Figure 3.14: PM Forecast Starting on Tuesday 19:00 UTC-5. Lines as in Figure 3.13

servations. The estimation of an emission correction factor via data assimilation
compensated for the scarcity in accurate and detailed emissions inventories for the
region, enabling more accurate simulation results. Due to the coarse resolution of
the emission inventory, and the rather low density of the sensor network available
for 2016 within the area of interest, a large localization radius (30 km) performance
better than a small radius (5 km).
Forecast performance was time and inheritance scheme sensitive, demonstrating
that the temporal dynamics of pollutant emissions associated with the diurnal pat-
terns of human activity need to be taken into account in the development of forecast
systems. Inheritance schemes cognizant of complex system attributes (e.g., rugged
topography, spatially heterogeneous and highly dynamic meteorology, etc.) may
yield improved performance and increase the resolution and usability of air quality
forecast systems.
Further research is needed using improved input data for the CTM , such as, for ex-
ample, a local and more detailed emission inventory, and meteorology with a higher
resolution that is better capable to represent the transport dynamics into the val-
ley. Improvement of emission inventories and meteorological input is subject of
current studies (see chapters 4 and 7). Additionally, a data assimilation scheme
that also considers uncertainty in the meteorological variables and different emis-
sions correction factors for each component could help to improve the presented
results.

3.6. Supplementary
O , NO SO are crucial for the secondary aerosol formation and the PM modeling
(Barbu et al., 2009; Manders et al., 2009). In this Appendix (figures 3.17 and
3.18) a comparison is shown between the model concentrations for O and NO
for the second period of Data Assimilation, using the calibrated DA scheme and the
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Figure 3.15: PM Weekday Forecast Comparisons for Different Radii. Red points depicts the observations,
dotted black line the Free-Run using a 30 km radius, dotted grey line the Free-Run using a 5 km radius,
solid black line the analysis of the EnKF using a 30 km radius, solid grey line the analysis of the EnKF using
a 5 km radius, and purple and blue lines the forecast scenarios for 30 km and 5 km radius, respectively.
Vertical green line indicates the beginning of the forecast window

estimated emissions (see Figure 3.4). Unfortunately, there is no data available from
the SIATA network to evaluate the concentrations of NO in the period of interest,
and there are no others sources of high quality data over the region. The figures
3.17 and 3.18 show that in general the LE model tends to underestimate the O
and NO concentrations, and not all the cycles are well captured by the model.
These results support the idea that an improvement in the emission inventory and
the meteorological fields are required to improve both the gases and the aerosol
representation in the Aburrá Valley.
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Figure 3.16: PM Forecast Error Statistics. Blue bars represent forecasts under the default inheritance
scheme. Purple bars indicate forecasts under the hourly inheritance scheme. Yellow bars show forecasts
under the average inheritance scheme.
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(a) Validation in Station Centro-12
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(b) Validation in Station Corporación Universitaria Lasallista-31
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(c) Validation in Station Universidad San Buenaventura-37
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Figure 3.17: Comparison of LOTOS-EUROS O concentration and SIATA observations. The time axis
corresponds with the local time zone UTC-5.
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(a) Validation in Station Universidad Nacional-25
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(b) Validation in Station Universidad San Buenaventura-37
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(c) Validation in Station Politecnico Jaime Isaza Cadavid-6
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Figure 3.18: Comparison of LOTOS-EUROS NO concentration and SIATA observations. The time axis
corresponds with the local time zone UTC-5.
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4
Urban Air Quality Modeling

Using Low-Cost Sensor
Network and Data

Assimilation

In this study we show the evaluation of the operational Aburrá Valley’s low-
cost network against the official monitoring network. The results show that
the PM . low-cost measurements are very close to those observed by the offi-
cial network. We integrate low-cost observations with the chemical transport
model LOTOS-EUROS using data assimilation. Two different configurations
of the low-cost network were assimilated: using the whole low-cost network
(255 sensors), and a high-quality selection using just the sensors with a cor-
relation factor greater than 0.8 with respect to the official network (115 sen-
sors). Both simulations assimilating the low-cost model outperform the model
without assimilation and with assimilation of the official network. The capa-
bility to issue warnings for pollution events is also improved by assimilating
the low-cost network with respect to the other simulations. Finally, the simu-
lation using the high-quality configuration has lower error values than using
the complete low-cost network, showing that it is essential to consider the
quality and location and not just the total number of sensors. Our results
suggest that with the current advance in low-cost sensors, it is possible to
improve model performance with low-cost network data assimilation.

Part of this chapter has been published in:
(Lopez-restrepo et al., 2021) Urban Air Quality Modeling Using Low-Cost Sensor Network and Data
Assimilation in the Aburrá Valley, Colombia, Atmosphere, 12, 91, 1–19
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4.1. Introduction
The integration of observations from dense networks of low-cost sensors into math-
ematical models through techniques such as data fusion or data assimilation en-
ables a spatially continuous representation of concentration fields with significantly
reduced bias (Lahoz and Schneider, 2014). These techniques provide an added
value to the sensor observations by spatially interpolating between monitoring lo-
cations and at the same time adding value to the model by constraining the model
with observations. Both sources of information can thus be combined in a math-
ematically objective manner with the goal of reducing the uncertainty inherent to
both sources (Schneider et al., 2017; Liu et al., 2019; Popoola et al., 2018). Al-
though data assimilation is a more complex family of methods than data fusion
or interpolation techniques, it is by far the most versatile and the robust of these
approaches (Lahoz and Schneider, 2014).

This chapter seeks to implement the data assimilation technique Ensemble Kalman
Filter (EnKF) (Evensen, 2003) to integrate data from a hyper-dense, low-cost PM .
measuring network operated in Medellín (Colombia) and its neighboring municipal-
ities of the Aburrá Valley (Hoyos et al., 2019) into the Chemical Transport Model
LOTOS-EUROS (Manders et al., 2017). Data generated by the robust, official net-
work of air quality monitoring stations in the Aburrá Valley were previously used for
data assimilation in LOTOS-EUROS for modeling and forecasting PM dynamics in the
valley (Lopez-Restrepo et al., 2020). The goal with using data from the low-cost
sensor network is to evaluate the impact of hyper-dense observations in the data
assimilation approach and their viability as an alternative to monitoring PM . con-
centrations in developing countries. This study differs from previous studies such as
(Schneider et al., 2017; Popoola et al., 2018; Ahangar et al., 2019; Pournazeri et al.,
2014), in which a dispersion model was used to construct concentration maps or
to estimate emissions from the measured concentration fields, and the integration
of the model and observations was based on Kriging or other static approaches. In
this work a dynamic data assimilation method is implemented to guide the model’s
concentration fields using the observations.

The main contributions from this chapter are as follows: 1) an evaluation of
the low-cost sensor network against the official network; 2) the implementation
of techniques for the assimilation of low-cost high-density data, focusing on the
impact on the assimilated model results; and 3) a methodology for performing and
evaluating PM forecasts with assimilated data over three-day windows, providing
valuable information for decision makers.

4.2. Materials and methods
The period of interest for all data evaluations, simulations and data assimilation
experiments spans from February 25 to March 15, 2019. During these days, the
PM concentrations are higher due to the Northbound transit of the Inter-Tropical
Convergence Zone.
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(a) Official monitoring network (b) Low-cost network

Figure 4.1: Spatial distribution of the hyper-dense low-cost network Citizen Scientist and official monitor-
ing air-quality network for PM . . The gray raster represent the LOTOS-EUROS model grid, the black lines
are the boundaries of the municipalities borders, and the numbers are the official station numerations
followed by SIATA.

4.2.1. Hyper-dense low-cost sensor network
In Medellín and its greater metropolitan area inside the Aburrá Valley, the Sistema de
Alerta Temprana del Valle de Aburrá (SIATA) project operates the official high-end
air quality monitoring network (henceforth official network, and a hyper-dense, low-
cost air quality network developed within the Citizen Scientist program (henceforth
low-cost network).

The official network provides high quality measurements for different pollutants
in the atmosphere over the Aburrá Valley such as O , SO , PM , PM . and PM .
The official network is distributed among the ten municipalities of the Valley, with
the majority of the stations located within the city of Medellín (Figure 4.1, (a)). The
low-cost network was created with the aim of engaging the community in issues
surrounding air quality, and as an extension of the official network. As of writing,
the low-cost network consists of 255 real-time PM . sensors across the Aburrá
Valley and its hills. They are located in the premises of private homes and public
or private institutions (Figure 4.1, (b)). The description of the network deployment
is presented in (Hoyos et al., 2019). Data were downloaded from SIATA’s data
portal1. Data from the official network for the corresponding dates were used for
validation of both the low-cost network and the model simulations before and after
data assimilation. Each station from the official network served as a reference point
for all low-cost network sensors within a 2-km radius of the former. Performance of

1available at https://siata.gov.co/descarga_siata/index.php/index2/. Last accessed,
December 2020.

https://siata.gov.co/descarga_siata/index.php/index2/
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the latter was evaluated using as metrics the Mean Fractional Bias (MFB), the Root
Mean Square Error (RMSE) and the Pearson correlation coefficient (𝑅) introduced
in Section 3.2.3 (Chai and Draxler, 2014; Boylan and Russell, 2006; Shaocai et al.,
2006). When a low-cost sensors had more than one official station within a 2-km
radius, the average value of the official measurements was used.

4.2.2. LOTOS-EUROS Model and Local Emission Inventory
All the simulations were conducted using the domain and experimental setup de-
scribed in Section 2.1.2. The local emission inventory presented in Section 2.1.3
was used as emission input for all the simulations.

4.2.3. Ensemble Kalman Filter
The EnKF system in this application is configured to obtain estimates of both con-
centrations and emissions, following the stochastic representation and the EnKF
implementation presented in Section 2.2. For all the simulations we used a corre-
lation length 𝜏 of 1 day and a variance of the stochastic process 𝜎 of 0.5 following
previous results (Lopez-Restrepo et al., 2020). Additionally, we used a covariance
localization radius 𝜌 =5 km for all the simulations. We used an ensemble of 𝑁 =25
members. Additional experiments with larger ensembles were performed without
improvements in performance (not shown).

Two sets of low-cost sensors data were assembled: The first one included 255
sensors from the low-cost network that had a station from the official network within
a 2-km radius. The second, higher quality one consisted of a subset of the previous
set, including only those sensors whose data showed an 𝑅 value equal or greater
than 0.8 when evaluated against the official network.

We performed four different LOTOS-EUROS simulations:

1. a LOTOS-EUROS model simulation without data assimilation (henceforth LE);

2. a simulation with assimilation of data (observations) from the 14 stations of
the official network (henceforth LE-official. The 14 stations were selected
randomly and are indicated as red squares in Figure 4.4);

3. a simulation with assimilation of the data from the entire low-cost network
(henceforth LE-lowcost)

4. a simulation with assimilation only of high-quality data from the low-cost net-
work (henceforth LE-lowcost-HQ).

The 7 stations from the official network that were not used for data assimilation
(green stars in Figure 4.4) were used as validation stations for all simulations.

4.2.4. Forecast experiments
Data assimilation can improve forecast performance mainly for two reasons: First, if
the simulation is initialed with an assimilated field value, initial conditions at the start
of the forecast window be a representation closer to reality than what the model
alone may provide; second, the emission correction factors that were included in
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the assimilation state (2.7) can be applied to the model during the forecast window
to adjust the emissions in the same direction as during assimilation.

Forecasting experiments were conducted to evaluate the capabilities of the
model with data assimilation to forecast PM concentrations in the valley up to three
days. Simulations were carried out as above, with the assimilation schedule illus-
trated in Figure 4.2. Data assimilation was conducted up to the indicated date,
with the three subsequent days representing the forecast window. The forecasting
window started at 00:00 hours of the first day after the end of data assimilation. To
bring the information obtained in the assimilation window into the forecast window,
we used the hourly profile of the correction factor calculated from the last 24 hours
of data assimilation. The experiments continued until all days between March 9 and
March 13 (inclusive) had predictions as the first, second and third day of the fore-
cast. The performance of the forecast was evaluated by calculating the Air Quality
Index (AQI) according to the ranges established by the Metropolitan Area 2 and
illustrated in Table 4.1; and comparing it to the AQI observed for the corresponding
day. The comparison against the AQI rather than against plain PM concentrations
facilitates the interpretation of the model forecast performance by decision mak-
ers and the general public. Additionally, this representation affords evaluating the
ability of the model to predict warning-triggering episodes (AQI in orange, red or
purple levels). Forecasts missing warning-triggering episodes (false negatives) are
especially problematic in air quality management because the resulting inaction can
lead to human exposure to dangerous concentrations of pollutants.

Figure 4.2: Graphic explanation of the experimental forecast setup. The arrows represent the inheritance
of the last correction factor 24-hourly profile into the forecast. All simulations start at February 23 19:00
UTC-5. A spin-up of 5 previous days was taken for each simulation.

2available in Spanish https://www.metropol.gov.co/ambiental/calidad-del-aire/
Documents/POECA/Plan_de_Acci%C3%B3n_POECA_Metropolitano_2019.pdf. Last ac-
cessed, October 2020.

https://www.metropol.gov.co/ambiental/calidad-del-aire/Documents/POECA/Plan_de_Acci%C3%B3n_POECA_Metropolitano_2019.pdf
https://www.metropol.gov.co/ambiental/calidad-del-aire/Documents/POECA/Plan_de_Acci%C3%B3n_POECA_Metropolitano_2019.pdf
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Average Concentration (𝜇g/𝑚 )
No warning WarningPollutant Average time Green Yellow Orange Red Purple

PM . 24 hours 0-12 13-37 38-55 56-150 ≥ 151

Table 4.1: Air Quality Index (AQI) as defined for the Aburrá Valley with respect to PM . concentrations.

4.3. Results
4.3.1. Evaluation with low-cost sensor network
The performance of 145 sensors from the low-cost network was evaluated against
data from the official network. The remaining 110 sensors did not have an official
monitoring station within a 2-km radius. Figure 4.3 shows the histograms of the
MFB, RMSE and 𝑅, and the geographical distribution of the performance values.
For the majority (67%) of the low-cost sensors an MFB between -0.25 and 0.25
was obtained, with an average of about 0.2. Average RMSE was close to 8 𝜇𝑔/𝑚 ,
with most sensors presenting values below 15 𝜇𝑔/𝑚 . The majority (88%) of
the sensors showed correlations with 𝑅 values above 0.7. Observed errors fell
within acceptable ranges (Boylan and Russell, 2006; Shaocai et al., 2006). Zonal
differences in measurement errors were observed. Locations in the South-central
part of the city of Medellín (green ellipse on Figure 4.3.1 (d), (e), and (f)) contained
most of the sensors with a 𝑅 values lower than 0.5 and RMSE values grater than
15 𝜇𝑔/𝑚 . Those sensors are located in a dense urban area, while the closest
monitoring stations is located in the outskirts of the city. Figure 4.4 shows the
spatial distribution of the complete low-cost network and subset of 115 low-cost
sensors with the highest quality data (as defined in section 4.2.3). The selection of
the low-cost high quality is based in the results showed in Figure 4.3.1(b) and (e).

4.3.2. Evaluation of data assimilation runs
The concentration fields generated by the model simulations with or without data
assimilation were compared to the observations from seven of the official monitoring
stations (validation stations, green stars in Figure 4.4) to evaluate the performance
of the data assimilation schemes. Figure 4.5 shows the temporal series for the
simulated and observed PM . concentrations at four of the validation stations. The
four selected stations represent downtown Medellín (station 25), residential areas
(station 86), areas with high vehicular flow (station 88), and a peri-urban area in
the outskirts of the city (station 85). Those stations summarize the behavior of
all seven validation stations. The LE simulation consistently underestimated the
concentrations observed at stations 85 and 88. At stations 25 and 86, the LE
simulation results were close in magnitude between February 24 and March 3 and
March 10 to March 15; between March 3 and March 10, the model presented values
much lower than those observed. The day-to-day variability was reduced for this
same period, as seen in stations 85 and 86. This inconsistent behavior suggests a
poor representation of the meteorological dynamics that govern the dispersion and
accumulation of PM . within the valley. Simulations using data assimilation showed
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(a) MFB histogram (b) RMSE histogram (c) histogram

(d) MFB distribution map
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(e) RMSE distribution map
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Figure 4.3: Evaluation of low-costs network against the official monitoring network for the period be-
tween 25-February-2019 and 15-March-2019.

noisier behaviors than the LE simulation. This process is commonly observed when
applying the EnKF and obeys the stochastic nature and the handling of uncertainty
inherent to the method (Evensen, 2003). However, those simulations managed to
correct the large discrepancies present in the LE simulation. Both LE-official, LE-
lowcost, and LE-lowcost-HQ represented more accurately the day-to-day variability
of the observations than LE. In general terms, there was no evidence of a sizeable
and persistent difference among the simulations with data assimilation throughout
the entire period. Nevertheless, the LE-lowcost-HQ simulation reproduced with
greater accuracy the concentrations observed in different periods, such as between
February 26 and March 4 in station 25, between March 9 and March 14 in stations
85 and 86.

Figure 4.6 shows the diurnal cycles during the simulation period in the four se-
lected validations stations. The diurnal cycle of the LE simulation differed from the
observations in both magnitude and temporal behavior. The highest concentration
peak that appears around 09:00 in all the stations is mainly due to traffic dynam-
ics. In stations 25 and 88, the LE morning peak corresponded in time but not in
magnitude with the observations; in stations 85 and 86, said peak appeared later
in the simulations than in the observations. This time lag suggests a poor spatial
representation of mobile emissions by the emissions inventory; or a deficiency it
the wind fields in reproducing the valley dynamics, showing a late transport of the
particulate material to these areas. The LE simulation did not capture the evening
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(a) Location of all sensors.
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(b) Low-cost network with values 0.8.
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Figure 4.4: Spatial distribution of the different sets of sensors used for assimilation and validation. Blue
dots indicate the location of the low-cost network sensors. Red squares correspond to the locations of
the official monitoring stations that were used for data assimilation. Green stars indicate the stations
from the official network whose data where used for validation of all model simulations.

peak shown by the observations around 21:00 hours. The simulations using data
assimilation presented diurnal cycles closer to the observations than did the LE sim-
ulation. The LE-official simulation captured the time and magnitude of the morning
peak in stations 85 and 86. In station 88, LE-official corrected the time lag in the
morning peak seen in LE, and improved the estimated magnitudes albeit still falling
short of the observed values. A different behavior was seen for station 25, where
LE-official had low diurnal variability, with a slight underestimation in the morning,
and an overestimation in the afternoon. The LE-lowcost and LE-lowcost-HQ simula-
tions results resembled closely the diurnal behavior of the observations, especially
the temporal component. In all the stations, both the morning and the evening
peaks matched the observations. The observed concentrations for stations 25 and
88 fell inside the standard deviation range for the LE-lowcost simulation; the same
simulation overestimated the concentrations between 11:00 and 19:00 for station
85, and underestimated the concentrations between 01:00 and 13:00 for station
86. The LE-lowcost-HQ simulation results were overall the closest to observations.

The averaged evaluation statistics among all the validation station are shown
in Table 4.2. The simulation results without data assimilation (LE) underestimated
the observed concentrations in all the validation stations. This was also seen in
previous related works (Lopez-Restrepo et al., 2020; Henao et al., 2020). The
RMSE value reflected a low correspondence between the observed and simulated
concentrations when using the model without data assimilation. The correlation
coefficient was low, meaning that the model was not able to capture the variations
in diurnal and day-to-day concentrations. In contrast, the three simulations using
data assimilation had MFB values close to 0, without a significant difference among
them. The data assimilation was thus effective in reducing between the model
and reality. The RMSE also improved when using data assimilation, decreasing by
24.4% in the LE-official, 32.8% in the LE-lowcost, and 36.2% in the LE-lowcost-HQ
simulations relative to the RMSE of the LE simulation. The 𝑅 values were all above
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the criteria of good performance according with (Mogollón-sotelo et al., 2020) Table
2, and based in (Boylan and Russell, 2006; EPA, 2000). Assimilation of either data
set from the low-cost network resulted in improved error statistics when compared
to the LE-official simulation.

Simulation MFB RMSE 𝑅
LE -0.65 27.38 0.42

LE-official -0.07 20.69 0.64
LE-lowcost 0.08 18.39 0.76

LE-lowcost-HQ 0.06 17.46 0.82

Table 4.2: Mean Fractional Bias, Root Mean Square Error and Pearson Correlation Coefficient for simu-
lated PM . . Values are averaged over all the validation stations for the simulation period.

4.3.3. Evaluation of forecasts
Figure 4.7 shows a graphical evaluation of the model forecasts for March 12 as
day 1, 2 or 3 within the forecasting window. Forecasts for all other days within
the forecasting experiment behaved similarly. The observed AQIs and the values
for the LE simulation are the same in all the graphs since all graphs illustrate the
same calendar day (March 12). Similar to the results shown in section 4.3.2, the
LE simulation underestimated PM .5 concentrations throughout the valley, yielding
in most cases AQI lower than those reported. The AQI forecasts of the three sim-
ulations with data assimilation were consistently more accurate than the estimates
from the simulation without assimilation (LE). There were no significant differences
in performance among the three data assimilation simulations through the three
forecast days. Their forecast accuracy decreased as the forecasting window ad-
vanced, as could be expected from the uncertainty inherent in the meteorological
fields and nominal emission factors. All three simulations with data assimilation had
similar spatial behavior, with a tendency to underestimate the AQI in the Northern
and Eastern areas of the valley.

For public information on air quality, it is essential that a forecast correctly warns
for a critical pollution event. Figure 4.8 shows the confusion matrix for LE-official,
LE-lowcost, and LE-lowcost-HQ simulations in the data assimilation and forecast
windows. The confusion matrix summarizes the percentage of true negatives, true
positives, false negatives, and false positives (Kohavi and Provost, 1998). The data
assimilation evaluation is performed just in the seven validation stations shown in
Figure 4.4. The LE simulation does not offer a warning in any station in the assimi-
lation nor forecast windows; for that reason, its confusion matrix is not presented.
In the assimilation window, data assimilation simulations have a percentage of true
negatives and true positives higher than 80%, and even higher than 90% in the
case of the LE-lowcost-HQ. Both simulations using the low-cost network show lower
false negative values than LE-official. The LE-lowcost-HQ has the highest accuracy
in reproducing the warning-triggering events within the data assimilation window.
The accuracy of the three simulations is lower in the forecast window than in the
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(a) Concentrations at Station 25
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(b) Concentrations at Station 85
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(c) Concentrations at Station 86
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(d) Concentrations at Station 88
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Figure 4.5: Temporal series of PM . concentrations from selected validation stations of the official
network, LOTOS-EUROS without assimilation, LE-official, LE-lowcost and LE-lowcost-HQ. Time stamps
are valid for local time (UTC-5). A spin-up of 5 previous days was taken for each simulation.
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(a) Diurnal cycle at Station 25 (b) Diurnal cycle at Station 85

(c) Diurnal cycle at Station 86 (d) Diurnal cycle at Station 88

Figure 4.6: Diurnal cycle of PM . concentrations from selection stations of the official network, LOTOS-
EUROS without assimilation, LE-official, LE-lowcost and LE-lowcost-HQ. The bars and the shadows rep-
resent the standard deviation over the simulation period. The time stamps are valid for local time
(UTC-5).
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assimilation window. The small percentage of false positives and high percentage
of false negatives suggests that even using the estimated emissions inventory, the
simulations continue to underestimate the observations. As observed within the
data assimilation window, the two simulations assimilating data from the low-cost
network (LE-lowcost and LE-lowcost-HQ) had better warning forecast performance
than the LE-official simulation.

4.4. Discussion and comments
The experiments described in this chapter show that it is currently possible to de-
velop low-cost networks with high performance even for cities with air quality prob-
lems such as Medellin. The high spatial density of the low-cost network allowed
much higher spatial resolution than that attained with the official network. The
errors in the low-cost sensors located within the green ellipse in Figure 4.3.1 (d),
(e) and (f) represented spatial outliers. The increased errors observed in this sector
of the Valley may be attributed to specific factors such as maintenance, character-
istics of the infrastructure in which the sensors are located, differences in eleva-
tion relative to the official station against which they were evaluated, or particular
meteorological conditions within the subregion of the Valley that may yield local
heterogeneity in PM concentrations. Said green ellipse corresponds to a transition
zone between peri-urban terrain and an expanding horizon of high-density residen-
tial buildings. The low-cost sensors are located in said buildings, while the official
monitoring station is located in a school surrounded by forests. This may explain
the apparent overestimation of the PM levels by the low-cost sensors and the low
correlation values of their data.

Our results show a low correlation values and a high underestimation of the
observed concentration by the LOTOS-EUROS model without assimilation. Simi-
lar behavior were observed in previous works (Lopez-Restrepo et al., 2020; Henao
et al., 2020). In Henao et al. (2020) the WRF-Chem model in a sub-kilometer
configuration was used to reproduce the CO dynamics in the valley. The emission
inventory was obtained from the AMVA Official Emission Inventory (UPB and AMVA,
2017) and following a methodology similar to the presented in Section 2.1.3. Al-
though the meteorological fields showed a high similarity with observations, the
model underestimated the CO concentrations. The underestimation in both cases
is attributed to mismatches in the official emission inventory and uncertainties gen-
erated by the simplifications of disaggregation methodologies. However, data as-
similation notably improves the ability of LOTOS-EUROS to represent the magnitude
and dynamics of P . within the Aburrá Valley. The assimilation of data from the
low-cost network improves the correlation between the observed and the simulated
concentrations to a greater extent than when data from the sparse official network
is assimilated, both in terms of the RMSE and the 𝑅 values. The errors left in the
simulated concentrations after the assimilation of the low-cost network are within
the performance goals for PM . representation formulated in (Boylan and Russell,
2006; Shaocai et al., 2006; EPA, 2000; Chang and Hanna, 2004). The uncertainty
present in the model causes the percentage of predicted alarm-triggering events
related to high concentration of PM . , to decrease to almost one half of the events
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(a) Data assimilation (b) First day in the forecast

(c) Second day in the forecast (d) Third day in the forecast

Figure 4.7: Evaluation of Air Quality Index (AQI) forecast capabilities of LOTOS-EUROS for the Aburrá
Valley. All figures represents the forecasts for March 12 when it corresponded to the first (a), second (b)
and third (c) day within the forecasting window. The five-square markers are located at the geographical
location of each of the official stations used for comparisons. The upper-center square is the AQI
calculated from the observed PM values, against which all other values are compared; the middle-left
inner square is the AQI predicted by the LE-official simulation; the middle-right inner square is the AQI
predicted by the model without assimilation; the bottom-left inner square the AQI predicted by the
LE-lowcost simulation; and the bottom-right inner square is the AQI predicted by the LE-lowcost-HQ
simulation. The AQI definition is as Table 4.1.
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(a) Data assimilation window
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Figure 4.8: Comparison of confusion matrices for the data assimilation and forecast window depending
on warning or no warning per station. The values are calculated across all the days of the corresponding
window. The value of 0 corresponds with no warning, the value of 1 corresponds with a warning. For
the LE simulation, there are no warnings in the data assimilation window nor forecast windows.
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observed within the forecasting window (Figure 4.8). Our results highlight the per-
sistent need to improve the inventories of nominal emissions, the meteorological
data used, and to reduce other sources of uncertainty in the model in order to
increase forecasting capacity. Nevertheless, the model’s forecasting capacity is in-
creased when observations are assimilated. The greater spatial coverage of the
low-cost network contributed significantly to the improvements against the simula-
tions assimilating data from the official network. The higher density of observations
also allowed estimating emissions in more detail, as seen in Figure 4.6. The more
detailed emission estimations also allowed a better reproduction of the concentra-
tions in the forecast window even in the absence of data assimilation.

Although the LE-lowcost simulation used more observations than the LE-lowcost-
HQ simulation (255 and 115, respectively), the location and quality of the additional
observations played an important role. The LE-lowcost-HQ was defined using a high
similarity criterion to the official network, so it was not as affected by observations
with low quality as LE-lowcost. Comparisons between Figure 4.4 (a) and Figure 4.4
(b) reveal that the additional locations did not increase the spacial density con-
siderably relative to the low-cost high quality sensors. Our results suggested that
while a high observation density is essential for improving the performance of a
model with data assimilation, it is crucial to consider other factors such as quality
of the data and the location of the sensors. Different techniques of observation
localization allow optimizing the number of sensors to improve the data assimila-
tion or other data fusion techniques (Alexanderian et al., 2016; King et al., 2015;
Mazzoleni et al., 2017; Yildirim et al., 2009). We highly recommend implementing
these techniques in the development of a new low-cost network. Apart from min-
imizing the number of sensors and associated costs, the processing of a reduced
number of observations requires less computational resources. As an example, the
LE-lowcost simulation was 3.2 times slower than the LE-lowcost-HQ using the same
computation configuration. Optimization of computational and time resources are
especially important for operational systems.

Jointly with previous work (Schneider et al., 2017; Popoola et al., 2018; Ahangar
et al., 2019; Johnston et al., 2019; Isakov et al., 2019; Moltchanov et al., 2015),
our results can support and motivate the development of future low-cost networks
and their integration in data fusion applications. According to the literature, North
America, Europe, and China concentrate most of the current low-cost implemen-
tations, with experimental, citizen, and data dissemination purposes (Kumar and
Gurjar, 2019; Morawska et al., 2018). In developing countries, a low-cost network,
together with a CTM and data assimilation can provide a valuable first approach to
monitoring PM without the high cost of an official air quality network.

4.5. Conclusions
We represented a data assimilation application of a hyper-dense low-cost PM net-
work and the chemical transport model LOTOS-EUROS in a urban setting. The
low-cost network provided high quality data comparable to those provided by the
official monitoring network. The performance of the model with assimilation of
the spatially-dense data from the low-cost network improved both in terms of its
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representation of the observed dynamics, as well as in its forecast capabilities, high-
lighting its value as an air-quality management tool. Our results support the idea
than with the current advances in the low-cost sensors, it is possible to use low-cost
networks and data assimilation to model and predict air quality in urban areas.

Although one of the main advantages of a low-cost network is that it could
provide a hyper-dense networks with relative low costs, it is recommended to invest
in the quality of the data (sensor quality, calibration, maintenance) and the study
of optimal localization. High quality data and appropriate choices for the number
and the location of the sensor strongly improves the data assimilation process and
minimizes operational and computational costs.
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5
An Efficient Ensemble

Kalman Filter
Implementation Via

Shrinkage Covariance Matrix
Estimation: Exploiting Prior

Knowledge

In this chapter, we propose an efficient and practical implementation of the
ensemble Kalman filter via shrinkage covariance matrix estimation. Our fil-
ter implementation combines information brought by an ensemble of model
realizations, and that based on our prior knowledge about the dynamical
system of interest. We perform the combination of both sources of informa-
tion via optimal shrinkage factors. The method exploits the rank-deficiency
of ensemble covariance matrices to provide an efficient and practical imple-
mentation of the analysis step in EnKF based formulations. Localization and
inflation aspects are discussed as well. Experiments are performed to as-
sess the accuracy of our proposed filter implementation by employing an Ad-
vection Diffusion Model and an Atmospheric General Circulation Model. The
experimental results reveal that the use of our proposed filter implementation
can mitigate the impact of sampling noise, and even more, it can avoid the
impact of spurious correlations during assimilation steps.
Part of this chapter has been published in:
(Lopez-Restrepo et al.,2021) An Efficient Ensemble Kalman Filter Implementation Via Shrinkage Covari-
ance Matrix Estimation: Exploiting Prior Knowledge, Computational Geosciences,25, 985–1003
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5.1. Introduction
A dynamical system, approximately evolves according to some imperfect numerical
model:

xcurrent =ℳ previous→ current (xprevious) , (5.1)

where 𝑛 and 𝑚 are the model resolution and the number of observations, respec-
tively, and ℳ ∶ ℝ × → ℝ × is an imperfect model operator which mimics the
behavior of a very highly non-linear system such as the ocean and/or the atmo-
sphere.

On the former representation, the model operator maps the state variable into
a sequential time steps realization of the behavior of the dynamical system. In
most of the cases, there is a control variable included on the operator that related
external inputs to the system and allows for the representation of the interactions
between the system and the external world. The state variable may or may not be
directly measurable and is used as a memory of the system. As seen in equation
5.1, the past behavior of the system affects its future development, but the lack
of representation of the state variable may be a pitfall on the full representation
of the real world. The relationship between the state space and the real noisy
observation y ∈ ℝ × is sometimes a useful tool for the proper understanding and
representation of the full system.

Controllability is a property of the dynamical system that allows measuring the
ability of a particular control input to manipulate all the states of the system, taking
them from a point A to the point B in finite time. On the other hand, observability
measures the ability of the particular sensor configuration to supply all the infor-
mation necessary to estimate all the states of the system. State estimation and
Parameter estimation are typically the main concerns in control and systems the-
ory. They are required for the proper control law design and are mandatory for the
full observability of the system.

In cases when there is a lack of observability, the problem of state estimation
and parameter estimation arose, and it can be solved by means of the solution
to the optimal filtering problem. That requires an analytical solution of the Bayes
theorem by means of the Kushner or Zakai Equation. These are not feasible for non-
linear and non-Gaussian systems. They are approximated most often via particle
filters (Quintero M et al., 2008, 2009). The linear and Gaussian case is solved by
the well known Kalman filter, and its extension to non-linear and Gaussian cases
can be found extensively in the literature. For Large scale systems, the solutions to
complete the full observability of the system are not straight forward because the
course of dimensionality and more sophisticated solutions to the optimal filtering
problem were derived.

Sequential Data Assimilation (DA) is a statistical process that optimally combines
information brought by an imperfect numerical forecast x ∈ ℝ × and a real noisy
observation y ∈ ℝ × (Evensen, 2003; Anderson and Anderson, 1999) to estimate
the actual state x∗ ∈ ℝ × of a dynamic system such as Equation 5.1. When
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Gaussian assumptions are made over prior and observational errors via Bayes’ rule,
the posterior estimate has the form:

x = x + B ⋅H ⋅ A ⋅ d ∈ ℝ × , (5.2)

where B ∈ ℝ × is the background error covariance matrix, d = y − ℋ (x ) ∈
ℝ × is the vector of innovations (on the observations), ℋ(x) ∶ ℝ × → ℝ ×

is the observation operator (which maps vector states to observations), ℋ(x) ≈
ℋ (x ) + H ⋅ [x− x ] ∈ ℝ × , H ∈ ℝ × is the Jacobian of ℋ(x) at x , the
information matrix reads:

A = [R+H ⋅ B ⋅H ] ∈ ℝ × , (5.3)

and R ∈ ℝ × is the estimated data-error covariance matrix. In practice, an en-
semble of model realizations can be employed to estimate the parameters x and
B of prior error distributions. However, given the computational cost of a single
model propagation, ensemble sizes are constrained by the hundreds while their
underlying error distribution by the millions. Consequently, sampling errors impact
the quality of analysis innovations: ensemble covariances are rank-deficient, and
even more, they are ill-conditioned (Ott et al., 2004; Anderson, 2001). Thus, spuri-
ous correlations among distant model components are developed in the ensemble
covariance (Nino-Ruiz et al., 2020). Localization methods are commonly employed
during assimilation steps to mitigate the impact of sampling noise. In this context,
well-known methods are covariance matrix localization, precision matrix localiza-
tion, spatial domain localization, and observation impact localization. The selection
of one method over the others relies on computational aspects. Yet another manner
to mitigate the impact of spurious correlations is based on Shrinkage Covariance
Matrix Estimation. In this family of covariance matrix estimators, the background
error covariance matrix is estimated as the convex combination of a target matrix
T ∈ ℝ × , and the ensemble covariance P ∈ ℝ × :

B̂ = 𝛾 ⋅ T+ (1 − 𝛾) ⋅ P ∈ ℝ × , for 𝛾 ∈ [0, 1] . (5.4)

The current literature proposes ensemble-based formulations via the covariance
estimator (5.4) in which:

1. the target matrix T is diagonal (no prior structure is assumed for B), and
the weight 𝛾 is optimally computed via loss functions (Nino-Ruiz and Sandu,
2015; Nino-Ruiz and Sandu), or

2. the target matrix T is static (i.e., it retains climatological information), and
the weight 𝛾 is ranged in 𝛾 ∈ [0, 1] (Wang et al., 2008, 2007).

We exploit the opportunity to include our prior knowledge about the structure of B,
the information brought by samples from the model dynamics, and the optimal esti-
mation of 𝛾. In this manner, we can obtain a covariance matrix estimator of B that
optimally combines all sources of information. While several techniques have been
proposed to reduce spurious correlations, most of them are designed for a specific
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problem, and it is not possible to generalize them for other DA implementations (Fu
et al., 2017; Lu et al., 2016). We are looking for a robust and generalizable manner
to include previous knowledge of the system to a large scale Chemical Transport
Model (CTM) for air quality purposes.

5.2. Preliminaries
In order to state the value of the current contribution, several questions must be
solved to demonstrate the feasibility of the new data assimilation technique in an
operational fashion (Zhu et al., 2002): Does the new method provide guidance that
is of higher quality or more use than existing methods? Is the potential benefit of
running a new technique cost-effective? Is the new method sufficient with respect
to old methods?. In this section, we discuss ensemble-based data assimilation
methods and how those can be implemented in current operational settings. These
concepts are necessary to develop our filter formulation.

5.2.1. Ensemble-Based Data Assimilation
In ensemble-based data assimilation, an ensemble of model realizations

X = [x [ ], x [ ], … , x [ ]] ∈ ℝ × , (5.5)

is employed to estimate the parameters x and B of prior error distributions, where
x [ ] ∈ ℝ × is the 𝑒-th ensemble member, for 1 ≤ 𝑒 ≤ 𝑁, and 𝑁 stands for
ensemble size. Hence:

x ≈ x = 1
𝑁 ⋅∑ x [ ] ∈ ℝ × , (5.6)

and

B ≈ P = 1
𝑁 ⋅ ΔX ⋅ ΔX ∈ ℝ × , (5.7)

where

ΔX = X − x ⋅ 1 ∈ ℝ × , (5.8)

is the matrix of member deviations, x is the ensemble mean, P is the ensemble
covariance, and 1 is a vector of consistent dimension whose components are all
ones. Once an observation is available, the posterior state can be computed via the
stochastic Ensemble Kalman Filter (EnKF) (Evensen, 2003):

X = X + P ⋅H ⋅ [R+H ⋅ P ⋅H ] ⋅D ∈ ℝ × , (5.9)

where the 𝑒-th column of the innovation matrix on the synthetic observations
D ∈ ℝ × reads d[ ] = y + 𝜖[ ] −ℋ (x [ ]) ∈ ℝ × , with 𝜖[ ] ∼ 𝒩 (0, R). In prac-
tice, ensemble sizes are constrained by the hundreds, while model resolutions are
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bounded by the millions, which mainly obey computational aspects. Consequently,
the quality of analysis corrections can be impacted by spurious correlations. Hence,
localization methods can be employed to mitigate the impacts of sampling errors.
Well-known methods in this context are covariance matrix localization, spatial do-
main localization, and observation localization.

5.2.2. Shrinkage Covariance Matrix Estimation
A more robust family of covariance estimators under the DA case 𝑛 ≫ 𝑁 are the
shrinkage based estimators (Touloumis, 2015; Couillet and McKay, 2014). This kind
of estimators follow the form (Ledoit et al., 2018):

B ≈ B̂(𝛼) = 𝛼 ⋅ T+ (1 − 𝛼) ⋅ P ∈ ℝ × , (5.10)

where 𝛼 ∈ [0, 1], and T ∈ ℝ × is known as the Target matrix. The resulting
estimator is a convex combination of the ensemble covariance matrix and the pre-
defined T matrix. When there is not available information about the structure of B,
an alternative for T is (Nino-Ruiz and Sandu):

T = trace (P )
𝑛 ⋅ I , (5.11)

where I ∈ ℝ × is the identity matrix. The value of 𝛼 is chosen to minimize the loss
function

𝛼∗ = argmin𝔼 [‖B− B̂(𝛼)‖ ] , (5.12)

where ‖•‖ represents the Frobenius norm. For target matrices of the form (5.11),
a distribution-free formulation for the optimal 𝛼∗ is proposed by Ledoit and Wolf
in (Ledoit and Wolf, 2004a):

𝛼∗ =min
⎛
⎜

⎝

∑ ‖P − Δx[ ] ⋅ Δx[ ] ‖

𝑁 ⋅ [trace (P ) − trace(P ) ]
, 1⎞⎟

⎠

, (5.13)

where Δx[ ] ∈ ℝ × denotes the 𝑒-th column of matrix (5.8). Based on the LW
estimator, for Gaussian samples, the Rao-Blackwell Ledoit and Wolf (RBLW) one is
proposed. In the RBLW estimator, the optimal weight is defined by:

𝛼∗ =min(
⋅ trace (P ) + trace (P )

(𝑁 + 2) ⋅ [trace (P ) − trace (P ) ]
, 1) . (5.14)

An EnKF implementation which exploits the special structure of this estimator is the
EnKF based on the RBLW estimator (EnKF-RBLW) wherein the posterior ensemble
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can be built as follows (Nino-Ruiz and Sandu, 2015; Nino-Ruiz and Sandu):

B̂ = 𝛼∗ ⋅ 𝜇 ⋅ I+ (1 − 𝛼∗ ) ⋅ P , (5.15a)

X = X + B̂ ⋅H ⋅ [R+H ⋅ B̂ ⋅H ] ⋅D , (5.15b)

𝜇 = trace (P )
𝑛 . (5.15c)

Since numerical models can be highly non-linear, Gaussian assumptions on prior
members are commonly broken. This assumption can be relaxed in the EnKF con-
text by employing, for instance, the LW estimator for the estimation of background
error covariance matrices during assimilation steps (Nino-Ruiz et al., 2021). Be-
sides, different prior structures can be treated in T to enrich the covariance matrix
estimation, this is, to account for prior information about the dynamical system.

5.3. An Ensemble Kalman Filter Via Shrinkage Co-
variance Matrix Estimation and Prior Knowl-
edge

In this Section, a novel EnKF implementation that incorporates prior knowledge of
the background error covariance matrix in a practical manner to improve the DA
process is presented. The method is based on a shrinkage estimator using a general
target matrix. An efficient and totally parallelizable implementation of the method
for high-dimensional systems is also proposed.

5.3.1. Filter Derivation
As was mentioned above, shrinkage based covariance matrix estimators which allow
the use of a target matrix T to structure the covariance matrix, are limited to a target
matrix with identity matrix structure (Nino-Ruiz and Sandu; Stoica et al., 2008). Al-
though matrix identity structure can reduce the spurious correlations caused by the
ill-conditioned approximation of the error covariance matrix (Nino-Ruiz and Sandu,
2015; Ledoit and Wolf, 2004b; Chen and Prinn, 2006), the assumption of a co-
variance structure without correlation between the states is not always valid or
desirable. Using a general target matrix enables the incorporation of prior infor-
mation about the system into the error covariance matrix. This prior information
can be information about the system physics as for instance, parameters, topogra-
phy, transport phenomena and environmental information, or knowledge about the
covariance structure coming from experts or previous experiments. A close formu-
lation to calculate the weight value 𝛼 using a general target matrix T is proposed
in (Stoica et al., 2008; Zhu et al., 2011),

𝛼 =min(
⋅ ∑ ‖Δx[ ]‖ − ⋅ ‖Pb‖

‖P − T ‖
, 1) . (5.16a)
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and the KA (Knowledge-Aided) estimator is obtained using (5.16a) in

B̂ = 𝛼 ⋅ T + (1 − 𝛼 ) ⋅ P ∈ ℝ × , (5.16b)

It is important to note that no assumptions about the structure of T are made
to calculate 𝛼 . This approach can be seen as an extension of that in (Ledoit
and Wolf, 2004b; Chen et al., 2010) to a general target matrix and is usable for
complex-value data case 1. Similarly than the EnKF-RBLW an implementation of the
EnKF can be obtained using the KA shrinkage-based estimator presented in (5.16):

X = X + B̂ ⋅H ⋅ [R+H ⋅ B̂ ⋅H ] ⋅D,
Since the target matrix T in the EnKF-KA is not necessary a matrix with identity
structure, information about the dynamical system can be integrated into the data
assimilation process. The prior information is directly related to the error covariance
of the model states; this means that it is possible to integrate information of the
system and guide the dynamical relation between the states and the relation be-
tween states and observations. Although there are no restrictions in the structure
of T , it is important to remarks that T is still a covariance matrix, so all the
conditions related have to be accomplished. In Section 5.4 are shown examples
of how to select T properly.

5.3.2. Domain Localization
Both most popular concepts of localization can be applied in the EnKF-KA approach:
covariance localization (Hamill et al., 2001; Houtekamer and Mitchell, 2001), and
local domain analysis (Ott et al., 2004). We explore the implementation of local
domain analysis due to the advantages not only in the spurious correlation miti-
gation but also in the implementations. Since the mean idea of the EnKF-KA is
to incorporate prior information of the system in the DA framework, it is inherent
that this information has to be saved and available in all the DA process. In high-
dimensional applications, it is not convenient and, in some cases, prohibited to save
a matrix of the dimension of T ∈ ℝ × , and calculate P ∈ ℝ × directly. It is
here where the concept of local domains is crucial for the implementations of the
EnKF-KA for high-dimensional systems. In local domains, a box of radius 𝑟 of com-
ponents around the state of interest is created, and just the states and observations
within this box (local domain) are used in the analysis step (Ott et al., 2004; Sakov
et al., 2010; Hunt et al., 2007). This process is repeated for all the state compo-
nents, doing multiple local analysis (in a smaller dimension) instead of a unique and
global analysis (in a higher dimension). Another advantage of this implementation
is that it facilitates the parallelization of the analysis since each local analysis can be
performed in an independent core (Nino-Ruiz and Sandu; Greybush et al., 2011).
The implementation of the EnKF-KA using local domains analysis is summarized in
the next steps:

1. A local domain of radius 𝑟 is created for any model component. The 𝑘 −
𝑡ℎ local domain is formed by 𝑛 (𝑛 << 𝑛) and 𝑚 observation. The use

1The reader can consult (Stoica et al., 2008; Zhu et al., 2011) for additional information.
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of domain decomposition is applied, so that boundary information is shared
across neighboring domains. In this manner, we preserve the continuous
dynamics of some physical variables such as Temperature, Wind Components,
and Pressure. Figure 5.1 illustrates this strategy. The background ensemble
and the analysis ensemble into the box is denoted by X ∈ ℝ × and X ∈
ℝ × respectively. The covariance model error into the box are denoted by
B ∈ ℝ × , the local observation is denoted by y ∈ ℝ × with observation
covariance R ∈ ℝ × , and the local innovation matrix is denoted by D ∈
ℝ × .

2. Compute the local sample covariance matrix P ∈ ℝ ×

ΔX = X − x ⋅ 1 , (5.17a)

P = 1
(𝑁 − 1) ⋅ ΔX ⋅ (ΔX ) . (5.17b)

3. Define the local target matrix T ∈ ℝ × . On this step, the use of previous
knowledge of the model dynamics is required. Knowledge is understood as
the human-based experience in front of a large scale model used to represent
reality. Large scale models for atmospheric dynamics, weather, water and
ocean, reservoir modeling are used normally by experts in their fields. Even
if the data to be assimilated is measured, some details and specifications are
not captured on the model or included on it. Other possible causes are that
due to the spatial-temporal resolution chosen for the numerical solution of
the equations, it does not allow to capture intrinsic relationships between the
states. We suggest a matrix T built on the basis of that specific knowledge.
Although T must meet all requirements of a covariance matrix, the main
contribution is that the matrix T must not fulfill any requirement about its
structure and also can change dynamically.

4. Estimate the local error covariance B throw the KA shrinkage-based estima-
tor B̂ using

𝛼 = min(
⋅ ∑ ‖Δx[ ]‖ − ⋅ ‖P ‖

‖P − T ‖
, 1) , (5.18a)

B̂ = 𝛼 ⋅ T + (1 − 𝛼 ) ⋅ P ∈ ℝ × . (5.18b)

5. Perform the local analysis step

X = X + B̂ ⋅H ⋅ [R +H ⋅ B̂ ⋅H ] ⋅D . (5.19)
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Figure 5.1: Domain decomposition is exploited to reduce the computational cost of our proposed method.
Dashed regions denote the shared boundary information to be employed during assimilation steps

6. Once all the local analyses are performed, map those to the global domain.
The global analysis state is then obtained. This does not mean to perform a
new global analysis. In (Ott et al., 2004) two map approaches are proposed.
The first one uses only the analysis results at the center point of each local
region to form the global analysis vectors. The second one uses the average
of all the local analysis where a grid cell is involved in obtaining the global
analysis.

Note that with a correct selection of 𝑟, the matrix computations in each lo-
cal domain are inexpensive, so eq. (5.18) can be computed efficiently for high-
dimensional systems.

5.3.3. Inflation Aspects
In the context of EnKF-KA, the covariance inflation can be efficiently performed
increasing the dispersion of matrix (5.8) by a inflation factor 𝛽inf :

Δ̂X = 𝛽inf ⋅ ΔX ∈ ℝ × , (5.20)

and by noting that:

tr (𝛽inf ⋅ P ) = 𝛽inf ⋅ tr (P ) ,
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where tr represent the trace of the matrix. For instance, we can see that covariance
inflation on the optimal factor (5.16a) reads:

𝛼inf =min(
⋅ ∑ 𝛽inf ⋅ ‖Δx[ ]‖ − ⋅ 𝛽inf ⋅ ‖P ‖

‖𝛽inf ⋅ P − T ‖
, 1) .

5.4. Experimental Settings
5.4.1. Results with an Advection Diffusion Model
This section illustrates the proposed EnKF-KA over simple a advection-diffusion
process. The advection-diffusion governs the changes of a conservative property
such as the concentration in a fluid environmental (Richardson and Mooney, 1975;
Tirabassi, 1989). The advection-diffusion equation has been used as a simple model
to study the behavior and transport of pollutant in the atmosphere. In two dimen-
sions, the horizontal changes in the concentration of a determinate pollutant C in
the atmosphere can be approximated as:

𝜕𝐶
𝜕𝑡 = 𝐷

𝜕 𝐶
𝜕𝑥 − 𝑣 𝜕𝐶𝜕𝑥 + 𝐷

𝜕 𝐶
𝜕𝑦 − 𝑣 𝜕𝐶

𝜕𝑦 + 𝐸(𝑡), (5.21)

where 𝑣 and 𝑢 are the north-south and west-east wind velocities respectively, 𝐷
and 𝐷 are the north-south and west-east diffusion coefficients respectively, and
𝐸(𝑡) are the emissions. The experimental settings are:

• The continuous advection-diffusion equation is discretizated in a 20 × 20 do-
main, obtaining a total of 𝑛 = 400 states representing concentration in each
cell.

• The boundary condition used for solving the experiment was the Dirichlet
homogeneous zero or null value fixed in the contour.

• Ten emissions points are considered. Additionally, to represent a real sce-
nario where the emissions are the most important uncertainty sources in the
atmosphere chemistry modelation (Barbu et al., 2009), uncertainty in every
time in the emissions are considered.

• There is no considered uncertainty in initial conditions, boundary conditions,
or parameter values.

• With the idea of simulating an imperfect representation of the model envi-
ronment, an artificial valley is performed in the real scenario, where the true
state x∗ and observations y are taken. The artificial valley is created, increas-
ing the diffusion coefficients and reducing the velocity winds components in
a determinate number of cells. This implies that the interchange of pollu-
tants between two locations, one inside and the other outside the valley, is
considerably lower than two locations outside or inside the valley. The val-
ley is not included in the model used for assimilation purposes. A graphical
representation is shown in Figure 5.2.
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(a) Real scenario.
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(b) Model for DA purpose

X grid

Y
g

ri
d

Figure 5.2: Comparison of the real scenario vs the model scenario. The green line represents the artificial
valley. The red squares represent the emission points.

• A background ensemble is built perturbing the 10 emission points by drawing
a sample from the Normal distribution,

x [ ] ∼ 𝒩(x , 𝜌 ⋅ I), for 1 ≤ 𝑒 ≤ 𝑁, (5.22)

where 𝜌 = 0.05
• We propose three ensemble sizes for the experiments 𝑁 ∈ {10, 50, 100}.
• The assimilation window consists of 𝑀 = 1000 time steps. Two observation
periods are proposed for the test, each time step and each ten time steps.
We denote by 𝛿𝑡 ∈ {1, 10} the elapsed time between two observations.

• The error statistics are associated with the Gaussian distribution,

yℓ ∼ 𝒩(ℋℓ(x∗ℓ), 𝜌 ⋅ I), for 1 ≤ ℓ ≤ 𝑀, (5.23)

where 𝜌 = 0.001.
• We consider two fractions of observed components 𝑠 ∈ {0.12, 0.5}. The com-
ponents are randomly chosen at each assimilation step.

• The 𝐿 norm of errors are utilized as a measure of accuracy at the assimilation
step ℓ,

𝐿ℓ = √[xℓ − x∗ℓ] ⋅ [xℓ − x∗ℓ], (5.24)

where x∗ℓ and xℓ are the reference and the analysis solution respectively.

• The Root-Mean-Square-Error (RMSE) is used as a measure of performance,
in average, on a given assimilation window,

RMSE = 1
𝑀 ⋅∑

ℓ
𝜆ℓ , (5.25a)
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where

𝜆ℓ = ‖xℓ − x∗ℓ‖ . (5.25b)

• The percentage of non converge experiments (PNCE) is calculated for all the
scenarios.

The idea is to incorporate the physical restrictions that the model does not capture,
for this case, the artificial valley, via the EnKF-KA. If we use a standard distance-
based localization for a state into the valley to cut the coming information from
distant observations, the process will include both observations inside and outside
the valley. With the EnKF-KA, we try to cut observations that are outside the valley,
even if there are at the same distance, as is represented in Figure 5.3.

(a) Distance based localization. (b) EnKF-KA

Figure 5.3: Comparison of the distance based localization approach vs the EnKF-KA. In the EnKF-KA the
influence region is based on the distance and on the information about the system. The blue square
represents the analysed state, the blue shadow the influence region, and the yellow circles represent
the observations.

This is achieved by incorporating the physical restrictions (the topography of
the interest domain) into the covariance estimation throw the target matrix T .
The target matrix is built starting from a Gaspari-Cohn function (Gaspari and Cohn,
1999) and reducing to zero the covariance between the states inside and outside
the valley. After this process, it is very important to test whether the final T is
still a positive semidefinite matrix. Note that the final covariance between the state
inside and outside the valley will not be necessary zero because the final covariance
matrix is a convex combination of T and P . In Figure 5.4 is shown an example
of a T matrix obtained using the proposed process for an influence radius 𝑟 = 4.

The performance of the EnKF-KA is compared with the shrinkage-based EnKF-
RBLW and the standard EnKF using covariance localization EnKF-CL with 𝑟 = 1
(other influence radius were tested, but 𝑟 = 1 presents the best performance) under
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(a) Gaspari-Cohn function.
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(b) Target matrix T .
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Figure 5.4: Graphical representation of the T matrix. The arrows remark the state 110 which is
located just in the inside border of the valley (represented as a blue square in Figure 5.3), and shows
how the covariance between a states inside and the states outside the valley is fixed in 0.

the experimental setup presented below. A total of 20 experiments are performed
for each scenario. The target matrix T is built from a Gaspari-Cohn with 𝑟 = 1 and
following the mentioned process including physical restrictions of the valley. The
magnitude of T is computed according with the average of the trace of P . In
Figure 5.5 is shown the dynamical evolution of the 𝐿 norm for different scenarios.
Figure 5.6 presents the values of the average RMSE for all the experiment scenarios
and the PNCE for the EnKF-CL for the different ensemble members value. For the
EnKF-RBLW and the EnKF-KA the 𝑃𝑁𝐶𝐸 = 0% for all the cases.

As is shown in the figures 5.5 and 5.6, the EnKF-KA presents lower error rates
than the EnKF-RBLW and the EnKF-CL in almost all the scenarios. This shows how
the integration of the physical restrictions can help the data assimilation process.
It is interesting to evaluate the scenarios with a smaller number of ensemble mem-
bers, where the differences among the three algorithms are more considerable.
The RMSE value of the EnKF-KA in these scenarios is much lower than the EnKF-CL,
showing that shrinkage-based estimators are more robust than the sample covari-
ance matrix when 𝑛 >> 𝑁. Since the ensemble statistics approximate the mean
and the covariance of the state, the ensemble spread should describe the system
uncertainty (Timmermans et al., 2019; Houtekamer and Zhang, 2016). The en-
semble spread should be as small as possible, reducing the estimation uncertainty,
but enough to conserve the filter stability(Vrugt and Robinson, 2007). If the filter
estimates the state uncertainty correctly, the ensemble spread should match with
the RMSE when there are no model errors (Nan and Wu, 2011). Figure 5.7 shows
the ensemble spread of each algorithm among assimilation steps for a specific ex-
periment. It can be seen how all the algorithms reduce the ensemble spread after
few assimilation steps, reducing the system uncertainty levels. The Free-Run keep
similar uncertainty values among time because no new information is incorporated.
Finally, the EnKF-KA presents the lowest spread values matching with the lowest
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Figure 5.5: Comparisson of the performance among the EnKF-KA, EnKF-RBLW and EnKF-CL for some
scenarios.

RMSE values, which means that the ENKF-KA can correctly reproduce the system
uncertainty and improve estimation accuracy.
In Figure 5.8 is presented the time evolution of states in four different spacial
location for one experiment scenario. It is evident that the EnKF-KA reproduces
more accurately locations in the border of the artificial valley than the other meth-
ods, showing the effect of the incorporated information throw T .
An aspect that is important to remarks is the value of 𝛼 for different ensemble
member values. The mean 𝛼 value for ensemble number of 𝑁 = 10, 𝑁 = 50 and
𝑁 = 100 are ̄𝛼 = 0.698, ̄𝛼 = 0.591 and ̄𝛼 = 0.508. With a small number of
ensemble members the assumption of a poor estimation of the covariance throw
the sample covariance matrix produces a higher value of 𝛼 , giving more weight
to the target matrix than when the number of ensemble, and the quality of the
estimation throw the sample covariance matrix, is higher.

5.4.2. Results with an Atmospheric General Circulation Model
SPEEDY (Simplified Parameterizations, privitivE-Equation DYnamics) is an Atmo-
spheric General Circulation model (Bracco et al., 2004; Miyoshi, 2011), which help
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(b) N=50. PNCE EnKF-CL= . %
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(c) N=100. PNCE EnKF-CL= %
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Figure 5.6: Comparisson performance for the different algorithms
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Figure 5.8: Time evolution of concentration for different locations. The graph corresponds with one
experiment wit , , and .
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us to study the performance of the EnKF-KA method in highly non-linear model
scenario. The model consists of seven numerical layer, and at each one, a T-30
model resolution is employed (96×48 grid components) (Molteni, 2003; Kucharski
et al., 2006). The total number of physical variables at each numerical grid point
is five, these are: the temperature 𝑇 (𝐾), the zonal 𝑢 and the meridional 𝑣 wind
components (𝑚/𝑠), the specific humidity 𝑄 (𝑔/𝑘𝑔), and the pressure 𝜌 (ℎ𝑃𝑎). We
employ all physical variables into our data assimilation process. Note that, the
model dimension in our settings reads 𝑛 = 133, 632. During our experiments, we
consider ensemble sizes of 𝑁 = 10 and 𝑁 = 20, this applies for all numerical
scenarios. Note that, model resolutions are 13, 632 and 6, 685 times larger than
ensemble sizes (𝑛 ≫ 𝑁), which takes to current DA operational settings. We follow
the experimental settings presented in (Nino-Ruiz et al., 2021; Kalnay et al., 2007):

• Long term numerical integrations are applied to build the reference solution as
well as the initial background ensemble (two years of a numerical simulation).
We start with a system in equilibrium, and after adding a small perturbation,
the numerical integration is performed.

• The experiments do not account for model errors.

• Standard deviations of observational errors are detailed in Table 5.1.

• We employ a highly sparse observational network. The observation coverage
is 9% of the spatial resolution. This linear observation operator is shown in
Figure 5.9. Note that this is an irregularly distributed, realistic observational
network.

Model Variable Observational Error Standard Deviation
Zonal Wind Component (𝑢) 1 𝑚/𝑠
Meridional Wind Component (𝑣) 1 𝑚/𝑠
Temperature (𝑇) 1 (𝐾)
Specific humidity (𝑞) 0.0001 (𝑘𝑔/𝑘𝑔)
Surface pressure (𝜌) 100 (𝑃𝑎)

Table 5.1: Observational error standard deviation.

• The inflation factor is 𝛽inf = 1.3 for all experiments.

• We set up a total simulation time of two months with observations frequencies
about 6 and 12 hours. We expect the non-linear dynamics of the SPEEDY
model to impact the quality of analysis states as the observation frequency
decreases.

• The Root-Mean-Square-Error (RMSE) is employed as a metric of accuracy for
a given analysis xℓ and a reference solution x

∗
ℓ (see eq. 5.25).
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Figure 5.9: An irregularly distributed realistic observational network. 415 stations (9 % of all grid points)
are located mostly over continents in the northern hemisphere.

5.4.3. Analysis Errors across Pressure Levels
Figures 5.10 and 5.11 show us the behavior of the proposed method against to
EnKF-RBLW. The analysis was made using the RMSE metric for observation fre-
quencies of 6 and 12 hours for 𝑢, 𝑣, and 𝑇 model variables in different Pressure
Levels. The numerical results show that EnKF-KA can be more accurate than EnKF-
RBLW, this obeys the fact that the error correlations are driven by the physics and
the numerical model’s non-linear dynamics. Therefore, the underlying error distri-
bution of wind components can be non-Gaussian as the frequency of observations
decreases (long-term forecasts). This can apply to temperature fields as well. On
the other hand, Gaussian assumptions can be valid for model variables such as the
specific humidity. For this model variable, slight differences between analysis RMSE
can be evidenced for the compared filter implementations. This can be expected
since the RBLW covariance matrix estimator can perform well as the underlying
error distribution of ensemble members is nearly Gaussian. Nevertheless, these
small differences favor the proposed EnKF-KA formulation under the current exper-
imental settings. In general, errors can grow faster across all pressure levels in
model variables such as 𝑢, 𝑣, and 𝑇 than those in variables that tend to preserve
Gaussianity among assimilation steps (i.e., 𝑞).

5.4.4. Evolution of Analysis Errors among Assimilation Steps
As we can see in figures 5.12 and 5.13, the initial errors decrease as observations
are assimilated in each analysis step using the proposed method, for observation
frequencies of 6 and 12 hours. It should be noted that the observation frequency
affects the estimation quality but not the convergence of the EnKF-KA with the
configuration of this experiment. On the other hand, the proposed method can
outperform the EnKF-RBLW formulation as shown in the figures 5.12 and 5.13.
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Figure 5.10: Analysis RMSE at the all pressure levels temporally averaged for one month and a half after
the initial spin-up period of two weeks. The number of ensemble members reads . The errors
per layer are shown for observation frequencies of h.
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Figure 5.11: Analysis RMSE at the all pressure levels temporally averaged for one month and a half after
the initial spin-up period of two weeks. The number of ensemble members reads . The errors
per layer are shown for observation frequencies of h.

The fact that accurate analysis states can be estimated despite a highly sparse ob-
servational network shows that the dynamic system’s background error correlations
have been captured into the covariance matrix estimators.

5.4.5. Analysis RMSE for the Assimilation Window
Tables 5.2 and 5.3 shows the analysis RMSE of the EnKF-KA and the EnKF-RBLW
using 6 and 12 hours for observation frequencies and ensemble sizes of 𝑁 = 10
and 𝑁 = 20. The RMSE values are computed for 60 days with an initial spin-
up period of ten days. As can be seen, the analysis states of the EnKF-KA can
improve on the results proposed by the EnKF-RBLW. This can be possible due to
EnKF-KA uses a target matrix different from the identity matrix (used in EnKF-
RBLW), and the EnKF-RBLW is performed under Gaussian assumptions over prior
ensemble members. However, Gaussian assumptions on background errors can be
broken by the numerical model’s non-linear dynamics. The observational network
in the experiment is sparse, about 9% of observations, which means that posterior
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Figure 5.12: Evolution of analysis errors among assimilation steps for and an observation
frequency of 6 h. The -norm of errors is displayed in the log-scale for ease of reading.

estimates’ quality relies on background error correlations. The proposed method
then improves the quality of the analysis results over the compared filter for sparse
observational network and very small ensemble sizes in the experiment.

5.4.6. Uncertainty analysis
For sequential data assimilation based on Ensemble Kalman Filter is known that if
the ensemble spread becomes very small or becomes very large, the filter falls into
divergence, but also, the ensemble spread can be used to explore the uncertainty
associated with the initial condition and the uncertainty associated to the formu-
lation of the prediction model. Figure 5.14 shows the mean of ensemble variance
among assimilation steps for 𝑢, 𝑣, 𝑇 and 𝑄 variables in pressure level of 500 Pa. As
expected, the ensemble variance decreases as EnK-KA is used for the analysis step.
This means that the uncertainty decreases as the observations are assimilated. It
should be noted that a covariance inflation factor of 1.3 was used in the experi-
ment. In the same way, Figure 5.15 shows samples of the components taken for
each of the physical variables of the model, it is possible to see how the differences
between ensemble members decrease through the assimilation steps.

5.4.7. CPU-Time of Analysis Steps
Statistics of CPU-Times are computed across all analysis steps for both filter imple-
mentations. The reported times are shown in Table 5.4, where the average and
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Figure 5.13: Evolution of analysis errors among assimilation steps for and an observation
frequency of 12 h. The -norm of errors is displayed in the log-scale for ease of reading.

the variance of elapsed time for the analysis step computations are in seconds. The
forecast step was realized using parallelism in a CPU with four cores; this means
that up to four ensembles were forecast simultaneously.
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Variable Method 6 hours 12 hours

𝑢 (𝑚/𝑠) EnKF-KA 3.682 4.359
EnKF-RBLW 10.734 11.007

𝑣 (𝑚/𝑠) EnKF-KA 3.619 4.284
EnKF-RBLW 10.122 10.589

𝑇 (𝐾) EnKF-KA 1.655 2.001
EnKF-RBLW 4.777 4.691

𝑄 (𝑘𝑔/𝑘𝑔) EnKF-KA 0.003 0.004
EnKF-RBLW 0.008 0.008

𝜌 (ℎ𝑃𝑎) EnKF-KA 3.186 3.875
EnKF-RBLW 10.330 11.110

Table 5.2: RMSE values in time for observation frequencies of 6 h and 12 h. As the frequency of obser-
vations is decreased, the EnKF-KA formulation can improve on the results of the EnKF-RBLW method.
The number of ensemble members reads .

Variable Method 6 hours 12 hours

𝑢 (𝑚/𝑠) EnKF-KA 3.334 4.324
EnKF-RBLW 10.232 10.595

𝑣 (𝑚/𝑠) EnKF-KA 3.267 4.204
EnKF-RBLW 10.278 10.085

𝑇 (𝐾) EnKF-KA 1.52 1.976
EnKF-RBLW 4.391 4.431

𝑄 (𝑘𝑔/𝑘𝑔) EnKF-KA 0.003 0.004
EnKF-RBLW 0.008 0.008

𝜌 (ℎ𝑃𝑎) EnKF-KA 2.863 3.848
EnKF-RBLW 9.864 10.102

Table 5.3: RMSE values in time for observation frequencies of 6 h and 12 h. As the frequency of obser-
vations is decreased, the EnKF-KA formulation can improve on the results of the EnKF-RBWL method.
The number of ensemble members reads .

Method Average CPU-Time Stand. Dev. CPU-Time
Analysis EnKF-KA 6.468 0.172
Analysis EnKF-RBLW 5.562 0.157
Forecast Step 4.327 0.209

Table 5.4: Statistics of CPU-Time in seconds for the analysis steps of the compared filter implementations
and the forecast step. The number of ensemble members reads .
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Figure 5.14: Mean of variance among assimilation steps for , an observation frequency of 12 h
and a pressure level of 500 Pa.
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Figure 5.15: Ensembles of a component sample among assimilation steps for , an observation
frequency of 12 h and a pressure level of 500 Pa
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5.5. Conclusions
An efficient and practical implementation of the EnKF based on shrinkage covariance
matrix estimation (EnKF-KA) was proposed in the present chapter. The proposed
filter implementation exploits the information brought by an ensemble of model
realization (numerical model dynamics) and our prior knowledge about the actual
dynamical system (i.e., the prior structure of background error correlations). The
EnKF-KA uses a target matrix with a general structure, representing a novel ap-
proach compared with the current shrinkage-based estimators that use an identity
matrix as a target matrix. An efficient implementation for large systems is pre-
sented, taking advantage of the local domain decomposition. Experimental tests
are performed by using an advection-diffusion model and an Atmospheric General
Circulation Model. In both cases, the proposed method can outperform EnKF based
on shrinkage covariance estimation where there is no prior information about error
correlations, and the standard EnKF using covariance localization. The results sup-
port the idea that it is possible to use the information and prior knowledge of the
system to improve the current ensemble-based DA method.
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6
A Robust Ensemble-based
Data Assimilation Method
using Shrinkage Estimator

and Adaptive Inflation

This chapter proposes a robust and non-gaussian version of the shrinkage-
based EnKF implementation, the EnKF-KA. The proposed method is based
on the robust H filter and on its ensemble time-local version the EnTLHF,
using an adaptive inflation factor depending on the shrinkage covariance
estimated matrix. This implies a theoretical and solid background to con-
struct robust filters from the well-known covariance inflation technique. The
method is tested using the Lorenz-96 model to evaluate the robustness and
performance under different scenarios as ensemble size, observation error,
errors in the model specifications, and ensemble gaussianity. The results
suggest good robustness of the proposed method in all the evaluated cases
compared with the standard EnKF, the shrinkage-based EnKF-KA, and the
robust EnTLHF.

Part of this chapter is under review:
(Lopez-Restrepo et al.,2021) A Robust Ensemble-based Data Assimilation Method using Shrinkage Esti-
mator and Adaptive Inflation, Geophysical Research Letters
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6.1. Introduction
Data assimilation (DA) is a mathematical family of methods that allows the com-
bination of observations and models. The model is used to fill observational gaps,
and the observations constrain the model dynamics (Lahoz and Schneider, 2014;
Bocquet et al., 2015). In most of the DA methods, the aim is to minimize the es-
timated error variance. For instance, Kalman Filter (KF) is an optimal method that
minimizes the mean-squared-error in the estimation. The KF is optimal when the
following assumptions are fulfilled: the dynamic system is linear, and the obser-
vation and model uncertainties follow a Gaussian distribution (Kalman, 1960). The
Ensemble Kalman Filter (EnKF) is a KF-based Monte Carlo approximation of the KF
when the state space is large, and the model is non-linear (Evensen, 2003). The
EnKF uses an ensemble of model realization to approximate the first and second
background error moments, making it efficient for large-scale models and suitable
in the presence of non-linearities. However, in real DA applications, the assump-
tions required to obtain the optimal solution may not be accurate, degrading the
filter performance (Evensen, 2003; Houtekamer et al., 2005). Additionally, small
ensemble sizes may produce a poor approximation of the model uncertainty, caus-
ing a reduction in the filter accuracy or even filter divergence.
When the system conditions do not satisfy the KF-based methods requirement, a
different approach is a robust filter or robust estimator. The robust filters empha-
size the robustness of the estimation to have better tolerances to high uncertainty
sources. Since its purpose is not the optimality in the estimation, the robust es-
timator does not require a strictly statistical representation of the system and the
observations (Luo and Hoteit, 2011), showing a better performance than the KF-
based methods in scenarios with a poor statistical uncertainty representation (Han
et al., 2009; Nan and Wu, 2017). There are several robust ensemble-based DA
schemes based in different aspect such as 𝐻 formulation (Han et al., 2009), re-
placing the traditional L norm (Roh et al., 2013; Freitag et al., 2013; Rao et al.,
2017), robust covariance estimation (Yang et al., 2001; Nino-Ruiz et al., 2018),
and covariance inflation (Luo and Hoteit, 2011; Bai et al., 2016). The approach
that we propose uses a shrinkage-based covariance estimator that improves the
model robustness and performance when the ensemble size is small. Additionally,
our method incorporates adaptive covariance inflation closely related to the 𝐻
formulation.

6.2. Ensemble time-local H∞ filter
One of the most widely used robust filter is the 𝐻 Filter (HF) (Hassibi et al., 2000).
The HF is based on the criterion of minimizing the supremum of the 𝐿 norm of the
uncertainty sources (Han et al., 2009). The HF ensures that the total energy of the
estimation errors, is not larger than the uncertainty energy times a factor 1/𝛾:

∑||x − x ||S ≤ 1
𝛾 (||x − x || +∑||u ||Q +∑||v ||R ) , (6.1)
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where x is the true state, x is the analysis state, S is a user-chosen matrix of
weights, u and v are the model and observation uncertainty respectively, Δ ,Q
and R are the uncertainty weighting matrices with respect to the initial conditions,
model error and observations error, and 𝑀 is the data assimilation windows length
(Luo and Hoteit, 2011). To solve Equation 6.1, the cost function 𝒥HF is defined as:

𝒥HF =
∑ ||x − x ||S

||x − x || + ∑ ||u ||Q + ∑ ||v ||R
. (6.2)

Then Inequality 6.1 is equivalent to 𝒥HF ≤ . Let 𝛾∗ be the value such that:

1
𝛾∗ = 𝑖𝑛𝑓{x }

𝑠𝑢𝑝
x ,{u },{v }

𝒥HF, 𝑡 ≤ 𝑀, (6.3)

the optimal HF is then achieved when 𝛾 = 𝛾∗. In this formulation, the evaluation
of 𝛾∗ is an application of the minimax rule (Berger, 1985), a strategy that aims to
provide robust estimates and is different from its Bayesian counterpart (Luo and
Hoteit, 2011). An Ensemble-based HF implementation for a nonlinear DA problem
is the Ensemble time-local H filter (EnLTHF) proposed by (Luo and Hoteit, 2011).
In the EnLTHF a local cost function is proposed:

𝒥HF =
||x − x ||S

||x − x || + ||u ||Q + ||v ||R
. (6.4)

The local performance level 𝛾 satisfies:

1
𝛾 ≥ 1

𝛾∗ = 𝑖𝑛𝑓{x }
𝑠𝑢𝑝

x ,{u },{v }
𝒥HF, (6.5)

The EnLTHF can be expressed in terms of the EnKF algorithm using the notation of
(Luo and Hoteit, 2011):

[P ,K ] = 𝐸𝑛𝐾𝐹(x ,Q ,H), (6.6a)

Gt = [𝐼 − 𝛾 ⋅ P ⋅ S ] ⋅K , (6.6b)

x
( ) = x

( ) +Gt ⋅ [yt −Ht ⋅ xb(i)t + vit], (6.6c)

x = (∑x
( ))/𝑁, (6.6d)

(Δ ) = (P ) − 𝛾 ⋅ S , (6.6e)

subject to the constraint

(Δ ) = (P ) − 𝛾 ⋅ S ≥ 0, (6.6f)

where the operator 𝐸𝑛𝐾𝐹(⋅, ⋅, ⋅) means that P and K are obtained through the
EnKF.
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6.3. Robust Shrinkage-based Ensemble Kalman Fil-
ter

6.3.1. Adaptive inflation
A particular issue with ensemble-based DA algorithms is the covariance undersam-
pling. Undersampling leads to further problems such as the ensemble collapse to
an overconfident, but incorrect state, or even filter divergence (Anderson, 2001).
The covariance inflation artificially increases uncertainties in the background covari-
ance avoiding the underestimation of uncertainties, and undersampling (Bellsky and
Mitchell, 2018). The magnitude of the inflation depends to a large degree on each
system and application (Houtekamer and Zhang, 2016).
In equation 6.6e, the presence of the extra term −𝛾 ⋅S inflates the EnKF covariance
matrix. In this way, it is possible to interpretate the EnTLHF as an EnKF formulation
with a specific value of inflation. This implies a theoretical and solid background
to construct robust filters. Consider the case where S = I , that corresponds with
an inflation of the analysis covariance matrix eigenvalues. To satisfy the constraint
6.6f, or what is equivalent, to make (Δ ) semi-definite positive, consider the SVD
decomposition of P

P = 𝑉 ⋅ Σ ⋅ 𝑈 , (6.7)

where Σ = 𝑑𝑖𝑎𝑔(𝜎 , , ..., 𝜎 , ) is a diagonal matrix with all the eigenvalues of P in
descending order, that is, 𝜎 , ≥ 𝜎 , ≥ .... ≥ 𝜎 , and 𝛾 is a variable that satisfies

𝜎 , − 𝛾 ≥ 0,
that corresponds with

𝛾 ≤ 1
𝜎 ,

,

guaranteeing that (Δ ) is semi-definite positive. It is convenient to introduce a
performance level coefficient (PLC) 𝑐 by defining

𝛾 ≤ 𝑐
𝜎 ,

. (6.8)

In contrast to conventional inflation schemes, 𝛾 is adaptive in time even for a fixed
𝑐 value, and it is directly related with the analysis covariance matrix.

6.3.2. EnTLHF-KA
According to sections 6.2 and 6.3.1, with a specific structure and inflation value,
it is possible to obtain a robust version of the EnKF. Although the EnTLHF has
shown to have a better performance than the EnKF in scenarios with high un-
certainty (Luo and Hoteit, 2011; Altaf et al., 2013; Triantafyllou et al., 2013), the
limitations of the EnKF with respect to the ensemble size and the ensemble nor-
mality distribution are inherited in its robust version. When the ensemble size is
small 𝑁 << 𝑛, sampling errors can have impact on the quality of covariances ma-
trix estimation causing problems such as filter divergence and spurious correlations
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(Evensen, 2003; Houtekamer and Zhang, 2016) . Even though many localization
techniques have been developed to mitigate those problems, it usually prohibits its
implementation in high dimensional applications (Sakov and Bertino, 2011). The
shrinkage-covariance estimator methods have shown a better performance than
the classical sampling covariance matrix in scenarios with small ensemble size and
non-gaussianities (Chen et al., 2009; Nino-Ruiz and Sandu, 2015, 2017; Ledoit and
Wolf, 2018). We propose a robust implementation of the EnKF-KA shrinkage-based
method following the principles of the EnTLHF and the adaptive inflation denoted
EnTLHF-KA. The EnTLHF-KA can be obtained similarly to the EnLTHF by taking as
base the EnKF-KA:

[B̂ ,K ] = EnKF-KA(x ,T ,H), (6.9a)

Gt = [𝐼 − 𝛾 ⋅ B̂ ⋅ S ] ⋅K , (6.9b)

x
( ) = x

( ) +Gt ⋅ [yt −Ht ⋅ xb(i)t + vit], (6.9c)

x = (∑x
( ))/𝑁, (6.9d)

where the operator EnKF-KA(⋅, ⋅, ⋅) represents the EnKF-KA shrinkage-based method
(see Section 5.3). For an specific PLC, the inflation value is obtained using the
equation 6.8.

6.4. Results and discussion
6.4.1. Numerical experiments
The Lorenz-96 is one of the most used benchmarks for testing data assimilation
algorithms. The model is highly non-linear and with a strong relationship between
the states. The Lorenz-96 dynamics are described by: (Lorenz and Emanuel, 1998;
Gottwald and Melbourne, 2005):

𝑑𝑥
𝑑𝑡 = {

(𝑥 − 𝑥 ) ⋅ 𝑥 − 𝑥 + 𝐹 for 𝑗 = 1,
(𝑥 − 𝑥 ) ⋅ 𝑥 − 𝑥 + 𝐹 for 2 ≤ 𝑗 ≤ 𝑛 − 1,
(𝑥 − 𝑥 ) ⋅ 𝑥 − 𝑥 + 𝐹 for 𝑗 = 𝑛,

(6.10)

where 𝑛 is the state number choosen as 40, and 𝐹 is the external force. For consis-
tency, periodic boundary conditions are assumed. We take the next considerations
for the numerical experiments:

• The assimilation window consist of 𝑀 = 500 observations.
• The number of observed components is 𝑚 = 20, representing and 50% of
the model components.

• The observation statistics are associated with the Gaussian distribution,

y ∼ 𝒩(H ⋅ x , 𝜌 ⋅ I), for 1 ≤ 𝑡 ≤ 𝑀, (6.11)
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where 𝜌 = 0.001, and H is a linear operator that randomly chooses the 𝑚
observed components.

• To avoid random fluctuations, each experiment is repeated 20 times (𝐿 = 20).

• We compare the performance and robustness of the EnTLHF-KA against the
non-robust methods EnKF and EnKF-KA, and the robust method EnTLHF.

• We take the Root-Mean-Square-Error (RMSE) of 𝐿 experiments as a measure
of performance (see eq. 5.25).

• We choice a PLC value 𝑐 = 0.5 for all the experiments, following Luo and
Hoteit (2011). Other 𝑐 values have been tested (not reported here), but no
performance improvements were obtained.

6.4.2. Robustness against Ensemble members
When the state dimension is large, it is important to test the performance with
relative small ensemble sizes. We evaluate both the accuracy and the robustness
of the EnTLHF-KA with respect to the ensemble size. For this case we set the
observation error 𝛿 = 1 × 10 , the observation frequency 𝑓 = 1, and the external
force 𝐹 = 8. The ensemble size 𝑁 ∈ [10, 20, 50, 100, 1000]. Figure 6.1 presents the
RMSE value for those values of 𝑁.

The EnTLHF-KA has more constant RMSE values for different 𝑁. The other
methods present variation in its performance when the ensemble size changes. In
general, the RMSE values decrease for larger 𝑁 values for all the methods. For
𝑁 = 10, the EnTLHF-KA presents a superior performance compared to the others,
followed by the EnKF-KA. This behavior is attributed to the shrinkage-based esti-
mator used in both methods, that have shown a better covariance estimation when
𝑁 << 𝑛 (Nino-Ruiz and Sandu, 2017; Lopez-Restrepo et al., 2021). However, the
adaptive inflation factor of the EnTLHF, and the ENTLHF-KA improves these meth-
ods’ performance against its non-robust counterpart. For larger ensemble size, both
EnTLHF-KA and EnKF-KA tend to converge to the EnTLHF and EnKF respectively,
since the sampling ensemble matrix represents a good estimator for the covariance
matrix and ̂B converge to P . Due to the good estimation of B by P , and all the
EnKF assumptions are satisfied, the non-robust methods present lower RMSE value
for large ensemble size. This example clarifies the different advantages and disad-
vantages of the robust approach compared to the optimal approach. Although the
EnTLHF-KA performance is not the best in all the scenarios, its robustness allows it
to have low RMSE values in all the scenarios.

6.4.3. Robustness against observation error
Figure 6.2 shows the RMSE value when 𝛿 ∈ [1×10 , 1×10 , 1×10 , 1×10 ].
The other model parameters are: 𝑁 = 20, 𝑓 = 1, and 𝐹 = 8. The idea now is to
evaluate the impact of the observation error in the new robust EnTLHF-KA. It can
be seen that the performance of the non-robust methods is affected by the increase
of the observation error, causing divergence of the EnKF-KA. This kind of behavior
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Figure 6.1: Error evaluation of the robust and non-robust methods respect to the ensemble member
number.

is one of the main reasons for the development of the new robust techniques (Rao
et al., 2017). The observation error’s impact is much lower in the robust methods,
and the performance is almost constant, especially in the EnTLHF-KA. When 𝛿 =
1× , the EnKF and the EnKF-KA perform better than its robust counterpart, but
the robust filters hold a good performance even for large observation errors.

6.4.4. Robustness against model errors
To evaluate the EnTLHF-KA robustness respect to model errors, we compare the
method’s performance when 𝐹 ∈ [6, 7, 8, 9, 10]. 𝐹 = 8 corresponds with the as-
sumption of a perfect model. Figure 6.3 presents the RMSE value for each 𝐹 value
and the comparison among the four filters. The RMSE values remain almost con-
stant for both robust filters, with smaller values for the EnTLHF-KA. The adaptive
inflation makes the analysis covariance matrix larger in the robust filters that in its
non-robust counterpart, given the same background covariance. Consequently, the
EnTLHF and the EnTLHF-KA put more weight in the observations, convenient when
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Figure 6.2: Error evaluation of the robust and non-robust methods respect to the observation error.
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there are larger model errors.

6.4.5. Robustness against ensemble distribution
The standard EnKF assumes that the ensemble state has a Gaussian distribution.
This assumption is especially essential because the state covariance B is approx-
imated by the ensemble sample covariance P . Although the ensemble at 𝑡 is
Gaussian, non-linearities in the model dynamics can modify the ensemble distribu-
tion, causing the approximation of B by P to lose accuracy. Figure 6.4 presents an
evaluation of the ensemble distribution for different times steps using the Lorenz-96
model. We use the Shapiro-Wilk to evaluate the gaussianity of each state variable
(Shapiro and Wilk, 1965). We take an initial Gaussian ensemble of 100 members
as reference. After 15-time steps, some variables begin to change its initial distri-
bution, and after 30-time steps, the Gaussian assumption is not valid anymore for
the ensemble.

We perform different experiments varying the observation frequency or the
number of time steps between two available observations. Figure 6.5 shows the
time averaged RMSE for the EnKF, EnKF-KA, EnTLHF and the EnTLHF-KA using a
observation frequency 𝑓 ∈ [1, 5, 10, 20, 30, 50] times steps. We set an ensemble size
of 𝑁 = 20, an observation error of 𝛿 = 1×10 , and the external force 𝐹 = 8. The
EnKF performance decreases considerably when 𝑓 increases, and after the value of
𝑓 = 30 the method diverges. This result illustrates the importance of the Gaussian
distribution for obtaining a good representation of B throw P . The adaptive in-
flation increases EnTLHF robustness and performance, even when both EnKF and
EnTLHF are using the same approximation of B. Nevertheless, the EnTLHF perfor-
mance decrease considerably when 𝑓 = 50 . In contrast, EnKF-KA and EnTLHF-KA
use a shrinkage-based estimator for B. The KA estimator does not assume a Gaus-
sian distribution, as other shrinkage-based estimators do (Ledoit and Wolf, 2018;
Nino-Ruiz et al., 2021). As a result, the EnKF-KA presents better performance than
EnKF for large 𝑓 values, and similar error levels than EnTLH without incorporat-
ing adaptive inflation. In the case of the EnTLHF-KA, the combination of both the
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Figure 6.3: Error evaluation of the robust and non-robust methods respect errors in the model.
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shrinkage-based estimator and the adaptive inflation produces high robustness and
performance even when the ensemble distribution is non-gaussian.
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Figure 6.5: Error evaluation of the robust and non-robust methods respect to the observation frequency.
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Estimator and Adaptive Inflation

6.5. Conclusions
We propose a robust version of the shrinkage-based EnKF-KA algorithm using adap-
tive inflation derived from the concept of H filter (EnTLHF-KA). The EnTLHF-KA
uses a covariance estimator that allows the incorporation of prior information and
does not assume a Gaussian distribution in the background. Using numerical exper-
iments, we compared the proposed method’s robustness and performance against
the standard EnKF, the shrinkage-based EnKF-KA, and the robust filter EnTLHF. The
EnTLHF-KA has lower RMSE values in conditions with high observation error and
model errors than the other methods. When the number of ensembles is small,
the shrinkage estimator gives a better approximation of the background covari-
ance matrix than the sample covariance matrix, generating lower errors in both
shrinkage-based algorithm, especially in the EnTLHF-KA. The combination of the
non-gaussian shrinkage estimator and the adaptive inflation grant a higher robust-
ness to the EnTLHF-KA when the ensemble distribution is non-gaussian. All these
characteristics make the EnTLHF-KA a suitable option in applications with highly
non-linear models, high observation frequency, and computational restrictions in
the number of ensembles.
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7
Using a robust data

assimilation method to
improve PM2.5 modeling in

the Aburrá Valley

The implementation of the shrinkage-based techniques EnKF-KA and EnTLHF-
KA in an air quality application using the LOTOS-EUROS model over the
Aburrá Valley is described in this chapter. The EnKF-KA is an EnKF im-
plementation that requires a target covariance matrix to integrate previously
obtained information and knowledge directly into the data assimilation. The
EnTLHF-KA is a robust variant of the EnKF-KA based on the H∞ filter, using
an adaptive inflation factor. In the spatial distribution of the PM . concen-
trations along the valley, both methods outperform the well-known LETKF. In
contrast to the other simulations, the ability to issue warnings for high con-
centration events is also increased. Finally, the simulation using EnTLHF-KA
has lower error values than using EnKF-KA, indicating the advantages of ro-
bust approaches in high uncertainty systems.

Part of this chapter is under preparation:
(Lopez-Restrepo et al.,2021) Using a robust data assimilation method to improve PM . modeling in the
Aburrá Valley

109



7

110
7. Using a robust data assimilation method to improve PM . modeling in

the Aburrá Valley

7.1. Introduction
The uncertainty in CTM simulations could be reduced by improvement of the emis-
sion inventory and the upgrade of meteorological data. Alternatively one could
incorporate ground data, satellite information or vertical in the simulations using
Data Assimiaiton (DA) techniques to reduce the uncertainty, and this is approach is
used in this study (Fu et al., 2017; Lu et al., 2016; Jin et al., 2018; Lopez-Restrepo
et al., 2020). In Lopez-Restrepo et al. (2020), data assimilation over the Aburrá
Valley has been applied using the LOTOS-EUROS CTM, building on earlier applica-
tions (Fu et al., 2017; Lu et al., 2016; Jin et al., 2018). Figure 7.1 shows a map of
the Metropolitan Area of the Aburrá Valley in Colombia, as well as maps of emission
correction factors that were obtained in the data assimilation experiments. The
circular patterns in the correction factors originate from the use of a traditional
localization scheme using a defined radius of influence, that is used to remove spu-
rious correlations from an ensemble covariance. For the complex topography of
the valley, this is obviously not an optimal choice. In this study, shrinkage-based
techniques will be used to improve the covariance description, taking into account
the knowledge on the topography.

7.2. LOTOS-EUROS model and observations
The period of interest for all data evaluations, simulations and data assimilation
experiments spans from February 25 to March 15, 2019. During these days, the
PM concentrations are higher due to the Northbound transit of the Inter-Tropical
Convergence Zone.

7.2.1. Simulation setup
All the simulations were conducted using the domain and experimental setup de-
scribed in Section 2.1.2. The local emission inventory presented in Section 2.1.3
was used as emission input for all the simulations. Additionally, the simulations in
the domain of interest (D4) where performed using the meteorological fields com-
ing from the Weather Research and Forecasting (WRF) model (Skamarock et al.,
2008). The description of the WRF meteorology is presented in Section 7.2.2.

7.2.2. WRF meteorology
The WRF model is a numerical weather prediction and atmospheric simulation sys-
tem designed for research and operational applications (Skamarock et al., 2008).
The WRF simulations are suitable to understand the behaviour of meteorological
variables in a domain like the Aburrá Valley. The WRF model has been used over
Colombia in previous studies(Misenis and Zhang, 2010; Carvalho et al., 2012; Tuc-
cella et al., 2012; Hu et al., 2013; Dillon et al., 2016; Kumar et al., 2016; Henao
et al., 2020). The configuration of the nested domains usedin this study is shown in
the Figure 7.2 and described in Table 7.1. The settings used for the WRF simulations
are summarized in Table 7.2.
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(a) The topography of the Aburrá Valley and observations distribution.

(b) Correction emission factors for a radius km and km.

Figure 7.1: Topography and correction emission factors for different localization radius using and stan-
dard localization technique (Lopez-Restrepo et al., 2020).
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Figure 7.2: WRF and LOTOS-EUROS model nested domain configuration.

Domain Latitude Longitude Resolution Number of cells
D1 -8.864, 19.091 -86.694, -59.275 0.3° 90 x 93
D2 -4.946, 14.719 -84.929, -65.091 0.1° 193 x 193
D3 3.734,9.064 -78.108,-73.677 0.033° 130 x 157
D4 5.379,7.294 -76.458, -74.981 0.011° 130 x 169

Table 7.1: WRF model domains description.
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Category Parameter Selection in WRF
Domain settings Coordinate system mercator

True latitude 1: 36°.
True latitude 2: 60°.
Standard.
longitude:-98°.

Vertical setting 35.
Nesting Two way.

Input data Land use MODIS.
Initial-boundary conditions Name of model NCAR-GFS.

Grid resolution 32 levels + 5 soil levels.
Physic Settings Radiation scheme CAM scheme.

Microphysics Single moment 6-class.
Surface layer options Layer: Monin-Obukhov.

Physics: Thermal Diffusion.
Scheme: soil temperature.
only, using five layers.

PBL Scheme MYJ.
Cumulus option KF.

Table 7.2: WRF model set up.

7.2.3. Assimilation and validation network
We used the hyper-dense low-cost network deployed and operated by the Sistema
de Alerta Temprana del Valle de Aburrá (SIATA) as observations for the data as-
similation methods. The low-cost network consists of 255 real-time PM . sensors
across the Aburrá Valley and its hills. The distribution of the low-cost network is
shown in Figure 4.1. For validation, we used the independent official monitoring
network of the metropolitan area. The official network has 80 measurement sites
that observer particulate matter at hourly frequency (Hoyos et al., 2019). The set
of validation sites is split in two sets: the stations located in the bottom part of
the valley (BS, represented by circles in Figure 7.1), and the stations located in the
city’s outskirts or hills (OS, represented by stars in Figure 7.1). The objective of
this division is to evaluate the simulations performance in regions where the PM .
concentration regimes are different.

7.3. Data assimilation system
We performed a total of four different LOTOS-EUROS simulations:

1. a LOTOS-EUROS model simulation without data assimilation (henceforth LE);

2. a DA simulation using the LETKF introduced in Section 7.3.1 (henceforth LE-
LETKF);

3. a DA simulation using the shrinkage-based EnKF-KA developed in Chapter 5
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(Lopez-Restrepo et al., 2021) (henceforth LE-KA);

4. a DA simulation using the robust and shrinkage-based EnTLHF-KA developed
in Chapter 6 (henceforth LE-Robust).

All the simulations were evaluated using the two validation station’s sets, and
the performance metrics Mean Fractional Bias (MFB), Root Mean Square Error
(RMSE), and Pearson Correlation Factor (𝑅), shown in Section 3.2.3. The three
ensemble-based algorithms estimate both concentrations and emissions, following
the stochastic representation presented in Section 2.2. For all the methods, an
ensemble size 𝑁 of 25 members and a localization radius 𝑟 of 5 km where used.

7.3.1. LETKF
One of the most commonly used implementations of the EnKF method is the local
ensemble transform Kalman filter (LETKF) (Ott et al., 2004), where the assimilation
process is performed independently for each model variable. Around each model
variable (grid point), a sub-domain of radius 𝑟 is constructed and the assimilation
process is carried out within the local domain. Each local analysis is mapped onto
the global domain to obtain the global analysis and the assimilation is completed.
In the assimilation process, all the information found within the sub-domain (i.e.,
observed components and error correlations) is used. The analysis state could be
obtained following the implementation by (Shin et al., 2016) :

ΔX = X − x ⋅ 1 ∈ ℝ × , (7.1a)
ΔY = H ⋅ ΔX (7.1b)

P = [ ΔY ⋅R ⋅ ΔY + (𝑚 − 1) ⋅ I] , (7.1c)

D = y−H ⋅ x , (7.1d)
w = P ⋅ Y ⋅R ⋅D, (7.1e)

x = x + ΔX ⋅w , (7.1f)

X = X ⋅ [(𝑛 − 1) ⋅ P ] / , (7.1g)

where 𝑛, 𝑚, and 𝑁 are the model resolution, the number of observations, and the
number of ensemble members respectively, X ∈ ℝ × and X ∈ ℝ × are the
background and analysis ensemble, x ∈ ℝ × and x ∈ ℝ × are the background
and analysis ensemble means, y ∈ ℝ × is the observation vector, P ∈ ℝ × is
the analysis ensemble covariance matrix, H ∈ ℝ × is the observation operator,
R ∈ ℝ × is the estimated data-error covariance matrix, and 1 is a vector of
consistent dimension whose components are all ones. In the LETKF algorithm, the
above analysis is applied per grid cell. The algorithm becomes:

1. Compute in each domain simulated observations for all ensemble members.

2. Collect per domain also the observations from neighbouring domains that are
within 𝑟 distance
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3. Loop over grid cells.

(a) Select observations and simulations that are within range 𝑟.
(b) Compute analysis weights w .

(c) Apply the analysis with the ensemble elements for the selected grid cell.

4. Once all the local analyses are performed, map those to the global domain.

Note that the background error covariance matrix approximation in the LETKF is the
sample covariance matrix (5.7), therefore for large radii of influence, the quality of
the LETKF results could be influenced by spurious correlations.

7.3.2. EnKF-KA and EnTLHF-KA
The shrinkage-based algorithm EnKF-KA (described in Chapter 5) and the robust
EnTLHF-KA (introduced in Chapter 6) were implemented to be used with the LOTOS-
EUROS model. The aim of these algorithms is to improve the model representation
in the complex orography conditions of the Aburra Valley.
For the EnTLHF-KA We choice a PLC value 𝑐 = 0.5 based in the results showed in
Section 6.4.

Both shrinkage-based algorithms required a target matrix T to compute the
covariance matrix B according to (5.16). The matrix T should guide the co-
variance structure in B by limiting the spurious correlations between elements at
large distance (Nino-Ruiz and Sandu, 2015), or in the case of the EnKF-KA and the
EnTLHF-KA, to incorporate previously obtained knowledge directly in the DA process
(Lopez-Restrepo et al., 2021). For this application, we are interested in using the
target matrix to represent the valley’s complex orography in the covariance estima-
tion. Previous works have shown issues to reproduce the pollutant dynamics into
the Aburrá valley due to the limited representation of the valley in the simulation
model (Lopez-Restrepo et al., 2020; Henao et al., 2020). Even with high-resolution
meteorological simulations, it is still challenging to capture the transport of pollu-
tants in the narrow valleys (Rendón et al., 2020).

The main purpose of the T matrix is to reduce the covariance between el-
ements in the state that are distant in the vertical direction but close in the hori-
zontaldirection. Thus, observations located in the bottom part of the valley (where
the pollutant concentration are higher) should not have a high impact in the city’s
outskirts (where the concentrations are lower) and vice versa. A first version of the
target matrix T∗ was built using a fourth-order-polynomial covariance function as
described in Gaspari and Cohn (1999), reducing the correlation as function of ver-
tical distance, with zero correlation for vertical distance exceeding 600 m. Other
distances were tested too, without significant changes in the result. The chosen
formulation preserves the dependency on horizontal distance that is necessary to
remove the spurious correlations. To ensure that T is positive semidefinite, we
applied the method presented in (Higham, 1988) to obtain a positive semidefinite
matrix that is closest to T∗ in the Frobenius norm.

Figure 7.3 illustrates the influence area of the Gaspari-Cohn based covariance
matrix, the T∗ covariance matrix, and the T covariance matrix for two locations.



7

116
7. Using a robust data assimilation method to improve PM . modeling in

the Aburrá Valley

The influence area corresponds with a row (or column ) of the covariance matrix.
It is possible to see how the proposed T∗ matrix (Figure 7.3 (c)) follows the valley
shape according to the orography shown in Figure 7.3 (b) unlike the Gaspari-Cohn
covariance matrix (Figure 7.3 (a)). Additionally, there are no significant modifica-
tions between the T (Figure 7.3 (d)) and the T∗ matrix. Finally, the T matrix
is used as the target matrix for both EnKF-KA and EnTLHF-KA methods. Note that
the final covariance between the state inside and outside the valley will not be nec-
essary zero because the final covariance matrix B is a convex combination of T
and P .

(a) Influence area Gaspari-Cohn matrix (b) Aburrá Valley orography

(c) Influence area T∗ (d) Influence area T

Figure 7.3: Comparison of the influence area of two selected states (blue dots) between a distance
depended localization, and the target covariance matrix based in the distance and the orography.

7.3.3. Forecast experiments
The new covariances have been evaluated with forecast experiments, in which a
model simulation over a limited number of days is performed using information
from the assimilation. DA will primarily boost the accuracy of the forecast for two
reasons. First, if the simulation is initialized with an assimilated state, the initial
conditions at the beginning of the forecast window are closer to reality than the
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model alone can provide. Second, it is possible to apply the emission correction
factors included in the assimilation state (2.7).

Forecasting experiments were performed to test the model’s capability to pre-
dict the PM concentrations in the valley up to to three days ahead. We applied the
methodology proposed in Section 4.2.4, with all days from March 9 to 13 having
predictions as the first, second and third day of a forecast. We are especially inter-
ested in evaluating the ability of the model to predict warning-triggering episodes
(AQI in orange, red, or purple levels, see Table 4.1). All forecast simulations used
the estimated emission correction factors from the last assimilation day, in each of
the three forecast day. This inheritance scheme has shown the best option for the
LE implementation over the Aburrá Valley ((Lopez-Restrepo et al., 2020), and also
Chapter 3).

7.4. Results
7.4.1. Evaluation of LE simulations
The concentration fields produced by model simulations with or without data as-
similation were compared with the observations from official monitoring stations
(Figure 7.1), dividing the study into stations at the bottom of the valley (BS stations)
and stations at the outskirts of the city (OS stations). The averaged assessment
statistics over the validation station are shown in Table 7.3. In all validation stations,
the simulation results without data assimilation (LE) underestimated the observed
concentrations. This is for example reflected in a high RMSE value. The correla-
tion coefficient was low, which means that the model could not fully capture the
temporal variations at hourly and daily scale. An improvement is observed when
the LE simulation is compared with previous results using ECMWF meteorology
(Lopez-restrepo et al., 2021) (Chapter 4, Table 4.2 MFB=-0.65, RMSE=27.38, and
𝑅=0.42). The three simulations using data assimilation had MFB values similar to 0
for the BS stations (bottom of the valley), without a noticeable difference. DA was
thus successful in reducing the discrepancy between the model and observations.
The RMSE also decreased by 45.03% in the LE-LETKF, 41.57% in the LE-KA, and
41.91% in the LE-Robust simulations compared to the RMSE of the LE simulation.
According to Mogollón-sotelo et al. (2020) Table 2 and based on EPA (2000); Boy-
lan and Russell (2006), the 𝑅 values were all above the criterion for good results.
In contrast, over the OS stations (outskirts of the city) the simulations using the
shrinkage-based methods presented better statistics respect to the LE-LETKF. For
instance, the RMSE’s improvements in OS stations using shrinkage-based methods
are 15.02% for the LE-KA and 22.22% for the LE-Robust compare with the LE-
LETKF. In general, all DA simulations showed lower scores in the OS stations than
in the BS stations, mainly because of the poor representation in these areas by the
background simulation (LE simulation) and the lack of close observations. Even so,
the LE-Robust looks more robust among all the stations.

Figure 7.4 shows diurnal cycles in the four chosen validation stations during the
simulation phase. Those stations illustrate the differences between BS and OS, and
are representative for all validation stations. The LE diurnal cycle differs from the
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Simulation MFB RMSE 𝑅
BS OS Total BS OS Total BS OS Total

LE -0.42 -1.2 -0.55 20.23 21.12 21.11 0.61 0.41 0.57
LE-LETKF 0.03 0.26 0.08 11.12 17.50 13.93 0.86 0.63 0.81
LE-KA -0.02 -0.09 -0.02 11.82 14.87 12.88 0.84 0.71 0.82
LE-Robust 0.02 -0.03 0.01 11.75 13.61 12.22 0.84 0.78 0.83

Table 7.3: Statistical evaluation of different simulations. BS corresponds with stations located in the
bottom of the valley. OS corresponds with stations located in the outskirts of the city. The total value is
calculated over all the validation stations.

observations in magnitude in the BS stations, and in the OS stations in both magni-
tude and temporal behavior. The highest peak of concentration in the BS stations
around 09:00 is primarily due to traffic dynamics and is partially captured by the
LE simulation. For example, the LE morning peak emerged faster in the simula-
tions at station 44 than in the observations. This time lag could be due to a poor
spatial representation of mobile sources in the emission inventory, or a failure by
the meteorology or the model to reproduce the dynamics of the valley, indicating
a premature transport of particulate matter to these regions. In comparison, at
22:00 hours, the LE simulation presents the highest point at station 44 (Figure 7.4
(c)), which does not correspond with the observations. The LE simulation in the
other OS station 85 (Figure 7.4 (d)), cannot fit the observation interval, indicating a
late morning peak and a minimum around 21:00 that does not appear in the mea-
surements. The LE simulation show a general underestimation of concentrations,
with a better replication of the PM2.5 dynamics at the bottom of the valley.

The simulations using data assimilation presented diurnal cycles closer to the
observations, with a marked difference in performance between BS stations and OS
stations. In the BS stations (Figure 7.4 (a) and (b)), the three methods showed very
similar daily cycles capturing the magnitude and the variability of the observations
with high accuracy. These simulations corrected the concentration underestimation
presented in the LE simulation and improved the temporal profile. Unlike in the
BS stations, in the OS stations, the three DA methods showed different results.
The LE-LETKF tends to overestimate the concentrations and has different diurnal
variability concerning the observations. In station 44, the LE-LETKF persistently
displayed higher values than the observed, and a low variability around the day, with
small peaks and valleys. In station 85, the LE-LETKF showed higher concentration
values than the observations, and the morning peak appears later (similar to the LE
simulation). The discrepancy in the magnitude and the lack of representation of the
temporal variability suggest that the LE-LETKF simulation assimilates observations
located in regions where the PM presents a different temporal behavior than those
grid cells located in the outskirts. On the other hand, the two simulations using
the shrinkage-based covariance estimator and the target matrix T (LE-KA and
LE-Robust) improve the performance in the OS stations. The LE-KA simulation
showed a similar temporal variability in both OS stations, although a concentration
underestimation. The LE-Robust displayed a high agreement between the simulated
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Bottom stations

(a) Daily cycle at Station 25 (b) Daily cycle at Station 28

Outskirt stations

(c) Daily cycle at Station 44 (d) Daily cycle at Station 85

Figure 7.4: Daily cycle at different stations. The upper panel corresponds with stations located in the
bottom of the valley. The bottom panel corresponds with stations located in the outskirts of the city.

daily cycle and the observations. The difference in magnitude between the LE-
Robust and LE-KA simulations can be explained by the fact that the robust methods
tend to put more weight in the observations when there is high uncertainty in the
background (Luo and Hoteit, 2011), such as the case in this application. Finally, the
shrinkage-based simulations tend to follow the diurnal variability which suggests
that the T matrix could limit the influence of observations from areas with a
different temporal profile.

7.4.2. Spatial distribution
To better understand the influence of the target matrix T on shrinkage-based
methods, it is important to analyze the spatial distribution of the concentrations
over the valley. Figure 7.5 shows a three-dimensional representation of the average
value of PM . over March 9. In these graphs, values less than 5 𝜇g/m are omitted.
The (averaged) observed values are shown using the same color bar for all the
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validation stations by a circle and a star for the BS and OS stations respectively.
The LE simulation has a spatial pattern similar to the observations, with the highest

(a) LE (b) LE-LETKF

(c) LE-KA (d) LE-Robust

Figure 7.5: 3D maps of concentrations averaged over March 9 for different simulations. The values less
than 5 g/m are omitted. The circles correspond with BS stations, and the stars corresponds with OS
stations.

concentrations in the center and south part of the Medellín city (see Figure 7.1
for reference). In general, the concentrations are higher in the bottom part of
the valley, where most of the population and industry facilities are located. This
characteristic is well captured by the LE simulation. Nevertheless, the LE simulation
tends to underestimate the concentration along the valley and the hills. The three
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DA simulations are able to correct the concentration bias in the bottom part of the
valley. The LE-LETKF assimilation increases the concentrations in the hills to values
higher than the observations. In the station 85, located on the west slope of the
valley (see Figure 7.1 for reference), the concentrations simulated by LE-LETKF are
almost everywhere higher than the observed. This is because the concentrations
in the west hill are influenced by observations located in the lower part of the
valley, characterized by high concentrations. Those observations influence the grid
cells located on the hill, generating values that do not correspond to the validation
station. Both shrinkage-based simulations match better with the observations on
the hills. In the case of the station 85, both methods have the same range of values
as the observed concentrations. The use of the T matrix limits the influence of
the observations located in the bottom of the valley on the grid cells at the slopes.
As can be seen in Figure 7.3 (d), the influence of the observations is limited by
horizontal and vertical distance, representing better the dynamics in the valley. A
particular situation is observed at station 94 (see Figure 7.1 for reference), located
on the top of the east slope. Although the observed values are in the range of 5-10
𝜇g/m , all the simulation, even the DA simulations, show values under 5 𝜇g/m
(not plotted in Figure 7.5). The underestimation can be explained by an absence
of emissions in the emission inventory (emission uncertainties), and the limited
number of observations in that part of the domain.

7.4.3. Forecast evaluation
A fundamental prerequisite for a simulation and assimilation method of air quality to
be valuable for a decision-making process is that it can predict the concentrations
a few days in advance. Figure 7.6 shows examples of forecasts from 12 March
16:00 to 15 March 16:00. As was mentioned previously, the forecast runs are
using the emission correction factors estimated between 10 March 16:00 and 11
March 16:00. The LE simulation persistently underestimates the concentrations,
as observed in the assimilation window’s results. In the BS stations, the three
assimilation methods initiate a forecast that is quite close to the observations on the
first day and remains with an acceptable similarity in the following two forecast days.
As shown in the previous evaluations, the concentrations in the assimilation window
are very similar for the three methods in the lower part of the valley. Thus, also the
estimated emission correction factors are similar, leading to rather small differences
between the forecasts. However, in the OS stations, the LE-LETKF forecasts show
magnitudes and a temporal behavior that is different from the observations. This
discrepancy in the values suggests an incorrect estimation of the emission correction
factors on the slopes of the valley by LE-LETKF. The forecasts generated by the
shrinkage-based methods are more similar to the observations. The LE-KA and LE-
Robust show a good forecasting skill for the OS stations, with temporal behavior
and magnitudes close to those observed for the first and second forecast days.

To be valuable for the public, a forecast should correctly warn for elevated air
pollution events. The portion of true negatives, true positives, false negatives, and
false positives regarding with the prediction of warning-triggering episodes (AQI
in orange, red, or purple levels, see Table 4.1) is summarized by the confusion
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Bottom stations

(a) Forecast at Station 25
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(b) Forecast at Station 28
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(c) Forecast at Station 44

Mar 12, 12:00 Mar 13, 00:00 Mar 13, 12:00 Mar 14, 00:00 Mar 14, 12:00 Mar 15, 00:00 Mar 15, 12:00

2019   

0

50

100

P
M

2
.5

 (
 g

/m
3
)

(d) Forecast at Station 85
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Figure 7.6: Forecast from 12 March 16:00 to 15 March 16:00 at different stations. The grey vertical
dashed line represents the end of the assimilation window and the beginning of the forecast window.

matrix (Kohavi and Provost, 1998). Figure 7.7 shows the confusion matrices for
LE-LETKF, LE-KA, and LE-Robust assimilations and forecasts. In the assimilation
or forecast window, the LE simulation did not give an alert at any station; for
that reason, we do not provide its confusion matrix. Data assimilation simulations
have a ratio between true negatives and true positives equal to or greater than
90%Of the ̇ 20 alarms registered in the assimilation window, 18 correspond to BS
stations. In the forecast window, the forecast skill of the three models was lower
than in the assimilation window. From the 10 actually observed alerts in the forecast
period, the DA simulations could replicate 8. A higher proportion of false-positive
alerts was reported by the LE-LETKF, documenting nine false alerts more than the
shrinkage-based approaches. The high amount of false-positive alerts is due to
the overestimation of the LE-LETKF concentration in the OS stations where the
additional alerts were recorded incorrectly. In general, the LE-KA and LE-Robust
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simulations had better alert forecast performance than the LE-LETKF simulation.

(a) Data assimilation window
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Figure 7.7: Comparison of confusion matrices for the data assimilation and forecast window depending
on warning or no warning per station. The values are calculated across all the days of the corresponding
window. The value of 0 corresponds with no warning, the value of 1 corresponds with a warning. For
the LE simulation, there are no warnings in the data assimilation window nor forecast windows.

7.5. Discussion and comments
The simulations of the LE model showed an improvement when using the meteo-
rology generated by the WRF model. Previous studies already suggested the need
for meteorological fields at a higher resolution to correctly represent the dynam-
ics and transport of pollutants in the Aburrá Valley (Lopez-Restrepo et al., 2020)
(chapters 3, 4). Simulation without data assimilation and using WRF meteorol-
ogy (LE simulation) shows an improvement compared to implementations using
the lower resolution ECMWF meteorology. An underestimation of PM . concentra-
tions is strongly reduced (although still present) and an increment in the correlation
is observed. It is important to continue evaluating the model’s performance with
different configurations of the WRF model specifically to reproduce the dominant
dynamics of pollutant transport in inhabited valleys (Henao et al., 2020; Rendón
et al., 2020). Additionally, it is necessary to carry out a more exhaustive evalu-
ation of the model’s vertical resolution given the new possibilities offered by the
coupling with the WRF model. Finally, a reduction in the meteorology’s uncertainty
will improve the estimation of the emissions using data assimilation and could help
to create more accurate emission inventories.

The data assimilation considerably improves the simulations by the model. With
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each of the three assimilation methods, smaller differences and higher similarities
between the simulated and observed concentrations were found, as shown in Ta-
ble 7.3. The standard metrics that are used to compare the various algorithms
showed an improvement compared to previous EnKF implementations assimilating
the same observations (Lopez-restrepo et al., 2021) (Chapter 4). This improve-
ment is due to the better background obtained using WRF meteorology and the
impact of the localization schemes present in the DA algorithms. Using the new
assimilation schemes, the spatial distribution of concentrations within the valley is
better resolved. Using a target covariance matrix to adapt the covariances com-
puted from the ensemble results in betterrepresentation of the actual covariance
structure. The target covariance matrix limits the influence of observations located
in the lower part of the valley on the grid cells located in the hills of the valley,
and vice versa. This makes it possible to separate the different regimes and avoids
incorrect corrections in concentrations, as could occur with the standard LEKTF
method. The forecast experiments also suggest a better estimate of the emission
correction factors when shrinkage methods are employed. As a result, the fore-
casts of dangerous pollution levels is improved in all the stations (see Figure 7.7).
These results encourage further improvement of these types of methods and to
incorporate more and more prior knowledge in the covariance estimation. Possible
new directions include dynamic target matrices dependent on the weather or on
patterns in public behaviour.

Both shrinkage-based methods EnKF-KA and EnTLHF-KA, showed lower error
statistics than the standard LETKF. The use of the shrinkage estimator and the incor-
poration of orography information through the T matrix allows both methods to
achieve satisfactory results with a relatively low number of ensemble members (25).
Previous experiments in toy models (Lorenz96 and 2D advection-diffusion model)
and real pseudo applications (SPEEDY model) have shown that the shrinkage-based
family of methods can improve data assimilation when the size of the ensemble is
small (Lopez-Restrepo et al., 2021; Nino-Ruiz and Sandu, 2015) (Chapter5), sup-
ported by our results in a real high-dimensional application. This capability is impor-
tant given the computational difficulty involved in generating many simulations of
highly complex models. Althoughthe overall performance of both methods is simi-
lar, the robust method achieves better results, especially in stations on the slopes
of the valley. The EnTLHF-KA algorithm tends to put more weight on the obser-
vations than the EnKF-KA in the analysis step due to the adaptive inflation term
that is present. Additionally, the robust methods do not require a completely cor-
rect characterization of the observation representation errors or the uncertainties
of the model (Luo and Hoteit, 2011). This characteristic benefits the EnTLHF-KA
in our application, given the lack of precise information on the modeling system’s
uncertainties, e.g., emissions inventory, meteorology, composition, and reaction
schemes.

Although the methods presented in this work were tested in a specific setting,
their formulation is quite general and could be be used in other applications (Lopez-
Restrepo et al., 2021) (chapters 5 and 6). The basic concept of both EnKF-KA and
EnTLHF-KA is to incorporate information or prior system knowledge that is not cap-
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tured by the model directly in the data assimilation. In our case, for example, this
principle works as a modification to the well-known concept of distance-based loca-
tion. Several works have followed this line, mainly in history matching applications
(Soares et al., 2018; Lacerda et al., 2021) but with a different approach. We believe
that EnKF-KA and EnTLHF-KA possess sufficiently interesting characteristics to be
applied and tested in areas other than that shown in this work.

7.6. Conclusions
We presented a data assimilation application using the shrinkage-based methods
EnKF-KA and the robust EnTLHF-KA, with the chemical transport model LOTOS-
EUROS over a densely populated valley. Both proposed methods outperform the
standard LETKF, especially in places with complex orography. Incorporating the
orography characteristics in the data assimilation through a target matrix, limits
the influence of observations in grid cells that are far away in vertical distance. The
final result can be understood as a localization scheme that does not depend only
on the horizontal distance, but also on the change in orography. The robustness
of the EnTLHF-KA allows to have a high similarity between the simulated and ob-
served PM . concentrations, even with a small ensemble size and an incomplete
representation of the system uncertainties. The model’s forecasting capabilities are
also improved, achieving a good representation of the concentrations on the first
forecast day, being acceptable until the third day. After assimilation, the model is
an accurate tool for forecasting alerts for high levels of air pollution.
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8
Conclusion

8.1. Discussion of research questions
This thesis further advanced ensemble-based DA techniques by elaborating upon
four research questions proposed in Chapter 1. The thesis concludes the answers
to the research questions by addressing specific points.

RQ1: How to integrate all the possible information captured in the
Ensemble-based DA process (state value, parameters value and dynamic,
etc.) into the forecast simulation of systems with high uncertainty?

The LE model showed a low forecast skill for the particulate matter (PM) dy-
namics in the Aburrá valley without DA. DA increase the accuracy of the forecast
primarily for two reasons: first, if the simulation is initialized with an assimilated
field value, the initial conditions at the beginning of the forecast window are closer
to reality than the model alone can provide; second, it is possible to use improved
parameters in the forecast window. In Chapter 3, different inheritance systems
were tested to incorporate correction factors for emission parameters to improve
the forecasts. The study concludes that given the cyclical nature with well-marked
patterns in the particulate matter concentrations, using the latest estimated hourly
profile of the emission correction factors resulted in the best results. The second
conclusion is that for the case studied in this thesis, the inheritance of emission pa-
rameters has a more significant impact on the quality of the forecast than the initial
condition of the forecast window. This is because the behavior of PM is governed
mainly by emissions rather than initial concentrations. The impact of the estimated
parameters against the initial condition in the forecast window is clearly shown in
Chapter 3, where the forecast generated by the default inheritance method (initial
condition of the forecast window from the last value estimated, but without using
the estimated emission factors) presents the worst performance, converging with
time to the forecast generated by the model without assimilation. It should be
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noted that this behavior is specific to the application in question. For applications
other than the one shown here, it is essential to conduct an exhaustive study to
determine the impact of particular parameters and initial conditions.

RQ2: Can low-cost monitoring networks assimilated into a CTM be a
more accessible alternative to standard air quality monitoring systems?

In Chapter 4 the accuracy of the Aburrá valley’s low-cost sensor network is eval-
uated against the standard and official PM . monitoring network. Additionally, we
tested the LE performance when low-cost observations are assimilated. The low-
cost network evaluation concludes that low-cost devices are feasible to represent
the temporal behavior and the magnitude of nearby official stations. Although low-
cost observations do not provide high spatial representativeness such as official
observations due to their locations and nature, the possibility of deploying a much
denser network can make up for these deficiencies. The large number of low-cost
sensors that can be deployed allows for more detailed spatial monitoring of con-
centrations than that obtained by an official monitoring network. In terms of DA,
the results when assimilating this network outperform even those obtained when
the official monitoring network is assimilated as shown in Chapter 4. We conclude
that with the current advances in low-cost sensors, it is possible to use low-cost
networks and DA to model and predict air quality in urban areas.

RQ3: How can a covariance localization scheme that uses direct knowl-
edge of the system, for instance, a very complex topography, improve the
performance of an Ensemble-based Data Assimilation method?

In Chapter 5 we proposed a method that allows incorporating previous knowl-
edge or information of the system that is not well represented by the model, directly
in the assimilation of data. EnKF-KA (Knowledge Aided) uses a shrinkage-based co-
variance estimator and a target matrix to guide the error covariance matrix’s final
structure. In Chapter 7, we implemented the EnKF-KA together with the LE to as-
similate the low-cost observation network of the Aburrá valley. In this application,
we configured the target matrix to represent the physical barrier in the transport
of particulate matter that is present due to the valley’s complex topography and
that current meteorological fields do not capture very well. The target matrix used
limits the influence of observations located in the lower part of the valley on the
grid cells located in the hills of the valley, and vice versa. This makes it possible to
separate the different regimes and avoid unrealistic corrections in concentrations,
as could occur with standard localization techniques. Using a target covariance
matrix to guide the assimilation results in better use of the available observations.
The forecast experiments also suggest a better estimate of the emission correction
factors when the shrinkage-based methods are employed.

RQ4: How does the performance of robust estimators compared to the
EnKF under a scenario of high uncertainty sources like emissions, mete-
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orology and observations?

We developed a robust version of the EnKF-KA based on the concept of the
H filter in Chapter 6. The EnTLHF-KA uses an adaptive inflation factor dependent
on the covariance matrix, which increases the method’s robustness in the face of
uncertainty in the observations, the model, and a low number of ensembles. The
EnTLHF-KA also uses the shrinkage-based estimator to incorporate prior knowl-
edge and information in the assimilation process. The proposed robust method
was compared to existing methods under both known and controlled conditions
using the Lorenz-96 model and outperformed them. The EnTLHF-KA has lower er-
rors compared to the other approaches. When the number of ensemble members
(10) is small, the shrinkage-based estimator approximates the background covari-
ance matrix better. The non-Gaussian shrinkage estimator, in combination with
the adaptive inflation factor, provides a higher robustness in applications where the
ensemble has a non-Gaussian signature. Finally, the EnTLHF-KA was tested in the
LE case study over the Aburrá valley in Chapter 7. The robust method was the
most effective among the tested options. The EnTLHF-KA put more weight on the
observations in the analysis step due to the presence of an adaptive inflation term.
The robust methods do not require that the measurement errors or the model un-
certainties be completely characterized. This is advantageous in our application,
given the lack of information regarding the modeling system parameters such as
the emissions inventory, meteorology, composition, and reaction schemes.

8.2. Outlook
In this thesis, we showed how, with DA, the performance and forecasting capacity
of the LE model over the Aburrá valley could be considerably improved. Additionally,
techniques were presented to improve DA by incorporating knowledge of the system
and increasing the robustness. Some questions arose from the results, motivating
future research.

All the experiments showed considered emissions as the only source of uncer-
tainty. This assumption is based on the significant impact that emissions have
on PM concentrations and the complexity of uncertainty in meteorological fields.
The changes made in the modeling system incorporating the higher resolution me-
teorology of the WRF model showed a considerable improvement in the model’s
performance. To further improve the accuracy of particulate matter simulations,
especially in applications that require high resolution, uncertainties in meteorology
should be considered. This would allow incorporating the meteorological fields that
have a high impact on the dynamics of pollutants in the DA system.

The use of observations from a low-cost network in the DA system made it
possible to increase the spatial detail in the emission correction factor estimation.
This capacity is of great relevance in applications such as the one shown here, in
which a high resolution is necessary to capture the complexity of the domain. The
low-cost network used in this study would actually a higher spatial and temporal
resolution than that used by our application. With low-cost sensors, it is possible
to deploy a network that monitors the particulate material’s behavior at a spatial
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resolution of even streets in an urban area and a sampling period of minutes. These
characteristics make low-cost networks an exciting observation source for DA or
validation of exposure models. Finally, the LE model results at high resolution (1
km × 1 km) can be used for exposure models at street level as initial or boundary
condition, or as initial input to be spatially dis-aggregated following high resolution
information.

We used a static target matrix in both shrinkage-based proposed algorithms.
This target matrix’s objective was to represent the complex topography of the valley
and use it to guide the covariance estimation. Although for this specific application,
an improvement was demonstrated when using this static matrix, the proposed
methods do not present restrictions on the target matrix’s temporal behavior. The
use of dynamic objective matrices would allow, for example, to incorporate some
observed wind patterns or changes in the influence of the observations based on
meteorology. Additionally, future research could continue by developing methods
that create target matrices using a more significant number of information sources.
This would allow to refine the assimilation system and increase the understanding
of the state covariance.
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